OREILLY

PRODUCING SCALABLE VECTOR
GRAPHICS WITH XML

J. David Eisenberg &
Amelia Bellamy-Royds

SVG Essentials

J. David Eisenberg

Amelia Bellamy-Royds

Dedication

To my late mother and father, for their advice and love through the years.T JDE
For Bill, who would have been so proud.T ABR

Preface

SVG Essentials introduces you to the Scalable Vector Graphics XML file format. SVG, a
recommendation from the World Wide Web Consortium, uses XML to describe graphics
that are made up of lines, curves, and text. This rather dry definition does not do justice to
the scope and power of SVG.

You can add SV G graphics to an Extensible Stylesheet L anguage Formatting Objects
(XSL-FO) document, and convert the combined document to Adobe PDF format for high-
guality printouts. Mapmakers and meteorologists are using SV G to create highly detailed
graphic imagesin atruly portable format. Web devel opers are embedding SVG in web
pages to create high-resolution, responsive graphics with small file sizes. All of the
diagramsin this book were originally created in SVG. Asyou learn and use SVG, youfe
sure to think of new and interesting uses for this technol ogy.

Who Should Read This Book?

You should read this book if you want to

m Create SVG filesin atext or XML editor

» Create SVG files from existing vector data

» Transform other XML datato SVG

» Use JavaScript to manipulate the SV G document object tree

Who Should Not Read This Book?

If you ssimply want to view SV G files, you need only acquire aviewer program or plug-in
for the Web, download the files, and enjoy them. Theres no need for you to know what-s
going on behind the scenes unless you wish to satisfy your lively intellectual curiosity.

If you wish to create SV G files with a drawing program that has SV G export capability,
just read that program-s documentation to learn how to use that program feature.

If You-e Still Reading This"

If you-ve decided that you should indeed read this book, you should also be aware that
most of the people who use this book will be fairly advanced users, quite probably from a
technical background rather than a graphics design background. We didn-+ want to burden
them with alot of basic materia up front, but we did want the book to be accessible to
people with no background in XML or programming, so we created a number of
introductory chaptersf and then put them in the back of the book as appendixes. If you
haven used XML or stylesheets (and this could include some of the technical folks!) or
have never programmed, you might want to turn first to the appendixes. A complete list of
all the chapters and appendixes with details on what they contain is given later in this
preface.

If you—+e one of the technical types, you definitely need to be aware that this book will not
make you a better artist, any more than a book on word processing algorithms will make
you a better writer. This book gives the technical details of scalable vector graphics; to
create better art, you need to learn to see, and the book you should read in addition to this
oneis The New Drawing on the Right Sde of the Brain by Dr. Betty Edwards (Tarcher).

This book gives you the essentials of SVG; if you want to find out al the details, you
should go straight to the source, the W3C SV G specifications.

About the Examples

The examplesin this book, except for those that involve HTML pages, have been tested
with the Batik SV G viewer on a system running GNU/Linux. The Batik SV G viewer is an
application of the software developed by the Apache Software Foundation-s Batik project.
This cross-platform software, written in Java, is available as open source under the
Apache Software License and can be freely downloaded from the project website.

All the examples (including those in Chapters 2, 13, and 14 that involve JavaScript and
HTML) were tested by being loaded into the Firefox and Chrome web browsers. The level
of support for the more sophisticated features of SV G differs depending upon the browser.

Asyou look through the illustrations in this book, you will find that they are utterly
lacking in artistic merit. There are reasons for this. First, each example isintended to
illustrate a particular aspect of SVG, and it should do so without additional visual
distractions. Second, one of the authors (David) becomes terribly depressed when he looks
at other books with impossibly beautiful examples; —+can never draw anything that looks
like this,ll he thinks. In an effort to save you from similar distress, the examples are
purposely as simple (or ssimplistic) as possible. Asyou look at them, your immediate
reaction will be: —+can certainly use SVG to draw something that looks far better than
thistll You can, and you will.

Organization of This Book

Chapter 1, Getting Sarted

This chapter gives abrief history of SVG, compares raster and vector graphics systems,
and ends with a brief tutorial introducing the main concepts of SVG.

Chapter 2, Using SVG in Web Pages

This chapter shows you the various methods that you can use to put SVG into your
HTMLS5 documents.

Chapter 3, Coordinates

How do you determine the position of a point in adrawing? Which way is—dpll? This
chapter answers those questions, showing how to change the system by which
coordinates are measured in agraphic.

Chapter 4, Basic Shapes

This chapter shows you how to construct drawings using the basic shapes available in
SVG: lines, rectangles, polygons, circles, and ellipses. It also discusses how to
determine the colors for the outline and interior of a shape.

Chapter 5, Document Structure

In acomplex drawing, there are elements that are reused or repeated. This chapter tells
you how to group objects together so they may be treated as a single entity and reused.
It also discusses use of external images, both vector and raster.

Chapter 6, Transforming the Coordinate System

If you draw a sguare on a sheet of stretchable material, and stretch the materia
horizontally, you get arectangle. Skew the sides of the sheet, and you see a
parallelogram. Now tilt the sheet 45 degrees, and you have a diamond. In this chapter,
you will learn how to move, rotate, scale, and skew the coordinate system to affect the
shapes drawn on it.

Chapter 7, Paths

All the basic shapes are actually specific instances of the general concept of a path. This
chapter shows you how to describe a general outline for a shape by using lines, arcs,
and complex curves.

Chapter 8, Patterns and Gradients

This chapter adds more to the discussion of color from Chapter 4, discussing how to
create a color gradient or afill pattern.

Chapter 9, Text

Graphics aren+ just lines and shapes; text is an integral part of a poster or a schematic
diagram. This chapter shows how to add text to a drawing, both in a straight line and
following a path.

Chapter 10, Clipping and Masking

This chapter shows you how to use a clipping path to display a graphic as though it
were viewed through a circular lens, keyhole, or any other arbitrary shape. It also shows
how to use amask to alter an object-s transparency so that it appears to —fade outll at the
edges.

Chapter 11, Filters

Although an SV G file describes vector graphics, the document is eventually rendered
on araster device. In this chapter, you-+l learn how to apply raster-oriented filtersto a
graphic to blur an image, transform its colors, or produce lighting effects.

Chapter 12, Animating SVG
This chapter shows you how to use SV G-s built-in animation capabilities.
Chapter 13, Adding Interactivity

In addition to SV G-s built-in animation, you can use both CSS and JavaScript to
dynamically control a graphic-s attributes.

Chapter 14, Using the SVG DOM

This chapter goes further in depth with using JavaScript to manipulate the Document
Object Model. It also gives a brief introduction to a JavaScript library designed for
working with SVG.

Chapter 15, Generating SVG

Although you can create an SVG file from scratch, many people will have existing
vector data or XML data that they wish to display in graphic form. This chapter
discusses the use of programming languages and XSLT to create SV G from these data
SOUrces.

Appendix A

SVG isan application of XML, the Extensible Markup Language. If you haven+ used
XML before, you should read this appendix to familiarize yourself with this remarkably
powerful and flexible format for structuring data and documents.

Appendix B

You can use stylesheets to apply visual propertiesto particular elementsin your SVG
document. These are exactly the same kind of stylesheets that can be used with HTML
documents. If you-ve never used stylesheets before, you- want to read this brief
introduction to the anatomy of a stylesheet.

Appendix C

If you—+e a graphic designer who hasn+ done much programming, you-l want to find
out what programmers are talking about when they throw around words like object
model and function.

Appendix D

To fully understand coordinate transformations and filter effectsin SV G, it-s helpful,
though not necessary, to understand matrix algebra, the mathematics used to compute
the coordinates and pixels. This appendix highlights the basics of matrix algebra.

Appendix E

TrueType fonts represent glyphs (characters) in avector form. This appendix shows you
how to take your favorite fonts and convert them to paths for use in SV G documents.

Appendix F

Many applications represent arcs in a center-and-angles format. This appendix provides
code to convert from that format to SV G-s format for arcs and back again.

Conventions Used in This Book

Italic

Indicates new terms, URLS, email addresses, filenames, and file extensions.
Constant wi dth

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant wi dth bold

Used to highlight a section of code being discussed in the text.
Constant width italic

Shows text that should be replaced with user-supplied values or by values determined
by context.

NOTE

This element signifies atip, suggestion, or general note.

WARNING

This element indicates awarning or caution.

This book uses callouts to denote points of interest in code listings. A callout is shown as a
number in afilled circle; the corresponding number after the listing gives an explanation.
Heres an example:

Roses are red,

Violets are blue. O
Some poens rhyne;

This one doesn't. @

o
Violets actually have a color value of #9933cc.
(2}
This poem uses the literary device known as a surprise ending.

Many of the examples are available to test out online; the URL isindicated in the text.
Some of the online examples have markup that you can edit; click the Refresh button to
see the results of your changes. You may aso click the Reset button to return the example
to itsoriginal state.

Safari- Books Online

NOTE

Safari Books Online is an on-demand digital library that delivers expert content in both book and video form from the
world-s leading authors in technology and business.

Technology professionals, software devel opers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers arange of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O-Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O-Rellly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at
http://shop.oreilly.com/product/0636920032335.do.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgmentsfor the First Edition

|-d like to thank Simon St. Laurent, the editor of this book, for his guidance and
comments, which were always right on the mark. He also told me in an email, ~we already

know that you know how to write,ll which is one of the nicest things anyone has ever told
me.

Thanks also to Edd Dumbill, who wrote the document that | modified only dlightly to

create Appendix A. Of course, any errorsin that appendix have been added by my
modifications.

Thanks also go to the technical reviewers of this book: Antoine Quint and David Klaphaak
and the SV G Quality Engineering team at Adobe, who did the technical review of the
manuscript. Your comments have helped improve many aspects of this book.

Jeffrey Zeldman is the person who first put the ideain my head that I, too, could write a
book, and for that | thank him most sincerely.

| also want to thank all the people, foremost among them my brother, Steven, who, when |
told them | was writing a book, believed in me enough to say, ow, that-s grezt. |l

Acknowledgmentsfor the Second Edition

We would like to thank Shelly Powers for her excellent technical review. Our thanks also
go to Simon St. Laurent and Meghan Blanchette for their fantastic job of editing and to
Matthew Hacker and the O-Reilly tools and production teams for getting all the finishing
touches just right, despite the best efforts of stubborn software and fussy authors.

From David: 1-d like to give special thanks to Amelia Bellamy-Royds. She was initially
doing technical review of the book, and her comments were so lucid and well written that
| found myself lifting them verbatim and realized that she should be a coauthor. Her
corrections and additions have made the book far better than | could have imagined.

From Amelia: 1-d like to thank David for being decent enough to recognize when I-d
exceeded my original job description and deserved extra credit. His original book was a
wonderfully welcoming introduction to SVG. As someone who had puzzled through all
the quirks of web browser implementations on my own, | really wanted the revised book
to have clear explanations for all the things that confused me when learning SVG asit
currently works in practice.

| also need to send special thanks to my husband, Chris, who has been hugely supportive,
but who has also regularly reminded me when | need to step away from the computer, e,
sleep, or get some fresh air.

Chapter 1. Getting Started

SVG, which stands for Scalable Vector Graphics, is an application of XML that makes it
possible to represent graphic information in a compact, portable form. Interest in SVG is
growing rapidly. Most modern web browsers can display SV G graphics, and most vector
drawing software programs can export SV G graphics. This chapter begins with a
description of the two major systems of computer graphics, and describes where SV G fits
into the graphics world. The chapter concludes with a brief example that uses many of the
concepts that you will explore in detail in the following chapters.

Graphics Systems

The two major systems for representing graphic information on computers are raster and
vector graphics.

Raster Graphics

In raster graphics, an image is represented as a rectangular array of picture elements or
pixels (see Figure 1-1). Each pixél is represented either by its RGB color values or as an
index into alist of colors. This series of pixels, also called abitmap, is often stored in a
compressed format. Because most modern display devices are also raster devices,
displaying an image requires a viewer program to do little more than uncompress the
bitmap and transfer it to the screen.

Figure 1-1. Raster graphic rectangle
Vector Graphics

In avector graphics system, an image is described as a series of geometric shapes (see
Figure 1-2). Rather than receiving afinished set of pixels, avector viewing program
receives commands to draw shapes at specified sets of coordinates.

Figure 1-2. Veector graphic rectangle

If you think of producing an image on graph paper, raster graphics work by describing
which sguares should be filled in with which colors. Vector graphics work by describing
the grid points at which lines or curves are to be drawn. Some peopl e describe vector
graphics as a set of instructions for a drawing, while bitmap graphics (rasters) are points of
color in specific places. Vector graphics —understandll what they aref a square —-knowsll
It-s a square, and text -knowsll that it-s text. Because they are objects rather than a series
of pixels, vector objects can change their shape and color, whereas bitmap graphics
cannot. Also, all text is searchable because it really is text, no matter how it looks or how
it isrotated or transformed.

Another way to think of raster graphicsis as paint on canvas, while vector graphics are
lines and shapes made of a stretchable material that can be moved around on a
background.

Uses of Raster Graphics

Raster graphics are most appropriate for use with photographs, which are rarely composed
of distinct lines and curves. Scanned images are often stored as bitmaps; even though the
original may beline art, you want to store the image as a whole and don- care about its
individual components. A fax machine, for example, doesn+ care what you-ve drawn; it
simply transmits pixels from one place to another in raster form.

Tools for creating images in raster format are widespread and generally easier to use than
many vector-based tools. There are many different ways to compress and store a raster
image, and the internal representation of these formatsis public. Program libraries to read
and write images in compressed formats such as JPEG, GIF, and PNG are widely
available. These are some of the reasons that web browsers have, until the arrival of SVG,
supported only raster images.

Uses of Vector Graphics

Vector graphics are used in the following:

» Computer Assisted Drafting (CAD) programs, where accurate measurement and the
ability to zoom in on a drawing to see details are essential.

m Programs for designing graphics that will be printed on high-resolution printers (e.g.,
Adobe Illustrator).

= The Adobe PostScript printing and imaging language; every character that you print is
described in terms of lines and curves.

» The vector-based Macromedia Flash system for designing animations, presentations,
and websites.

Because most of these files are encoded in binary format or astightly packed bitstreams, it
is difficult for abrowser or other user agent to parse out embedded text, or for a server to
dynamically create vector graphic files from external data. Most of the internal
representations of vector graphics are proprietary, and code to view or create them is not
generally available.

Scalability

Although they are not as popular as raster graphics, vector graphics have one feature that
makes them invaluable in many applications] they can be scaled without loss of image
guality. As an example, here are two drawings of a cat. Figure 1-3 was made with raster
graphics; Figure 1-4 is avector image. Both are shown as they appear on a screen that
displays 72 pixels per inch.

Cat
Figure 1-3. Raster image of cat

Cat
Figure 1-4. Veector image of cat

When a display program zooms in on the raster graphic, it must find some way to expand
each pixel. The simplest approach to zooming in by afactor of four isto make each pixel
four times as large. The results, shown in Figure 1-5, are not particularly pleasing.

3O
Wy!

Figure 1-5. Expanded raster image

Although it is possible to use techniques such as edge detection and anti-aliasing to make
the expanded image more pleasing, these techniques are time-consuming. Furthermore,
since all the pixelsin araster graphic are equally anonymous, there-s no guarantee that an
algorithm can correctly detect edges of shapes. Anti-aliasing results in something like
Figure 1-6.

Figure 1-6. Expanded anti-aliased raster image

Expanding a vector image by afactor of four, on the other hand, merely requires the
display program to multiply all the coordinates of the shapes by four and redraw them at
the full resolution of the display device. Thus, Figure 1-7, which is also a screenshot from
a 72 dots per inch (DPI) screen, shows crisp, clear edges on the lines with significantly
less of the stair-step effects of the expanded raster image.

Figure 1-7. Expanded vector image

SVG-sRole

In 1998, the World Wide Web Consortium formed a working group to develop a
representation of vector graphics as an XML application. Because SVG isan XML
application, the information about an image is stored as plain text, and it brings the
advantages of XM L-s openness, transportability, and interoperability.

CAD and graphic design programs often store drawings in a proprietary binary format. By
adding the ability to import and export drawings in SV G format, applications gain a
common standard format for interchanging information.

Becauseit isan XML application, SV G cooperates with other XML applications. A
mathematics textbook, for example, could use X SL Formatting Objects for explanatory
text, MathML to describe equations, and SV G to generate the graphs for the equations.

The SV G working group-s specification is an official World Wide Web Consortium
Recommendation. Applications such as Adobe Illustrator and Inkscape can import and
export drawings in SV G format. On the Web, SV G is natively supported in many browsers
and has many of the same transformation and animation capabilities that CSS-styled
HTML has. Because the SVG filesare XML, text in the SVG display is available to any
user agent that can parse XML.

Creating an SVG Graphic

In this section, you will see an SV G file that produces the image of the cat that you saw
earlier in the chapter. This example introduces many of the concepts that you will read
about in further detail in subsequent chapters. Thisfile will be a good example of how to
write an example file, which is not necessarily the way you should write an SV G file that
will be part of afinished project.

Document Structure

Example 1-1 starts with the standard XML processing instruction and DOCTYPE
declaration. The root <svg> element defines the wi dt h and hei ght of the finished graphic
in pixels. It aso defines the SV G namespace viathe xmi ns attribute. The<titl e>
element-s content is available to a viewing program for use in atitle bar or as atooltip
pointer, and the <desc> element lets you give afull description of the image.

Example 1-1. Basic structure of an SVG document

<?xm version="1.0""?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3. org/ G aphi cs/ SVE 1. 1/ DTD/ svgll. dtd" >

<svg w dt h="140" hei ght="170"

xm ns="http://ww. w3. or g/ 2000/ svg" >
<title>Cat</title>
<desc>Stick Figure of a Cat</desc>
<l-- the drawing will go here -->
</ svg>

Basic Shapes

You draw the cat-s face by adding a <ci r cl e> element. The element-s attributes specify
the center x-coordinate, center y-coordinate, and radius. The (0,0) point is the upper-left
corner of the picture. x-coordinates increase as you move horizontally to the right; y-
coordinates increase as you move vertically downward.

The circles location and size are part of the drawing-s structure. The color in whichiitis
drawn is part of its presentation. Asis customary with XML applications, you should
separate structure and presentation for maximum flexibility. Presentation information is
contained in the st yl e attribute. Its value will be a series of presentation properties and
values, as described in Appendix B, in Anatomy of a Style. Use a stroke color of bl ack for
the outline, and afill color of none to make the face transparent. The SVG is shown in
Example 1-2, and its result in Figure 1-8.

Example 1-2. Basic shapes] circle
http://oreillymedia.github.io/svg-essential s-exampl es/ch01/ex01-02.htm

<?xm version="1.0""?>
<! DOCTYPE svg PUBLIC "-//WBC//DID SVG 1. 1//EN'
"http://ww. w3. org/ Gaphi cs/ SVE 1. 1/ DTD/ svgll. dtd" >

<svg wi dt h="140" hei ght="170"

xm ns="http://ww. w3. or g/ 2000/ svg" >
<title>Cat</title>
<desc>Stick Figure of a Cat</desc>

<circle cx="70" cy="95" r="50" style="stroke: black; fill: none"/>

</ svg>

Figure 1-8. Sageonel drawing acircle
Specifying Styles as Attributes

Now add two more circles for the eyesin Example 1-3. Although their fill and stroke
colors are really part of the presentation, SV G does allow you to specify them as
individual attributes. In this example, thefi 1| and st roke colorsare written astwo
separate attributes rather than together inside the st y1 e attribute. You probably won+ use
this method often; it-s described further in Chapter 5, in Presentation Attributes. We-ve put
it here just to prove that it can be done. The results are shown in Figure 1-9.

The<?xm 1 ?> and <! DOCTYPE?> have been omitted to save space in the listing.
Example 1-3. Basic shapest filled circles
http://oreillymedia.github.io/svg-essential s-examples/ch01/ex01-03.html

<svg w dt h="140" hei ght="170"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<title>Cat</title>
<desc>Stick Figure of a Cat</desc>

<circle cx="70" cy="95" r="50" style="stroke: black; fill: none"/>
<circle cx="55" cy="80" r="5" stroke="black" fill="#339933"/>
<circle cx="85" cy="80" r="5" stroke="black" fill="#339933"/>

</ svg>

Figure 1-9. Sagetwo! drawing the face and eyes
Grouping Graphic Objects

Example 1-4 adds the whiskers on the right side of the cat-s face with two <l i ne>
elements. You want to treat these whiskers as a unit (you-+ see why in amoment), so
enclose them in the <g> grouping element, and giveit ani d. You specify aline by giving
the x- and y-coordinates for its starting point (x1 and y1) and ending point (x2 and y2).
Figure 1-10 shows the result.

Example 1-4. Basic shapes! lines
http://oreillymedia.github.io/svg-essential s-examples/ch01/ex01-04.html

<svg wi dt h="140" hei ght="170"

xm ns="http://ww. w3. or g/ 2000/ svg" >
<title>Cat</title>
<desc>Stick Figure of a Cat</desc>

<circle cx="70" cy="95" r="50" style="stroke: black; fill: none;"/>
<circle cx="55" cy="80" r="5" stroke="black" fill="#339933"/>
<circle cx="85" cy="80" r="5" stroke="black" fill="#339933"/>

<g id="whi skers">
<line x1="75" yl1="95" x2="135" y2="85" style="stroke: black;"/>

<line x1="75" yl1="95" x2="135" y2="105" style="stroke: black;"/>
</ g>
</ svg>

Figure 1-10. Stage threef adding whiskers on theright side
Transfor ming the Coordinate System

Now you will <use> the whiskers group and t r ansf or mit into the left whiskers.

Example 1-5 first flips the coordinate system by multiplying the x-coordinates by negative
onein ascal e transformation. This means that the point (75,95) is now located at the
place that would have been (| 75,95) in the original coordinate system. In the new scaled
system, coordinates increase as you move left. This meansyou havetot ransl at e (Mmove)
the coordinate system 140 pixels right, the negative direction, to get them where you want
them, as shown in Figure 1-11.

Example 1-5. Transforming the coordinate system
http://oreillymedia.github.io/svg-essential s-examples/ch01/ex01-05.html

<svg w dt h="140" hei ght="170"
xm ns="http://ww. w3. or g/ 2000/ svg"
xm ns: x| i nk="http://ww.w3. org/ 1999/ xI i nk" >
<title>Cat</title>
<desc>Stick Figure of a Cat</desc>

<circle cx="70" cy="95" r="50" style="stroke: black; fill: none;"/>
<circle cx="55" cy="80" r="5" stroke="black" fill="#339933"/>
<circle cx="85" cy="80" r="5" stroke="black" fill="#339933"/>

<g id="whi skers">
<line x1="75" y1="95" x2="135" y2="85" style="stroke: black;"/>
<line x1="75" y1="95" x2="135" y2="105" style="stroke: black;"/>

</g>
<use xlink: href="#whi skers" transfornr"scale(-1 1) translate(-140 0)"/>
</ svg>
i e

Figure 1-11. StagefourT adding whiskers on the left side

Thex! i nk: href attributein the <use> element isin adifferent namespace (see
Appendix A for details). To make sure your SV G document will work with all SVG
viewers, you must add the xm ns: xI i nk attribute to the opening <svg> tag.

Thet r ansf or mattributes value lists the transformations, one after another, separated by
whitespace.

Other Basic Shapes

Example 1-6 constructs the ears and mouth with the <pol yl i ne> element, which takes
pairs of x- and y-coordinates as the poi nt s attribute. You separate the numbers with either
blanks or commas as you please. Theresult isin Figure 1-12.

Example 1-6. Basic shapesT polylines

http://oreillymedia.github.io/svg-essenti al s-exampl es/ch01/ex01-06.html

<svg wi dt h="140" hei ght="170"
xm ns="http://ww. w3. org/ 2000/ svg"
xm ns: x| i nk="http://ww. w3. org/ 1999/ x| i nk" >
<title>Cat</title>
<desc>Stick Figure of a Cat</desc>

<circle cx="70" cy="95" r="50" style="stroke: black; fill: none;"/>
<circle cx="55" cy="80" r="5" stroke="black" fill="#339933"/>
<circle cx="85" cy="80" r="5" stroke="black" fill="#339933"/>

<g id="whiskers">
<line x1="75" y1="95" x2="135" y2="85" style="stroke: black;"/>
<line x1="75" y1="95" x2="135" y2="105" style="stroke: black;"/>

</ g>

<use xlink: href="#whi skers" transforne"scale(-1 1) translate(-140 0)"/>

<l-- ears -->

<pol yli ne points="108 62, 90 10, 70 45, 50, 10, 32, 62"

styl e="stroke: black; fill: none;" />
<l-- nouth -->
<pol yli ne points="35 110, 45 120, 95 120, 105, 110"
styl e="stroke: black; fill: none;" />
</ svg>
Figure 1-12. Stagefivel adding ears and mouth

Paths

All of the basic shapes are actually shortcuts for the more general <pat h> element, which
Example 1-7 uses to add the cat-s nose. The result isin Figure 1-13. This element has been
designed to make specifying a path, or sequence of lines and curves, as compact as
possible. The path in Example 1-7 trandates, in words, to -Move to coordinate (75,90).
Draw aline to coordinate (65,90). Draw an elliptical arc with an x-radius of 5 and ay-
radius of 10, ending back at coordinate (75,90).lI

Example 1-7. Using the <path> element
http://oreillymedia.github.io/svg-essenti al s-exampl es/ch01/ex01-07.html

<svg wi dt h="140" hei ght="170"
xm ns="http://ww. w3. org/ 2000/ svg"
xm ns: x| i nk="http://ww.w3. org/ 1999/ x| i nk">
<title>Cat</title>
<desc>Stick Figure of a Cat</desc>

<circle cx="70" cy="95" r="50" style="stroke: black; fill: none;"/>
<circle cx="55" cy="80" r="5" stroke="black" fill="#339933"/>
<circle cx="85" cy="80" r="5" stroke="black" fill="#339933"/>

<g id="whi skers">
<line x1="75" y1="95" x2="135" y2="85" style="stroke: black;"/>
<line x1="75" y1="95" x2="135" y2="105" style="stroke: black;"/>

</ g>
<use xlink: href="#whi skers" transforme"scale(-1 1) translate(-140 0)"/>
<l-- ears -->

<polyline points="108 62, 90 10, 70 45, 50, 10, 32, 62"
styl e="stroke: black; fill: none;" />

<l-- npouth -->
<pol yline points="35 110, 45 120, 95 120, 105, 110"

styl e="stroke: black; fill: none;" />
<l-- nose -->
<path d="M 75 90 L 65 90 A5 10 0 0 O 75 90"
styl e="stroke: black; fill: #ffcccc"/>
</ svg>

Figure 1-13. Stage six] adding a nose
Text

Finally, because this picture is so crudely drawn, theres a good chance that people will not
know it isacat. Hence, Example 1-8 adds text to the picture asalabel. In the <t ext >
element, thex and y attributes that specify the text-s location are part of the structure. The
font family and font size are part of the presentation, and thus part of the st yI e attribute.
Unlike the other elements you-ve seen, <t ext > iSacontainer element, and its content is
the text you want to display. Figure 1-14 shows the final result.

Example 1-8. Adding a label
http://oreillymedia.github.io/svg-essential s-exampl es/ch01/ex01-08.html

<svg wi dt h="140" hei ght="170"
xm ns="http://ww. w3. or g/ 2000/ svg"
xm ns: x| i nk="http://ww. w3. org/ 1999/ x| i nk" >
<title>Cat</title>
<desc>Stick Figure of a Cat</desc>

<circle cx="70" cy="95" r="50" style="stroke: black; fill: none;"/>
<circle cx="55" cy="80" r="5" stroke="black" fill="#339933"/>
<circle cx="85" cy="80" r="5" stroke="black" fill="#339933"/>

<g id="whi skers">
<line x1="75" y1="95" x2="135" y2="85" style="stroke: black;"/>
<line x1="75" y1="95" x2="135" y2="105" style="stroke: black;"/>

</ g>
<use xlink: href="#whi skers" transforne"scale(-1 1) translate(-140 0)"/>
<l-- ears -->
<polyline points="108 62, 90 10, 70 45, 50, 10, 32, 62"
styl e="stroke: black; fill: none;" />
<l-- pouth -->
<pol yli ne points="35 110, 45 120, 95 120, 105, 110"
styl e="stroke: black; fill: none;" />
<l-- nose -->
<path d="M 75 90 L 65 90 A5 10 0 0 O 75 90"
styl e="stroke: black; fill: #ffcccc"/>
<text x="60" y="165" style="font-fam|ly: sans-serif; font-size: 14pt;
stroke: none; fill: black;">Cat</text>

</ svg>

Cat
Figure 1-14. Stage sevent finished image with label

That concludes our brief overview of SVG; in the following chapters, you-l examine
these concepts in depth.

Chapter 2. Using SVG in Web Pages

John Donne said that no man is an island, and likewise SV G does not exist in isolation. Of
course, you can view SV G images on their own, as an independent file in your web
browser or SV G viewer. Many of the examplesin this book work that way. But in other
cases, you will want your graphic to be integrated in a larger document, which contains
paragraphs of text, forms, or other content that cannot easily be displayed using SVG

alone. This chapter describes various ways of integrating SV G within HTML and other
document types.

Figure 2-1 shows the cat drawing from the previous chapter, inserted into an HTML page

in four different ways. The results look almost identical, but each method has benefits and
limitations.

SVG asan Image

SVG isanimage format, and as such it can be included in HTML pages in the same ways
as other image types. There are two approaches: you can include the image within the
HTML markup in an <i ng> element (recommended when the image is a fundamental part
of the page-s content); or you can insert the image as a CSS style property of another
element (recommended when the image is primarily decorative).

Regardless of which method you use, including SV G as an image imposes certain
limitations. The image will be rendered (—drawnll in the sense that the SV G code is
converted to araster image for display) separately from the main web page, and thereis no
way to communicate between the two. Styles defined on the main web page will have no
effect on the SVG. You may need to define a default font size within your SV G code if
your graphic includes text or defines lengths relative to the font size. Furthermore, scripts
running on the main web page will not be able to discover or modify any of the SVGs
document structure.

VG as <imgs> W3 as CSS background
Cat Cat
SV as <object> Inline SV
Cat Cat

Figure 2-1. Screenshot of a web page with SVG inserted four ways

Most web browsers will not load files referenced from an SV G used as an image; this
includes other image files, external scripts, and even webfont files. Depending on the
browser and the user-s security settings, scripts defined within the SV G file may not run,
and URL fragments (the part of the URL after #, which indicates which part of thefile
you~e interested in) may be ignored. Animation, as defined in Chapter 12, is supported
within images (in browsers that support it in SV G in general).

Including SVG in an Element

The HTML <i ng> element defines a space into which the browser should draw an external
image file. Theimage file to use is specified with the sr ¢ (source) attribute. Including an
SV G image within an <i mg> element is as simple as setting the source to point to the
location of your SV G file on the web server. Of course, you should also give a description
withanal t and/or ati t| e attribute so that users who cannot see the image can still
understand what it represents. For example:

<img src="cat.svg" title="Cat | nmage"
alt="Stick Figure of a Cat" />

WARNING

Although most web browsers now support SV G as images, some older browsers will not know how to render the file
and will display a broken-file icon (or nothing at al). For other browsers, you may need to confirm that your web
server is configured to declare the correct mediatype header (i mage/ svg+xni) for filesending in .svg.

The height and width of the image can be set using attributes or CSS properties (which
take precedence). Other CSS properties control the placement of the image within the web
page. If you do not specify dimensions for the <i ng> element, the intrinsic dimensions of
the image file are used. If you specify only one of height or width, the other dimension is
scaled proportionally so that the aspect ratio (the ratio of width to height) matches the
intrinsic dimensions.

For raster images, the intrinsic dimension is the image size in pixels. For SVG, it-s more
complicated. If the root <svg> element in the file has explicit height and width attributes,
those are used as the intrinsic dimensions of thefile. If one of height or width is specified,
but not both, and the <svg> has avi ewBox attribute, then the vi ewBox will be used to
calculate the aspect ratio and the image will be scaled to match the specified dimension.
Otherwisg, if the <svg> has avi ewBox attribute but no dimensions, then the height and
width parts of the vi ewBox are treated as lengthsin pixels. If that all sounds
incomprehensible, rest assured: we-H introduce the vi ewBox attribute properly in
Specifying User Coordinates for a Viewport, in Chapter 3.

If neither the <i ng> element nor the root <svg> element has any information about the size
of the image, the browser should apply the default HTML size for embedded content, 150
pixelstall and 300 pixelswide, but it is best not to rely on this.

Including SVG in CSS

Various CSS style properties accept a URL to an image file as avalue. The most
commonly used isthe backgr ound- i mage property, which draws the image (or multiple
layered images) behind the text content of the element being styled.

By default, a background image is drawn at itsintrinsic dimensions and repeated in both
the horizontal and vertical direction to fill up the dimensions of the element. Theintrinsic
dimensions of an SV G file are determined in the same manner as described in Including
SVG in an Element. If there are no intrinsic dimensions, the SV G will be scaled to
100% of the height and width of the element. The size can be set explicitly using the
backgr ound- si ze property, and repeat patterns and image position can be set using
backgr ound- r epeat and backgr ound- posi ti on:

di v. background- cat {

background-i mage: url ("cat.svg");
background-si ze: 100% 100%
}

NOTE

When using raster images for multiple small icons and logos, it is common to arrange al the imagesin agrid within a
single image file, and then use backgr ound- si ze and backgr ound- posi ti on to display the correct image for each
element. That way, the web browser only has to download one image file, resulting in much faster display of the web
page. The compound imagefileis called a CSS sprite, named after amythical helpful elf that magically makes things
easier. SV G files can be designed as sprites, and browsers are getting better at rendering them efficiently, but you
should probably avoid making the sprite file too big.

The SV G specifications define other ways to create multiple icons within a single image file; you then use URL
fragments to indicate which icon to display. Ideally, these would replace sprites based on the backgr ound- posi ti on
property. However, as mentioned previously, some browsersignore URL fragments when rendering SVG as an
image, so these features are not currently of much practical usein CSS.

In addition to background images, SVG filescan beused in CSSasal i st -i mage (used to
create decorative bulleted lists) or bor der - i mage (used to create fanciful borders).

SVG asan Application

To integrate an external SVG fileinto an HTML page without the limitations of treating
the SV G as an image, you can use an embedded object.

The <obj ect > element is the general-purpose way of embedding external filesin HTML
(version 4 and up) and XHTML documents. It can be used to embed images, similar to

<i ng>, or to embed separate HTML/XML documents, similar to an <i f r ame>. More
importantly, it can also be used to embed files of any arbitrary type, so long as the browser
has an application (a browser plug-in or extension) to interpret that file type. Using an
object to embed your SV G can make your graphic available to users of older browsers that
cannot display SV G directly, so long as they have an SV G plug-in.

Thet ype attribute of the <obj ect > element indicates the type of file you+e embedding.
The attribute should be avalid Internet media type (commonly known as a MIME type).
For SVG, uset ype="i nage/ svg+xm ".

The browser uses the file type to determine how (or if) it can display the file, without
having to download it first. The location of the file itself is specified by the dat a attribute.
Thealt andtitl e attributes work the same as for images.

The object element must have both a start and end tag. Any content in between the two
will be rendered only if the object dataitself cannot be displayed. This can be used to
specify afallback image or some warning text to display if the browser doesn+ have any

way of displaying SVG.!1 The following code displays both a text explanation and a
raster image in browsers that don+ support SVG:

<obj ect data="cat.svg" type="inage/svg+xm"
title="Cat hject" alt="Stick Figure of a Cat" >
<I-- As a fallback, include text or a raster image file -->
<p>No SVG support! Here's a substitute: </p>
<img src="cat.png" title="Cat Fall back"
alt="A raster rendering of a Stick Figure of a Cat" />
</ obj ect >

<OBJECT> VERSUS <EMBED>

Prior to the introduction of the <obj ect > element, some browsers used the non-standard <enbed> €lement for the
same purpose. It has now been adopted into the standards, so you can use <enbed> instead of an <obj ect > element if
you-fe worried about supporting older browsers. For even wider support, use <enbed> as the fallback content inside
the <obj ect > tags.

There are two important differences between <enbed> and <obj ect >: first, the source datafile is specified using asrc
attribute, not dat a; second, the <enbed> element cannot have any child content, so there is no fallback option if the
embed fails.

Although not adopted into the specifications, most browsers also support the optiona pl ugi nspage attribute on
<enbed> elements, which gives the URL of a page where users can download a plug-in for rendering the file type if
they don-t have one installed.

When you include an SV G file as an embedded object (whether with <obj ect > or
<enbed>), the external fileis rendered in much the same way asif it wasincluded in an
<i ng> element: it is scaled to fit the width and height of the embedding element, and it
does not inherit any styles declared in the parent document.

Unlike with images, however, the embedded SV G can include external files, and scripts
can communicate between the object and the parent page, as described in Interacting with

an HTML Page.

SVG Markup in a Mixed Document

The image and application approaches to integrating SV G in aweb page are both methods
to display a complete, separate, SVG file. However, it is aso possible to mix SVG code
with HTML or XML markup in asinglefile.

Combining your markup into one file can speed up your web page load times, because the
browser does not have to download a separate file for the graphic. However, if the same
graphic is used on many pages on your website, it can increase the total download size and
time by repeating the SVG markup within each page.

More importantly, al the elements within a mixed document will be treated as asingle
document object when applying CSS styles and working with scripts.

Foreign Objectsin SVG

One way of mixing content isto insert sections of HTML (or other) content within your
SVG. The SVG specifications define away of embedding such —fereignll content within a
specified region of the graphic.

The <f or ei gnbj ect > element defines arectangular areainto which the web browser (or
other SV G viewer) should draw the child XML content. The browser is responsible for
determining how to draw that content. The child content is often XHTML (XML-
compliant HTML) code, but it could be any form of XML that the SV G viewer is capable
of displaying. The type of content is defined by declaring the XML namespace on the
child content using the xmi ns attribute.

The rectangular drawing areais defined by the x, y, wi dt h, and hei ght attributes of the
<f or ei gnbj ect > element, in amanner sSimilar to the <use> or <i nage> elements, which
we| get to in Chapter 5.

Therectangle is evaluated in the local SV G coordinate system, and so is subject to
coordinate system transformations (which we-l talk about in Chapter 6) or other SVG
effects. The child XML document is rendered normally into arectangular frame, and then
the result is manipulated like any other SV G graphic. An SV G foreign object containing
an XHTML paragraph is shown in Figure 2-2.

The <f or ei gnObj ect > element has great potential for creating mixed SVG/XHTML
documents, but is currently not well supported. Internet Explorer (at least up to version 11)
does not support it at all, and there are bugs and inconsistencies in the other browsers—
implementations.

If you want to define fallback content in case the SV G viewer cannot display foreign
content, you can use the <swi t ch> element in combination with the r equi r edFeat ur es
attribute, as shown in Example 2-1. In browsers that support XHTML and foreign objects,
that code creates Figure 2-2; in other browsers, it displays SV G text.

This s an WL
Dar agrapn
emoedded wWithin an
SHNGE This et wilh
WIED atross muitple
ires ' o Wil sl

TE e T

R :
X 3
SWE Tanstor .

Figure 2-2. Screenshot of an SVG file containing XHTML text

The <swi t ch> element instructs the SV G viewer to draw only the first direct child element
(and all of its children) for which ther equi r edFeat ur es, r equi r edExt ensi ons, and

syst enLanguage test attributes either evaluate to true or are absent. We-| discuss the use
of the syst emLanguage attribute to switch between different textsin The <switch>
Element, in Chapter 9. When testing for required features, you use one of the URL strings
given in the specifications; <f or ei gnCbj ect > support is part of the Extensibility feature.

WARNING

Unfortunately, there is no consistent, cross-browser way to specify which type of foreign object is required. Maybe
you want to use the MathML language to display aformulafor your chart, with a plain-text version as afallback for
browsers that don-t understand MathML. Ther equi r edExt ensi ons attribute is supposed to indicate what type of
added capability is needed, but the SVG 1.1 specifications did not clearly describe how the extensions should be
identified] except to say that it should be with a URL. Firefox uses the XML namespace URL, but other browsers
do not.

.

Example 2-1. The <foreignObject> element, with a <switch>

<g transforn¥"skewx(20)">
<swi tch>
<I-- select one child elenent -->
<forei gnObj ect x="1lenl' y="25% wi dth="10ent hei ght="50%
requi redFeat ures=
"http://ww. w3. or g/ TR/ SVGL1/ f eat ur e#Extensi bility">
<body xm ns="http://ww. w3. org/ 1999/ xhtm ">
<p>This is an XHTM. par agraph enbedded wi thin an SVG&
So this text will wap nicely around nultiple lines,
but it will still be skewed fromthe SVG transform
</ p>
</ body>
</ forei gntbj ect >
<text x="1lenl y="25% dy="1eni>
This SVGtext won't wap, so it will get cut offr
</text>

</switch>
</ g>

InlineSVG in XHTML or HTML5

The other way to mix SVG with XHTML isto include your SVG markup inan XHTML
document; it also works with non-XML-compliant HTML documents using the HTML5
syntax. Thisway of including SVG in aweb pageis called Inline SVG to distinguish it
from SV G embedded as an image or object, although it really should be called Infile SVG,
because there-s no requirement that your SV G code hasto all appear on asingle line!

Inline SV G is supported in al major desktop web browsers for versions released in 2012
and later, and most of the latest mobile browsers. For XHTML, you indicate that you+re
switching to SV G by defining all your SV G elements within the SV G namespace. The
easiest way to do thisisto set xm ns="ht t p: / / www. 3. or g/ 2000/ svg" on the top-level
<svg> element, which changes the default namespace for that element and all its children.
For an HTML5 document (afile with <! DOCTYPE ht ni >), you can skip the namespace
declaration in your markup. The HTML parser will automatically recognize that <svg>
elements and all their childrenT except for children of <f or ei gnCbj ect > elements? are
within the SV G namespace.

Inserting SV G markup into an (X)HTML document is easier than the reverse: you don-
need a separate <f or ei gnj ect >-like element to define where to render the SVG.
Instead, you apply positioning styles to the <svg> element itself, making it the frame for

your graphic.

By default, the SVG will be positioned with the inline display mode (meaning that it is
inserted within the same line as the text before and after it), and will be sized based on the
height and width attributes of the <svg> element. With CSS, you can change the size by
setting the hei ght and wi dt h CSS properties, and change the position with the di spl ay,

mar gi n, paddi ng, and many other CSS positioning properties.!?!

Example 2-2 gives the code for avery ssmple SVG drawing in avery smple HTML5
document. The result is Figure 2-3. The xn ns attribute on the <svg> element is optional
for HTML5. For an XHTML document, you would change the bocTYPE declaration at the
top of thefile, and you would wrap the CSS code in the <st yI e> element with a <!

[CDATA[]] > block.

If you do not set the height and width of the SV G with either CSS or attributes, web
browsers should apply the default 150-pixel-by-300-pixel size, but be warned! Many
versions of browsers apply different defaults. Unfortunately, unlike when using an SVG
filein an <i ng> element, you cannot just set one of the height or width and have the SVG

scale based on the aspect ratio defined by itsvi ewBox attribute.2!
Example 2-2. Inline SVG within an HTML file

<I DOCTYPE htnl >
<htm >
<head>
<title>SVGin HIM</title>
<styl e>
svg {
di spl ay: bl ock; @
wi dt h: 500px;
hei ght : 500px;
mar gi n: auto;
border: thick double navy; @
background- col or: |i ghtbl ue;
}
body {
font-fanily: cursive; &
}
circle {
fill: lavender; @
stroke: navy;
stroke-wi dth: 5;
}
</styl e>
</ head>

<body>
<hl>Inline SVGin HITM. Deno Page</hl>
<svg vi ewBox="0 0 250 250"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<title>An SVG circle</title>
<circle cx="125" cy="125" r="100"/>
<text x="125" y="125" dy="0.5enl text-anchor="m ddle">
Look Ma, Sane Font!</text>
</ svg>
<p>And here is regular HTM. agai nf </ p>
</ body>
</htm >

o

Thefirst style rules define how the SV G should be positioned and sized within the
HTML document.

2}

You can also style the box in which the SV G will be drawn using other CSS properties.
(5]

Styles you define for the main document will be inherited by the SVG.
(4]

You can also define styles for your SV G elements within your main stylesheet.

Inline SVG in HTML Demo Page

Look Ma, Same Font!

And here is reqular HTML again...
Figure 2-3. The web page from Example 2-2

SVG in Other XML Applications

XML namespaces can be used to identify SV G markup in other XML documents, not just
XHTML. The details depend on the main XML document-s syntax, but there are two
essential requirements: the XML document must clearly define alayout box for the SVG
element, and the program that will display the document must know how to draw SVG.

One type of XML document where inline SVG is commonly used is Extensible Stylesheet
L anguage Formatting Object (XSL-FO) files. An XSL-FO file defines both the content
and layout of a multipage document, and can be used in publishing or to create a PDF file.
The XSL-FO data type definition includes an <i nst r eam f or ei gn- obj ect > element,
whichf just like SVG-s<f or ei gnbj ect > element’ defines arectangular region to
hold content from a different namespace. Inside it, you can add your SV G markup. Just

make sure that the <svg> tag and all its children are defined within the SV G namespace,
either by using a namespace prefix for all SV G elements or by changing the default
namespace with an xnm ns attribute.

Example 2-3 gives asnippet of an XSL-FO file that uses the customary f o namespace
prefix for formatting object elements. The SV G namespace is set as the default for the
<svg> and its children, so no prefixes are necessary within the graphical markup.

Example 2-3. SVG inside an XSL-FO document

<?xm version="1.0" encodi ng="UTF-8"7?>
<fo:root xmns:fo="http://ww.w3. org/ 1999/ XSL/ For mat ">
<l-- other formatting object content -->
<fo:instreamforeign-object w dth="140px" hei ght="140px">
<svg xm ns="http://wwmv. w3. or g/ 2000/ svg"
wi dt h="140px" hei ght =" 140px" >
<l-- SVG code goes here -->
</ svg>
</fo:instreamforeign-object>
<I-- rest of docunment -->
</ fo:root>

[2] | addition to fallback content, an <obj ect > may also contain <par an> elements defining parameters for the plug-in.
However, these arer used for rendering SV G data.

[2] css positioning properties apply to top-level <svg> elements, ones which are direct children of HTML elements. An
<svg> that isachild of another SVG element will be positioned based on the rules for nested SV Gs, as described in
Chapter 3.

[3] As explained in Specifying Alignment for preserveAspectRatio, the pr eser veAspect Rat i o attribute will scale an
SV G while maintaining its aspect ratio. For inline SV G, this will scale the graphic to fit within the box (height and
width) you define for it; it doesn-t change the size of the box within the web page.

Chapter 3. Coordinates

Theworld of SVG isan infinite canvas. In this chapter, wel find out how to tell aviewer
program which part of this canvas you~+e interested in, what its dimensions are, and how

to locate points within that area.

The Viewport

The area of the canvas your document intends to useis called the viewport. You establish
the size of this viewport with the wi dt h and hei ght attributes on the <svg> element. Each
attributes value can be ssmply a number, which is presumed to be in pixels; thisis said to
be specified in user coordinates. You may also specify wi dt h and hei ght as a number
followed by a unit identifier, which can be one of the following:

em
The font size of the default font, usually equivalent to the height of aline of text
ex
The height of the letter x
PX
Pixels (in CSS2-supporting graphics, there are 96 pixels per inch)
pt
Points (1/72 of an inch)
pc
Picas (1/6 of aninch)
cm
Centimeters
mm
Millimeters
in
Inches
Possible SV G viewport declarations include the following:

<svg w dt h="200" hei ght="150">
<svg wi dt h="200px" hei ght ="150px" >

Both of these specify an area 200 pixels wide and 150 pixelstall.
<svg wi dt h="2cm' hei ght="3cnl >

This specifies an area 2 centimeters wide and 3 centimeters high.
<svg wi dt h="2cm' hei ght ="36pt ">

It is possible, though unusual, to mix units; this element specifies an area 2 centimeters
wide and 36 points high.

An <svg> element may also specify itswi dt h and hei ght as a percentage. When the
element is nested within another <svg> element, the percentage is measured in terms of the
enclosing element. If the <svg> element is the root element, the percentage is in terms of
the window size. You will see nested <svg> elements in Nested Systems of Coordinates.

Using Default User Coordinates

The viewer sets up a coordinate system where the horizontal, or x-coordinate, increases as
you go to the right, and the vertical, or y-coordinate, increases as you move vertically
downward. The upper-left corner of the viewport is defined to have an x- and y-coordinate
of 0.14! This point, written as (0,0), is also called the origin. The coordinate system isa
pure geometric system; points have neither width nor height, and the grid lines are
considered infinitely thin. You can read more about this subject in Chapter 4.

Example 3-1 establishes a viewport 200 pixels wide and 200 pixels high, and then draws a
rectangle whose upper-left corner is at coordinate (10,10) with awidth of 50 pixelsand a
height of 30 pixels.! Figure 3-1 shows the result, with rulers and a grid to show the
coordinate system.

Example 3-1. Using default coordinates
http://oreillymedia.github.io/svg-essential s-exampl es/chO3/default_coordinates.html

<svg wi dt h="200" hei ght ="200">
<rect x="10" y="10" w dth="50" hei ght="30"
styl e="stroke: black; fill: none;"/>

</ svg>
px 0 20 40 &0 20 100
P P I P

20—

40—

60—

a0

108+

Figure 3-1. Rectangle using default coordinates

Even if you don+ specify unitsin the viewport, you may still use them in some SVG
shape elements, as in Example 3-2. Figure 3-2 shows the result, with rulers and a grid to
show the coordinate system.

Example 3-2. Explicit use of units
http://oreillymedia.github.io/svg-essential s-examples/ch03/explicit_units.html

<svg wi dt h="200" hei ght ="200">
<rect x="10mi" y="10mm" w dt h="15mi hei ght="10mf
styl e="stroke: bl ack; fill:none;"/>
</ svg>

px 0 20 40 &0 20 100
ot Lol alalyl

20—

40—

60—

a0

108+

Figure 3-2. Rectangle using explicit units

Specifying unitsin the <svg> element does not affect coordinates given without unitsin
other elements. Example 3-3 shows a viewport set up in millimeters, but the rectangleis
still drawn at pixel (user) coordinates, as you see in Figure 3-3.

Example 3-3. Units on the svg element
http://oreillymedia.github.io/svg-essential s-exampl es/ch03/units_on_svg.html

<svg wi dt h="70mmi" hei ght =" 70mi' >
<rect x="10" y="10" w dth="50" hei ght="30"
style="fill: none; stroke: black;"/>
</ svg>

mm o 10 20 20
I] 1

10 —

2{ =

30 —

Figure 3-3. Viewport with units; rectangle without units

Specifying User Coordinatesfor aViewport

In the examples so far, numbers without units have been considered to be pixels.
Sometimes thisis not what you want. For example, you might want to set up a system
where each user coordinate represents 1/16th of a centimeter. (We—+e using this coordinate
system to prove a point, not to show a paragon of good design.) In this system, a square
that is 40 units by 40 units will display as 2.5 centimeters on aside.

To accomplish this effect, you set the vi ewBox attribute on the <svg> element. The value
of this attribute consists of four numbers that represent the minimum x-coordinate,
minimum y-coordinate, width, and height of the user coordinate system you want to
superimpose on the viewport.

S0, to set up the 16-units-per-centimeter coordinate system for a 4-centimeter by 5-
centimeter drawing, you-d use this starting tag:

<svg wi dt h="4cn' hei ght ="5cn" vi ewBox="0 0 64 80">
Example 3-4 gives the SV G for apicture of ahouse, displayed using the new coordinate

system. Figure 3-4 shows the result. The grid and darker numbers show the new user
coordinate system; the lighter numbers are positioned at 1-centimeter intervals.

Example 3-4. Using a viewBox
http://oreillymedia.github.io/svg-essential s-exampl es/ch03/using viewbox.html

<svg wi dt h="4cn'" hei ght="5cn" vi ewBox="0 0 64 80">
<rect x="10" y="35" width="40" hei ght="40"

styl e="stroke: black; fill: none;"/>

<l-- roof -->

<pol yline points="10 35, 30 7.68, 50 35"
styl e="stroke: bl ack; fill: none;"/>

<l-- door -->

<pol yl i ne points="30 75, 30 55, 40 55, 40 75"
styl e="stroke: bl ack; fill: none;"/>

</ svg>

0 10 20 30 40 350 &0
0

10
20
30
40
50
60

70

5 80
Figure 3-4. New user coordinates

The numbers you specify for the value of the vi ewBox attribute may be separated by

commas or whitespace. If either the width or height is 0, none of your graphic will display.
It isan error to specify anegative value for the vi ewBox width or height.

NOTE

If you were reading the code in Example 3-4 carefully, you would have noted that we used a decimal value to get the
peak of the house-s roof positioned just right. Nearly all numbersin SV G are floating-point decimal numbers. SVG
viewers are required to support at least 32-bit precision numbers and are encouraged to use higher precision numbers
for some calculations. In fact, you can even use scientific notation to work in a coordinate system with very large or
small numbers, so that the point 30, 7. 68 could have been written like 3. 0E+1, 7. 68e0. But for readability and brevity,
we wouldn- recommend itT reserve the scientific notation for when it isreally necessary.

Preserving Aspect Ratio

In the previous example, the aspect ratio, or ratio of width to height, of the viewport and
the vi ewBox were identical (4/5 = 64/80). What happens, though, if the aspect ratio of the
viewport and the vi ewBox are not the same, asin this example, where vi ewBox has an
aspect ratio of 1.1 (the width and height are equal), but the viewport has an aspect ratio of
1:3 (the height is three times as big as the width)?

<svg wi dt h="45px" hei ght="135px" vi ewBox="0 0 90 90">
There are three things SV G can do in this situation:

» Scale the graphic uniformly according to the smaller dimension so the graphic will fit
entirely into the viewport. In the example, the picture would become half its original
width and height. You-H see examples of thisin Using the meet Specifier.

m Scale the graphic uniformly according to the larger dimension and cut off the parts that
lie outside the viewport. In the example, the picture would become one and a half times
its original width and height. You- see examples of thisin Using the slice Specifier.

» Stretch and squash the drawing so it fits precisely into the new viewport. (That is, don+
preserve the aspect ratio at all.) See the details in Using the none Specifier.

In the first case, because the image will be smaller than the viewport in one dimension,
you must specify where to position it. In the example, the picture will be scaled uniformly
to awidth and height of 45 pixels. The width of the reduced graphic fits the width of the
viewport perfectly, but you must now decide whether the image meets (is aligned with) the
top, middle, or bottom of the 135-pixel viewport height.

In the second case, because the image will be larger than the viewport in one dimension,
you must specify which areaisto be sliced away. In the example, the picture will be
scaled uniformly to awidth and height of 135 pixels. Now the height of the graphic fits
the viewport perfectly, but you must decide whether to slice off the right side, left side, or
both edges of the picture to fit within the 45-pixel viewport width.

Specifying Alignment for preserveAspectRatio

The preser veAspect Rat i o attribute lets you specify the alignment of the scaled image
with respect to the viewport, and whether you want it to meet the edges or be sliced off.
The model for this attributeis

preserveAspect Rati o="al i gnnment [neet | slice]"
where al i gnnent specifies the axis and location and is one of the combinations shown in
Table 3-1. Thisalignment specifier is formed by concatenating an x-alignment and a y-

alignment ni n, ni d (middle), or max value. The default value for preser veAspect Rati o IS
XM dYM d neet .

NOTE

The y-alignment begins with a capital |etter, because the x- and y-alignments are concatenated into a single word.

Table 3-1. Values for alignment portion of preserveAspectRatio

Y Alignment X Alignment
xM n xM d xMax
Align minimum x value Align midpoint x value of Align maximum x value of
of vi ewBox with left edge vi ewBox with horizontal vi ewBox With right edge of
of viewport center of viewport viewport

yMn XM nYM n xM dYM n xMaxYM n

Align minimum y value of

vi ewBox With top edge of

viewport

yMd XM nYM d XM dYM d xMaxYM d

Align midpoint y value of

vi ewBox With vertical

center of viewport

yMax XM nYMax XM dYMax xMax YMax

Align maximum y value of
vi ewBox With bottom edge
of viewport

Thus, if you want to have the picture with avi ewBox="0 0 90 90" fit entirely within a
viewport that is 45 pixels wide and 135 pixels high, aligned at the top of the viewport, you
would write the following:

<svg wi dt h="45px" hei ght =" 135px" vi ewBox="0 0 90 90"

preserveAspect Rati o="xM nYM n neet ">

NOTE

In this case, because the width fits precisely, the x-alignment isirrelevant; you could equally well use xM dYM n or
xMaxYM n. However, you normally use pr eser veAspect Rat i o when you don-t know the aspect ratio of the viewport.
For example, you might want the image to scale to fit the application window, or you might let the CSS of a parent
document set the height and width. In those situations, you need to consider how you want your image to display
when the viewport is too wide as well aswhen it istoo tall.

If you don+ specify apr eser veAspect Rat i o, the default valueisxM dyM d neet , which
will scale down the graphic to fit the available space, and center it both horizontally and
vertically.

Thisisall fairly abstract; the following sections give some concrete examples that show
you how the combinations of alignment and meet and sl i ce interact with one another.
Using the meet Specifier

The starting <svg> tags in Example 3-5 all use the meet specifier.

Example 3-5. Use of meet specifier

<l-- tall viewports -->
<svg preserveAspect Rati o="xM nYM n neet" viewBox="0 0 90 90"
wi dt h="45" hei ght ="135">

<svg preserveAspect Rati o="xM dYM d neet" viewBox="0 0 90 90"
wi dt h="45" hei ght ="135">

<svg preserveAspect Rati o="xMaxYMax neet" viewBox="0 0 90 90"
wi dt h="45" hei ght ="135">

<l-- wide vieworts -->
<svg preserveAspect Rati o="xM nYM n neet" viewBox="0 0 90 90"
wi dt h="135" hei ght ="45">

<svg preserveAspectRati o="xM dYM d neet” viewBox="0 0 90 90"
wi dt h="135" hei ght ="45">

<svg preserveAspect Rati o="xMaxYMax neet" viewBox="0 0 90 90"
wi dt h="135" hei ght ="45">

Figure 3-5 shows where the reduced image fits into the enclosing vi ewBox.

i)
== ==
e N
;&""5‘ xMin*
ety
= VI'\ .}L%\
o] ==
Eiu::l =
= M
*“wMin wMid “yMax
£A
i

aMax®

Figure 3-5. meet] viewBox fitsin viewport
Using the dlice Specifier
Figure 3-6 shows the use of the sl i ce specifier to eliminate parts of the picture that do not
fit in the viewport. They were created with the <svg> tagsin Example 3-6.

Example 3-6. Use of dlice specifier

<l-- tall viewports -->
<svg preserveAspectRati o="xM nYM n slice" viewBox="0 0 90 90"
wi dt h="45" hei ght ="135">

<svg preserveAspectRati o="xM dYM d slice" viewBox="0 0 90 90"
wi dt h="45" hei ght ="135">

<svg preserveAspect Rati o="xMaxYMax slice" viewBox="0 0 90 90"
wi dt h="45" hei ght ="135">

<l-- wide vieworts -->
<svg preserveAspectRati o="xM nYM n slice" viewBox="0 0 90 90"
wi dt h="135" hei ght ="45">

<svg preserveAspectRati o="xM dYM d slice" viewBox="0 0 90 90"
wi dt h="135" hei ght ="45">

<svg preserveAspect Rati o="xMaxYMax slice" viewBox="0 0 90 90"
wi dt h="135" hei ght ="45">

The online example for this section allows you to experiment with the different
pr eser veAspect Rat i o optionsto slice, shrink, and shift the cat around any sized SVG:

http://oreillymedia.github.io/svg-essential s-examples/ch03/meet_dlice specifier.html

*wMin
. @
e o]
A L A r ® @
~—— “yMid

L=

“yMax

Figure 3-6. dlicef graphic fills viewport
Using the none Specifier

Finally, thereis the third option for scaling a graphic when the vi ewBox and viewport
don+ have the same aspect ratio. If you specify preser veAspect Rati 0o="none", then the
graphic will be scaled nonuniformly so its user coordinates fit the viewport. Figure 3-7
shows such a—fun-house mirrorll effect produced with the <svg> tagsin Example 3-7,

Example 3-7. Aspect ratio not preserved

<l-- tall viewport -->
<svg preserveAspect Rati o="none" vi ewBox="0 0 90 90"
wi dt h="45" hei ght ="135">

<I-- wide viewort -->
<svg preserveAspect Rati o="none" vi ewBox="0 0 90 90"
wi dt h="135" hei ght ="45">

Figure 3-7. Aspect ratio not preserved

Nested Systems of Coordinates

You can establish anew viewport and system of coordinates at any time by putting another
<svg> element into your document. The effect is to create a—mini-canvasll upon which
you can draw. We used this technique to create illustrations such as Figure 3-5. Rather
than drawing the rectangles, then rescaling and positioning the cat inside each one (the
brute-force approach), we took these steps:

= Draw the blue rectangles on the main canvas

= For each rectangle, define a new <svg> element with the appropriate
preserveAspect Rat i o attribute

= Draw the cat into that new canvas (with <use>), and let SV G do the heavy lifting

Heres asimplified example that shows a circle on the main canvas, then inside a new
canvas outlined by a blue rectangle that-s also on the main canvas. Figure 3-8 isthe

desired result.

Figure 3-8. Nested viewports

b

First, generate the SV G for the main coordinate system and the circle (note that the user
coordinates coincide exactly with the viewport in this document):

<svg wi dt h="200px" hei ght ="200px" vi ewBox="0 0 200 200">
<circle cx="25" cy="25" r="25" style="stroke: black; fill: none;"/>

</ svg>

Figure 3-9. Circle in main viewport

Theresult isin Figure 3-9.

Now, draw the boundary of the box showing where you want the new viewport to be:
<svg wi dt h="200px" hei ght="200px" vi ewBox="0 0 200 200">
<circle cx="25" cy="25" r="25" style="stroke: black; fill: none;"/>

<rect x="100" y="5" w dth="30" hei ght="80"
style="stroke: blue; fill: none;"/>

</ svg>

Figure 3-10. Circle and boundary box in main viewport

This produces Figure 3-10.

Now, add another <svg> element for the new viewport. In addition to specifying the

vi ewBox, wi dt h, hei ght , and pr eser veAspect Rat i o Specification, you may also specify
thex andy attributesf interms of the enclosing <svg> element] where the new
viewport is to be established (if you don give valuesfor x and y, they are presumed to be

0):

<svg wi dt h="200px" hei ght="200px" vi ewBox="0 0 200 200">

<circle cx="25" cy="25" r="25" style="stroke: black; fill: none;"/>
<rect x="100" y="5" w dth="30" hei ght="80"
style="stroke: blue; fill: none;"/>

<svg x="100px" y="5px" wi dth="30px" hei ght="80px"
vi ewBox="0 0 50 50" preserveAspectRati o="xMaxYMax neet">
</ svg>
</ svg>

Setting up the new coordinates with this nested <svg> element doesn+ change the visual
display, but it does permit you to add the circle in that new system, producing the result
shown in Figure 3-8:

<svg wi dt h="200px" hei ght ="200px" vi ewBox="0 0 200 200">

<circle cx="25" cy="25" r="25" style="stroke: black; fill: none;"/>
<rect x="100" y="5" w dth="30" hei ght="80" style="stroke: bl ue;
fill: none;"/>

<svg x="100px" y="5px" w dt h="30px" hei ght="80px" vi ewBox="0 0 50 50"
preserveAspect Rati o="xMaxYMax neet">
<circle cx="25" cy="25" r="25" style="stroke: bl ack;
fill: none;"/>
</ svg>
</ svg>

WARNING

If youtry to useaneet orslice valuefor the preserveAspect Rati o attribute on an <svg> nested inside another
<svg> With preser veAspect Rat i 0="none" , the results may surprise you. The aspect ratio of the nested element-s
viewport will be evaluated in the sgquished or stretched coordinates of the parent SV G, possibly resulting in an image
that is both sgquished and cropped or shrunk to fit.

[4] |1 this book, coordinates are specified as apair of numbers in parentheses, with the x-coordinate first. Thus, (10,30)
represents an x-coordinate of 10 and a y-coordinate of 30.

[3] 10 save space, we are leaving out the <?xm 2> and <! DOCTYPE | > lines. These are set in stone, so you can take
them for granite.

Chapter 4. Basic Shapes

Once a coordinate system is established in the <svg> tag, you are ready to begin drawing.
This chapter describes the basic shapes you can use to create the major elements of most

drawings: lines, rectangles, polygons, circles, and ellipses.

Lines

SVG letsyou draw a straight line with the <I i ne> element. Just specify the x- and y-
coordinates of the lines endpoints. Coordinates may be specified without units, in which
case they are considered to be user coordinates, or with units such asem i n, etc. (as
described in Chapter 3, in The Viewport).

<line x1="start-x" yl="start-y"
x2="end-x" y2="end-y" />

The SVG in Example 4-1 draws several lines; the reference grid in Figure 4-1 is not part

of the SV G you see in the example.
Example 4-1. Basic lines

http://oreillymedia.github.io/svg-essential s-exampl es/ch04/basi c-lines.html

<svg wi dt h="200px" hei ght ="200px" vi ewBox="0 0 200 200"

xm ns="http://ww. w3. or g/ 2000/ svg" >
<!-- horizontal line -->

<line x1="40" y1="20" x2="80" y2="20" style="stroke

<l-- vertical line -->

<line x1="0.7cn yl1="1cnm x2="0.7cn y2="2.0cnt

styl e="stroke: black;"/>
<!-- diagonal line -->

<line x1="30" y1="30" x2="85" y2="85" style="stroke

</ svg>

px 0 20 40 G0 80 100

1]

20 —
40 —

60 —

80 —
100 —

i

Figure 4-1. Basic lines

bl ack; "/ >

bl ack; "/ >

Stroke Characteristics

Lines are considered to be strokes of a pen that draws on the canvas. The size, color, and
style of the pen stroke are part of the lines presentation. Thus, these characteristics will go
Into the st yl e attribute.

stroke-width

As mentioned in Chapter 3, the canvas grid lines are infinitely thin. Where, then, does a
line or stroke fall in relation to the grid line? The answer is that the grid line fallsin the
center of a stroke. Example 4-2 draws some lines where the stroke width has been set to
10 user coordinates to make the effect obvious. The result, in Figure 4-2, has the grid lines
drawn in so you can see the effect clearly.

Example 4-2. Demonstration of stroke-width
http://oreillymedia.github.io/svg-essential s-exampl es/ch04/stroke-wi dth.html

<svg wi dt h="200px" hei ght ="200px" vi ewBox="0 0 200 200"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<l-- horizontal line -->
<line x1="30" y1="10" x2="80" y2="10"
styl e="stroke-wi dth: 10; stroke: black;"/>
<l-- vertical line -->
<line x1="10" y1="30" x2="10" y2="80"
styl e="stroke-wi dth: 10; stroke: black;"/>
<I-- diagonal line -->
<line x1="25" y1="25" x2="75" y2="75"
styl e="stroke-wi dth: 10; stroke: black;"/>
</ svg>

px O 20 40 &0 80 100

o Lo Ll
—

20 —

40 —

60 —

80 —
100 —

Figure 4-2. Demonstration of stroke-width

NOTE

The SVG coordinate grid may be infinitely thin, but your computer screen is made of fixed-size pixels. A diagonal
line can look jagged as the computer translates it to the nearest pixel blocks; thisis known as aliasing. Alternatively,
the computer can use anti-aliasing to soften the edges, blurring the line across al pixelsit partialy overlaps.

Most SV G viewers use anti-aliasing by default, and this can sometimes make a 1-pixel black line look like a 2-pixel
gray line, because it is centered on the space between two pixels. You can control the use of anti-aliasing with the
CSSshape-renderi ng style property. Setting this property to cri spEdges (on an element or the SVG as awhole) will
turn off anti-aliasing, resulting in clear (if sometimes jagged) lines. A value of geonet ri cPreci si on will emphasize
smooth (if sometimes blurry) edges.

Stroke Color
You can specify the stroke color in avariety of ways:

= One of the basic color keyword names: aqua, bl ack, bl ue, fuchsi a, gray, green, | i ne,
mar oon, navy, ol i ve, purpl e, red, silver,teal ,white, and yel | ow. YOU may also use
the color keywords from section 4.2 of the SV G specification.

m A six-digit hexadecimal specifier in the form #r r ggbb, whererr isthe red component,

gg isthe green component, and bb is the blue component in the range 00| ff .

m A three-digit hexadecimal specifier in the form #r gb, wherer isthe red component, g
IS the green component, and b is the blue component intherangeol f. Thisisa
shorthand form of the previous method of specifying color. To produce the six-digit
equivalent, each digit of the short form is duplicated; thus #dé6e is the same as #ddé66ee.

m Anrgb specifier intheformr gb(r ed- val ue, gr een-val ue, bl ue- val ue) , where each
valueisan integer in the range 0 255 or a percentage in the range 0%to 100%

m Thecurrent Col or keyword, which uses the computed CSS col or property for the
element. The col or property? which doesn+ have adirect effectin SVGT isused in
HTML to set text color, and is inherited by child elements. Using cur r ent Col or in an
inline SVGicon (see Inline SVG in XHTML or HTMLY5) allows the icon to take on the
color of the surrounding text.

Example 4-3 uses all of these methods (with the exception of cur rent Col or), giving the
colorful results of Figure 4-3.

Example 4-3. Demonstration of stroke color
http://oreillymedia.github.io/svg-essential s-exampl es/ch04/stroke-col or.html

<svg wi dt h="200px" hei ght ="200px" vi ewBox="0 0 200 200"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<l-- red -->
<line x1="10" y1="10" x2="50" y2="10"
style="stroke: red; stroke-width: 5;"/>

<l-- light green -->
<line x1="10" y1="20" x2="50" y2="20"
style="stroke: #9f9; stroke-width: 5;"/>

<l-- light blue -->
<l'ine x1="10" y1="30" x2="50" y2="30"
styl e="stroke: #9999ff; stroke-width: 5;"/>

<!'-- nedium orange -->
<l'ine x1="10" y1="40" x2="50" y2="40"
styl e="stroke: rgbh(255, 128, 64); stroke-width: 5;"/>

<I-- deep purple -->
<line x1="10" y1="50" x2="50" y2="50"
styl e="stroke: rgh(60% 20% 60%; stroke-wi dth: 5;"/>
</ svg>

Figure 4-3. Demonstration of stroke color
There are yet more ways to specify color. They are taken from the CSS3 Color
specification. Although widely supported in web browsers, they are not part of the SVG
1.1 specification, and may not be supported by other SV G implementations; as of this

writing, for example, neither Apache Batik nor Inkscape supports them. There are three
new color functions and one new keyword:

m rgba() specifierintheformrgb(red-val ue, green-val ue, bl ue-val ue, al pha-
val ue) , where the color values are in the same format as for ther gb() function, and
the alphavaueisadecimal intherangeo| 1

m hsl () specifier intheform hsl (hue, saturation, | i ght ness), where hueis an integer
angle from 0 to 360, and saturation and lightness are integersin the range 0| 255 or

percentages in the range 0%t0 100%

m hsl a() specifier, with the hue, saturation, and lightness values the same asfor hsi , and
the alpha value the same asfor r gba

m transparent (fully transparent); thisisthesameasrgba(0, 0, 0, 0)

NOTE

If you do not specify a stroke color, you won+ see any lines; the default value for the st r oke property isnone.

stroke-opacity

Up to this point, all the lines in the example have been solid, obscuring anything beneath
them. You control the opacity (which is the opposite of transparency) of aline by giving
the st r oke- opaci ty avaluefromo. o to 1. 0, where 0 is completely transparent and 1 is
completely opague. A value less than O will be changed to O; avalue greater than 1 will be
changed to 1. Example 4-4 varies the opacity from 0.2 to 1 in steps of 0.2, with the result
in Figure 4-4. Thered line in the figure lets you see the transparency effect more clearly.

Example 4-4. Demonstration of stroke-opacity

http: //oreillymedia.qithub.io/svg-essential s-exampl es/ch04/stroke-opacity.htmil

<svg wi dt h="200px" hei ght ="200px" vi ewBox="0 0 200 200"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<line x1="30" y1="0" x2="30" y2="60"
styl e="stroke:red; stroke-width: 5;"/>

<line x1="10" y1="10" x2="50" y2="10"

styl e="stroke-opacity: 0.2; stroke: black; stroke-width: 5;"/>
<line x1="10" y1="20" x2="50" y2="20"

styl e="stroke-opacity: 0.4; stroke: black; stroke-width: 5;"/>
<line x1="10" y1="30" x2="50" y2="30"

styl e="stroke-opacity: 0.6; stroke: black; stroke-width: 5;"/>
<l'ine x1="10" y1="40" x2="50" y2="40"

styl e="stroke-opacity: 0.8; stroke: black; stroke-width: 5;"/>
<l'ine x1="10" yl1="50" x2="50" y2="50"

styl e="stroke-opacity: 1.0; stroke: black; stroke-width: 5;"/>

</ svg>

Figure 4-4. Demonstration of stroke-opacity

stroke-dasharray Attribute

If you need dotted or dashed lines, use the st r oke- dashar r ay attribute, whose value
consists of alist of numbers, separated by commas or whitespace, specifying dash length
and gaps. The list should have an even number of entries, but if you give an odd number
of entries, SVG will repeat the list so the total number of entriesis even. (See the last
instance in Example 4-5.)

Example 4-5. Demonstration of stroke-dasharray
http://oreillymedia.github.io/svg-essential s-exampl es/ch04/stroke-dasharray.html

<svg wi dt h="200px" hei ght ="200px" vi ewBox="0 0 200 200"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<l-- 9-pixel dash, 5-pixel gap -->
<line x1="10" y1="10" x2="100" y2="10"
styl e="stroke-dasharray: 9, 5;
stroke: black; stroke-width: 2;"/>

<!-- b5-pixel dash, 3-pixel gap, 9-pixel dash, 2-pixel gap -->
<line x1="10" y1="20" x2="100" y2="20"

styl e="stroke-dasharray: 5, 3, 9, 2;

stroke: black; stroke-width: 2;"/>

<l-- Odd nunber of entries is duplicated; this is equivalent to:
9- pi xel dash, 3-pixel gap, 5-pixel dash,
9-pi xel gap, 3-pixel dash, 5-pixel gap -->
<line x1="10" y1="30" x2="100" y2="30"
styl e="stroke-dasharray: 9 3 5;
stroke: black; stroke-width: 2;"/>
</ svg>

Figure 4-5 shows the results, zoomed in for clarity.

Figure 4-5. Demonstration of stroke-dasharray

Rectangles

The rectangle is the ssmplest of the basic shapes. You specify the x- and y-coordinates of

the upper-left corner of the rectangle,l! itswi dt h, and its hei ght . Theinterior of the
rectangleisfilled with thefi 11 color you specify. If you do not specify afill color, the
interior of the shapeisfilled with black. Thefill color may be specified in any of the ways
described in Stroke Color, or it may take the value none to leave the interior unfilled and
thus transparent. You may also specify afi || - opaci ty inthe same format as you did for
st roke- opaci ty in stroke-opacity. Bothfill andfill-opacity are presentation
properties, and they belong in the st yI e attribute.

After theinterior isfilled (if necessary), the outline of the rectangle is drawn with strokes,
whose characteristics you may specify as you did for lines. If you do not specify a stroke,
the value none is presumed, and no outline is drawn. Example 4-6 draws several variations
of the <r ect > element. Figure 4-6 shows the result, with agrid for reference.

Example 4-6. Demonstration of the rectangle element
http://oreillymedia.github.io/svg-essential s-exampl es/ch04/rectangle.html

<svg wi dt h="200px" hei ght ="200px" vi ewBox="0 0 200 200"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<!-- black interior, no outline -->
<rect x="10" y="10" w dth="30" hei ght="50"/>

<l-- no interior, black outline -->
<rect x="50" y="10" w dth="20" hei ght="40"
style="fill: none; stroke: black;"/>
<I-- blue interior, thick sem -transparent red outline -->
<rect x="10" y="70" w dth="25" hei ght="30"
style="fill: #0000ff;
stroke: red; stroke-width: 7; stroke-opacity: 0.5;"/>
<l-- sem -transparent yellow interior, dashed green outline -->
<rect x="50" y="70" w dth="35" hei ght="20"
style="fill: yellow, fill-opacity: 0.5;
stroke: green; stroke-w dth: 2; stroke-dasharray: 5 2"/>
</ svg>
px O 20 40 &0 B0 100
T T
20 -
40 —
60 —
80 — S
100 —

Figure 4-6. Demonstration of the rect element

NOTE

The strokes that form the outline —straddlell the abstract grid lines, so the strokes will be half inside the shape and half
outside the shape. Figure 4-7, a close-up of the semi-transparent red outline drawn in Example 4-6, shows this clearly.

80 —
100 — ==

Figure 4-7. Close-up of transparent border

If you do not specify astarting x or y value, it is presumed to be 0. If you specify awi dt h
or hei ght of O, then the rectangle is not displayed. It is an error to provide negative values
for either wi dt h or hei ght .

Rounded Rectangles

If you wish to have rectangles with rounded corners, specify the x- and y-radius of the
corner curvature. The maximum number you may specify for r x (the x-radius) is one-half
the width of the rectangle; the maximum value of ry (the y-radius) is one-half the height
of the rectangle. If you specify only one of rx or ry, they are presumed to be equal.
Example 4-7 shows various combinationsof rx andry.

Example 4-7. Demonstration of rounded rectangles
http://oreillymedia.github.io/svg-essenti al s-exampl es/ch04/rounded-rectangl es.html

<svg wi dt h="200px" hei ght ="200px" vi ewBox="0 0 200 200"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<I-- rx and ry equal, increasing -->
<rect x="10" y="10" w dth="20" hei ght="40" rx="2" ry="2"
styl e="stroke: black; fill: none;"/>

<rect x="40" y="10" w dth="20" hei ght="40" rx="5"
styl e="stroke: black; fill: none;"/>

<rect x="70" y="10" wi dth="20" hei ght="40" ry="10"

styl e="stroke: black; fill: none;"/>

<l-- rx and ry unequal -->

<rect x="10" y="60" wi dth="20" height="40" rx="10" ry="5"
styl e="stroke: black; fill: none;"/>

<rect x="40" y="60" w dth="20" height="40" rx="5" ry="10"
styl e="stroke: black; fill: none;"/>
</ svg>

Figure 4-8 shows the result, with a grid in the background for reference.

S T
) A
SAREAR
arnuy

Figure 4-8. Demonstration of rounded rectangles

NOTE

If youre familiar with the CSSbor der - r adi us property, you might know the trick of turning arectangle into acircle
or ellipse by setting the corner radius to 50% of the height and width. Although you can specify an SVG rectangle-s
corner radius with percent values, they will be interpreted as a percent of the viewport width (r x) or height (ry)f the
same asif you used a percentage for setting the rectangles width or height not as a percentage of the rectangle
itself. Good thing SV G has an easier way to create circles and ellipses”

Circlesand Ellipses

To draw acircle, use the <ci r cl e> element and specify the center x-coordinate, center y-
coordinate, and radius with the cx, cy, and r attributes. Aswith arectangle, the default is
to fill the circle with black and draw no outline unless you specify some other combination
of fill andstroke.

An ellipse needs both an x-radius and a y-radius in addition to a center x- and y-coordinate.
The attributes for these radii arenamed rx andry.

In both circles and ellipses, if thecx or cy isomitted, it is presumed to be O. If theradiusis
0, no shape will be displayed; it is an error to provide a negative radius. Example 4-8
draws some circles and ellipses. They are shown in Figure 4-9.

Example 4-8. Demonstration of circles and ellipses
http://oreillymedia.github.io/svg-essential s-examples/ch04/circles-ellipses.html

<svg w dt h="200px" hei ght ="200px" vi ewBox="0 0 200 200"
xm ns="http://ww. w3. or g/ 2000/ svg" >

<circle cx="30" cy="30" r="20" style="stroke: black; fill: none;"/>
<circle cx="80" cy="30" r="20"
style="stroke-wi dth: 5; stroke: black; fill: none;"/>

<el l'i pse cx="30" cy="80" rx="10" ry="20"

styl e="stroke: black; fill: none;"/>
<el l'i pse cx="80" cy="80" rx="20" ry="10"
styl e="stroke: black; fill: none;"/>
</ svg>

px 0 20 40 &0 80 100
ol il

100
o e

Figure 4-9. Demonstration of circle and ellipse elements

The <polygon> Element

In addition to rectangles, circles, and ellipses, you may want to draw hexagons, octagons,
stars, or arbitrary closed shapes. The <pol ygon> element lets you specify a series of

poi nt s that describe a geometric areato be filled and outlined as described earlier. The
poi nt s attribute consists of a series of x- and y-coordinate pairs separated by commas or
whitespace. You must give an even number of entriesin the series of numbers. You don-
have to return to the starting point; the shape will automatically be closed. Example 4-9
uses the <pol ygon> element to draw a parallelogram, a star, and an irregular shape.

Example 4-9. Demonstration of the polygon e ement
http://oreillymedia.github.io/svg-essenti al s-exampl es/ch04/pol ygon.htm

<svg wi dt h="200px" hei ght ="200px" vi ewBox="0 0 200 200"
xm ns="http://ww. w3. or g/ 2000/ svg" >

<l-- parallelogram-->

<pol ygon points="15,10 55, 10 45, 20 5, 20"
style="fill: red; stroke: black;"/>

<l-- star -->

<pol ygon

poi nts="35,37.5 37.9,46.1 46.9,46.1 39.7,51.5
42.3,60.1 35,55 27.7,60.1 30.3,51.5
23.1,46.1 32.1,46.1"

style="fill: #ccffcc; stroke: green;"/>
<l-- weird shape -->
<pol ygon
poi nts="60 60, 65 72, 80 60, 90 90, 72 80, 72 85, 50 95"
style="fill: yellow, fill-opacity: 0.5; stroke: black
stroke-width: 2;"/>
</ svg>

The results, with agrid in the background for reference, are displayed in Figure 4-10.

px 0 20 40 &0 50 100
ol il 1yl

20 —| A

40 —
60 — Eiﬁ

21 M

100 —

Figure 4-10. Demonstration of the polygon element
Filling Polygons That Have I ntersecting Lines

For the polygons shown so far, it-s been easy to fill the shape. None of the lines forming
the polygon cross over one another, so the interior is easily distinguished from the exterior
of the shape. However, when lines cross over one another, the determination of what is
inside the polygon is not as easy. The SVG in Example 4-10 draws such apolygon. In
Figure 4-11, isthe middle section of the star considered to be inside or outside?

Example 4-10. Unfilled polygon with intersecting lines

<svg wi dt h="200px" hei ght ="200px" vi ewBox="0 0 200 200"
xm ns="http://ww. w3. or g/ 2000/ svg" >

<pol ygon points="48,16 16,96 96,48 0,48 80,96"
styl e="stroke: black; fill: none;"/>

</ svg>

Figure 4-11. Unfilled polygon with intersecting lines

SV G hastwo different rules for determining whether a point isinside a polygon or outside
it. Thefill-rule(whichispart of presentation) has avalue of either nonzer o (the
default) or evenodd. Depending on the rule you choose, you get a different effect.
Example 4-11 uses the rules to fill two diagrams of the star. The result is shown in

Figure 4-12.

Example 4-11. Effect of different fill-rules
http: //oreillymedia.github.i o/svg-essenti al s-exampl es/ch04/pol vaon-fill .html

<svg w dt h="200px" hei ght ="200px" vi ewBox="0 0 200 200"
xm ns="http://ww. w3. or g/ 2000/ svg" >

<pol ygon style="fill-rule: nonzero; fill: yellow stroke: black;"
poi nts="48,16 16,96 96,48 0,48 80,96" />

<pol ygon style="fill-rule: evenodd; fill: #00ff00; stroke: black;"
poi nts="148,16 116,96 196,48 100,48 180,96" />

A A
<

Figure 4-12. Effect of different fill-rules

</ svg>

EXPLANATION OF THE FILL RULES

For the sake of completeness, hereishow thefi I | -rul es work, but dor+ worry! you dorn+ need to know the
detailsin order to use them. The nonzer o rule determines whether a point isinside or outside a polygon by drawing a
line from the point in question to infinity. It counts how many times that line crosses the polygon-s lines, adding one
if the polygon lineis going right to left, and subtracting one if the polygon line is going left to right. If the total comes
out to zero, the point is outside the polygon. If the total is nonzero (hence the name), the point is inside the polygon.

The evenodd rule aso draws aline from the point in question to infinity, but it simply counts how many times that
line crosses your polygon-s lines. If the total number of crossingsis odd, then the point isinside; if even, then the
point is outside.

The <polyline> Element

Finally, to round out our discussion of basic shapes, we- return to straight lines.
Sometimes you want a series of lines that does not make a closed shape. You can use
multiple <l i ne> elements, but if there are many lines, it might be easier to use the

<pol yl i ne> element. It has the same poi nt s attributes as <pol ygon>, except that the shape
Is not closed. Example 4-12 draws the symbol for an electrical resistor. Theresult isin
Figure 4-13.

Example 4-12. The polyline element

http://oreillymedia.github.io/svg-essenti al s-exampl es/ch04/pol yline.html

<svg w dt h="100px" hei ght ="50px" vi ewBox="0 0 100 50"
xm ns="http://ww. w3. or g/ 2000/ svg" >

<pol yline
poi nts="5 20, 20 20, 25 10, 35 30, 45 10,
55 30, 65 10, 75 30, 80 20, 95 20"
styl e="stroke: black; stroke-width: 3; fill: none;"/>

</ svg>

Figure 4-13. Example of the polyline element

WARNING

It-s best to set thefi | | property to none when using <pol yl i ne>; otherwise, the SV G viewer attemptsto fill the
shape, sometimes with startling results like those in Figure 4-14.

A~

Figure 4-14. Example of filled polyline

Line Capsand Joins

When drawing a<l i ne> or <pol yl i ne>, you may specify the shape of the endpoints of the
lines by setting the st r oke- I i necap style property to one of the valuesbut t , r ound, or
squar e. Example 4-13 uses these three values, with gray guide lines to show the actual
endpoints of the lines. You can seein Figure 4-15 that r ound and squar e extend beyond
the end coordinates; but t , the default, ends exactly at the specified endpoint.

Example 4-13. Values of the stroke-linecap property

http://oreillymedia.github.io/svg-essential s-exampl es/ch04/linecap.html

<line x1="10" y1="15" x2="50" y2="15"
styl e="stroke: black; stroke-linecap: butt; stroke-w dth: 15;"/>

<line x1="10" y1="45" x2="50" y2="45"
styl e="stroke: black; stroke-linecap: round; stroke-w dth: 15;"/>

<line x1="10" y1="75" x2="50" y2="75"
styl e="stroke: black; stroke-linecap: square; stroke-wi dth: 15;"/>

<l-- guide lines -->

<line x1="10" y1="0" x2="10" y2="100" style="stroke: #999;"/>
<line x1="50" y1="0" x2="50" y2="100" style="stroke: #999;"/>

Figure 4-15. Values of the stroke-linecap attribute

You may specify the way lines connect at the corners of a shape with the st r oke-

| i nej oi n style property, which may have the valuesni t er (pointed), r ound (roundf
what did you expect?), or bevel (flat). Example 4-14 produces the result shown in
Figure 4-16.

Example 4-14. Values of the stroke-lingjoin attribute
http://oreillymedia.github.io/svg-essenti al s-exampl es/ch04/linej oin.html

<pol yl i ne
style="stroke-linejoin: mter; stroke: black; stroke-w dth: 12
fill: none;"

poi nts="30 30, 45 15, 60 30"/>

<pol yline
styl e="stroke-linejoin: round; stroke: black; stroke-w dth: 12
fill: none;"

poi nts="90 30, 105 15, 120 30"/>

<pol yline
styl e="stroke-linejoin: bevel; stroke-wi dth: 12; stroke: black
fill: none;"

poi nts="150 30, 165 15, 180 30"/>

AAAD

Figure 4-16. Values of the stroke-lingjoin attribute

NOTE

If your lines meet at a sharp angle and have a mitered join, it-s possible for the pointed part to extend far beyond the
lines-thickness. You may set the ratio of the miter to the thickness of the lines being joined with the st r oke-
mterlinit styleproperty; its default valueis 4.

Basic Shapes Reference Summary

The following tables summarize the basic shapes and presentation stylesin SVG.

Shape Elements

Table 4-1 summarizes the basic shapes available in SVG.
Table 4-1. Shape elements

Shape

<line x1="start-x" yl="start-y" x2="end-x"
y2="end-y"/>

<rect x="left-x" y="top-y" w dt h="wi dt h"
hei ght =" hei ght "/ >

<circle cx="center-x" cy="center-y"
r="radi us"/>

<el | i pse cx="center-x" cy="center-y" rx="x-
radi us" ry="y-radius"/>

<pol ygon poi nts="points-list"/>

<pol yl i ne points="points-list"/>

Description

Draws aline from the starting point at coordinates (st ar t - x,
start-y) to the ending point a coordinates (end- x, end-y).

Draws arectangle whose upper-left corner isat (I ef t - x, t op-
y) with the given wi dt h and hei ght .

Draws a circle with the given r adi us, centered at (cent er - x,
center-y).

Draws an ellipse with the given x- r adi us and y- r adi us
centered at (cent er - x, center-y).

Draws an arbitrary closed polygon whose outline is described
by the poi nt s-1i st. The points are specified as pairs of x-
and y-coordinates. These are user coordinates only; you may
not add a length unit specifier.

Draws an arbitrary series of connected lines as described by
the poi nt s-1i st. The points are specified as pairs of x- and y-
coordinates. These are user coordinates only; you may not add
alength unit specifier.

When you specify a number for an attribute, it is presumed to be measured in user
coordinates. In al but the last two elements of Table 4-1, you may also add a length unit
specifier such asmm pt , etc. to any number. For example:

<line x1="1cn' y1="30" x2="50" y2="10pt"/>

Specifying Colors

You may specify the color for filling or outlining a shape in one of the following ways:

= none, indicating that no outline is to be drawn or that the shape is not to be filled.

= A basic color name, which isone of aqua, bl ack, bl ue, f uchsi a, gray, green, i ne,
mar oon, navy, ol i ve, purpl e,red, silver,teal ,white, Oryell ow.

= One of the extended color names from the SV G specifications.

m Six hexadecimal digits#r r ggbb, each pair describing red, green, and blue values.

» Three hexadecimal digits#r gb, describing the red, green, and blue values. Thisis
shorthand for the previous method; digits are replicated, so #r gb IS equivalent to

#rrggbb.

® rgb(r,g,b),eachvaueranging fromQ 255 or from 0% to 100%.
= current Col or, the computed (usually inherited) col or property value for the element.

= One of the specifications from the CSS3 Color module (which may not be supported by
all SVG implementations).

Stroke and Fill Characteristics

In order to see aline or the outline of a shape, you must specify the stroke characteristics,
using the following attributes. A shapes outline is drawn after itsinterior isfilled. All of
these characteristics, summarized in Table 4-2, are presentation properties, and goin a
styl e atribute.

Table 4-2. Sroke characteristics

Attribute Values
stroke The stroke color, as described in Specifying Colors. Default is none.
stroke-wi dth Width of stroke; may be given as user coordinates or with alength specifier.

The stroke width is centered along the abstract grid lines. Default is 1.

stroke-opacity A number ranging from 0.0 to 1.0; 0.0 is entirely transparent; 1.0 is entirely
opaque (the default).

stroke- dasharray A series of numbers that tell the length of dashes and gaps with which aline
isto be drawn. These numbers are in user coordinates only. The default value
iSnone.

stroke-1inecap Shape of the ends of aline; has one of the values but t (the default), r ound, or
square.

stroke-linejoin The shape of the corners of a polygon or series of lines; has one of the values

m ter (pointed; the default), r ound, or bevel (flat).

stroke-miterlimt Maximum ratio of length of the miter point to the width of the lines being
drawn; the default value is 4.

You can control the way in which the interior of a shapeisto be filled by using one of the
fill attributes shown in Table 4-3. A shape isfilled beforeits outline is drawn.

Table 4-3. Fill characteristics

Attribute Values
fill Thefill color, as described in Specifying Colors. The default isbl ack.
fill-opacity A number ranging from 0.0 to 1.0; 0.0 is entirely transparent; 1.0 (the default)

isentirely opague.

fill-rule This attribute can have the values nonzer o (the default) or evenodd, which
apply different rules for determining whether apoint isinside or outside a
shape. These rules generate different effects only when a shape has
intersecting lines or -holedll in it. Details are in Filling Polygons That Have
Intersecting Lines earlier in this chapter.

Thisisonly asmall sample of the style properties that can apply to SVG elements;

Table B-1, in Appendix B, has acomplete list.

[6] Technical ly, the x value is the smaller of the x-coordinate values, and they is the smaller of the y-coordinate val ues of
the rectangle-s sides in the current user coordinate system. Because you are not yet using transformations, which are
covered in Chapter 6, thisisthe moral equivalent of the upper-left corner.

Chapter 5. Document Structure

We-ve casually mentioned that SV G lets you separate a document-s structure from its
presentation. In this chapter, we—re going to compare and contrast the two, discuss the
presentational aspects of a document in more detail, and then show some of the SVG
elements you can use to make your document-s structure clearer, more readable, and easier

to maintain.

Structure and Presentation

As mentioned in Chapter 1, in Basic Shapes, one of XML-s goalsisto provide away to
structure data and separate this structure from its visual presentation. Consider the drawing
of the cat from that chapter; you recognize it as a cat because of its structure? the
position and size of the geometric shapes that make up the drawing. If we were to make
structural changes, such as shortening the whiskers, rounding the nose, and making the
ears longer and rounding their ends, the drawing would become one of arabbit, no matter
what the surface presentation might be. The structure, therefore, tells you what a graphic
is.

Thisis not to say that information about visual style isn+ important; had we drawn the cat
with thick purple lines and a gray interior, it would have been recognizable as a cat, but its
appearance would have been far less pleasing. These differences are shown in Figure 5-1.
XML encourages you to separate structure and presentation; unfortunately, many
discussions of XML emphasize structure at the expense of presentation. We-| right this
wrong by going into detail about how you specify presentation in SVG.

Figure 5-1. Structure versus presentation

Using Styleswith SVG

SV G lets you specify presentational aspects of agraphic in four ways: with inline styles,
internal stylesheets, external stylesheets, and presentation attributes. L et-s examine each of
thesein turn.

Inline Styles

Example 5-1 usesinline styles. Thisis exactly the way we-ve been using presentation
information so far; we set the value of the st yl e attribute to a series of visual properties
and their values as described in Appendix B, in Anatomy of a Style.

Example 5-1. Use of inline styles

<circle cx="20" cy="20" r="10"
styl e="stroke: black; stroke-width: 1.5; fill: blue;
fill-opacity: 0.6"/>

Internal Stylesheets

You don+ need to place your styles inside each SV G element; you can create an interna
stylesheet to collect commonly used styles, which you can apply to all occurrences of a
particular element, or use named classes to apply styles to specific elements. Example 5-2
sets up an internal stylesheet that will draw all circlesin a blue double-thick dashed line
with alight yellow interior. The stylesheet is within a <def s> element, which we will
discuss later in this chapter.

The example then draws several circles. The circlesin the second row of Figure 5-2 have
inline styles that override the specification in the internal stylesheet.

Example 5-2. Use of internal stylesheet
http://oreillymedia.github.io/svg-essential s-exampl es/ch05/inter nal - styl esheets.html

<svg wi dt h="200px" hei ght ="200px" vi ewBox="0 0 200 200"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<def s>
<style type="text/css"><![CDATA[
circle {
fill: #ffc;
stroke: bl ue;
stroke-w dth: 2;
stroke-dasharray: 5 3
}
]]></style>
</ def s>

<circle cx="20" cy="20" r="10"/>
<circle cx="60" cy="20" r="15"/>
<circle cx="20" cy="60" r="10" style="fill: #cfc"/>
<circle cx="60" cy="60" r="15"

style="stroke-wi dth: 1; stroke-dasharray: none;"/>
</ svg>

Figure 5-2. Internal stylesheet with SVG
External Stylesheets

If you want to apply a set of stylesto multiple SV G documents, you could copy and paste
the internal stylesheet into each of them. This, of course, isimpractical for alarge volume
of documentsif you ever need to make a global change to all the documents. Instead, you
should take all the information between the beginning and ending <st yI e> tags (excluding
the <! [CDATA[and]]>) and saveit in an external file, which becomes an external
stylesheet. Example 5-3 shows an external stylesheet that has been saved in afile named
ext_style.css. This stylesheet uses avariety of selectors, including *, which sets a default
for all elements that don+ have any other style, and it, together with the SV G, produces
Figure 5-3.

Example 5-3. External stylesheet

* { fill:none; stroke: black; } /* default for all elenents */
rect { stroke-dasharray: 7 3; }

circle.yellow { fill: yellow }

.thick { stroke-width: 5; }

.semblue { fill:blue; fill-opacity: 0.5; }

e

N

Figure 5-3. External stylesheet with SVG

Example 5-4 shows a complete SVG document (including <?xm | ?>, <?xni - st yl esheet
r 2>, and the <! DOCTYPE>) that references the external stylesheet.

Example 5-4. SVG file that references an external stylesheet

<?xm version="1.0""?7>
<?xm -styl esheet href="ext_style.css" type="text/css"?>
<I DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww.w3. org/ G aphi cs/ SVG 1. 1/ DTD/ svgll. dtd">
<svg xm ns="http://ww. w3. or g/ 2000/ svg"
wi dt h="200px" hei ght ="200px" vi ewBox="0 0 200 200">

<line x1="10" y1="10" x2="40" y2="10"/>
<rect x="10" y="20" w dth="40" hei ght="30"/>
<circle class="yel |l ow' cx="70" cy="20" r="10"/>
<pol ygon cl ass="t hi ck" points="60 50, 60 80, 90 80"/>
<pol ygon cl ass="thi ck sem bl ue"
poi nt s="100 30, 150 30, 150 50, 130 50"/>
</ svg>

NOTE

Inline styles will almost always render more quickly than stylesin an internal or external stylesheet; stylesheets and
classes add rendering time due to lookup and parsing. However, stylesheets are easier to maintain, and smaller file
size and caching can result in faster file-loading time.

Presentation Attributes

Although the overwhelming majority of your SVG documents will use styles for
presentation information, SV G does permit you to specify thisinformation in the form of
presentation attributes. Instead of saying

<circle cx="10" cy="10" r="5"
style="fill: red; stroke:black; stroke-width: 2;"/>

you may write each of the properties as an attribute:

fill="red" stroke="bl ack" stroke-w dth="2"/>

If you are thinking that thisis mixing structure and presentation, you are right.
Presentation attributes do come in handy, though, when you are creating SV G documents
by converting an XML data source to SV G, as you will seein Chapter 15. In these cases,
It can be easier to create individual attributes for each presentation property than to create
the contents of asingle st yl e attribute. You may also need to use presentation attributes if
the environment in which you will be placing your SV G cannot support stylesheets.

Presentation attributes are at the very bottom of the priority list. Any style specification
coming from an inline, internal, or external stylesheet will override a presentation
attribute, although presentation attributes override inherited styles. In the following SVG
document, the circle will befilled in red, not green:

<svg wi dt h="200" hei ght ="200"
xm ns="http://ww. w3. or g/ 2000/ svg" >

<def s>
<style type="text/css"><![CDATA
circle { fill: red; }
]]></style>
</ def s>
<circle cx="20" cy="20" r="15" fill="green"/>
</ svg>

Again, we emphasize that using st yl e attributes or stylesheets should always be your first
choice. Stylesheets let you apply a complex series of fill and stroke characteristicsto all
occurrences of certain el ements within a document without having to duplicate the
information into each element, as presentation attributes would require. The power and
flexibility of stylesheets allow you to make significant changes in the look and feel of
multiple documents with a minimum of effort.

Grouping and Referencing Objects

Whileit is certainly possible to define any drawing as an undifferentiated list of shapes
and lines, most nonabstract art consists of groups of shapes and lines that form
recognizable named objects. SV G has elements that |et you do this sort of grouping to
make your documents more structured and understandable.

The <g> Element

The <g> element gathers all of its child elements as a group and often has an i d attribute to
give that group a unique name. Each group may also haveitsown <ti t1 e> and <desc> to
identify it for text-based XML applications or to aid in accessibility for visually impaired
users. Many SV G rendering agents will display a pop-up tooltip with the content of a
<title>element when you hover over or tap any graphics within that group. Screen
readers will read the contents of <ti t | e> and <desc> elements.

In addition to the conceptual clarity that comes from the ability to group and document
objects, the <g> element aso provides notational convenience. Any styles you specify in
the starting <g> tag will apply to al the child elements in the group. In Example 5-5, this
saves us from having to duplicate the styl e="fi || : none; stroke: bl ack;" On every
element shown in Figure 5-4. It is also possible to nest groups within one another,
although you won+ see any examples of this until Chapter 6.

The <g> element is analogous to the Group Objects function in programs such as Adobe
[llustrator. It also serves asimilar function to the concept of layersin such programs; a
layer is also a grouping of related objects.

Example 5-5. Smple use of the g element

<svg wi dt h="240px" hei ght ="240px" vi ewBox="0 0 240 240"
xm ns="http://ww. w3. or g/ 2000/ svg" >

<title>G ouped Drawi ng</title>

<desc>Stick-figure drawi ngs of a house and peopl e</ desc>

<g i d="house" style="fill: none; stroke: black;">
<desc>House w th door</desc>
<rect x="6" y="50" w dth="60" hei ght="60"/>
<pol yline points="6 50, 36 9, 66 50"/>
<pol yline points="36 110, 36 80, 50 80, 50 110"/>
</ g>

<g id="man" style="fill: none; stroke: black;">
<desc>Mal e human</ desc>
<circle cx="85" cy="56" r="10"/>
<line x1="85" y1="66" x2="85" y2="80"/>
<pol yline points="76 104, 85 80, 94 104" />
<polyline points="76 70, 85 76, 94 70" />

</ g>

<g id="woman" style="fill: none; stroke: black;">
<desc>Fenul e human</ desc>
<circle cx="110" cy="56" r="10"/>
<pol yl i ne points="110 66, 110 80, 100 90, 120 90, 110 80"/>
<line x1="104" y1="104" x2="108" y2="90"/>
<line x1="112" y1="90" x2="116" y2="104"/>
<pol yli ne points="101 70, 110 76, 119 70" />

</ g>

</ svg>

