

SV G E ssentials

J. D avid E isenberg

A m elia B ellam y-R oyds

D edication
To m y late m other and father, for their advice and love through the years. ‍ JD E

For B ill, w ho w ould have been so proud. ‍ A B R

Preface
SVG Essentials introduces you to the Scalable Vector G raphics X M L file form at. SV G , a
recom m endation from the W orld W ide W eb C onsortium , uses X M L to describe graphics
that are m ade up of lines, curves, and text. This rather dry definition does not do justice to
the scope and pow er of SV G .

You can add SV G graphics to an Extensible Stylesheet Language Form atting O bjects
(X SL-FO) docum ent, and convert the com bined docum ent to A dobe PD F form at for high-
quality printouts. M apm akers and m eteorologists are using SV G to create highly detailed
graphic im ages in a truly portable form at. W eb developers are em bedding SV G in w eb
pages to create high-resolution, responsive graphics w ith sm all file sizes. A ll of the
diagram s in this book w ere originally created in SV G . A s you learn and use SV G , you‒re
sure to think of new and interesting uses for this technology.

W ho Should R ead T his B ook?
You should read this book if you w ant to

C reate SV G files in a text or X M L editor
C reate SV G files from existing vector data
Transform other X M L data to SV G
U se JavaScript to m anipulate the SV G docum ent object tree

W ho Should N ot R ead T his B ook?
If you sim ply w ant to view SV G files, you need only acquire a view er program or plug-in
for the W eb, dow nload the files, and enjoy them . There‒s no need for you to know w hat‒s
going on behind the scenes unless you w ish to satisfy your lively intellectual curiosity.

If you w ish to create SV G files w ith a draw ing program that has SV G export capability,
just read that program ‒s docum entation to learn how to use that program feature.

If You‒re Still R eading T his“
If you‒ve decided that you should indeed read this book, you should also be aw are that
m ost of the people w ho use this book w ill be fairly advanced users, quite probably from a
technical background rather than a graphics design background. W e didn‒t w ant to burden
them w ith a lot of basic m aterial up front, but w e did w ant the book to be accessible to
people w ith no background in X M L or program m ing, so w e created a num ber of
introductory chapters ‍ and then put them in the back of the book as appendixes. If you
haven‒t used X M L or stylesheets (and this could include som e of the technical folks!) or
have never program m ed, you m ight w ant to turn first to the appendixes. A com plete list of
all the chapters and appendixes w ith details on w hat they contain is given later in this
preface.

If you‒re one of the technical types, you definitely need to be aw are that this book w ill not
m ake you a better artist, any m ore than a book on w ord processing algorithm s w ill m ake
you a better w riter. This book gives the technical details of scalable vector graphics; to
create better art, you need to learn to see, and the book you should read in addition to this
one is The N ew D raw ing on the Right Side of the Brain by D r. B etty Edw ards (Tarcher).

This book gives you the essentials of SV G ; if you w ant to find out all the details, you
should go straight to the source, the W 3C SV G specifications.

A bout the E xam ples
The exam ples in this book, except for those that involve H TM L pages, have been tested
w ith the B atik SV G view er on a system running G N U /Linux. The B atik SV G view er is an
application of the softw are developed by the A pache Softw are Foundation‒s B atik project.
This cross-platform softw are, w ritten in Java, is available as open source under the
A pache Softw are License and can be freely dow nloaded from the project w ebsite.

A ll the exam ples (including those in C hapters 2, 13, and 14 that involve JavaScript and
H TM L) w ere tested by being loaded into the Firefox and C hrom e w eb brow sers. The level
of support for the m ore sophisticated features of SV G differs depending upon the brow ser.

A s you look through the illustrations in this book, you w ill find that they are utterly
lacking in artistic m erit. There are reasons for this. First, each exam ple is intended to
illustrate a particular aspect of SV G , and it should do so w ithout additional visual
distractions. Second, one of the authors (D avid) becom es terribly depressed w hen he looks
at other books w ith im possibly beautiful exam ples; ―I can never draw anything that looks
like this,‖ he thinks. In an effort to save you from sim ilar distress, the exam ples are
purposely as sim ple (or sim plistic) as possible. A s you look at them , your im m ediate
reaction w ill be: ―I can certainly use SV G to draw som ething that looks far better than
this!‖ You can, and you w ill.

O rganization of T his B ook
C hapter 1, G etting Started

This chapter gives a brief history of SV G , com pares raster and vector graphics system s,
and ends w ith a brief tutorial introducing the m ain concepts of SV G .

C hapter 2, U sing SVG in W eb Pages

This chapter show s you the various m ethods that you can use to put SV G into your
H TM L5 docum ents.

C hapter 3, C oordinates

H ow do you determ ine the position of a point in a draw ing? W hich w ay is ―up‖? This
chapter answ ers those questions, show ing how to change the system by w hich
coordinates are m easured in a graphic.

C hapter 4, Basic Shapes

This chapter show s you how to construct draw ings using the basic shapes available in
SV G : lines, rectangles, polygons, circles, and ellipses. It also discusses how to
determ ine the colors for the outline and interior of a shape.

C hapter 5, D ocum ent Structure

In a com plex draw ing, there are elem ents that are reused or repeated. This chapter tells
you how to group objects together so they m ay be treated as a single entity and reused.
It also discusses use of external im ages, both vector and raster.

C hapter 6, Transform ing the C oordinate System

If you draw a square on a sheet of stretchable m aterial, and stretch the m aterial
horizontally, you get a rectangle. Skew the sides of the sheet, and you see a
parallelogram . N ow tilt the sheet 45 degrees, and you have a diam ond. In this chapter,
you w ill learn how to m ove, rotate, scale, and skew the coordinate system to affect the
shapes draw n on it.

C hapter 7, Paths

A ll the basic shapes are actually specific instances of the general concept of a path. This
chapter show s you how to describe a general outline for a shape by using lines, arcs,
and com plex curves.

C hapter 8, Patterns and G radients

This chapter adds m ore to the discussion of color from C hapter 4, discussing how to
create a color gradient or a fill pattern.

C hapter 9, Text

G raphics aren‒t just lines and shapes; text is an integral part of a poster or a schem atic
diagram . This chapter show s how to add text to a draw ing, both in a straight line and
follow ing a path.

C hapter 10, C lipping and M asking

This chapter show s you how to use a clipping path to display a graphic as though it
w ere view ed through a circular lens, keyhole, or any other arbitrary shape. It also show s
how to use a m ask to alter an object‒s transparency so that it appears to ―fade out‖ at the
edges.

C hapter 11, Filters

A lthough an SV G file describes vector graphics, the docum ent is eventually rendered
on a raster device. In this chapter, you‒ll learn how to apply raster-oriented filters to a
graphic to blur an im age, transform its colors, or produce lighting effects.

C hapter 12, Anim ating SVG

This chapter show s you how to use SV G ‒s built-in anim ation capabilities.

C hapter 13, Adding Interactivity

In addition to SV G ‒s built-in anim ation, you can use both C SS and JavaScript to
dynam ically control a graphic‒s attributes.

C hapter 14, U sing the SVG D O M

This chapter goes further in depth w ith using JavaScript to m anipulate the D ocum ent
O bject M odel. It also gives a brief introduction to a JavaScript library designed for
w orking w ith SV G .

C hapter 15, G enerating SVG

A lthough you can create an SV G file from scratch, m any people w ill have existing
vector data or X M L data that they w ish to display in graphic form . This chapter
discusses the use of program m ing languages and X SLT to create SV G from these data
sources.

A ppendix A

SV G is an application of X M L, the Extensible M arkup Language. If you haven‒t used
X M L before, you should read this appendix to fam iliarize yourself w ith this rem arkably
pow erful and flexible form at for structuring data and docum ents.

A ppendix B

You can use stylesheets to apply visual properties to particular elem ents in your SV G
docum ent. These are exactly the sam e kind of stylesheets that can be used w ith H TM L
docum ents. If you‒ve never used stylesheets before, you‒ll w ant to read this brief
introduction to the anatom y of a stylesheet.

A ppendix C

If you‒re a graphic designer w ho hasn‒t done m uch program m ing, you‒ll w ant to find
out w hat program m ers are talking about w hen they throw around w ords like object
m odel and function.

A ppendix D

To fully understand coordinate transform ations and filter effects in SV G , it‒s helpful,
though not necessary, to understand m atrix algebra, the m athem atics used to com pute
the coordinates and pixels. This appendix highlights the basics of m atrix algebra.

A ppendix E

TrueType fonts represent glyphs (characters) in a vector form . This appendix show s you
how to take your favorite fonts and convert them to paths for use in SV G docum ents.

A ppendix F

M any applications represent arcs in a center-and-angles form at. This appendix provides
code to convert from that form at to SV G ‒s form at for arcs and back again.

C onventions U sed in T his B ook
Italic

Indicates new term s, U R Ls, em ail addresses, filenam es, and file extensions.
Constant width

U sed for program listings, as w ell as w ithin paragraphs to refer to program elem ents
such as variable or function nam es, databases, data types, environm ent variables,
statem ents, and keyw ords.

Constant width bold

U sed to highlight a section of code being discussed in the text.
Constant width italic

Show s text that should be replaced w ith user-supplied values or by values determ ined
by context.

N O T E

This elem ent signifies a tip, suggestion, or general note.

W A R N IN G

This elem ent indicates a w arning or caution.

This book uses callouts to denote points of interest in code listings. A callout is show n as a
num ber in a filled circle; the corresponding num ber after the listing gives an explanation.
H ere‒s an exam ple:

Roses are red,

 Violets are blue.

Some poems rhyme;

 This one doesn't.

V iolets actually have a color value of #9933cc.

This poem uses the literary device know n as a surprise ending.

M any of the exam ples are available to test out online; the U R L is indicated in the text.
Som e of the online exam ples have m arkup that you can edit; click the R efresh button to
see the results of your changes. You m ay also click the R eset button to return the exam ple
to its original state.

Safari¬ B ooks O nline
N O T E

Safari B ooks O nline is an on-dem and digital library that delivers expert content in both book and video form from the
w orld‒s leading authors in technology and business.

Technology professionals, softw are developers, w eb designers, and business and creative
professionals use Safari B ooks O nline as their prim ary resource for research, problem
solving, learning, and certification training.

Safari B ooks O nline offers a range of plans and pricing for enterprise, governm ent,
education, and individuals.

M em bers have access to thousands of books, training videos, and prepublication
m anuscripts in one fully searchable database from publishers like O ‒R eilly M edia,
Prentice H all Professional, A ddison-W esley Professional, M icrosoft Press, Sam s, Q ue,
Peachpit Press, Focal Press, C isco Press, John W iley & Sons, Syngress, M organ
K aufm ann, IB M R edbooks, Packt, A dobe Press, FT Press, A press, M anning, N ew R iders,
M cG raw -H ill, Jones & B artlett, C ourse Technology, and hundreds m ore. For m ore
inform ation about Safari B ooks O nline, please visit us online.

H ow to C ontact U s
Please address com m ents and questions concerning this book to the publisher:

O ‒R eilly M edia, Inc.

1005 G ravenstein H ighw ay N orth

Sebastopol, C A 95472

800-998-9938 (in the U nited States or C anada)

707-829-0515 (international or local)

707-829-0104 (fax)

W e have a w eb page for this book, w here w e list errata, exam ples, and any additional
inform ation. You can access this page at
http://shop.oreilly.com /product/0636920032335.do.

To com m ent or ask technical questions about this book, send em ail to
bookquestions@ oreilly.com .

For m ore inform ation about our books, courses, conferences, and new s, see our w ebsite at
http://w w w .oreilly.com .

Find us on Facebook: http://facebook.com /oreilly

Follow us on Tw itter: http://tw itter.com /oreillym edia

W atch us on YouTube: http://w w w .youtube.com /oreillym edia

A cknow ledgm ents for the First E dition
I‒d like to thank Sim on St. Laurent, the editor of this book, for his guidance and
com m ents, w hich w ere alw ays right on the m ark. H e also told m e in an em ail, ―w e already
know that you know how to w rite,‖ w hich is one of the nicest things anyone has ever told
m e.

Thanks also to Edd D um bill, w ho w rote the docum ent that I m odified only slightly to
create A ppendix A . O f course, any errors in that appendix have been added by m y
m odifications.

Thanks also go to the technical review ers of this book: A ntoine Q uint and D avid K laphaak
and the SV G Q uality Engineering team at A dobe, w ho did the technical review of the
m anuscript. Your com m ents have helped im prove m any aspects of this book.

Jeffrey Zeldm an is the person w ho first put the idea in m y head that I, too, could w rite a
book, and for that I thank him m ost sincerely.

I also w ant to thank all the people, forem ost am ong them m y brother, Steven, w ho, w hen I
told them I w as w riting a book, believed in m e enough to say, ―W ow , that‒s great.‖

A cknow ledgm ents for the Second E dition
W e w ould like to thank Shelly Pow ers for her excellent technical review . O ur thanks also
go to Sim on St. Laurent and M eghan B lanchette for their fantastic job of editing and to
M atthew H acker and the O ‒R eilly tools and production team s for getting all the finishing
touches just right, despite the best efforts of stubborn softw are and fussy authors.

From D avid: I‒d like to give special thanks to A m elia B ellam y-R oyds. She w as initially
doing technical review of the book, and her com m ents w ere so lucid and w ell w ritten that
I found m yself lifting them verbatim and realized that she should be a coauthor. H er
corrections and additions have m ade the book far better than I could have im agined.

From Am elia: I‒d like to thank D avid for being decent enough to recognize w hen I‒d
exceeded m y original job description and deserved extra credit. H is original book w as a
w onderfully w elcom ing introduction to SV G . A s som eone w ho had puzzled through all
the quirks of w eb brow ser im plem entations on m y ow n, I really w anted the revised book
to have clear explanations for all the things that confused m e w hen learning SV G as it
currently w orks in practice.

I also need to send special thanks to m y husband, C hris, w ho has been hugely supportive,
but w ho has also regularly rem inded m e w hen I need to step aw ay from the com puter, eat,
sleep, or get som e fresh air.

C hapter 1. G etting Started
SV G , w hich stands for Scalable Vector G raphics, is an application of X M L that m akes it
possible to represent graphic inform ation in a com pact, portable form . Interest in SV G is
grow ing rapidly. M ost m odern w eb brow sers can display SV G graphics, and m ost vector
draw ing softw are program s can export SV G graphics. This chapter begins w ith a
description of the tw o m ajor system s of com puter graphics, and describes w here SV G fits
into the graphics w orld. The chapter concludes w ith a brief exam ple that uses m any of the
concepts that you w ill explore in detail in the follow ing chapters.

G raphics System s
The tw o m ajor system s for representing graphic inform ation on com puters are raster and
vector graphics.

R aster G raphics
In raster graphics, an im age is represented as a rectangular array of picture elem ents or
pixels (see Figure 1-1). Each pixel is represented either by its R G B color values or as an
index into a list of colors. This series of pixels, also called a bitm ap, is often stored in a
com pressed form at. B ecause m ost m odern display devices are also raster devices,
displaying an im age requires a view er program to do little m ore than uncom press the
bitm ap and transfer it to the screen.

Figure 1-1. Raster graphic rectangle

Vector G raphics
In a vector graphics system , an im age is described as a series of geom etric shapes (see
Figure 1-2). R ather than receiving a finished set of pixels, a vector view ing program
receives com m ands to draw shapes at specified sets of coordinates.

Figure 1-2. Vector graphic rectangle

If you think of producing an im age on graph paper, raster graphics w ork by describing
w hich squares should be filled in w ith w hich colors. Vector graphics w ork by describing
the grid points at w hich lines or curves are to be draw n. Som e people describe vector
graphics as a set of instructions for a draw ing, w hile bitm ap graphics (rasters) are points of
color in specific places. Vector graphics ―understand‖ w hat they are ‍ a square ―know s‖
it‒s a square, and text ―know s‖ that it‒s text. B ecause they are objects rather than a series
of pixels, vector objects can change their shape and color, w hereas bitm ap graphics
cannot. A lso, all text is searchable because it really is text, no m atter how it looks or how
it is rotated or transform ed.

A nother w ay to think of raster graphics is as paint on canvas, w hile vector graphics are
lines and shapes m ade of a stretchable m aterial that can be m oved around on a
background.

U ses of R aster G raphics
R aster graphics are m ost appropriate for use w ith photographs, w hich are rarely com posed
of distinct lines and curves. Scanned im ages are often stored as bitm aps; even though the
original m ay be line art, you w ant to store the im age as a w hole and don‒t care about its
individual com ponents. A fax m achine, for exam ple, doesn‒t care w hat you‒ve draw n; it
sim ply transm its pixels from one place to another in raster form .

Tools for creating im ages in raster form at are w idespread and generally easier to use than
m any vector-based tools. There are m any different w ays to com press and store a raster
im age, and the internal representation of these form ats is public. Program libraries to read
and w rite im ages in com pressed form ats such as JPEG , G IF, and PN G are w idely
available. These are som e of the reasons that w eb brow sers have, until the arrival of SV G ,
supported only raster im ages.

U ses of Vector G raphics
Vector graphics are used in the follow ing:

C om puter A ssisted D rafting (C A D) program s, w here accurate m easurem ent and the
ability to zoom in on a draw ing to see details are essential.
Program s for designing graphics that w ill be printed on high-resolution printers (e.g.,
A dobe Illustrator).
The A dobe PostScript printing and im aging language; every character that you print is
described in term s of lines and curves.
The vector-based M acrom edia Flash system for designing anim ations, presentations,
and w ebsites.

B ecause m ost of these files are encoded in binary form at or as tightly packed bitstream s, it
is difficult for a brow ser or other user agent to parse out em bedded text, or for a server to
dynam ically create vector graphic files from external data. M ost of the internal
representations of vector graphics are proprietary, and code to view or create them is not
generally available.

Scalability
A lthough they are not as popular as raster graphics, vector graphics have one feature that
m akes them invaluable in m any applications ‍ they can be scaled w ithout loss of im age
quality. A s an exam ple, here are tw o draw ings of a cat. Figure 1-3 w as m ade w ith raster
graphics; Figure 1-4 is a vector im age. B oth are show n as they appear on a screen that
displays 72 pixels per inch.

Figure 1-3. Raster im age of cat

Figure 1-4. Vector im age of cat

W hen a display program zoom s in on the raster graphic, it m ust find som e w ay to expand
each pixel. The sim plest approach to zoom ing in by a factor of four is to m ake each pixel
four tim es as large. The results, show n in Figure 1-5, are not particularly pleasing.

Figure 1-5. Expanded raster im age

A lthough it is possible to use techniques such as edge detection and anti-aliasing to m ake
the expanded im age m ore pleasing, these techniques are tim e-consum ing. Furtherm ore,
since all the pixels in a raster graphic are equally anonym ous, there‒s no guarantee that an
algorithm can correctly detect edges of shapes. A nti-aliasing results in som ething like
Figure 1-6.

Figure 1-6. Expanded anti-aliased raster im age

Expanding a vector im age by a factor of four, on the other hand, m erely requires the
display program to m ultiply all the coordinates of the shapes by four and redraw them at
the full resolution of the display device. Thus, Figure 1-7, w hich is also a screenshot from
a 72 dots per inch (D PI) screen, show s crisp, clear edges on the lines w ith significantly
less of the stair-step effects of the expanded raster im age.

Figure 1-7. Expanded vector im age

SV G ‒s R ole
In 1998, the W orld W ide W eb C onsortium form ed a w orking group to develop a
representation of vector graphics as an X M L application. B ecause SV G is an X M L
application, the inform ation about an im age is stored as plain text, and it brings the
advantages of X M L‒s openness, transportability, and interoperability.

C A D and graphic design program s often store draw ings in a proprietary binary form at. B y
adding the ability to im port and export draw ings in SV G form at, applications gain a
com m on standard form at for interchanging inform ation.

B ecause it is an X M L application, SV G cooperates w ith other X M L applications. A
m athem atics textbook, for exam ple, could use X SL Form atting O bjects for explanatory
text, M athM L to describe equations, and SV G to generate the graphs for the equations.

The SV G w orking group‒s specification is an official W orld W ide W eb C onsortium
R ecom m endation. A pplications such as A dobe Illustrator and Inkscape can im port and
export draw ings in SV G form at. O n the W eb, SV G is natively supported in m any brow sers
and has m any of the sam e transform ation and anim ation capabilities that C SS-styled
H TM L has. B ecause the SV G files are X M L, text in the SV G display is available to any
user agent that can parse X M L.

C reating an SV G G raphic
In this section, you w ill see an SV G file that produces the im age of the cat that you saw
earlier in the chapter. This exam ple introduces m any of the concepts that you w ill read
about in further detail in subsequent chapters. This file w ill be a good exam ple of how to
w rite an exam ple file, w hich is not necessarily the w ay you should w rite an SV G file that
w ill be part of a finished project.

D ocum ent Structure
Exam ple 1-1 starts w ith the standard X M L processing instruction and DOCTYPE
declaration. The root <svg> elem ent defines the width and height of the finished graphic
in pixels. It also defines the SV G nam espace via the xmlns attribute. The <title>
elem ent‒s content is available to a view ing program for use in a title bar or as a tooltip
pointer, and the <desc> elem ent lets you give a full description of the im age.

Exam ple 1-1. Basic structure of an SVG docum ent
<?xml version="1.0"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="140" height="170"

 xmlns="http://www.w3.org/2000/svg">

<title>Cat</title>

<desc>Stick Figure of a Cat</desc>

<!-- the drawing will go here -->

</svg>

B asic Shapes
You draw the cat‒s face by adding a <circle> elem ent. The elem ent‒s attributes specify
the center x-coordinate, center y-coordinate, and radius. The (0,0) point is the upper-left
corner of the picture. x-coordinates increase as you m ove horizontally to the right; y-
coordinates increase as you m ove vertically dow nw ard.

The circle‒s location and size are part of the draw ing‒s structure. The color in w hich it is
draw n is part of its presentation. A s is custom ary w ith X M L applications, you should
separate structure and presentation for m axim um flexibility. Presentation inform ation is
contained in the style attribute. Its value w ill be a series of presentation properties and
values, as described in A ppendix B , in A natom y of a Style. U se a stroke color of black for
the outline, and a fill color of none to m ake the face transparent. The SV G is show n in
Exam ple 1-2, and its result in Figure 1-8.

Exam ple 1-2. Basic shapes ‍ circle

http://oreillym edia.github.io/svg-essentials-exam ples/ch01/ex01-02.htm l
<?xml version="1.0"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="140" height="170"

 xmlns="http://www.w3.org/2000/svg">

<title>Cat</title>

<desc>Stick Figure of a Cat</desc>

<circle cx="70" cy="95" r="50" style="stroke: black; fill: none"/>

</svg>

Figure 1-8. Stage one ‍ draw ing a circle

Specifying Styles as A ttributes
N ow add tw o m ore circles for the eyes in Exam ple 1-3. A lthough their fill and stroke
colors are really part of the presentation, SV G does allow you to specify them as
individual attributes. In this exam ple, the fill and stroke colors are w ritten as tw o
separate attributes rather than together inside the style attribute. You probably w on‒t use
this m ethod often; it‒s described further in C hapter 5, in Presentation A ttributes. W e‒ve put
it here just to prove that it can be done. The results are show n in Figure 1-9.

The <?xml ‎?> and <!DOCTYPE?> have been om itted to save space in the listing.

Exam ple 1-3. Basic shapes ‍ filled circles

http://oreillym edia.github.io/svg-essentials-exam ples/ch01/ex01-03.htm l
<svg width="140" height="170"

 xmlns="http://www.w3.org/2000/svg">

 <title>Cat</title>

 <desc>Stick Figure of a Cat</desc>

 <circle cx="70" cy="95" r="50" style="stroke: black; fill: none"/>

 <circle cx="55" cy="80" r="5" stroke="black" fill="#339933"/>

 <circle cx="85" cy="80" r="5" stroke="black" fill="#339933"/>

</svg>

Figure 1-9. Stage tw o ‍ draw ing the face and eyes

G rouping G raphic O bjects
Exam ple 1-4 adds the w hiskers on the right side of the cat‒s face w ith tw o <line>
elem ents. You w ant to treat these w hiskers as a unit (you‒ll see w hy in a m om ent), so
enclose them in the <g> grouping elem ent, and give it an id. You specify a line by giving
the x- and y-coordinates for its starting point (x1 and y1) and ending point (x2 and y2).
Figure 1-10 show s the result.

Exam ple 1-4. Basic shapes ‍ lines

http://oreillym edia.github.io/svg-essentials-exam ples/ch01/ex01-04.htm l
<svg width="140" height="170"

 xmlns="http://www.w3.org/2000/svg">

<title>Cat</title>

<desc>Stick Figure of a Cat</desc>

<circle cx="70" cy="95" r="50" style="stroke: black; fill: none;"/>

<circle cx="55" cy="80" r="5" stroke="black" fill="#339933"/>

<circle cx="85" cy="80" r="5" stroke="black" fill="#339933"/>

<g id="whiskers">

 <line x1="75" y1="95" x2="135" y2="85" style="stroke: black;"/>

 <line x1="75" y1="95" x2="135" y2="105" style="stroke: black;"/>

</g>

</svg>

Figure 1-10. Stage three ‍ adding w hiskers on the right side

Transform ing the C oordinate System
N ow you w ill <use> the w hiskers group and transform it into the left w hiskers.
Exam ple 1-5 first flips the coordinate system by m ultiplying the x-coordinates by negative
one in a scale transform ation. This m eans that the point (75,95) is now located at the
place that w ould have been (‌75,95) in the original coordinate system . In the new scaled
system , coordinates increase as you m ove left. This m eans you have to translate (m ove)
the coordinate system 140 pixels right, the negative direction, to get them w here you w ant
them , as show n in Figure 1-11.

Exam ple 1-5. Transform ing the coordinate system

http://oreillym edia.github.io/svg-essentials-exam ples/ch01/ex01-05.htm l
<svg width="140" height="170"

 xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink">

 <title>Cat</title>

 <desc>Stick Figure of a Cat</desc>

 <circle cx="70" cy="95" r="50" style="stroke: black; fill: none;"/>

 <circle cx="55" cy="80" r="5" stroke="black" fill="#339933"/>

 <circle cx="85" cy="80" r="5" stroke="black" fill="#339933"/>

 <g id="whiskers">

 <line x1="75" y1="95" x2="135" y2="85" style="stroke: black;"/>

 <line x1="75" y1="95" x2="135" y2="105" style="stroke: black;"/>

 </g>

 <use xlink:href="#whiskers" transform="scale(-1 1) translate(-140 0)"/>

</svg>

Figure 1-11. Stage four ‍ adding w hiskers on the left side

The xlink:href attribute in the <use> elem ent is in a different nam espace (see
A ppendix A for details). To m ake sure your SV G docum ent w ill w ork w ith all SV G
view ers, you m ust add the xmlns:xlink attribute to the opening <svg> tag.

The transform attribute‒s value lists the transform ations, one after another, separated by
w hitespace.

O ther B asic Shapes
Exam ple 1-6 constructs the ears and m outh w ith the <polyline> elem ent, w hich takes
pairs of x- and y-coordinates as the points attribute. You separate the num bers w ith either
blanks or com m as as you please. The result is in Figure 1-12.

Exam ple 1-6. Basic shapes ‍ polylines

http://oreillym edia.github.io/svg-essentials-exam ples/ch01/ex01-06.htm l
<svg width="140" height="170"

 xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink">

 <title>Cat</title>

 <desc>Stick Figure of a Cat</desc>

 <circle cx="70" cy="95" r="50" style="stroke: black; fill: none;"/>

 <circle cx="55" cy="80" r="5" stroke="black" fill="#339933"/>

 <circle cx="85" cy="80" r="5" stroke="black" fill="#339933"/>

 <g id="whiskers">

 <line x1="75" y1="95" x2="135" y2="85" style="stroke: black;"/>

 <line x1="75" y1="95" x2="135" y2="105" style="stroke: black;"/>

 </g>

 <use xlink:href="#whiskers" transform="scale(-1 1) translate(-140 0)"/>

 <!-- ears -->

 <polyline points="108 62, 90 10, 70 45, 50, 10, 32, 62"

 style="stroke: black; fill: none;" />

 <!-- mouth -->

 <polyline points="35 110, 45 120, 95 120, 105, 110"

 style="stroke: black; fill: none;" />

</svg>

Figure 1-12. Stage five ‍ adding ears and m outh

Paths
A ll of the basic shapes are actually shortcuts for the m ore general <path> elem ent, w hich
Exam ple 1-7 uses to add the cat‒s nose. The result is in Figure 1-13. This elem ent has been
designed to m ake specifying a path, or sequence of lines and curves, as com pact as
possible. The path in Exam ple 1-7 translates, in w ords, to ―M ove to coordinate (75,90).
D raw a line to coordinate (65,90). D raw an elliptical arc w ith an x-radius of 5 and a y-
radius of 10, ending back at coordinate (75,90).‖

Exam ple 1-7. U sing the < path> elem ent

http://oreillym edia.github.io/svg-essentials-exam ples/ch01/ex01-07.htm l
<svg width="140" height="170"

 xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink">

 <title>Cat</title>

 <desc>Stick Figure of a Cat</desc>

 <circle cx="70" cy="95" r="50" style="stroke: black; fill: none;"/>

 <circle cx="55" cy="80" r="5" stroke="black" fill="#339933"/>

 <circle cx="85" cy="80" r="5" stroke="black" fill="#339933"/>

 <g id="whiskers">

 <line x1="75" y1="95" x2="135" y2="85" style="stroke: black;"/>

 <line x1="75" y1="95" x2="135" y2="105" style="stroke: black;"/>

 </g>

 <use xlink:href="#whiskers" transform="scale(-1 1) translate(-140 0)"/>

 <!-- ears -->

 <polyline points="108 62, 90 10, 70 45, 50, 10, 32, 62"

 style="stroke: black; fill: none;" />

 <!-- mouth -->

 <polyline points="35 110, 45 120, 95 120, 105, 110"

 style="stroke: black; fill: none;" />

 <!-- nose -->

 <path d="M 75 90 L 65 90 A 5 10 0 0 0 75 90"

 style="stroke: black; fill: #ffcccc"/>

</svg>

Figure 1-13. Stage six ‍ adding a nose

Text
Finally, because this picture is so crudely draw n, there‒s a good chance that people w ill not
know it is a cat. H ence, Exam ple 1-8 adds text to the picture as a label. In the <text>
elem ent, the x and y attributes that specify the text‒s location are part of the structure. The
font fam ily and font size are part of the presentation, and thus part of the style attribute.
U nlike the other elem ents you‒ve seen, <text> is a container elem ent, and its content is
the text you w ant to display. Figure 1-14 show s the final result.

Exam ple 1-8. Adding a label

http://oreillym edia.github.io/svg-essentials-exam ples/ch01/ex01-08.htm l
<svg width="140" height="170"

 xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink">

 <title>Cat</title>

 <desc>Stick Figure of a Cat</desc>

 <circle cx="70" cy="95" r="50" style="stroke: black; fill: none;"/>

 <circle cx="55" cy="80" r="5" stroke="black" fill="#339933"/>

 <circle cx="85" cy="80" r="5" stroke="black" fill="#339933"/>

 <g id="whiskers">

 <line x1="75" y1="95" x2="135" y2="85" style="stroke: black;"/>

 <line x1="75" y1="95" x2="135" y2="105" style="stroke: black;"/>

 </g>

 <use xlink:href="#whiskers" transform="scale(-1 1) translate(-140 0)"/>

 <!-- ears -->

 <polyline points="108 62, 90 10, 70 45, 50, 10, 32, 62"

 style="stroke: black; fill: none;" />

 <!-- mouth -->

 <polyline points="35 110, 45 120, 95 120, 105, 110"

 style="stroke: black; fill: none;" />

 <!-- nose -->

 <path d="M 75 90 L 65 90 A 5 10 0 0 0 75 90"

 style="stroke: black; fill: #ffcccc"/>

 <text x="60" y="165" style="font-family: sans-serif; font-size: 14pt;

 stroke: none; fill: black;">Cat</text>

</svg>

Figure 1-14. Stage seven ‍ finished im age w ith label

That concludes our brief overview of SV G ; in the follow ing chapters, you‒ll exam ine
these concepts in depth.

C hapter 2. U sing SV G in W eb Pages
John D onne said that no m an is an island, and likew ise SV G does not exist in isolation. O f
course, you can view SV G im ages on their ow n, as an independent file in your w eb
brow ser or SV G view er. M any of the exam ples in this book w ork that w ay. B ut in other
cases, you w ill w ant your graphic to be integrated in a larger docum ent, w hich contains
paragraphs of text, form s, or other content that cannot easily be displayed using SV G
alone. This chapter describes various w ays of integrating SV G w ithin H TM L and other
docum ent types.

Figure 2-1 show s the cat draw ing from the previous chapter, inserted into an H TM L page
in four different w ays. The results look alm ost identical, but each m ethod has benefits and
lim itations.

SV G as an Im age
SV G is an im age form at, and as such it can be included in H TM L pages in the sam e w ays
as other im age types. There are tw o approaches: you can include the im age w ithin the
H TM L m arkup in an elem ent (recom m ended w hen the im age is a fundam ental part
of the page‒s content); or you can insert the im age as a C SS style property of another
elem ent (recom m ended w hen the im age is prim arily decorative).

R egardless of w hich m ethod you use, including SV G as an im age im poses certain
lim itations. The im age w ill be rendered (―draw n‖ in the sense that the SV G code is
converted to a raster im age for display) separately from the m ain w eb page, and there is no
w ay to com m unicate betw een the tw o. Styles defined on the m ain w eb page w ill have no
effect on the SV G . You m ay need to define a default font size w ithin your SV G code if
your graphic includes text or defines lengths relative to the font size. Furtherm ore, scripts
running on the m ain w eb page w ill not be able to discover or m odify any of the SV G ‒s
docum ent structure.

Figure 2-1. Screenshot of a w eb page w ith SVG inserted four w ays

M ost w eb brow sers w ill not load files referenced from an SV G used as an im age; this
includes other im age files, external scripts, and even w ebfont files. D epending on the
brow ser and the user‒s security settings, scripts defined w ithin the SV G file m ay not run,
and U R L fragm ents (the part of the U R L after #, w hich indicates w hich part of the file
you‒re interested in) m ay be ignored. A nim ation, as defined in C hapter 12, is supported
w ithin im ages (in brow sers that support it in SV G in general).

Including SV G in an <im g> E lem ent
The H TM L elem ent defines a space into w hich the brow ser should draw an external
im age file. The im age file to use is specified w ith the src (source) attribute. Including an
SV G im age w ithin an elem ent is as sim ple as setting the source to point to the
location of your SV G file on the w eb server. O f course, you should also give a description
w ith an alt and/or a title attribute so that users w ho cannot see the im age can still
understand w hat it represents. For exam ple:

 <img src="cat.svg" title="Cat Image"

 alt="Stick Figure of a Cat" />

W A R N IN G

A lthough m ost w eb brow sers now support SV G as im ages, som e older brow sers w ill not know how to render the file
and w ill display a broken-file icon (or nothing at all). For other brow sers, you m ay need to confirm that your w eb
server is configured to declare the correct m edia type header (image/svg+xml) for files ending in .svg.

The height and w idth of the im age can be set using attributes or C SS properties (w hich
take precedence). O ther C SS properties control the placem ent of the im age w ithin the w eb
page. If you do not specify dim ensions for the elem ent, the intrinsic dim ensions of
the im age file are used. If you specify only one of height or w idth, the other dim ension is
scaled proportionally so that the aspect ratio (the ratio of w idth to height) m atches the
intrinsic dim ensions.

For raster im ages, the intrinsic dim ension is the im age size in pixels. For SV G , it‒s m ore
com plicated. If the root <svg> elem ent in the file has explicit height and w idth attributes,
those are used as the intrinsic dim ensions of the file. If one of height or w idth is specified,
but not both, and the <svg> has a viewBox attribute, then the viewBox w ill be used to
calculate the aspect ratio and the im age w ill be scaled to m atch the specified dim ension.
O therw ise, if the <svg> has a viewBox attribute but no dim ensions, then the height and
w idth parts of the viewBox are treated as lengths in pixels. If that all sounds
incom prehensible, rest assured: w e‒ll introduce the viewBox attribute properly in
Specifying U ser C oordinates for a V iew port, in C hapter 3.

If neither the elem ent nor the root <svg> elem ent has any inform ation about the size
of the im age, the brow ser should apply the default H TM L size for em bedded content, 150
pixels tall and 300 pixels w ide, but it is best not to rely on this.

Including SV G in C SS
Various C SS style properties accept a U R L to an im age file as a value. The m ost
com m only used is the background-image property, w hich draw s the im age (or m ultiple
layered im ages) behind the text content of the elem ent being styled.

B y default, a background im age is draw n at its intrinsic dim ensions and repeated in both
the horizontal and vertical direction to fill up the dim ensions of the elem ent. The intrinsic
dim ensions of an SV G file are determ ined in the sam e m anner as described in Including
SV G in an <im g> Elem ent. If there are no intrinsic dim ensions, the SV G w ill be scaled to
100% of the height and w idth of the elem ent. The size can be set explicitly using the
background-size property, and repeat patterns and im age position can be set using
background-repeat and background-position:

div.background-cat {

 background-image: url("cat.svg");

 background-size: 100% 100%;

}

N O T E

W hen using raster im ages for m ultiple sm all icons and logos, it is com m on to arrange all the im ages in a grid w ithin a
single im age file, and then use background-size and background-position to display the correct im age for each
elem ent. That w ay, the w eb brow ser only has to dow nload one im age file, resulting in m uch faster display of the w eb
page. The com pound im age file is called a C SS sprite, nam ed after a m ythical helpful elf that m agically m akes things
easier. SV G files can be designed as sprites, and brow sers are getting better at rendering them efficiently, but you
should probably avoid m aking the sprite file too big.

The SV G specifications define other w ays to create m ultiple icons w ithin a single im age file; you then use U R L
fragm ents to indicate w hich icon to display. Ideally, these w ould replace sprites based on the background-position
property. H ow ever, as m entioned previously, som e brow sers ignore U R L fragm ents w hen rendering SV G as an
im age, so these features are not currently of m uch practical use in C SS.

In addition to background im ages, SV G files can be used in C SS as a list-image (used to
create decorative bulleted lists) or border-image (used to create fanciful borders).

SV G as an A pplication
To integrate an external SV G file into an H TM L page w ithout the lim itations of treating
the SV G as an im age, you can use an em bedded object.

The <object> elem ent is the general-purpose w ay of em bedding external files in H TM L
(version 4 and up) and X H TM L docum ents. It can be used to em bed im ages, sim ilar to
, or to em bed separate H TM L/X M L docum ents, sim ilar to an <iframe>. M ore
im portantly, it can also be used to em bed files of any arbitrary type, so long as the brow ser
has an application (a brow ser plug-in or extension) to interpret that file type. U sing an
object to em bed your SV G can m ake your graphic available to users of older brow sers that
cannot display SV G directly, so long as they have an SV G plug-in.

The type attribute of the <object> elem ent indicates the type of file you‒re em bedding.
The attribute should be a valid Internet m edia type (com m only know n as a M IM E type).
For SV G , use type="image/svg+xml".

The brow ser uses the file type to determ ine how (or if) it can display the file, w ithout
having to dow nload it first. The location of the file itself is specified by the data attribute.
The alt and title attributes w ork the sam e as for im ages.

The object elem ent m ust have both a start and end tag. A ny content in betw een the tw o
w ill be rendered only if the object data itself cannot be displayed. This can be used to
specify a fallback im age or som e w arning text to display if the brow ser doesn‒t have any
w ay of displaying SV G .[1] The follow ing code displays both a text explanation and a
raster im age in brow sers that don‒t support SV G :

 <object data="cat.svg" type="image/svg+xml"

 title="Cat Object" alt="Stick Figure of a Cat" >

 <!-- As a fallback, include text or a raster image file -->

 <p>No SVG support! Here's a substitute:</p>

 <img src="cat.png" title="Cat Fallback"

 alt="A raster rendering of a Stick Figure of a Cat" />

 </object>

<O B JE C T > V E R SU S <E M B E D >

Prior to the introduction of the <object> elem ent, som e brow sers used the non-standard <embed> elem ent for the
sam e purpose. It has now been adopted into the standards, so you can use <embed> instead of an <object> elem ent if
you‒re w orried about supporting older brow sers. For even w ider support, use <embed> as the fallback content inside
the <object> tags.

There are tw o im portant differences betw een <embed> and <object>: first, the source data file is specified using a src
attribute, not data; second, the <embed> elem ent cannot have any child content, so there is no fallback option if the
em bed fails.

A lthough not adopted into the specifications, m ost brow sers also support the optional pluginspage attribute on
<embed> elem ents, w hich gives the U R L of a page w here users can dow nload a plug-in for rendering the file type if
they don‒t have one installed.

W hen you include an SV G file as an em bedded object (w hether w ith <object> or
<embed>), the external file is rendered in m uch the sam e w ay as if it w as included in an
 elem ent: it is scaled to fit the w idth and height of the em bedding elem ent, and it
does not inherit any styles declared in the parent docum ent.

U nlike w ith im ages, how ever, the em bedded SV G can include external files, and scripts
can com m unicate betw een the object and the parent page, as described in Interacting w ith

an H TM L Page.

SV G M arkup in a M ixed D ocum ent
The im age and application approaches to integrating SV G in a w eb page are both m ethods
to display a com plete, separate, SV G file. H ow ever, it is also possible to m ix SV G code
w ith H TM L or X M L m arkup in a single file.

C om bining your m arkup into one file can speed up your w eb page load tim es, because the
brow ser does not have to dow nload a separate file for the graphic. H ow ever, if the sam e
graphic is used on m any pages on your w ebsite, it can increase the total dow nload size and
tim e by repeating the SV G m arkup w ithin each page.

M ore im portantly, all the elem ents w ithin a m ixed docum ent w ill be treated as a single
docum ent object w hen applying C SS styles and w orking w ith scripts.

Foreign O bjects in SV G
O ne w ay of m ixing content is to insert sections of H TM L (or other) content w ithin your
SV G . The SV G specifications define a w ay of em bedding such ―foreign‖ content w ithin a
specified region of the graphic.

The <foreignObject> elem ent defines a rectangular area into w hich the w eb brow ser (or
other SV G view er) should draw the child X M L content. The brow ser is responsible for
determ ining how to draw that content. The child content is often X H TM L (X M L-
com pliant H TM L) code, but it could be any form of X M L that the SV G view er is capable
of displaying. The type of content is defined by declaring the X M L nam espace on the
child content using the xmlns attribute.

The rectangular draw ing area is defined by the x, y, width, and height attributes of the
<foreignObject> elem ent, in a m anner sim ilar to the <use> or <image> elem ents, w hich
w e‒ll get to in C hapter 5.

The rectangle is evaluated in the local SV G coordinate system , and so is subject to
coordinate system transform ations (w hich w e‒ll talk about in C hapter 6) or other SV G
effects. The child X M L docum ent is rendered norm ally into a rectangular fram e, and then
the result is m anipulated like any other SV G graphic. A n SV G foreign object containing
an X H TM L paragraph is show n in Figure 2-2.

The <foreignObject> elem ent has great potential for creating m ixed SV G /X H TM L
docum ents, but is currently not w ell supported. Internet Explorer (at least up to version 11)
does not support it at all, and there are bugs and inconsistencies in the other brow sers‒
im plem entations.

If you w ant to define fallback content in case the SV G view er cannot display foreign
content, you can use the <switch> elem ent in com bination w ith the requiredFeatures
attribute, as show n in Exam ple 2-1. In brow sers that support X H TM L and foreign objects,
that code creates Figure 2-2; in other brow sers, it displays SV G text.

Figure 2-2. Screenshot of an SVG file containing XH TM L text

The <switch> elem ent instructs the SV G view er to draw only the first direct child elem ent
(and all of its children) for w hich the requiredFeatures, requiredExtensions, and
systemLanguage test attributes either evaluate to true or are absent. W e‒ll discuss the use
of the systemLanguage attribute to sw itch betw een different texts in The <sw itch>
Elem ent, in C hapter 9. W hen testing for required features, you use one of the U R L strings
given in the specifications; <foreignObject> support is part of the Extensibility feature.

W A R N IN G

U nfortunately, there is no consistent, cross-brow ser w ay to specify w hich type of foreign object is required. M aybe
you w ant to use the M athM L language to display a form ula for your chart, w ith a plain-text version as a fallback for
brow sers that don‒t understand M athM L. The requiredExtensions attribute is supposed to indicate w hat type of
added capability is needed, but the SV G 1.1 specifications did not clearly describe how the extensions should be
identified ‍ except to say that it should be w ith a U R L. Firefox uses the X M L nam espace U R L, but other brow sers
do not.

Exam ple 2-1. The < foreignO bject> elem ent, w ith a < sw itch>
<g transform="skewX(20)">

<switch>

 <!-- select one child element -->

 <foreignObject x="1em" y="25%" width="10em" height="50%"

 requiredFeatures=

 "http://www.w3.org/TR/SVG11/feature#Extensibility">

 <body xmlns="http://www.w3.org/1999/xhtml">

 <p>This is an XHTML paragraph embedded within an SVG!

 So this text will wrap nicely around multiple lines,

 but it will still be skewed from the SVG transform.

 </p>

 </body>

 </foreignObject>

 <text x="1em" y="25%" dy="1em">

 This SVG text won't wrap, so it will get cut off‎

 </text>

</switch>

</g>

Inline SV G in X H T M L or H T M L 5
The other w ay to m ix SV G w ith X H TM L is to include your SV G m arkup in an X H TM L
docum ent; it also w orks w ith non-X M L-com pliant H TM L docum ents using the H TM L5
syntax. This w ay of including SV G in a w eb page is called Inline SVG to distinguish it
from SV G em bedded as an im age or object, although it really should be called Infile SV G ,
because there‒s no requirem ent that your SV G code has to all appear on a single line!

Inline SV G is supported in all m ajor desktop w eb brow sers for versions released in 2012
and later, and m ost of the latest m obile brow sers. For X H TM L, you indicate that you‒re
sw itching to SV G by defining all your SV G elem ents w ithin the SV G nam espace. The
easiest w ay to do this is to set xmlns="http://www.w3.org/2000/svg" on the top-level
<svg> elem ent, w hich changes the default nam espace for that elem ent and all its children.
For an H TM L5 docum ent (a file w ith <!DOCTYPE html>), you can skip the nam espace
declaration in your m arkup. The H TM L parser w ill autom atically recognize that <svg>
elem ents and all their children ‍ except for children of <foreignObject> elem ents ‍ are
w ithin the SV G nam espace.

Inserting SV G m arkup into an (X)H TM L docum ent is easier than the reverse: you don‒t
need a separate <foreignObject>-like elem ent to define w here to render the SV G .
Instead, you apply positioning styles to the <svg> elem ent itself, m aking it the fram e for
your graphic.

B y default, the SV G w ill be positioned w ith the inline display m ode (m eaning that it is
inserted w ithin the sam e line as the text before and after it), and w ill be sized based on the
height and w idth attributes of the <svg> elem ent. W ith C SS, you can change the size by
setting the height and width C SS properties, and change the position w ith the display,
margin, padding, and m any other C SS positioning properties.[2]

Exam ple 2-2 gives the code for a very sim ple SV G draw ing in a very sim ple H TM L5
docum ent. The result is Figure 2-3. The xmlns attribute on the <svg> elem ent is optional
for H TM L5. For an X H TM L docum ent, you w ould change the DOCTYPE declaration at the
top of the file, and you w ould w rap the C SS code in the <style> elem ent w ith a <!
[CDATA[‎]]> block.

If you do not set the height and w idth of the SV G w ith either C SS or attributes, w eb
brow sers should apply the default 150-pixel-by-300-pixel size, but be w arned! M any
versions of brow sers apply different defaults. U nfortunately, unlike w hen using an SV G
file in an elem ent, you cannot just set one of the height or w idth and have the SV G
scale based on the aspect ratio defined by its viewBox attribute.[3]

Exam ple 2-2. Inline SVG w ithin an H TM L file
<!DOCTYPE html>

<html>

<head>

 <title>SVG in HTML</title>

 <style>

svg {

 display:block;

 width:500px;

 height:500px;

 margin: auto;

 border: thick double navy;

 background-color: lightblue;

}

body {

 font-family: cursive;

}

circle {

 fill: lavender;

 stroke: navy;

 stroke-width: 5;

}

 </style>

</head>

<body>

 <h1>Inline SVG in HTML Demo Page</h1>

 <svg viewBox="0 0 250 250"

 xmlns="http://www.w3.org/2000/svg">

 <title>An SVG circle</title>

 <circle cx="125" cy="125" r="100"/>

 <text x="125" y="125" dy="0.5em" text-anchor="middle">

 Look Ma, Same Font!</text>

 </svg>

 <p>And here is regular HTML again‎</p>

</body>

</html>

The first style rules define how the SV G should be positioned and sized w ithin the
H TM L docum ent.

You can also style the box in w hich the SV G w ill be draw n using other C SS properties.

Styles you define for the m ain docum ent w ill be inherited by the SV G .

You can also define styles for your SV G elem ents w ithin your m ain stylesheet.

Figure 2-3. The w eb page from Exam ple 2-2

SV G in O ther X M L A pplications
X M L nam espaces can be used to identify SV G m arkup in other X M L docum ents, not just
X H TM L. The details depend on the m ain X M L docum ent‒s syntax, but there are tw o
essential requirem ents: the X M L docum ent m ust clearly define a layout box for the SV G
elem ent, and the program that w ill display the docum ent m ust know how to draw SV G .

O ne type of X M L docum ent w here inline SV G is com m only used is Extensible Stylesheet
Language Form atting O bject (X SL-FO) files. A n X SL-FO file defines both the content
and layout of a m ultipage docum ent, and can be used in publishing or to create a PD F file.
The X SL-FO data type definition includes an <instream-foreign-object> elem ent,
w hich ‍ just like SV G ‒s <foreignObject> elem ent ‍ defines a rectangular region to
hold content from a different nam espace. Inside it, you can add your SV G m arkup. Just

m ake sure that the <svg> tag and all its children are defined w ithin the SV G nam espace,
either by using a nam espace prefix for all SV G elem ents or by changing the default
nam espace w ith an xmlns attribute.

Exam ple 2-3 gives a snippet of an X SL-FO file that uses the custom ary fo nam espace
prefix for form atting object elem ents. The SV G nam espace is set as the default for the
<svg> and its children, so no prefixes are necessary w ithin the graphical m arkup.

Exam ple 2-3. SVG inside an XSL-FO docum ent
<?xml version="1.0" encoding="UTF-8"?>

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <!-- other formatting object content -->

 <fo:instream-foreign-object width="140px" height="140px">

 <svg xmlns="http://www.w3.org/2000/svg"

 width="140px" height="140px">

 <!-- SVG code goes here -->

 </svg>

 </fo:instream-foreign-object>

 <!-- rest of document -->

</fo:root>

[1] In addition to fallback content, an <object> m ay also contain <param> elem ents defining param eters for the plug-in.
H ow ever, these aren‒t used for rendering SV G data.

[2] C SS positioning properties apply to top-level <svg> elem ents, ones w hich are direct children of H TM L elem ents. A n
<svg> that is a child of another SV G elem ent w ill be positioned based on the rules for nested SV G s, as described in
C hapter 3.

[3] A s explained in Specifying A lignm ent for preserveA spectR atio, the preserveAspectRatio attribute w ill scale an
SV G w hile m aintaining its aspect ratio. For inline SV G , this w ill scale the graphic to fit w ithin the box (height and
w idth) you define for it; it doesn‒t change the size of the box w ithin the w eb page.

C hapter 3. C oordinates
The w orld of SV G is an infinite canvas. In this chapter, w e‒ll find out how to tell a view er
program w hich part of this canvas you‒re interested in, w hat its dim ensions are, and how
to locate points w ithin that area.

T he V iew port
The area of the canvas your docum ent intends to use is called the view port. You establish
the size of this view port w ith the width and height attributes on the <svg> elem ent. Each
attribute‒s value can be sim ply a num ber, w hich is presum ed to be in pixels; this is said to
be specified in user coordinates. You m ay also specify width and height as a num ber
follow ed by a unit identifier, w hich can be one of the follow ing:
em

The font size of the default font, usually equivalent to the height of a line of text
ex

The height of the letter x
px

Pixels (in C SS2-supporting graphics, there are 96 pixels per inch)
pt

Points (1/72 of an inch)
pc

Picas (1/6 of an inch)
cm

C entim eters
mm

M illim eters
in

Inches

Possible SV G view port declarations include the follow ing:

<svg width="200" height="150">
<svg width="200px" height="150px">

B oth of these specify an area 200 pixels w ide and 150 pixels tall.
<svg width="2cm" height="3cm">

This specifies an area 2 centim eters w ide and 3 centim eters high.
<svg width="2cm" height="36pt">

It is possible, though unusual, to m ix units; this elem ent specifies an area 2 centim eters
w ide and 36 points high.

A n <svg> elem ent m ay also specify its width and height as a percentage. W hen the
elem ent is nested w ithin another <svg> elem ent, the percentage is m easured in term s of the
enclosing elem ent. If the <svg> elem ent is the root elem ent, the percentage is in term s of
the w indow size. You w ill see nested <svg> elem ents in N ested System s of C oordinates.

U sing D efault U ser C oordinates
The view er sets up a coordinate system w here the horizontal, or x-coordinate, increases as
you go to the right, and the vertical, or y-coordinate, increases as you m ove vertically
dow nw ard. The upper-left corner of the view port is defined to have an x- and y-coordinate
of 0.[4] This point, w ritten as (0,0), is also called the origin. The coordinate system is a
pure geom etric system ; points have neither w idth nor height, and the grid lines are
considered infinitely thin. You can read m ore about this subject in C hapter 4.

Exam ple 3-1 establishes a view port 200 pixels w ide and 200 pixels high, and then draw s a
rectangle w hose upper-left corner is at coordinate (10,10) w ith a w idth of 50 pixels and a
height of 30 pixels.[5] Figure 3-1 show s the result, w ith rulers and a grid to show the
coordinate system .

Exam ple 3-1. U sing default coordinates

http://oreillym edia.github.io/svg-essentials-exam ples/ch03/default_coordinates.htm l
<svg width="200" height="200">

 <rect x="10" y="10" width="50" height="30"

 style="stroke: black; fill: none;"/>

</svg>

Figure 3-1. Rectangle using default coordinates

Even if you don‒t specify units in the view port, you m ay still use them in som e SV G
shape elem ents, as in Exam ple 3-2. Figure 3-2 show s the result, w ith rulers and a grid to
show the coordinate system .

Exam ple 3-2. Explicit use of units

http://oreillym edia.github.io/svg-essentials-exam ples/ch03/explicit_units.htm l
<svg width="200" height="200">

 <rect x="10mm" y="10mm" width="15mm" height="10mm"

 style="stroke:black; fill:none;"/>

</svg>

Figure 3-2. Rectangle using explicit units

Specifying units in the <svg> elem ent does not affect coordinates given w ithout units in
other elem ents. Exam ple 3-3 show s a view port set up in m illim eters, but the rectangle is
still draw n at pixel (user) coordinates, as you see in Figure 3-3.

Exam ple 3-3. U nits on the svg elem ent

http://oreillym edia.github.io/svg-essentials-exam ples/ch03/units_on_svg.htm l
<svg width="70mm" height="70mm">

 <rect x="10" y="10" width="50" height="30"

 style="fill: none; stroke: black;"/>

</svg>

Figure 3-3. View port w ith units; rectangle w ithout units

Specifying U ser C oordinates for a V iew port
In the exam ples so far, num bers w ithout units have been considered to be pixels.
Som etim es this is not w hat you w ant. For exam ple, you m ight w ant to set up a system
w here each user coordinate represents 1/16th of a centim eter. (W e‒re using this coordinate
system to prove a point, not to show a paragon of good design.) In this system , a square
that is 40 units by 40 units w ill display as 2.5 centim eters on a side.

To accom plish this effect, you set the viewBox attribute on the <svg> elem ent. The value
of this attribute consists of four num bers that represent the m inim um x-coordinate,
m inim um y-coordinate, w idth, and height of the user coordinate system you w ant to
superim pose on the view port.

So, to set up the 16-units-per-centim eter coordinate system for a 4-centim eter by 5-
centim eter draw ing, you‒d use this starting tag:

<svg width="4cm" height="5cm" viewBox="0 0 64 80">

Exam ple 3-4 gives the SV G for a picture of a house, displayed using the new coordinate
system . Figure 3-4 show s the result. The grid and darker num bers show the new user
coordinate system ; the lighter num bers are positioned at 1-centim eter intervals.

Exam ple 3-4. U sing a view Box

http://oreillym edia.github.io/svg-essentials-exam ples/ch03/using_view box.htm l
<svg width="4cm" height="5cm" viewBox="0 0 64 80">

 <rect x="10" y="35" width="40" height="40"

 style="stroke: black; fill: none;"/>

 <!-- roof -->

 <polyline points="10 35, 30 7.68, 50 35"

 style="stroke:black; fill: none;"/>

 <!-- door -->

 <polyline points="30 75, 30 55, 40 55, 40 75"

 style="stroke:black; fill: none;"/>

</svg>

Figure 3-4. N ew user coordinates

The num bers you specify for the value of the viewBox attribute m ay be separated by

com m as or w hitespace. If either the w idth or height is 0, none of your graphic w ill display.
It is an error to specify a negative value for the viewBox w idth or height.

N O T E

If you w ere reading the code in Exam ple 3-4 carefully, you w ould have noted that w e used a decim al value to get the
peak of the house‒s roof positioned just right. N early all num bers in SV G are floating-point decim al num bers. SV G
view ers are required to support at least 32-bit precision num bers and are encouraged to use higher precision num bers
for som e calculations. In fact, you can even use scientific notation to w ork in a coordinate system w ith very large or
sm all num bers, so that the point 30,7.68 could have been w ritten like 3.0E+1,7.68e0. B ut for readability and brevity,
w e w ouldn‒t recom m end it ‍ reserve the scientific notation for w hen it is really necessary.

Preserving A spect R atio
In the previous exam ple, the aspect ratio, or ratio of w idth to height, of the view port and
the viewBox w ere identical (4/5 = 64/80). W hat happens, though, if the aspect ratio of the
view port and the viewBox are not the sam e, as in this exam ple, w here viewBox has an
aspect ratio of 1:1 (the w idth and height are equal), but the view port has an aspect ratio of
1:3 (the height is three tim es as big as the w idth)?

<svg width="45px" height="135px" viewBox="0 0 90 90">

There are three things SV G can do in this situation:

Scale the graphic uniform ly according to the sm aller dim ension so the graphic w ill fit
entirely into the view port. In the exam ple, the picture w ould becom e half its original
w idth and height. You‒ll see exam ples of this in U sing the m eet Specifier.
Scale the graphic uniform ly according to the larger dim ension and cut off the parts that
lie outside the view port. In the exam ple, the picture w ould becom e one and a half tim es
its original w idth and height. You‒ll see exam ples of this in U sing the slice Specifier.
Stretch and squash the draw ing so it fits precisely into the new view port. (That is, don‒t
preserve the aspect ratio at all.) See the details in U sing the none Specifier.

In the first case, because the im age w ill be sm aller than the view port in one dim ension,
you m ust specify w here to position it. In the exam ple, the picture w ill be scaled uniform ly
to a w idth and height of 45 pixels. The w idth of the reduced graphic fits the w idth of the
view port perfectly, but you m ust now decide w hether the im age m eets (is aligned w ith) the
top, m iddle, or bottom of the 135-pixel view port height.

In the second case, because the im age w ill be larger than the view port in one dim ension,
you m ust specify w hich area is to be sliced aw ay. In the exam ple, the picture w ill be
scaled uniform ly to a w idth and height of 135 pixels. N ow the height of the graphic fits
the view port perfectly, but you m ust decide w hether to slice off the right side, left side, or
both edges of the picture to fit w ithin the 45-pixel view port w idth.

Specifying A lignm ent for preserveA spectR atio
The preserveAspectRatio attribute lets you specify the alignm ent of the scaled im age
w ith respect to the view port, and w hether you w ant it to m eet the edges or be sliced off.
The m odel for this attribute is

preserveAspectRatio="alignment [meet | slice]"

w here alignment specifies the axis and location and is one of the com binations show n in
Table 3-1. This alignm ent specifier is form ed by concatenating an x-alignm ent and a y-
alignm ent min, mid (m iddle), or max value. The default value for preserveAspectRatio is
xMidYMid meet.

N O T E

The y-alignm ent begins w ith a capital letter, because the x- and y-alignm ents are concatenated into a single w ord.

Table 3-1. Values for alignm ent portion of preserveAspectRatio

Y A lignm ent X A lignm ent

xMin

A lign m inim um x value
of viewBox w ith left edge
of view port

xMid

A lign m idpoint x value of
viewBox w ith horizontal
center of view port

xMax

A lign m axim um x value of
viewBox w ith right edge of
view port

yMin

A lign m inim um y value of
viewBox w ith top edge of
view port

xMinYMin xMidYMin xMaxYMin

yMid

A lign m idpoint y value of
viewBox w ith vertical
center of view port

xMinYMid xMidYMid xMaxYMid

yMax

A lign m axim um y value of
viewBox w ith bottom edge
of view port

xMinYMax xMidYMax xMaxYMax

Thus, if you w ant to have the picture w ith a viewBox="0 0 90 90" fit entirely w ithin a
view port that is 45 pixels w ide and 135 pixels high, aligned at the top of the view port, you
w ould w rite the follow ing:

<svg width="45px" height="135px" viewBox="0 0 90 90"

 preserveAspectRatio="xMinYMin meet">

N O T E

In this case, because the w idth fits precisely, the x-alignm ent is irrelevant; you could equally w ell use xMidYMin or
xMaxYMin. H ow ever, you norm ally use preserveAspectRatio w hen you don‒t know the aspect ratio of the view port.
For exam ple, you m ight w ant the im age to scale to fit the application w indow , or you m ight let the C SS of a parent
docum ent set the height and w idth. In those situations, you need to consider how you w ant your im age to display
w hen the view port is too w ide as w ell as w hen it is too tall.

If you don‒t specify a preserveAspectRatio, the default value is xMidYMid meet, w hich
w ill scale dow n the graphic to fit the available space, and center it both horizontally and
vertically.

This is all fairly abstract; the follow ing sections give som e concrete exam ples that show
you how the com binations of alignm ent and meet and slice interact w ith one another.

U sing the m eet Specifier
The starting <svg> tags in Exam ple 3-5 all use the meet specifier.

Exam ple 3-5. U se of m eet specifier
<!-- tall viewports -->

<svg preserveAspectRatio="xMinYMin meet" viewBox="0 0 90 90"

 width="45" height="135">

<svg preserveAspectRatio="xMidYMid meet" viewBox="0 0 90 90"

 width="45" height="135">

<svg preserveAspectRatio="xMaxYMax meet" viewBox="0 0 90 90"

 width="45" height="135">

<!-- wide viewports -->

<svg preserveAspectRatio="xMinYMin meet" viewBox="0 0 90 90"

 width="135" height="45">

<svg preserveAspectRatio="xMidYMid meet" viewBox="0 0 90 90"

 width="135" height="45">

<svg preserveAspectRatio="xMaxYMax meet" viewBox="0 0 90 90"

 width="135" height="45">

Figure 3-5 show s w here the reduced im age fits into the enclosing viewBox.

Figure 3-5. m eet ‍ view Box fits in view port

U sing the slice Specifier
Figure 3-6 show s the use of the slice specifier to elim inate parts of the picture that do not
fit in the view port. They w ere created w ith the <svg> tags in Exam ple 3-6.

Exam ple 3-6. U se of slice specifier
<!-- tall viewports -->

<svg preserveAspectRatio="xMinYMin slice" viewBox="0 0 90 90"

 width="45" height="135">

<svg preserveAspectRatio="xMidYMid slice" viewBox="0 0 90 90"

 width="45" height="135">

<svg preserveAspectRatio="xMaxYMax slice" viewBox="0 0 90 90"

 width="45" height="135">

<!-- wide viewports -->

<svg preserveAspectRatio="xMinYMin slice" viewBox="0 0 90 90"

 width="135" height="45">

<svg preserveAspectRatio="xMidYMid slice" viewBox="0 0 90 90"

 width="135" height="45">

<svg preserveAspectRatio="xMaxYMax slice" viewBox="0 0 90 90"

 width="135" height="45">

The online exam ple for this section allow s you to experim ent w ith the different
preserveAspectRatio options to slice, shrink, and shift the cat around any sized SV G :

http://oreillym edia.github.io/svg-essentials-exam ples/ch03/m eet_slice_specifier.htm l

Figure 3-6. slice ‍ graphic fills view port

U sing the none Specifier
Finally, there is the third option for scaling a graphic w hen the viewBox and view port
don‒t have the sam e aspect ratio. If you specify preserveAspectRatio="none", then the
graphic w ill be scaled nonuniform ly so its user coordinates fit the view port. Figure 3-7
show s such a ―fun-house m irror‖ effect produced w ith the <svg> tags in Exam ple 3-7.

Exam ple 3-7. Aspect ratio not preserved
<!-- tall viewport -->

<svg preserveAspectRatio="none" viewBox="0 0 90 90"

 width="45" height="135">

<!-- wide viewport -->

<svg preserveAspectRatio="none" viewBox="0 0 90 90"

 width="135" height="45">

Figure 3-7. Aspect ratio not preserved

N ested System s of C oordinates
You can establish a new view port and system of coordinates at any tim e by putting another
<svg> elem ent into your docum ent. The effect is to create a ―m ini-canvas‖ upon w hich
you can draw . W e used this technique to create illustrations such as Figure 3-5. R ather
than draw ing the rectangles, then rescaling and positioning the cat inside each one (the
brute-force approach), w e took these steps:

D raw the blue rectangles on the m ain canvas
For each rectangle, define a new <svg> elem ent w ith the appropriate
preserveAspectRatio attribute
D raw the cat into that new canvas (w ith <use>), and let SV G do the heavy lifting

H ere‒s a sim plified exam ple that show s a circle on the m ain canvas, then inside a new
canvas outlined by a blue rectangle that‒s also on the m ain canvas. Figure 3-8 is the
desired result.

Figure 3-8. N ested view ports

First, generate the SV G for the m ain coordinate system and the circle (note that the user
coordinates coincide exactly w ith the view port in this docum ent):

<svg width="200px" height="200px" viewBox="0 0 200 200">

 <circle cx="25" cy="25" r="25" style="stroke: black; fill: none;"/>

</svg>

The result is in Figure 3-9.

Figure 3-9. C ircle in m ain view port

N ow , draw the boundary of the box show ing w here you w ant the new view port to be:
<svg width="200px" height="200px" viewBox="0 0 200 200">

 <circle cx="25" cy="25" r="25" style="stroke: black; fill: none;"/>

 <rect x="100" y="5" width="30" height="80"

 style="stroke: blue; fill: none;"/>

</svg>

This produces Figure 3-10.

Figure 3-10. C ircle and boundary box in m ain view port

N ow , add another <svg> elem ent for the new view port. In addition to specifying the
viewBox, width, height, and preserveAspectRatio specification, you m ay also specify
the x and y attributes ‍ in term s of the enclosing <svg> elem ent ‍ w here the new
view port is to be established (if you don‒t give values for x and y, they are presum ed to be

0):
<svg width="200px" height="200px" viewBox="0 0 200 200">

 <circle cx="25" cy="25" r="25" style="stroke: black; fill: none;"/>

 <rect x="100" y="5" width="30" height="80"

 style="stroke: blue; fill: none;"/>

 <svg x="100px" y="5px" width="30px" height="80px"

 viewBox="0 0 50 50" preserveAspectRatio="xMaxYMax meet">

 </svg>

</svg>

Setting up the new coordinates w ith this nested <svg> elem ent doesn‒t change the visual
display, but it does perm it you to add the circle in that new system , producing the result
show n in Figure 3-8:

<svg width="200px" height="200px" viewBox="0 0 200 200">

 <circle cx="25" cy="25" r="25" style="stroke: black; fill: none;"/>

 <rect x="100" y="5" width="30" height="80" style="stroke: blue;

 fill: none;"/>

 <svg x="100px" y="5px" width="30px" height="80px" viewBox="0 0 50 50"

 preserveAspectRatio="xMaxYMax meet">

 <circle cx="25" cy="25" r="25" style="stroke: black;

 fill: none;"/>

 </svg>

</svg>

W A R N IN G

If you try to use a meet or slice value for the preserveAspectRatio attribute on an <svg> nested inside another
<svg> w ith preserveAspectRatio="none", the results m ay surprise you. The aspect ratio of the nested elem ent‒s
view port w ill be evaluated in the squished or stretched coordinates of the parent SV G , possibly resulting in an im age
that is both squished and cropped or shrunk to fit.

[4] In this book, coordinates are specified as a pair of num bers in parentheses, w ith the x-coordinate first. Thus, (10,30)
represents an x-coordinate of 10 and a y-coordinate of 30.

[5] To save space, w e are leaving out the <?xml ‎?> and <!DOCTYPE ‎> lines. These are set in stone, so you can take
them for granite.

C hapter 4. B asic Shapes
O nce a coordinate system is established in the <svg> tag, you are ready to begin draw ing.
This chapter describes the basic shapes you can use to create the m ajor elem ents of m ost
draw ings: lines, rectangles, polygons, circles, and ellipses.

L ines
SV G lets you draw a straight line w ith the <line> elem ent. Just specify the x- and y-
coordinates of the line‒s endpoints. C oordinates m ay be specified w ithout units, in w hich
case they are considered to be user coordinates, or w ith units such as em, in, etc. (as
described in C hapter 3, in The V iew port).

<line x1="start-x" y1="start-y"

 x2="end-x" y2="end-y" />

The SV G in Exam ple 4-1 draw s several lines; the reference grid in Figure 4-1 is not part
of the SV G you see in the exam ple.

Exam ple 4-1. Basic lines

http://oreillym edia.github.io/svg-essentials-exam ples/ch04/basic-lines.htm l
<svg width="200px" height="200px" viewBox="0 0 200 200"

 xmlns="http://www.w3.org/2000/svg">

 <!-- horizontal line -->

 <line x1="40" y1="20" x2="80" y2="20" style="stroke: black;"/>

 <!-- vertical line -->

 <line x1="0.7cm" y1="1cm" x2="0.7cm" y2="2.0cm"

 style="stroke: black;"/>

 <!-- diagonal line -->

 <line x1="30" y1="30" x2="85" y2="85" style="stroke: black;"/>

</svg>

Figure 4-1. Basic lines

Stroke C haracteristics
Lines are considered to be strokes of a pen that draw s on the canvas. The size, color, and
style of the pen stroke are part of the line‒s presentation. Thus, these characteristics w ill go
into the style attribute.

stroke-w idth
A s m entioned in C hapter 3, the canvas grid lines are infinitely thin. W here, then, does a
line or stroke fall in relation to the grid line? The answ er is that the grid line falls in the
center of a stroke. Exam ple 4-2 draw s som e lines w here the stroke w idth has been set to
10 user coordinates to m ake the effect obvious. The result, in Figure 4-2, has the grid lines
draw n in so you can see the effect clearly.

Exam ple 4-2. D em onstration of stroke-w idth

http://oreillym edia.github.io/svg-essentials-exam ples/ch04/stroke-w idth.htm l
<svg width="200px" height="200px" viewBox="0 0 200 200"

 xmlns="http://www.w3.org/2000/svg">

 <!-- horizontal line -->

 <line x1="30" y1="10" x2="80" y2="10"

 style="stroke-width: 10; stroke: black;"/>

 <!-- vertical line -->

 <line x1="10" y1="30" x2="10" y2="80"

 style="stroke-width: 10; stroke: black;"/>

 <!-- diagonal line -->

 <line x1="25" y1="25" x2="75" y2="75"

 style="stroke-width: 10; stroke: black;"/>

</svg>

Figure 4-2. D em onstration of stroke-w idth

N O T E

The SV G coordinate grid m ay be infinitely thin, but your com puter screen is m ade of fixed-size pixels. A diagonal
line can look jagged as the com puter translates it to the nearest pixel blocks; this is know n as aliasing. A lternatively,
the com puter can use anti-aliasing to soften the edges, blurring the line across all pixels it partially overlaps.

M ost SV G view ers use anti-aliasing by default, and this can som etim es m ake a 1-pixel black line look like a 2-pixel
gray line, because it is centered on the space betw een tw o pixels. You can control the use of anti-aliasing w ith the
C SS shape-rendering style property. Setting this property to crispEdges (on an elem ent or the SV G as a w hole) w ill
turn off anti-aliasing, resulting in clear (if som etim es jagged) lines. A value of geometricPrecision w ill em phasize
sm ooth (if som etim es blurry) edges.

Stroke C olor
You can specify the stroke color in a variety of w ays:

O ne of the basic color keyw ord nam es: aqua, black, blue, fuchsia, gray, green, lime,
maroon, navy, olive, purple, red, silver, teal, white, and yellow. You m ay also use
the color keyw ords from section 4.2 of the SV G specification.
A six-digit hexadecim al specifier in the form #rrggbb, w here rr is the red com ponent,

gg is the green com ponent, and bb is the blue com ponent in the range 00‌ff.
A three-digit hexadecim al specifier in the form #rgb, w here r is the red com ponent, g
is the green com ponent, and b is the blue com ponent in the range 0‌f. This is a
shorthand form of the previous m ethod of specifying color. To produce the six-digit
equivalent, each digit of the short form is duplicated; thus #d6e is the sam e as #dd66ee.
A n rgb specifier in the form rgb(red-value, green-value, blue-value), w here each
value is an integer in the range 0‌255 or a percentage in the range 0% to 100%.
The currentColor keyw ord, w hich uses the com puted C SS color property for the
elem ent. The color property ‍ w hich doesn‒t have a direct effect in SV G ‍ is used in
H TM L to set text color, and is inherited by child elem ents. U sing currentColor in an
inline SV G icon (see Inline SV G in X H TM L or H TM L5) allow s the icon to take on the
color of the surrounding text.

Exam ple 4-3 uses all of these m ethods (w ith the exception of currentColor), giving the
colorful results of Figure 4-3.

Exam ple 4-3. D em onstration of stroke color

http://oreillym edia.github.io/svg-essentials-exam ples/ch04/stroke-color.htm l
<svg width="200px" height="200px" viewBox="0 0 200 200"

 xmlns="http://www.w3.org/2000/svg">

 <!-- red -->

 <line x1="10" y1="10" x2="50" y2="10"

 style="stroke: red; stroke-width: 5;"/>

 <!-- light green -->

 <line x1="10" y1="20" x2="50" y2="20"

 style="stroke: #9f9; stroke-width: 5;"/>

 <!-- light blue -->

 <line x1="10" y1="30" x2="50" y2="30"

 style="stroke: #9999ff; stroke-width: 5;"/>

 <!-- medium orange -->

 <line x1="10" y1="40" x2="50" y2="40"

 style="stroke: rgb(255, 128, 64); stroke-width: 5;"/>

 <!-- deep purple -->

 <line x1="10" y1="50" x2="50" y2="50"

 style="stroke: rgb(60%, 20%, 60%); stroke-width: 5;"/>

</svg>

Figure 4-3. D em onstration of stroke color

There are yet m ore w ays to specify color. They are taken from the C SS3 C olor
specification. A lthough w idely supported in w eb brow sers, they are not part of the SV G
1.1 specification, and m ay not be supported by other SV G im plem entations; as of this
w riting, for exam ple, neither A pache B atik nor Inkscape supports them . There are three
new color functions and one new keyw ord:

rgba() specifier in the form rgb(red-value, green-value, blue-value, alpha-
value), w here the color values are in the sam e form at as for the rgb() function, and
the alpha value is a decim al in the range 0‌1
hsl() specifier in the form hsl(hue, saturation, lightness), w here hue is an integer
angle from 0 to 360, and saturation and lightness are integers in the range 0‌255 or

percentages in the range 0% to 100%
hsla() specifier, w ith the hue, saturation, and lightness values the sam e as for hsl, and
the alpha value the sam e as for rgba
transparent (fully transparent); this is the sam e as rgba(0, 0, 0, 0)

N O T E

If you do not specify a stroke color, you w on‒t see any lines; the default value for the stroke property is none.

stroke-opacity
U p to this point, all the lines in the exam ple have been solid, obscuring anything beneath
them . You control the opacity (w hich is the opposite of transparency) of a line by giving
the stroke-opacity a value from 0.0 to 1.0, w here 0 is com pletely transparent and 1 is
com pletely opaque. A value less than 0 w ill be changed to 0; a value greater than 1 w ill be
changed to 1. Exam ple 4-4 varies the opacity from 0.2 to 1 in steps of 0.2, w ith the result
in Figure 4-4. The red line in the figure lets you see the transparency effect m ore clearly.

Exam ple 4-4. D em onstration of stroke-opacity

http://oreillym edia.github.io/svg-essentials-exam ples/ch04/stroke-opacity.htm l
<svg width="200px" height="200px" viewBox="0 0 200 200"

 xmlns="http://www.w3.org/2000/svg">

 <line x1="30" y1="0" x2="30" y2="60"

 style="stroke:red; stroke-width: 5;"/>

 <line x1="10" y1="10" x2="50" y2="10"

 style="stroke-opacity: 0.2; stroke: black; stroke-width: 5;"/>

 <line x1="10" y1="20" x2="50" y2="20"

 style="stroke-opacity: 0.4; stroke: black; stroke-width: 5;"/>

 <line x1="10" y1="30" x2="50" y2="30"

 style="stroke-opacity: 0.6; stroke: black; stroke-width: 5;"/>

 <line x1="10" y1="40" x2="50" y2="40"

 style="stroke-opacity: 0.8; stroke: black; stroke-width: 5;"/>

 <line x1="10" y1="50" x2="50" y2="50"

 style="stroke-opacity: 1.0; stroke: black; stroke-width: 5;"/>

</svg>

Figure 4-4. D em onstration of stroke-opacity

stroke-dasharray A ttribute
If you need dotted or dashed lines, use the stroke-dasharray attribute, w hose value
consists of a list of num bers, separated by com m as or w hitespace, specifying dash length
and gaps. The list should have an even num ber of entries, but if you give an odd num ber
of entries, SV G w ill repeat the list so the total num ber of entries is even. (See the last
instance in Exam ple 4-5.)

Exam ple 4-5. D em onstration of stroke-dasharray

http://oreillym edia.github.io/svg-essentials-exam ples/ch04/stroke-dasharray.htm l
<svg width="200px" height="200px" viewBox="0 0 200 200"

 xmlns="http://www.w3.org/2000/svg">

 <!-- 9-pixel dash, 5-pixel gap -->

 <line x1="10" y1="10" x2="100" y2="10"

 style="stroke-dasharray: 9, 5;

 stroke: black; stroke-width: 2;"/>

 <!-- 5-pixel dash, 3-pixel gap, 9-pixel dash, 2-pixel gap -->

 <line x1="10" y1="20" x2="100" y2="20"

 style="stroke-dasharray: 5, 3, 9, 2;

 stroke: black; stroke-width: 2;"/>

 <!-- Odd number of entries is duplicated; this is equivalent to:

 9-pixel dash, 3-pixel gap, 5-pixel dash,

 9-pixel gap, 3-pixel dash, 5-pixel gap -->

 <line x1="10" y1="30" x2="100" y2="30"

 style="stroke-dasharray: 9 3 5;

 stroke: black; stroke-width: 2;"/>

</svg>

Figure 4-5 show s the results, zoom ed in for clarity.

Figure 4-5. D em onstration of stroke-dasharray

R ectangles
The rectangle is the sim plest of the basic shapes. You specify the x- and y-coordinates of
the upper-left corner of the rectangle,[6] its width, and its height. The interior of the
rectangle is filled w ith the fill color you specify. If you do not specify a fill color, the
interior of the shape is filled w ith black. The fill color m ay be specified in any of the w ays
described in Stroke C olor, or it m ay take the value none to leave the interior unfilled and
thus transparent. You m ay also specify a fill-opacity in the sam e form at as you did for
stroke-opacity in stroke-opacity. B oth fill and fill-opacity are presentation
properties, and they belong in the style attribute.

A fter the interior is filled (if necessary), the outline of the rectangle is draw n w ith strokes,
w hose characteristics you m ay specify as you did for lines. If you do not specify a stroke,
the value none is presum ed, and no outline is draw n. Exam ple 4-6 draw s several variations
of the <rect> elem ent. Figure 4-6 show s the result, w ith a grid for reference.

Exam ple 4-6. D em onstration of the rectangle elem ent

http://oreillym edia.github.io/svg-essentials-exam ples/ch04/rectangle.htm l
<svg width="200px" height="200px" viewBox="0 0 200 200"

 xmlns="http://www.w3.org/2000/svg">

 <!-- black interior, no outline -->

 <rect x="10" y="10" width="30" height="50"/>

 <!-- no interior, black outline -->

 <rect x="50" y="10" width="20" height="40"

 style="fill: none; stroke: black;"/>

 <!-- blue interior, thick semi-transparent red outline -->

 <rect x="10" y="70" width="25" height="30"

 style="fill: #0000ff;

 stroke: red; stroke-width: 7; stroke-opacity: 0.5;"/>

 <!-- semi-transparent yellow interior, dashed green outline -->

 <rect x="50" y="70" width="35" height="20"

 style="fill: yellow; fill-opacity: 0.5;

 stroke: green; stroke-width: 2; stroke-dasharray: 5 2"/>

</svg>

Figure 4-6. D em onstration of the rect elem ent

N O T E

The strokes that form the outline ―straddle‖ the abstract grid lines, so the strokes w ill be half inside the shape and half
outside the shape. Figure 4-7, a close-up of the sem i-transparent red outline draw n in Exam ple 4-6, show s this clearly.

Figure 4-7. C lose-up of transparent border

If you do not specify a starting x or y value, it is presum ed to be 0. If you specify a width
or height of 0, then the rectangle is not displayed. It is an error to provide negative values
for either width or height.

R ounded R ectangles
If you w ish to have rectangles w ith rounded corners, specify the x- and y-radius of the
corner curvature. The m axim um num ber you m ay specify for rx (the x-radius) is one-half
the w idth of the rectangle; the m axim um value of ry (the y-radius) is one-half the height
of the rectangle. If you specify only one of rx or ry, they are presum ed to be equal.
Exam ple 4-7 show s various com binations of rx and ry.

Exam ple 4-7. D em onstration of rounded rectangles

http://oreillym edia.github.io/svg-essentials-exam ples/ch04/rounded-rectangles.htm l
<svg width="200px" height="200px" viewBox="0 0 200 200"

 xmlns="http://www.w3.org/2000/svg">

 <!-- rx and ry equal, increasing -->

 <rect x="10" y="10" width="20" height="40" rx="2" ry="2"

 style="stroke: black; fill: none;"/>

 <rect x="40" y="10" width="20" height="40" rx="5"

 style="stroke: black; fill: none;"/>

 <rect x="70" y="10" width="20" height="40" ry="10"

 style="stroke: black; fill: none;"/>

 <!-- rx and ry unequal -->

 <rect x="10" y="60" width="20" height="40" rx="10" ry="5"

 style="stroke: black; fill: none;"/>

 <rect x="40" y="60" width="20" height="40" rx="5" ry="10"

 style="stroke: black; fill: none;"/>

</svg>

Figure 4-8 show s the result, w ith a grid in the background for reference.

Figure 4-8. D em onstration of rounded rectangles

N O T E

If you‒re fam iliar w ith the C SS border-radius property, you m ight know the trick of turning a rectangle into a circle
or ellipse by setting the corner radius to 50% of the height and w idth. A lthough you can specify an SV G rectangle‒s
corner radius w ith percent values, they w ill be interpreted as a percent of the view port w idth (rx) or height (ry) ‍ the
sam e as if you used a percentage for setting the rectangle‒s w idth or height ‍ not as a percentage of the rectangle
itself. G ood thing SV G has an easier w ay to create circles and ellipses“

C ircles and E llipses
To draw a circle, use the <circle> elem ent and specify the center x-coordinate, center y-
coordinate, and radius w ith the cx, cy, and r attributes. A s w ith a rectangle, the default is
to fill the circle w ith black and draw no outline unless you specify som e other com bination
of fill and stroke.

A n ellipse needs both an x-radius and a y-radius in addition to a center x- and y-coordinate.
The attributes for these radii are nam ed rx and ry.

In both circles and ellipses, if the cx or cy is om itted, it is presum ed to be 0. If the radius is
0, no shape w ill be displayed; it is an error to provide a negative radius. Exam ple 4-8
draw s som e circles and ellipses. They are show n in Figure 4-9.

Exam ple 4-8. D em onstration of circles and ellipses

http://oreillym edia.github.io/svg-essentials-exam ples/ch04/circles-ellipses.htm l
<svg width="200px" height="200px" viewBox="0 0 200 200"

 xmlns="http://www.w3.org/2000/svg">

 <circle cx="30" cy="30" r="20" style="stroke: black; fill: none;"/>

 <circle cx="80" cy="30" r="20"

 style="stroke-width: 5; stroke: black; fill: none;"/>

 <ellipse cx="30" cy="80" rx="10" ry="20"

 style="stroke: black; fill: none;"/>

 <ellipse cx="80" cy="80" rx="20" ry="10"

 style="stroke: black; fill: none;"/>

</svg>

Figure 4-9. D em onstration of circle and ellipse elem ents

T he <polygon> E lem ent
In addition to rectangles, circles, and ellipses, you m ay w ant to draw hexagons, octagons,
stars, or arbitrary closed shapes. The <polygon> elem ent lets you specify a series of
points that describe a geom etric area to be filled and outlined as described earlier. The
points attribute consists of a series of x- and y-coordinate pairs separated by com m as or
w hitespace. You m ust give an even num ber of entries in the series of num bers. You don‒t
have to return to the starting point; the shape w ill autom atically be closed. Exam ple 4-9
uses the <polygon> elem ent to draw a parallelogram , a star, and an irregular shape.

Exam ple 4-9. D em onstration of the polygon elem ent

http://oreillym edia.github.io/svg-essentials-exam ples/ch04/polygon.htm l
<svg width="200px" height="200px" viewBox="0 0 200 200"

 xmlns="http://www.w3.org/2000/svg">

 <!-- parallelogram -->

 <polygon points="15,10 55, 10 45, 20 5, 20"

 style="fill: red; stroke: black;"/>

 <!-- star -->

 <polygon

 points="35,37.5 37.9,46.1 46.9,46.1 39.7,51.5

 42.3,60.1 35,55 27.7,60.1 30.3,51.5

 23.1,46.1 32.1,46.1"

 style="fill: #ccffcc; stroke: green;"/>

 <!-- weird shape -->

 <polygon

 points="60 60, 65 72, 80 60, 90 90, 72 80, 72 85, 50 95"

 style="fill: yellow; fill-opacity: 0.5; stroke: black;

 stroke-width: 2;"/>

</svg>

The results, w ith a grid in the background for reference, are displayed in Figure 4-10.

Figure 4-10. D em onstration of the polygon elem ent

Filling Polygons T hat H ave Intersecting L ines
For the polygons show n so far, it‒s been easy to fill the shape. N one of the lines form ing
the polygon cross over one another, so the interior is easily distinguished from the exterior
of the shape. H ow ever, w hen lines cross over one another, the determ ination of w hat is
inside the polygon is not as easy. The SV G in Exam ple 4-10 draw s such a polygon. In
Figure 4-11, is the m iddle section of the star considered to be inside or outside?

Exam ple 4-10. U nfilled polygon w ith intersecting lines
<svg width="200px" height="200px" viewBox="0 0 200 200"

 xmlns="http://www.w3.org/2000/svg">

<polygon points="48,16 16,96 96,48 0,48 80,96"

 style="stroke: black; fill: none;"/>

</svg>

Figure 4-11. U nfilled polygon w ith intersecting lines

SV G has tw o different rules for determ ining w hether a point is inside a polygon or outside
it. The fill-rule (w hich is part of presentation) has a value of either nonzero (the
default) or evenodd. D epending on the rule you choose, you get a different effect.
Exam ple 4-11 uses the rules to fill tw o diagram s of the star. The result is show n in
Figure 4-12.

Exam ple 4-11. Effect of different fill-rules

http://oreillym edia.github.io/svg-essentials-exam ples/ch04/polygon-fill.htm l
<svg width="200px" height="200px" viewBox="0 0 200 200"

 xmlns="http://www.w3.org/2000/svg">

<polygon style="fill-rule: nonzero; fill: yellow; stroke: black;"

 points="48,16 16,96 96,48 0,48 80,96" />

<polygon style="fill-rule: evenodd; fill: #00ff00; stroke: black;"

 points="148,16 116,96 196,48 100,48 180,96" />

</svg>

Figure 4-12. Effect of different fill-rules

E X P L A N A T IO N O F T H E F IL L R U L E S

For the sake of com pleteness, here is how the fill-rules w ork, but don‒t w orry ‍ you don‒t need to know the
details in order to use them . The nonzero rule determ ines w hether a point is inside or outside a polygon by draw ing a
line from the point in question to infinity. It counts how m any tim es that line crosses the polygon‒s lines, adding one
if the polygon line is going right to left, and subtracting one if the polygon line is going left to right. If the total com es
out to zero, the point is outside the polygon. If the total is nonzero (hence the nam e), the point is inside the polygon.

The evenodd rule also draw s a line from the point in question to infinity, but it sim ply counts how m any tim es that
line crosses your polygon‒s lines. If the total num ber of crossings is odd, then the point is inside; if even, then the
point is outside.

T he <polyline> E lem ent
Finally, to round out our discussion of basic shapes, w e‒ll return to straight lines.
Som etim es you w ant a series of lines that does not m ake a closed shape. You can use
m ultiple <line> elem ents, but if there are m any lines, it m ight be easier to use the
<polyline> elem ent. It has the sam e points attributes as <polygon>, except that the shape
is not closed. Exam ple 4-12 draw s the sym bol for an electrical resistor. The result is in
Figure 4-13.

Exam ple 4-12. The polyline elem ent

http://oreillym edia.github.io/svg-essentials-exam ples/ch04/polyline.htm l
<svg width="100px" height="50px" viewBox="0 0 100 50"

 xmlns="http://www.w3.org/2000/svg">

<polyline

 points="5 20, 20 20, 25 10, 35 30, 45 10,

 55 30, 65 10, 75 30, 80 20, 95 20"

 style="stroke: black; stroke-width: 3; fill: none;"/>

</svg>

Figure 4-13. Exam ple of the polyline elem ent

W A R N IN G

It‒s best to set the fill property to none w hen using <polyline>; otherw ise, the SV G view er attem pts to fill the
shape, som etim es w ith startling results like those in Figure 4-14.

Figure 4-14. Exam ple of filled polyline

L ine C aps and Joins
W hen draw ing a <line> or <polyline>, you m ay specify the shape of the endpoints of the
lines by setting the stroke-linecap style property to one of the values butt, round, or
square. Exam ple 4-13 uses these three values, w ith gray guide lines to show the actual
endpoints of the lines. You can see in Figure 4-15 that round and square extend beyond
the end coordinates; butt, the default, ends exactly at the specified endpoint.

Exam ple 4-13. Values of the stroke-linecap property

http://oreillym edia.github.io/svg-essentials-exam ples/ch04/linecap.htm l
<line x1="10" y1="15" x2="50" y2="15"

 style="stroke: black; stroke-linecap: butt; stroke-width: 15;"/>

<line x1="10" y1="45" x2="50" y2="45"

 style="stroke: black; stroke-linecap: round; stroke-width: 15;"/>

<line x1="10" y1="75" x2="50" y2="75"

 style="stroke: black; stroke-linecap: square; stroke-width: 15;"/>

<!-- guide lines -->

<line x1="10" y1="0" x2="10" y2="100" style="stroke: #999;"/>

<line x1="50" y1="0" x2="50" y2="100" style="stroke: #999;"/>

Figure 4-15. Values of the stroke-linecap attribute

You m ay specify the w ay lines connect at the corners of a shape w ith the stroke-
linejoin style property, w hich m ay have the values miter (pointed), round (round ‍
w hat did you expect?), or bevel (flat). Exam ple 4-14 produces the result show n in
Figure 4-16.

Exam ple 4-14. Values of the stroke-linejoin attribute

http://oreillym edia.github.io/svg-essentials-exam ples/ch04/linejoin.htm l
<polyline

 style="stroke-linejoin: miter; stroke: black; stroke-width: 12;

 fill: none;"

 points="30 30, 45 15, 60 30"/>

<polyline

 style="stroke-linejoin: round; stroke: black; stroke-width: 12;

 fill: none;"

 points="90 30, 105 15, 120 30"/>

<polyline

 style="stroke-linejoin: bevel; stroke-width: 12; stroke: black;

 fill: none;"

 points="150 30, 165 15, 180 30"/>

Figure 4-16. Values of the stroke-linejoin attribute

N O T E

If your lines m eet at a sharp angle and have a m itered join, it‒s possible for the pointed part to extend far beyond the
lines‒ thickness. You m ay set the ratio of the m iter to the thickness of the lines being joined w ith the stroke-
miterlimit style property; its default value is 4.

B asic Shapes R eference Sum m ary
The follow ing tables sum m arize the basic shapes and presentation styles in SV G .

Shape E lem ents
Table 4-1 sum m arizes the basic shapes available in SV G .

Table 4-1. Shape elem ents

Shape D escription

<line x1="start-x" y1="start-y" x2="end-x"
y2="end-y"/>

D raw s a line from the starting point at coordinates (start-x,
start-y) to the ending point at coordinates (end-x, end-y).

<rect x="left-x" y="top-y" width="width"
height="height"/>

D raw s a rectangle w hose upper-left corner is at (left-x, top-
y) w ith the given width and height.

<circle cx="center-x" cy="center-y"
r="radius"/>

D raw s a circle w ith the given radius, centered at (center-x,
center-y).

<ellipse cx="center-x" cy="center-y" rx="x-
radius" ry="y-radius"/>

D raw s an ellipse w ith the given x-radius and y-radius
centered at (center-x, center-y).

<polygon points="points-list"/> D raw s an arbitrary closed polygon w hose outline is described
by the points-list. The points are specified as pairs of x-
and y-coordinates. These are user coordinates only; you m ay
not add a length unit specifier.

<polyline points="points-list"/> D raw s an arbitrary series of connected lines as described by
the points-list. The points are specified as pairs of x- and y-
coordinates. These are user coordinates only; you m ay not add
a length unit specifier.

W hen you specify a num ber for an attribute, it is presum ed to be m easured in user
coordinates. In all but the last tw o elem ents of Table 4-1, you m ay also add a length unit
specifier such as mm, pt, etc. to any num ber. For exam ple:

<line x1="1cm" y1="30" x2="50" y2="10pt"/>

Specifying C olors
You m ay specify the color for filling or outlining a shape in one of the follow ing w ays:

none, indicating that no outline is to be draw n or that the shape is not to be filled.
A basic color nam e, w hich is one of aqua, black, blue, fuchsia, gray, green, lime,
maroon, navy, olive, purple, red, silver, teal, white, or yellow.
O ne of the extended color nam es from the SV G specifications.
Six hexadecim al digits #rrggbb, each pair describing red, green, and blue values.
Three hexadecim al digits #rgb, describing the red, green, and blue values. This is
shorthand for the previous m ethod; digits are replicated, so #rgb is equivalent to
#rrggbb.
rgb(r, g, b), each value ranging from 0‌255 or from 0% to 100% .
currentColor, the com puted (usually inherited) color property value for the elem ent.

O ne of the specifications from the C SS3 C olor m odule (w hich m ay not be supported by
all SV G im plem entations).

Stroke and Fill C haracteristics
In order to see a line or the outline of a shape, you m ust specify the stroke characteristics,
using the follow ing attributes. A shape‒s outline is draw n after its interior is filled. A ll of
these characteristics, sum m arized in Table 4-2, are presentation properties, and go in a
style attribute.

Table 4-2. Stroke characteristics

A ttribute Values

stroke The stroke color, as described in Specifying C olors. D efault is none.

stroke-width W idth of stroke; m ay be given as user coordinates or w ith a length specifier.
The stroke w idth is centered along the abstract grid lines. D efault is 1.

stroke-opacity A num ber ranging from 0.0 to 1.0; 0.0 is entirely transparent; 1.0 is entirely
opaque (the default).

stroke-dasharray A series of num bers that tell the length of dashes and gaps w ith w hich a line
is to be draw n. These num bers are in user coordinates only. The default value
is none.

stroke-linecap Shape of the ends of a line; has one of the values butt (the default), round, or
square.

stroke-linejoin The shape of the corners of a polygon or series of lines; has one of the values
miter (pointed; the default), round, or bevel (flat).

stroke-miterlimit M axim um ratio of length of the m iter point to the w idth of the lines being
draw n; the default value is 4.

You can control the w ay in w hich the interior of a shape is to be filled by using one of the
fill attributes show n in Table 4-3. A shape is filled before its outline is draw n.

Table 4-3. Fill characteristics

A ttribute Values

fill The fill color, as described in Specifying C olors. The default is black.

fill-opacity A num ber ranging from 0.0 to 1.0; 0.0 is entirely transparent; 1.0 (the default)
is entirely opaque.

fill-rule This attribute can have the values nonzero (the default) or evenodd, w hich
apply different rules for determ ining w hether a point is inside or outside a
shape. These rules generate different effects only w hen a shape has
intersecting lines or ―holes‖ in it. D etails are in Filling Polygons That H ave
Intersecting Lines earlier in this chapter.

This is only a sm all sam ple of the style properties that can apply to SV G elem ents;

Table B -1, in A ppendix B , has a com plete list.

[6] Technically, the x value is the sm aller of the x-coordinate values, and the y is the sm aller of the y-coordinate values of
the rectangle‒s sides in the current user coordinate system . B ecause you are not yet using transform ations, w hich are
covered in C hapter 6, this is the m oral equivalent of the upper-left corner.

C hapter 5. D ocum ent Structure
W e‒ve casually m entioned that SV G lets you separate a docum ent‒s structure from its
presentation. In this chapter, w e‒re going to com pare and contrast the tw o, discuss the
presentational aspects of a docum ent in m ore detail, and then show som e of the SV G
elem ents you can use to m ake your docum ent‒s structure clearer, m ore readable, and easier
to m aintain.

Structure and Presentation
A s m entioned in C hapter 1, in B asic Shapes, one of X M L‒s goals is to provide a w ay to
structure data and separate this structure from its visual presentation. C onsider the draw ing
of the cat from that chapter; you recognize it as a cat because of its structure ‍ the
position and size of the geom etric shapes that m ake up the draw ing. If w e w ere to m ake
structural changes, such as shortening the w hiskers, rounding the nose, and m aking the
ears longer and rounding their ends, the draw ing w ould becom e one of a rabbit, no m atter
w hat the surface presentation m ight be. The structure, therefore, tells you w hat a graphic
is.

This is not to say that inform ation about visual style isn‒t im portant; had w e draw n the cat
w ith thick purple lines and a gray interior, it w ould have been recognizable as a cat, but its
appearance w ould have been far less pleasing. These differences are show n in Figure 5-1.
X M L encourages you to separate structure and presentation; unfortunately, m any
discussions of X M L em phasize structure at the expense of presentation. W e‒ll right this
w rong by going into detail about how you specify presentation in SV G .

Figure 5-1. Structure versus presentation

U sing Styles w ith SV G
SV G lets you specify presentational aspects of a graphic in four w ays: w ith inline styles,
internal stylesheets, external stylesheets, and presentation attributes. Let‒s exam ine each of
these in turn.

Inline Styles
Exam ple 5-1 uses inline styles. This is exactly the w ay w e‒ve been using presentation
inform ation so far; w e set the value of the style attribute to a series of visual properties
and their values as described in A ppendix B , in A natom y of a Style.

Exam ple 5-1. U se of inline styles
<circle cx="20" cy="20" r="10"

 style="stroke: black; stroke-width: 1.5; fill: blue;

 fill-opacity: 0.6"/>

Internal Stylesheets
You don‒t need to place your styles inside each SV G elem ent; you can create an internal
stylesheet to collect com m only used styles, w hich you can apply to all occurrences of a
particular elem ent, or use nam ed classes to apply styles to specific elem ents. Exam ple 5-2
sets up an internal stylesheet that w ill draw all circles in a blue double-thick dashed line
w ith a light yellow interior. The stylesheet is w ithin a <defs> elem ent, w hich w e w ill
discuss later in this chapter.

The exam ple then draw s several circles. The circles in the second row of Figure 5-2 have
inline styles that override the specification in the internal stylesheet.

Exam ple 5-2. U se of internal stylesheet

http://oreillym edia.github.io/svg-essentials-exam ples/ch05/internal-stylesheets.htm l
<svg width="200px" height="200px" viewBox="0 0 200 200"

 xmlns="http://www.w3.org/2000/svg">

<defs>

<style type="text/css"><![CDATA[

 circle {

 fill: #ffc;

 stroke: blue;

 stroke-width: 2;

 stroke-dasharray: 5 3

 }

]]></style>

</defs>

<circle cx="20" cy="20" r="10"/>

<circle cx="60" cy="20" r="15"/>

<circle cx="20" cy="60" r="10" style="fill: #cfc"/>

<circle cx="60" cy="60" r="15"

 style="stroke-width: 1; stroke-dasharray: none;"/>

</svg>

Figure 5-2. Internal stylesheet w ith SVG

E xternal Stylesheets

If you w ant to apply a set of styles to m ultiple SV G docum ents, you could copy and paste
the internal stylesheet into each of them . This, of course, is im practical for a large volum e
of docum ents if you ever need to m ake a global change to all the docum ents. Instead, you
should take all the inform ation betw een the beginning and ending <style> tags (excluding
the <![CDATA[and]]>) and save it in an external file, w hich becom es an external
stylesheet. Exam ple 5-3 show s an external stylesheet that has been saved in a file nam ed
ext_style.css. This stylesheet uses a variety of selectors, including *, w hich sets a default
for all elem ents that don‒t have any other style, and it, together w ith the SV G , produces
Figure 5-3.

Exam ple 5-3. External stylesheet
* { fill:none; stroke: black; } /* default for all elements */

rect { stroke-dasharray: 7 3; }

circle.yellow { fill: yellow; }

.thick { stroke-width: 5; }

.semiblue { fill:blue; fill-opacity: 0.5; }

Figure 5-3. External stylesheet w ith SVG

Exam ple 5-4 show s a com plete SV G docum ent (including <?xml ‎?>, <?xml-stylesheet
‎?>, and the <!DOCTYPE>) that references the external stylesheet.

Exam ple 5-4. SVG file that references an external stylesheet
<?xml version="1.0"?>

<?xml-stylesheet href="ext_style.css" type="text/css"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg xmlns="http://www.w3.org/2000/svg"

 width="200px" height="200px" viewBox="0 0 200 200">

<line x1="10" y1="10" x2="40" y2="10"/>

<rect x="10" y="20" width="40" height="30"/>

<circle class="yellow" cx="70" cy="20" r="10"/>

<polygon class="thick" points="60 50, 60 80, 90 80"/>

<polygon class="thick semiblue"

 points="100 30, 150 30, 150 50, 130 50"/>

</svg>

N O T E

Inline styles w ill alm ost alw ays render m ore quickly than styles in an internal or external stylesheet; stylesheets and
classes add rendering tim e due to lookup and parsing. H ow ever, stylesheets are easier to m aintain, and sm aller file
size and caching can result in faster file-loading tim e.

Presentation A ttributes
A lthough the overw helm ing m ajority of your SV G docum ents w ill use styles for
presentation inform ation, SV G does perm it you to specify this inform ation in the form of
presentation attributes. Instead of saying

<circle cx="10" cy="10" r="5"

 style="fill: red; stroke:black; stroke-width: 2;"/>

you m ay w rite each of the properties as an attribute:
<circle cx="10" cy="10" r="5"

 fill="red" stroke="black" stroke-width="2"/>

If you are thinking that this is m ixing structure and presentation, you are right.
Presentation attributes do com e in handy, though, w hen you are creating SV G docum ents
by converting an X M L data source to SV G , as you w ill see in C hapter 15. In these cases,
it can be easier to create individual attributes for each presentation property than to create
the contents of a single style attribute. You m ay also need to use presentation attributes if
the environm ent in w hich you w ill be placing your SV G cannot support stylesheets.

Presentation attributes are at the very bottom of the priority list. A ny style specification
com ing from an inline, internal, or external stylesheet w ill override a presentation
attribute, although presentation attributes override inherited styles. In the follow ing SV G
docum ent, the circle w ill be filled in red, not green:

<svg width="200" height="200"

 xmlns="http://www.w3.org/2000/svg">

 <defs>

 <style type="text/css"><![CDATA[

 circle { fill: red; }

]]></style>

 </defs>

 <circle cx="20" cy="20" r="15" fill="green"/>

</svg>

A gain, w e em phasize that using style attributes or stylesheets should alw ays be your first
choice. Stylesheets let you apply a com plex series of fill and stroke characteristics to all
occurrences of certain elem ents w ithin a docum ent w ithout having to duplicate the
inform ation into each elem ent, as presentation attributes w ould require. The pow er and
flexibility of stylesheets allow you to m ake significant changes in the look and feel of
m ultiple docum ents w ith a m inim um of effort.

G rouping and R eferencing O bjects
W hile it is certainly possible to define any draw ing as an undifferentiated list of shapes
and lines, m ost nonabstract art consists of groups of shapes and lines that form
recognizable nam ed objects. SV G has elem ents that let you do this sort of grouping to
m ake your docum ents m ore structured and understandable.

T he <g> E lem ent
The <g> elem ent gathers all of its child elem ents as a group and often has an id attribute to
give that group a unique nam e. Each group m ay also have its ow n <title> and <desc> to
identify it for text-based X M L applications or to aid in accessibility for visually im paired
users. M any SV G rendering agents w ill display a pop-up tooltip w ith the content of a
<title> elem ent w hen you hover over or tap any graphics w ithin that group. Screen
readers w ill read the contents of <title> and <desc> elem ents.

In addition to the conceptual clarity that com es from the ability to group and docum ent
objects, the <g> elem ent also provides notational convenience. A ny styles you specify in
the starting <g> tag w ill apply to all the child elem ents in the group. In Exam ple 5-5, this
saves us from having to duplicate the style="fill:none; stroke:black;" on every
elem ent show n in Figure 5-4. It is also possible to nest groups w ithin one another,
although you w on‒t see any exam ples of this until C hapter 6.

The <g> elem ent is analogous to the G roup O bjects function in program s such as A dobe
Illustrator. It also serves a sim ilar function to the concept of layers in such program s; a
layer is also a grouping of related objects.

Exam ple 5-5. Sim ple use of the g elem ent
<svg width="240px" height="240px" viewBox="0 0 240 240"

 xmlns="http://www.w3.org/2000/svg">

<title>Grouped Drawing</title>

<desc>Stick-figure drawings of a house and people</desc>

<g id="house" style="fill: none; stroke: black;">

 <desc>House with door</desc>

 <rect x="6" y="50" width="60" height="60"/>

 <polyline points="6 50, 36 9, 66 50"/>

 <polyline points="36 110, 36 80, 50 80, 50 110"/>

</g>

<g id="man" style="fill: none; stroke: black;">

 <desc>Male human</desc>

 <circle cx="85" cy="56" r="10"/>

 <line x1="85" y1="66" x2="85" y2="80"/>

 <polyline points="76 104, 85 80, 94 104" />

 <polyline points="76 70, 85 76, 94 70" />

</g>

<g id="woman" style="fill: none; stroke: black;">

 <desc>Female human</desc>

 <circle cx="110" cy="56" r="10"/>

 <polyline points="110 66, 110 80, 100 90, 120 90, 110 80"/>

 <line x1="104" y1="104" x2="108" y2="90"/>

 <line x1="112" y1="90" x2="116" y2="104"/>

 <polyline points="101 70, 110 76, 119 70" />

</g>

</svg>

