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Why	Equations?
Equations	are	the	lifeblood	of	mathematics,	science,	and	technology.	Without
them,	our	world	would	not	exist	in	its	present	form.	However,	equations	have	a
reputation	for	being	scary:	Stephen	Hawking’s	publishers	told	him	that	every
equation	would	halve	the	sales	of	A	Brief	History	of	Time,	but	then	they	ignored
their	own	advice	and	allowed	him	to	include	E	=	mc2	when	cutting	it	out	would
allegedly	have	sold	another	10	million	copies.	I’m	on	Hawking’s	side.	Equations
are	too	important	to	be	hidden	away.	But	his	publishers	had	a	point	too:
equations	are	formal	and	austere,	they	look	complicated,	and	even	those	of	us
who	love	equations	can	be	put	off	if	we	are	bombarded	with	them.

In	this	book,	I	have	an	excuse.	Since	it’s	about	equations,	I	can	no	more	avoid
including	them	than	I	could	write	a	book	about	mountaineering	without	using	the
word	‘mountain’.	I	want	to	convince	you	that	equations	have	played	a	vital	part
in	creating	today’s	world,	from	mapmaking	to	satnav,	from	music	to	television,
from	discovering	America	to	exploring	the	moons	of	Jupiter.	Fortunately,	you
don’t	need	to	be	a	rocket	scientist	to	appreciate	the	poetry	and	beauty	of	a	good,
significant	equation.

There	are	two	kinds	of	equations	in	mathematics,	which	on	the	surface	look
very	similar.	One	kind	presents	relations	between	various	mathematical
quantities:	the	task	is	to	prove	the	equation	is	true.	The	other	kind	provides
information	about	an	unknown	quantity,	and	the	mathematician’s	task	is	to	solve
it	–	to	make	the	unknown	known.	The	distinction	is	not	clear-cut,	because
sometimes	the	same	equation	can	be	used	in	both	ways,	but	it’s	a	useful
guideline.	You	will	find	both	kinds	here.

Equations	in	pure	mathematics	are	generally	of	the	first	kind:	they	reveal
deep	and	beautiful	patterns	and	regularities.	They	are	valid	because,	given	our
basic	assumptions	about	the	logical	structure	of	mathematics,	there	is	no
alternative.	Pythagoras’s	theorem,	which	is	an	equation	expressed	in	the
language	of	geometry,	is	an	example.	If	you	accept	Euclid’s	basic	assumptions
about	geometry,	then	Pythagoras’s	theorem	is	true.

Equations	in	applied	mathematics	and	mathematical	physics	are	usually	of	the
second	kind.	They	encode	information	about	the	real	world;	they	express
properties	of	the	universe	that	could	in	principle	have	been	very	different.
Newton’s	law	of	gravity	is	a	good	example.	It	tells	us	how	the	attractive	force
between	two	bodies	depends	on	their	masses,	and	how	far	apart	they	are.	Solving



the	resulting	equations	tells	us	how	the	planets	orbit	the	Sun,	or	how	to	design	a
trajectory	for	a	space	probe.	But	Newton’s	law	isn’t	a	mathematical	theorem;	it’s
true	for	physical	reasons,	it	fits	observations.	The	law	of	gravity	might	have	been
different.	Indeed,	it	is	different:	Einstein’s	general	theory	of	relativity	improves
on	Newton	by	fitting	some	observations	better,	while	not	messing	up	those
where	we	already	know	Newton’s	law	does	a	good	job.

The	course	of	human	history	has	been	redirected,	time	and	time	again,	by	an
equation.	Equations	have	hidden	powers.	They	reveal	the	innermost	secrets	of
nature.	This	is	not	the	traditional	way	for	historians	to	organise	the	rise	and	fall
of	civilisations.	Kings	and	queens	and	wars	and	natural	disasters	abound	in	the
history	books,	but	equations	are	thin	on	the	ground.	This	is	unfair.	In	Victorian
times,	Michael	Faraday	was	demonstrating	connections	between	magnetism	and
electricity	to	audiences	at	the	Royal	Institution	in	London.	Allegedly,	Prime
Minister	William	Gladstone	asked	whether	anything	of	practical	consequence
would	come	from	it.	It	is	said	(on	the	basis	of	very	little	actual	evidence,	but	why
ruin	a	nice	story?)	that	Faraday	replied:	‘Yes,	sir.	One	day	you	will	tax	it.’	If	he
did	say	that,	he	was	right.	James	Clerk	Maxwell	transformed	early	experimental
observations	and	empirical	laws	about	magnetism	and	electricity	into	a	system
of	equations	for	electromagnetism.	Among	the	many	consequences	were	radio,
radar,	and	television.

An	equation	derives	its	power	from	a	simple	source.	It	tells	us	that	two
calculations,	which	appear	different,	have	the	same	answer.	The	key	symbol	is
the	equals	sign,	=.	The	origins	of	most	mathematical	symbols	are	either	lost	in
the	mists	of	antiquity,	or	are	so	recent	that	there	is	no	doubt	where	they	came
from.	The	equals	sign	is	unusual	because	it	dates	back	more	than	450	years,	yet
we	not	only	know	who	invented	it,	we	even	know	why.	The	inventor	was	Robert
Recorde,	in	1557,	in	The	Whetstone	of	Witte.	He	used	two	parallel	lines	(he	used
an	obsolete	word	gemowe,	meaning	‘twin’)	to	avoid	tedious	repetition	of	the
words	‘is	equal	to’.	He	chose	that	symbol	because	‘no	two	things	can	be	more
equal’.	Recorde	chose	well.	His	symbol	has	remained	in	use	for	450	years.

The	power	of	equations	lies	in	the	philosophically	difficult	correspondence
between	mathematics,	a	collective	creation	of	human	minds,	and	an	external
physical	reality.	Equations	model	deep	patterns	in	the	outside	world.	By	learning
to	value	equations,	and	to	read	the	stories	they	tell,	we	can	uncover	vital	features
of	the	world	around	us.	In	principle,	there	might	be	other	ways	to	achieve	the
same	result.	Many	people	prefer	words	to	symbols;	language,	too,	gives	us
power	over	our	surroundings.	But	the	verdict	of	science	and	technology	is	that
words	are	too	imprecise,	and	too	limited,	to	provide	an	effective	route	to	the



deeper	aspects	of	reality.	They	are	too	coloured	by	human-level	assumptions.
Words	alone	can’t	provide	the	essential	insights.

Equations	can.	They	have	been	a	prime	mover	in	human	civilisation	for
thousands	of	years.	Throughout	history,	equations	have	been	pulling	the	strings
of	society.	Tucked	away	behind	the	scenes,	to	be	sure	–	but	the	influence	was
there,	whether	it	was	noticed	or	not.	This	is	the	story	of	the	ascent	of	humanity,
told	through	17	equations.



1	The	squaw	on	the	hippopotamus

Pythagoras’s	Theorem

What	does	it	tell	us?

How	the	three	sides	of	a	right-angled	triangle	are	related.

Why	is	that	important?

It	provides	a	vital	link	between	geometry	and	algebra,	allowing	us	to	calculate
distances	in	terms	of	coordinates.	It	also	inspired	trigonometry.

What	did	it	lead	to?

Surveying,	navigation,	and	more	recently	special	and	general	relativity	–	the	best
current	theories	of	space,	time,	and	gravity.



	

Ask	any	school	student	to	name	a	famous	mathematician,	and,	assuming	they
can	think	of	one,	more	often	than	not	they	will	opt	for	Pythagoras.	If	not,
Archimedes	might	spring	to	mind.	Even	the	illustrious	Isaac	Newton	has	to	play
third	fiddle	to	these	two	superstars	of	the	ancient	world.	Archimedes	was	an
intellectual	giant,	and	Pythagoras	probably	wasn’t,	but	he	deserves	more	credit
than	he	is	often	given.	Not	for	what	he	achieved,	but	for	what	he	set	in	motion.

Pythagoras	was	born	on	the	Greek	island	of	Samos,	in	the	eastern	Aegean,
around	570	BC.	He	was	a	philosopher	and	a	geometer.	What	little	we	know	about
his	life	comes	from	much	later	writers	and	its	historical	accuracy	is	questionable,
but	the	key	events	are	probably	correct.	Around	530	BC	he	moved	to	Croton,	a
Greek	colony	in	what	is	now	Italy.	There	he	founded	a	philosophico-religious
cult,	the	Pythagoreans,	who	believed	that	the	universe	is	based	on	number.	Their
founder’s	present-day	fame	rests	on	the	theorem	that	bears	his	name.	It	has	been
taught	for	more	than	2000	years,	and	has	entered	popular	culture.	The	1958
movie	Merry	Andrew,	starring	Danny	Kaye,	includes	a	song	whose	lyrics	begin:

The	square	on	the	hypotenuse
of	a	right	triangle
is	equal	to
the	sum	of	the	squares
on	the	two	adjacent	sides.

The	song	goes	on	with	some	double	entendre	about	not	letting	your	participle
dangle,	and	associates	Einstein,	Newton,	and	the	Wright	brothers	with	the
famous	theorem.	The	first	two	exclaim	‘Eureka!’;	no,	that	was	Archimedes.	You
will	deduce	that	the	lyrics	are	not	hot	on	historical	accuracy,	but	that’s
Hollywood	for	you.	However,	in	Chapter	13	we	will	see	that	the	lyricist	(Johnny
Mercer)	was	spot	on	with	Einstein,	probably	more	so	than	he	realised.

Pythagoras’s	theorem	appears	in	a	well-known	joke,	with	terrible	puns	about
the	squaw	on	the	hippopotamus.	The	joke	can	be	found	all	over	the	internet,	but
it’s	much	harder	to	discover	where	it	came	from.1	There	are	Pythagoras
cartoons,	T-shirts,	and	a	Greek	stamp,	Figure	1.



Fig	1	Greek	stamp	showing	Pythagoras’s	theorem.

All	this	fuss	notwithstanding,	we	have	no	idea	whether	Pythagoras	actually
proved	his	theorem.	In	fact,	we	don’t	know	whether	it	was	his	theorem	at	all.	It
could	well	have	been	discovered	by	one	of	Pythagoras’s	minions,	or	some
Babylonian	or	Sumerian	scribe.	But	Pythagoras	got	the	credit,	and	his	name
stuck.	Whatever	its	origins,	the	theorem	and	its	consequences	have	had	a
gigantic	impact	on	human	history.	They	literally	opened	up	our	world.

The	Greeks	did	not	express	Pythagoras’s	theorem	as	an	equation	in	the	modern
symbolic	sense.	That	came	later	with	the	development	of	algebra.	In	ancient
times,	the	theorem	was	expressed	verbally	and	geometrically.	It	attained	its	most
polished	form,	and	its	first	recorded	proof,	in	the	writings	of	Euclid	of
Alexandria.	Around	250	BC	Euclid	became	the	first	modern	mathematician	when
he	wrote	his	famous	Elements,	the	most	influential	mathematical	textbook	ever.
Euclid	turned	geometry	into	logic	by	making	his	basic	assumptions	explicit	and
invoking	them	to	give	systematic	proofs	for	all	of	his	theorems.	He	built	a
conceptual	tower	whose	foundations	were	points,	lines,	and	circles,	and	whose
pinnacle	was	the	existence	of	precisely	five	regular	solids.

One	of	the	jewels	in	Euclid’s	crown	was	what	we	now	call	Pythagoras’s
theorem:	Proposition	47	of	Book	I	of	the	Elements.	In	the	famous	translation	by
Sir	Thomas	Heath	this	proposition	reads:	‘In	right-angled	triangles	the	square	on
the	side	subtending	the	right	angle	is	equal	to	the	squares	on	the	sides	containing
the	right	angle.’

No	hippopotamus,	then.	No	hypotenuse.	Not	even	an	explicit	‘sum’	or	‘add’.
Just	that	funny	word	‘subtend’,	which	basically	means	‘be	opposite	to’.



However,	Pythagoras’s	theorem	clearly	expresses	an	equation,	because	it
contains	that	vital	word:	equal.

For	the	purposes	of	higher	mathematics,	the	Greeks	worked	with	lines	and
areas	instead	of	numbers.	So	Pythagoras	and	his	Greek	successors	would	decode
the	theorem	as	an	equality	of	areas:	‘The	area	of	a	square	constructed	using	the
longest	side	of	a	right-angled	triangle	is	the	sum	of	the	areas	of	the	squares
formed	from	the	other	two	sides.’	The	longest	side	is	the	famous	hypotenuse,
which	means	‘to	stretch	under’,	which	it	does	if	you	draw	the	diagram	in	the
appropriate	orientation,	as	in	Figure	2	(left).

Within	a	mere	2000	years,	Pythagoras’s	theorem	had	been	recast	as	the
algebraic	equation

a2	+	b2	=	c2

where	c	is	the	length	of	the	hypotenuse,	a	and	b	are	the	lengths	of	the	other	two
sides,	and	the	small	raised	2	means	‘square’.	Algebraically,	the	square	of	any
number	is	that	number	multiplied	by	itself,	and	we	all	know	that	the	area	of	any
square	is	the	square	of	the	length	of	its	side.	So	Pythagoras’s	equation,	as	I	shall
rename	it,	says	the	same	thing	that	Euclid	said	–	except	for	various
psychological	baggage	to	do	with	how	the	ancients	thought	about	basic
mathematical	concepts	like	numbers	and	areas,	which	I	won’t	go	into.

Pythagoras’s	equation	has	many	uses	and	implications.	Most	directly,	it	lets
you	calculate	the	length	of	the	hypotenuse,	given	the	other	two	sides.	For
instance,	suppose	that	a	=	3	and	b	=	4.	Then	c2	=	a2	+	b2	=	32	+	42	=	9	+	16	=	25.
Therefore	c	=	5.	This	is	the	famous	3–4–5	triangle,	ubiquitous	in	school
mathematics,	and	the	simplest	example	of	a	Pythagorean	triple:	a	list	of	three
whole	numbers	that	satisfies	Pythagoras’s	equation.	The	next	simplest,	other
than	scaled	versions	such	as	6–8–10,	is	the	5–12–13	triangle.	There	are	infinitely
many	such	triples,	and	the	Greeks	knew	how	to	construct	them	all.	They	still
retain	some	interest	in	number	theory,	and	even	in	the	last	decade	new	features
have	been	discovered.

Instead	of	using	a	and	b	to	work	out	c,	you	can	proceed	indirectly,	and	solve
the	equation	to	obtain	a	provided	that	you	know	b	and	c.	You	can	also	answer
more	subtle	questions,	as	we	will	shortly	see.



Fig	2	Construction	lines	for	Euclid’s	proof	of	Pythagoras.	Middle	and	right:
Alternative	proof	of	the	theorem.	The	outer	squares	have	equal	areas,	and	the
shaded	triangles	all	have	equal	areas.	Therefore	the	tilted	white	square	has	the
same	area	as	the	other	two	white	squares	combined.

Why	is	the	theorem	true?	Euclid’s	proof	is	quite	complicated,	and	it	involves
drawing	five	extra	lines	on	the	diagram,	Figure	2	(left),	and	appealing	to	several
previously	proved	theorems.	Victorian	schoolboys	(few	girls	did	geometry	in
those	days)	referred	to	it	irreverently	as	Pythagoras’s	pants.	A	straightforward
and	intuitive	proof,	though	not	the	most	elegant,	uses	four	copies	of	the	triangle
to	relate	two	solutions	of	the	same	mathematical	jigsaw	puzzle,	Figure	2	(right).
The	picture	is	compelling,	but	filling	in	the	logical	details	requires	some	thought.
For	instance:	how	do	we	know	that	the	tilted	white	region	in	the	middle	picture
is	a	square?

There	is	tantalising	evidence	that	Pythagoras’s	theorem	was	known	long	before
Pythagoras.	A	Babylonian	clay	tablet2	in	the	British	Museum	contains,	in
cuneiform	script,	a	mathematical	problem	and	answer	that	can	be	paraphrased
as:

4	is	the	length	and	5	the	diagonal.	What	is	the	breadth?
4	times	4	is	16.
5	times	5	is	25.
Take	16	from	25	to	obtain	9.
What	times	what	must	I	take	to	get	9?
3	times	3	is	9.
Therefore	3	is	the	breadth.



So	the	Babylonians	certainly	knew	about	the	3–4–5	triangle,	a	thousand	years
before	Pythagoras.

Another	tablet,	YBC	7289	from	the	Babylonian	collection	of	Yale	University,
is	shown	in	Figure	3	(left).	It	shows	a	diagram	of	a	square	of	side	30,	whose
diagonal	is	marked	with	two	lists	of	numbers:	1,	24,	51,	10	and	42,	25,	35.	The
Babylonians	employed	base-60	notation	for	numbers,	so	the	first	list	actually
refers	to	1	+	24/60	+	51/602	+	10/603,	which	in	decimals	is	1.4142129.	The
square	root	of	2	is	1.4142135.	The	second	list	is	30	times	this.	So	the
Babylonians	knew	that	the	diagonal	of	a	square	is	its	side	multiplied	by	the
square	root	of	2.	Since	12	+	12	=	2	=	 ,	this	too	is	an	instance	of
Pythagoras’s	theorem.

Fig	3	YBC	7289.	Right:	Plimpton	322.

Even	more	remarkable,	though	more	enigmatic,	is	the	tablet	Plimpton	322
from	George	Arthur	Plimpton’s	collection	at	Columbia	University,	Figure	3
(right).	It	is	a	table	of	numbers,	with	four	columns	and	15	rows.	The	final
column	just	lists	the	row	number,	from	1	to	15.	In	1945	historians	of	science
Otto	Neugebauer	and	Abraham	Sachs3	noticed	that	in	each	row,	the	square	of	the
number	(say	c)	in	the	third	column,	minus	the	square	of	the	number	(say	b)	in
the	second	column,	is	itself	a	square	(say	a).	It	follows	that	a2	+	b2	=	c2,	so	the
table	appears	to	record	Pythagorean	triples.	At	least,	this	is	the	case	provided
four	apparent	errors	are	corrected.	However,	it	is	not	absolutely	certain	that
Plimpton	322	has	anything	to	do	with	Pythagorean	triples,	and	even	if	it	does,	it
might	just	have	been	a	convenient	list	of	triangles	whose	areas	were	easy	to
calculate.	These	could	then	be	assembled	to	yield	good	approximations	to	other
triangles	and	other	shapes,	perhaps	for	land	measurement.

Another	iconic	ancient	civilisation	is	that	of	Egypt.	There	is	some	evidence
that	Pythagoras	may	have	visited	Egypt	as	a	young	man,	and	some	have



conjectured	that	this	is	where	he	learned	his	theorem.	The	surviving	records	of
Egyptian	mathematics	offer	scant	support	for	this	idea,	but	they	are	few	and
specialised.	It	is	often	stated,	typically	in	the	context	of	pyramids,	that	the
Egyptians	laid	out	right	angles	using	a	3–4–5	triangle,	formed	from	a	length	of
string	with	knots	at	12	equal	intervals,	and	that	archaeologists	have	found	strings
of	that	kind.	However,	neither	claim	makes	much	sense.	Such	a	technique	would
not	be	very	reliable,	because	strings	can	stretch	and	the	knots	would	have	to	be
very	accurately	spaced.	The	precision	with	which	the	pyramids	at	Giza	are	built
is	superior	to	anything	that	could	be	achieved	with	such	a	string.	Far	more
practical	tools,	similar	to	a	carpenter’s	set	square,	have	been	found.
Egyptologists	specialising	in	ancient	Egyptian	mathematics	know	of	no	records
of	string	being	employed	to	form	a	3–4–5	triangle,	and	no	examples	of	such
strings	exist.	So	this	story,	charming	though	it	may	be,	is	almost	certainly	a
myth.

If	Pythagoras	could	be	transplanted	into	today’s	world	he	would	notice	many
differences.	In	his	day,	medical	knowledge	was	rudimentary,	lighting	came	from
candles	and	burning	torches,	and	the	fastest	forms	of	communication	were	a
messenger	on	horseback	or	a	lighted	beacon	on	a	hilltop.	The	known	world
encompassed	much	of	Europe,	Asia,	and	Africa	–	but	not	the	Americas,
Australia,	the	Arctic,	or	the	Antarctic.	Many	cultures	considered	the	world	to	be
flat:	a	circular	disc	or	even	a	square	aligned	with	the	four	cardinal	points.
Despite	the	discoveries	of	classical	Greece	this	belief	was	still	widespread	in
medieval	times,	in	the	form	of	orbis	terrae	maps,	Figure	4.

Who	first	realised	the	world	is	round?	According	to	Diogenes	Laertius,	a
third-century	Greek	biographer,	it	was	Pythagoras.	In	his	book	Lives	and
Opinions	of	Eminent	Philosophers,	a	collection	of	sayings	and	biographical
notes	that	is	one	of	our	main	historical	sources	for	the	private	lives	of	the
philosophers	of	ancient	Greece,	he	wrote:	‘Pythagoras	was	the	first	who	called
the	Earth	round,	though	Theophrastus	attributes	this	to	Parmenides	and	Zeno	to
Hesiod.’	The	ancient	Greeks	often	claimed	that	major	discoveries	had	been	made
by	their	famous	forebears,	irrespective	of	historical	fact,	so	we	can’t	take	the
statement	at	face	value,	but	it	is	not	in	dispute	that	from	the	fifth	century	BC	all
reputable	Greek	philosophers	and	mathematicians	considered	the	Earth	to	be
round.	The	idea	does	seem	to	have	originated	around	the	time	of	Pythagoras,	and
it	might	have	come	from	one	of	his	followers.	Or	it	might	have	been	common
currency,	based	on	evidence	such	as	the	round	shadow	of	the	Earth	on	the	Moon
during	an	eclipse,	or	the	analogy	with	an	obviously	round	Moon.



Fig	4	Map	of	the	world	made	around	1100	by	the	Moroccan	cartographer	al-
Idrisi	for	King	Roger	of	Sicily.

Even	for	the	Greeks,	though,	the	Earth	was	the	centre	of	the	universe	and
everything	else	revolved	around	it.	Navigation	was	carried	out	by	dead
reckoning:	looking	at	the	stars	and	following	the	coastline.	Pythagoras’s
equation	changed	all	that.	It	set	humanity	on	the	path	to	today’s	understanding	of
the	geography	of	our	planet	and	its	place	in	the	Solar	System.	It	was	a	vital	first
step	towards	the	geometric	techniques	needed	for	mapmaking,	navigation,	and
surveying.	It	also	provided	the	key	to	a	vitally	important	relation	between
geometry	and	algebra.	This	line	of	development	leads	from	ancient	times	right
through	to	general	relativity	and	modern	cosmology,	see	Chapter	13.
Pythagoras’s	equation	opened	up	entirely	new	directions	for	human	exploration,
both	metaphorically	and	literally.	It	revealed	the	shape	of	our	world	and	its	place
in	the	universe.

Many	of	the	triangles	encountered	in	real	life	are	not	right-angled,	so	the
equation’s	direct	applications	may	seem	limited.	However,	any	triangle	can	be
cut	into	two	right-angled	ones	as	in	Figure	6	(page	11),	and	any	polygonal	shape
can	be	cut	into	triangles.	So	right-angled	triangles	are	the	key:	they	prove	that
there	is	a	useful	relation	between	the	shape	of	a	triangle	and	the	lengths	of	its
sides.	The	subject	that	developed	from	this	insight	is	trigonometry:	‘triangle
measurement’.

The	right-angled	triangle	is	fundamental	to	trigonometry,	and	in	particular	it
determines	the	basic	trigonometric	functions:	sine,	cosine,	and	tangent.	The
names	are	Arabic	in	origin,	and	the	history	of	these	functions	and	their	many
predecessors	shows	the	complicated	route	by	which	today’s	version	of	the	topic



arose.	I’ll	cut	to	the	chase	and	explain	the	eventual	outcome.	A	right-angled
triangle	has,	of	course,	a	right	angle,	but	its	other	two	angles	are	arbitrary,	apart
from	adding	to	90°.	Associated	with	any	angle	are	three	functions,	that	is,	rules
for	calculating	an	associated	number.	For	the	angle	marked	A	in	Figure	5,	using
the	traditional	a,	b,	c	for	the	three	sides,	we	define	the	sine	(sin),	cosine	(cos),
and	tangent	(tan)	like	this:

sin	A	=	a/c			cos	A	=	b/c			tan	A	=	a/b

These	quantities	depend	only	on	the	angle	A,	because	all	right-angled	triangles
with	a	given	angle	A	are	identical	except	for	scale.

Fig	5	Trigonometry	is	based	on	a	right-angle	triangle.

In	consequence,	it	is	possible	to	draw	up	a	table	of	the	values	of	sin,	cos,	and
tan,	for	a	range	of	angles,	and	then	use	them	to	calculate	features	of	right-angled
triangles.	A	typical	application,	which	goes	back	to	ancient	times,	is	to	calculate
the	height	of	a	tall	column	using	only	measurements	made	on	the	ground.
Suppose	that,	from	a	distance	of	100	metres,	the	angle	to	the	top	of	the	column	is
22°.	Take	A	=	22°	in	Figure	5,	so	that	a	is	the	height	of	the	column.	Then	the
definition	of	the	tangent	function	tells	us	that

tan	22°	=	a/100

so	that

a	=	100	tan	22°.

Since	tan	22°	is	0.404,	to	three	decimal	places,	we	deduce	that	a	=	40.4	metres.



Fig	6	Splitting	a	triangle	into	two	with	right	angles.

Once	in	possession	of	trigonometric	functions,	it	is	straightforward	to	extend
Pythagoras’s	equation	to	triangles	that	do	not	have	a	right	angle.	Figure	6	shows
a	triangle	with	an	angle	C	and	sides	a,	b,	c.	Split	the	triangle	into	two	right-
angled	ones	as	shown.	Then	two	applications	of	Pythagoras	and	some	algebra4
prove	that

a2	+	b2	−	2ab	cos	C	=	c2

which	is	similar	to	Pythagoras’s	equation,	except	for	the	extra	term	−	2ab	cos	C.
This	‘cosine	rule’	does	the	same	job	as	Pythagoras,	relating	c	to	a	and	b,	but	now
we	have	to	include	information	about	the	angle	C.

The	cosine	rule	is	one	of	the	mainstays	of	trigonometry.	If	we	know	two	sides
of	a	triangle	and	the	angle	between	them,	we	can	use	it	to	calculate	the	third	side.
Other	equations	then	tell	us	the	remaining	angles.	All	of	these	equations	can
ultimately	be	traced	back	to	right-angled	triangles.

Armed	with	trigonometric	equations	and	suitable	measuring	apparatus,	we	can
carry	out	surveys	and	make	accurate	maps.	This	is	not	a	new	idea.	It	appears	in
the	Rhind	Papyrus,	a	collection	of	ancient	Egyptian	mathematical	techniques
dating	from	1650	BC.	The	Greek	philosopher	Thales	used	the	geometry	of
triangles	to	estimate	the	heights	of	the	Giza	pyramids	in	about	600	BC.	Hero	of
Alexandria	described	the	same	technique	in	50	AD.	Around	240	BC	Greek
mathematician,	Eratosthenes,	calculated	the	size	of	the	Earth	by	observing	the
angle	of	the	Sun	at	noon	in	two	different	places:	Alexandria	and	Syene	(now
Aswan)	in	Egypt.	A	succession	of	Arabian	scholars	preserved	and	developed
these	methods,	applying	them	in	particular	to	astronomical	measurements	such
as	the	size	of	the	Earth.



Surveying	began	to	take	off	in	1533	when	the	Dutch	mapmaker	Gemma
Frisius	explained	how	to	use	trigonometry	to	produce	accurate	maps,	in	Libellus
de	Locorum	Describendorum	Ratione	(‘Booklet	Concerning	a	Way	of
Describing	Places’).	Word	of	the	method	spread	across	Europe,	reaching	the	ears
of	the	Danish	nobleman	and	astronomer	Tycho	Brahe.	In	1579	Tycho	used	it	to
make	an	accurate	map	of	Hven,	the	island	where	his	observatory	was	located.	By
1615	the	Dutch	mathematician	Willebrord	Snellius	(Snel	van	Royen)	had
developed	the	method	into	essentially	its	modern	form:	triangulation.	The	area
being	surveyed	is	covered	with	a	network	of	triangles.	By	measuring	one	initial
length	very	carefully,	and	many	angles,	the	locations	of	the	corners	of	the
triangle,	and	hence	any	interesting	features	within	them,	can	be	calculated.
Snellius	worked	out	the	distance	between	two	Dutch	towns,	Alkmaar	and	Bergen
op	Zoom,	using	a	network	of	33	triangles.	He	chose	these	towns	because	they
lay	on	the	same	line	of	longitude	and	were	exactly	one	degree	of	arc	apart.
Knowing	the	distance	between	them,	he	could	work	out	the	size	of	the	Earth,
which	he	published	in	his	Eratosthenes	Batavus	(‘The	Dutch	Eratosthenes’)	in
1617.	His	result	is	accurate	to	within	4%.	He	also	modified	the	equations	of
trigonometry	to	reflect	the	spherical	nature	of	the	Earth’s	surface,	an	important
step	towards	effective	navigation.

Triangulation	is	an	indirect	method	for	calculating	distances	using	angles.
When	surveying	a	stretch	of	land,	be	it	a	building	site	or	a	country,	the	main
practical	consideration	is	that	it	is	much	easier	to	measure	angles	than	it	is	to
measure	distances.	Triangulation	lets	us	measure	a	few	distances	and	lots	of
angles;	then	everything	else	follows	from	the	trigonometric	equations.	The
method	begins	by	setting	out	one	line	between	two	points,	called	the	baseline,
and	measuring	its	length	directly	to	very	high	accuracy.	Then	we	choose	a
prominent	point	in	the	landscape	that	is	visible	from	both	ends	of	the	baseline,
and	measure	the	angle	from	the	baseline	to	that	point,	at	both	ends	of	the
baseline.	Now	we	have	a	triangle,	and	we	know	one	side	of	it	and	two	angles,
which	fix	its	shape	and	size.	We	can	then	use	trigonometry	to	work	out	the	other
two	sides.

In	effect,	we	now	have	two	more	baselines:	the	newly	calculated	sides	of	the
triangle.	From	those,	we	can	measure	angles	to	other,	more	distant	points.
Continue	this	process	to	create	a	network	of	triangles	that	covers	the	area	being
surveyed.	Within	each	triangle,	observe	the	angles	to	all	noteworthy	features	–
church	towers,	crossroads,	and	so	on.	The	same	trigonometric	trick	pinpoints
their	precise	locations.	As	a	final	twist,	the	accuracy	of	the	entire	survey	can	be
checked	by	measuring	one	of	the	final	sides	directly.



By	the	late	eighteenth	century,	triangulation	was	being	employed	routinely	in
surveys.	The	Ordnance	Survey	of	Great	Britain	began	in	1783,	taking	70	years	to
complete	the	task.	The	Great	Trigonometric	Survey	of	India,	which	among	other
things	mapped	the	Himalayas	and	determined	the	height	of	Mount	Everest,
started	in	1801.	In	the	twenty-first	century,	most	large-scale	surveying	is	done
using	satellite	photographs	and	GPS	(the	Global	Positioning	System).	Explicit
triangulation	is	no	longer	employed.	But	it	is	still	there,	behind	the	scenes,	in	the
methods	used	to	deduce	locations	from	the	satellite	data.

Pythagoras’s	theorem	was	also	vital	to	the	invention	of	coordinate	geometry.
This	is	a	way	to	represent	geometric	figures	in	terms	of	numbers,	using	a	system
of	lines,	known	as	axes,	labelled	with	numbers.	The	most	familiar	version	is
known	as	Cartesian	coordinates	in	the	plane,	in	honour	of	the	French
mathematician	and	philosopher	René	Descartes,	who	was	one	of	the	great
pioneers	in	this	area	–	though	not	the	first.	Draw	two	lines:	a	horizontal	one
labelled	x	and	a	vertical	one	labelled	y.	These	lines	are	known	as	axes	(plural	of
axis),	and	they	cross	at	a	point	called	the	origin.	Mark	points	along	these	two
axes	according	to	their	distance	from	the	origin,	like	the	markings	on	a	ruler:
positive	numbers	to	the	right	and	up,	negative	to	the	left	and	down.	Now	we	can
determine	any	point	in	the	plane	in	terms	of	two	numbers	x	and	y,	its
coordinates,	by	connecting	the	point	to	the	two	axes	as	in	Figure	7.	The	pair	of
numbers	(x,	y)	completely	specifies	the	location	of	the	point.



Fig	7	The	two	axes	and	the	coordinates	of	a	point.

The	great	mathematicians	of	seventeenth-century	Europe	realised	that,	in	this
context,	a	line	or	curve	in	the	plane	corresponds	to	the	set	of	solutions	(x,	y)	of
some	equation	in	x	and	y.	For	instance,	y	=	x	determines	a	diagonal	line	sloping
from	lower	left	to	top	right,	because	(x,	y)	lies	on	that	line	if	and	only	if	y	=	x.	In
general,	a	linear	equation	–	of	the	form	ax	+	by	=	c	for	constants	a,	b,	c	–
corresponds	to	a	straight	line,	and	vice	versa.

What	equation	corresponds	to	a	circle?	This	is	where	Pythagoras’s	equation
comes	in.	It	implies	that	the	distance	r	from	the	origin	to	the	point	(x,	y)	satisfies

r2	=	x2	+	y2

and	we	can	solve	this	for	r	to	obtain

Since	the	set	of	all	points	that	lie	at	distance	r	from	the	origin	is	a	circle	of	radius
r,	whose	centre	is	the	origin,	so	the	same	equation	defines	a	circle.	More
generally,	the	circle	of	radius	r	with	centre	at	(a,	b)	corresponds	to	the	equation

(x	−	a)2	+	(y	−	b)2	=	r2

and	the	same	equation	determines	the	distance	r	between	the	two	points	(a,	b)
and	(x,	y).	So	Pythagoras’s	theorem	tells	us	two	vital	things:	which	equations
yield	circles,	and	how	to	calculate	distances	from	coordinates.

Pythagoras’s	theorem,	then,	is	important	in	its	own	right,	but	it	exerts	even	more
influence	through	its	generalisations.	Here	I	will	pursue	just	one	strand	of	these
later	developments	to	bring	out	the	connection	with	relativity,	to	which	we
return	in	Chapter	13.

The	proof	of	Pythagoras’s	theorem	in	Euclid’s	Elements	places	the	theorem
firmly	within	the	realm	of	Euclidean	geometry.	There	was	a	time	when	that
phrase	could	have	been	replaced	by	just	‘geometry’,	because	it	was	generally
assumed	that	Euclid’s	geometry	was	the	true	geometry	of	physical	space.	It	was
obvious.	Like	most	things	assumed	to	be	obvious,	it	turned	out	to	be	false.

Euclid	derived	all	of	his	theorems	from	a	small	number	of	basic	assumptions,
which	he	classified	as	definitions,	axioms,	and	common	notions.	His	set-up	was



elegant,	intuitive,	and	concise,	with	one	glaring	exception,	his	fifth	axiom:	‘If	a
straight	line	falling	on	two	straight	lines	makes	the	interior	angles	on	the	same
side	less	than	two	right	angles,	the	two	straight	lines,	if	produced	indefinitely,
meet	on	that	side	on	which	are	the	angles	less	than	the	two	right	angles.’	It’s	a
bit	of	a	mouthful:	Figure	8	may	help.

Fig	8	Euclid’s	parallel	axiom.

For	well	over	a	thousand	years,	mathematicians	tried	to	repair	what	they	saw
as	a	flaw.	They	weren’t	just	looking	for	something	simpler	and	more	intuitive
that	would	achieve	the	same	end,	although	several	of	them	found	such	things.
They	wanted	to	get	rid	of	the	awkward	axiom	altogether,	by	proving	it.	After
several	centuries,	mathematicians	finally	realised	that	there	were	alternative
‘non-Euclidean’	geometries,	implying	that	no	such	proof	existed.	These	new
geometries	were	just	as	logically	consistent	as	Euclid’s,	and	they	obeyed	all	of
his	axioms	except	the	parallel	axiom.	They	could	be	interpreted	as	the	geometry
of	geodesics	–	shortest	paths	–	on	curved	surfaces,	Figure	9.	This	focused
attention	on	the	meaning	of	curvature.

Fig	9	Curvature	of	a	surface.	zero	curvature.	Middle:	positive	curvature.	negative



curvature.

The	plane	of	Euclid	is	flat,	curvature	zero.	A	sphere	has	the	same	curvature
everywhere,	and	it	is	positive:	near	any	point	it	looks	like	a	dome.	(As	a
technical	fine	point:	great	circles	meet	in	two	points,	not	one	as	Euclid’s	axioms
require,	so	spherical	geometry	is	modified	by	identifying	antipodal	points	on	the
sphere	–	considering	them	to	be	identical.	The	surface	becomes	a	so-called
projective	plane	and	the	geometry	is	called	elliptic.)	A	surface	of	constant
negative	curvature	also	exists:	near	any	point,	it	looks	like	a	saddle.	This	surface
is	called	the	hyperbolic	plane,	and	it	can	be	represented	in	several	entirely
prosaic	ways.	Perhaps	the	simplest	is	to	consider	it	as	the	interior	of	a	circular
disc,	and	to	define	‘line’	as	an	arc	of	a	circle	meeting	the	edge	of	the	disc	at	right
angles	(Figure	10).

Fig	10	Disc	model	of	the	hyperbolic	plane.	All	three	lines	through	P	fail	to	meet
line	L.

It	might	seem	that,	while	plane	geometry	might	be	non-Euclidean,	this	must
be	impossible	for	the	geometry	of	space.	You	can	bend	a	surface	by	pushing	it
into	a	third	dimension,	but	you	can’t	bend	space	because	there’s	no	room	for	an
extra	dimension	along	which	to	push	it.	However,	this	is	a	rather	naive	view.	For
example,	we	can	model	three-dimensional	hyperbolic	space	using	the	interior	of
a	sphere.	Lines	are	modelled	as	arcs	of	circles	that	meet	the	boundary	at	right
angles,	and	planes	are	modelled	as	parts	of	spheres	that	meet	the	boundary	at
right	angles.	This	geometry	is	three-dimensional,	satisfies	all	of	Euclid’s	axioms
except	the	Fifth,	and	in	a	sense	that	can	be	pinned	down	it	defines	a	curved
three-dimensional	space.	But	it’s	not	curved	round	anything,	or	in	any	new
direction.

It’s	just	curved.



With	all	these	new	geometries	available,	a	new	point	of	view	began	to	occupy
centre	stage	–	but	as	physics,	not	mathematics.	Since	space	doesn’t	have	to	be
Euclidean,	what	shape	is	it?	Scientists	realised	that	they	didn’t	actually	know.	In
1813,	Gauss,	knowing	that	in	a	curved	space	the	angles	of	a	triangle	do	not	add
to	180°,	measured	the	angles	of	a	triangle	formed	by	three	mountains	–	the
Brocken,	the	Hohehagen,	and	the	Inselberg.	He	obtained	a	sum	15	seconds	of	arc
greater	than	180°.	If	correct,	this	indicated	that	space	(in	that	region,	at	least)
was	positively	curved.	But	you’d	need	a	far	larger	triangle,	and	far	more
accurate	measurements,	to	eliminate	observational	errors.	So	Gauss’s
observations	were	inconclusive.	Space	might	be	Euclidean,	and	then	again,	it
might	not	be.

My	remark	that	three-dimensional	hyperbolic	space	is	‘just	curved’	depends	on	a
new	point	of	view	about	curvature,	which	also	goes	back	to	Gauss.	The	sphere
has	constant	positive	curvature,	and	the	hyperbolic	plane	has	constant	negative
curvature.	But	the	curvature	of	a	surface	doesn’t	have	to	be	constant.	It	might	be
sharply	curved	in	some	places,	less	sharply	curved	in	others.	Indeed,	it	might	be
positive	in	some	regions	but	negative	in	others.	The	curvature	could	vary
continuously	from	place	to	place.	If	the	surface	looks	like	a	dog’s	bone,	then	the
blobs	at	the	ends	are	positively	curved	but	the	part	that	joins	them	is	negatively
curved.

Gauss	searched	for	a	formula	to	characterise	the	curvature	of	a	surface	at	any
point.	When	he	eventually	found	it,	and	published	it	in	his	Disquisitiones
Generales	Circa	Superficies	Curva	(‘General	Research	on	Curved	Surfaces’)	of
1828,	he	named	it	the	‘remarkable	theorem’.	What	was	so	remarkable?	Gauss
had	started	from	the	naive	view	of	curvature:	embed	the	surface	in	three-
dimensional	space	and	calculate	how	bent	it	is.	But	the	answer	told	him	that	this
surrounding	space	didn’t	matter.	It	didn’t	enter	into	the	formula.	He	wrote:	‘The
formula	…	leads	itself	to	the	remarkable	theorem:	If	a	curved	surface	is
developed	upon	any	other	surface	whatever,	the	measure	of	curvature	in	each
point	remains	unchanged.’	By	‘developed’	he	meant	‘wrapped	round’.

Take	a	flat	sheet	of	paper,	zero	curvature.	Now	wrap	it	round	a	bottle.	If	the
bottle	is	cylindrical	the	paper	fits	perfectly,	without	being	folded,	stretched,	or
torn.	It	is	bent	as	far	as	visual	appearance	goes,	but	it’s	a	trivial	kind	of	bending,
because	it	hasn’t	changed	geometry	on	the	paper	in	any	way.	It’s	just	changed
how	the	paper	relates	to	the	surrounding	space.	Draw	a	right-angled	triangle	on
the	flat	paper,	measure	its	sides,	check	Pythagoras.	Now	wrap	the	diagram	round
a	bottle.	The	lengths	of	sides,	measured	along	the	paper,	don’t	change.



Pythagoras	is	still	true.
The	surface	of	a	sphere,	however,	has	nonzero	curvature.	So	it	is	not	possible

to	wrap	a	sheet	of	paper	so	that	it	fits	snugly	against	a	sphere,	without	folding	it,
stretching	it,	or	tearing	it.	Geometry	on	a	sphere	is	intrinsically	different	from
geometry	on	a	plane.	For	example,	the	Earth’s	equator	and	the	lines	of	longitude
for	0°	and	90°	to	its	north	determine	a	triangle	that	has	three	right	angles	and
three	equal	sides	(assuming	the	Earth	to	be	a	sphere).	So	Pythagoras’s	equation
is	false.

Today	we	call	curvature	in	its	intrinsic	sense	‘Gaussian	curvature’.	Gauss
explained	why	it	is	important	using	a	vivid	analogy,	still	current.	Imagine	an	ant
confined	to	the	surface.	How	can	it	work	out	whether	the	surface	is	curved?	It
can’t	step	outside	the	surface	to	see	whether	it	looks	bent.	But	it	can	use	Gauss’s
formula	by	making	suitable	measurements	purely	within	the	surface.	We	are	in
the	same	position	as	the	ant	when	we	try	to	figure	out	the	true	geometry	of	our
space.	We	can’t	step	outside	it.	Before	we	can	emulate	the	ant	by	taking
measurements,	however,	we	need	a	formula	for	the	curvature	of	a	space	of	three
dimensions.	Gauss	didn’t	have	one.	But	one	of	his	students,	in	a	fit	of
recklessness,	claimed	that	he	did.

The	student	was	Georg	Bernhard	Riemann,	and	he	was	trying	to	achieve	what
German	universities	call	Habilitation,	the	next	step	after	a	PhD.	In	Riemann’s
day	this	meant	that	you	could	charge	students	a	fee	for	your	lectures.	Then	and
now,	gaining	Habilitation	requires	presenting	your	research	in	a	public	lecture
that	is	also	an	examination.	The	candidate	offers	several	topics,	and	the
examiner,	which	in	Riemann’s	case	was	Gauss,	chooses	one.	Riemann,	a
brilliant	mathematical	talent,	listed	several	orthodox	topics	that	he	knew
backwards,	but	in	a	rush	of	blood	to	the	brain	he	also	suggested	‘On	the
hypotheses	which	lie	at	the	foundation	of	geometry’.	Gauss	had	long	been
interested	in	just	that,	and	he	naturally	selected	it	for	Riemann’s	examination.

Riemann	instantly	regretted	offering	something	so	challenging.	He	had	a
hearty	dislike	of	public	speaking,	and	he	hadn’t	thought	the	mathematics	through
in	detail.	He	just	had	some	vague,	though	fascinating,	ideas	about	curved	space.
In	any	number	of	dimensions.	What	Gauss	had	done	for	two	dimensions,	with
his	remarkable	theorem,	Riemann	wanted	to	do	in	as	many	dimensions	as	you
like.	Now	he	had	to	perform,	and	fast.	The	lecture	was	looming.	The	pressure
nearly	gave	him	a	nervous	breakdown,	and	his	day	job	helping	Gauss’s
collaborator	Wilhelm	Weber	with	experiments	in	electricity	didn’t	help.	Well,
maybe	it	did,	because	while	Riemann	was	thinking	about	the	relation	between



electrical	and	magnetic	forces	in	the	day	job,	he	realised	that	force	can	be	related
to	curvature.	Working	backwards,	he	could	use	the	mathematics	of	forces	to
define	curvature,	as	required	for	his	examination.

In	1854	Riemann	delivered	his	lecture,	which	was	warmly	received,	and	no
wonder.	He	began	by	defining	what	he	called	a	‘manifold’,	in	the	sense	of	many-
foldedness.	Formally,	a	‘manifold’,	is	specified	by	a	system	of	many
coordinates,	together	with	a	formula	for	the	distance	between	nearby	points,	now
called	a	Riemannian	metric.	Informally,	a	manifold	is	a	multidimensional	space
in	all	its	glory.	The	climax	of	Riemann’s	lecture	was	a	formula	that	generalised
Gauss’s	remarkable	theorem:	it	defined	the	curvature	of	the	manifold	solely	in
terms	of	its	metric.	And	it	is	here	that	the	tale	comes	full	circle	like	the	snake
Orobouros	and	swallows	its	own	tail,	because	the	metric	contains	visible
remnants	of	Pythagoras.

Suppose,	for	example,	that	the	manifold	has	three	dimensions.	Let	the
coordinates	of	a	point	be	(x,	y,	z),	and	let	(x	+	dx,	y	+	dy,	z	+	dz)	be	a	nearby
point,	where	the	d	means	‘a	little	bit	of’.	If	the	space	is	Euclidean,	with	zero
curvature,	the	distance	ds	between	these	two	points	satisfies	the	equation

ds2	=	dx2	+	dy2	+	dz2

and	this	is	just	Pythagoras,	restricted	to	points	that	are	close	together.	If	the
space	is	curved,	with	variable	curvature	from	point	to	point,	the	analogous
formula,	the	metric,	looks	like	this:

ds2	=	X	dx2	+	Y	dy2	+	Z	dz2	+	2U	dx	dy	+	2V	dx	dz	+	2W	dy	dz

Here	X,	Y,	Z,	U,	V,	W	can	depend	on	x,	y	and	z.	It	may	seem	a	bit	of	a	mouthful,
but	like	Pythagoras’s	equation	it	involves	sums	of	squares	(and	closely	related
products	of	two	quantities	like	dx	dy)	plus	a	few	bells	and	whistles.	The	2s	occur
because	the	formula	can	be	packaged	as	a	3	×	3	table,	or	matrix:

where	X,	Y,	Z	appear	once,	but	U,	V,	W	appear	twice.	The	table	is	symmetric
about	its	diagonal;	in	the	language	of	differential	geometry	it	is	a	symmetric
tensor.	Riemann’s	generalisation	of	Gauss’s	remarkable	theorem	is	a	formula	for
the	curvature	of	the	manifold,	at	any	given	point,	in	terms	of	this	tensor.	In	the



special	case	when	Pythagoras	applies,	the	curvature	turns	out	to	be	zero.	So	the
validity	of	Pythagoras’s	equation	is	a	test	for	the	absence	of	curvature.

Like	Gauss’s	formula,	Riemann’s	expression	for	curvature	depends	only	on
the	manifold’s	metric.	An	ant	confined	to	the	manifold	could	observe	the	metric
by	measuring	tiny	triangles	and	computing	the	curvature.	Curvature	is	an
intrinsic	property	of	a	manifold,	independent	of	any	surrounding	space.	Indeed,
the	metric	already	determines	the	geometry,	so	no	surrounding	space	is	required.
In	particular,	we	human	ants	can	ask	what	shape	our	vast	and	mysterious
universe	is,	and	hope	to	answer	it	by	making	observations	that	do	not	require	us
to	step	outside	the	universe.	Which	is	just	as	well,	because	we	can’t.

Riemann	found	his	formula	by	using	forces	to	define	geometry.	Fifty	years
later,	Einstein	turned	Riemann’s	idea	on	its	head,	using	geometry	to	define	the
force	of	gravity	in	his	general	theory	of	relativity,	and	inspiring	new	ideas	about
the	shape	of	the	universe:	see	Chapter	13.	It’s	an	astonishing	progression	of
events.	Pythagoras’s	equation	first	came	into	being	around	3500	years	ago	to
measure	a	farmer’s	land.	Its	extension	to	triangles	without	right	angles,	and
triangles	on	a	sphere,	allowed	us	to	map	our	continents	and	measure	our	planet.
And	a	remarkable	generalisation	lets	us	measure	the	shape	of	the	universe.	Big
ideas	have	small	beginnings.



2	Shortening	the	proceedings

Logarithms

What	does	it	tell	us?

How	to	multiply	numbers	by	adding	related	numbers	instead.

Why	is	that	important?

Addition	is	much	simpler	than	multiplication.

What	did	it	lead	to?

Efficient	methods	for	calculating	astronomical	phenomena	such	as	eclipses	and
planetary	orbits.	Quick	ways	to	perform	scientific	calculations.	The	engineers’
faithful	companion,	the	slide	rule.	Radioactive	decay	and	the	psychophysics	of
human	perception.



	

Numbers	originated	in	practical	problems:	recording	property,	such	as	animals
or	land,	and	financial	transactions,	such	as	taxation	and	keeping	accounts.	The
earliest	known	number	notation,	aside	from	simple	tallying	marks	like	||||,	is
found	on	the	outside	of	clay	envelopes.	In	8000	BC	Mesopotamian	accountants
kept	records	using	small	clay	tokens	of	various	shapes.	The	archaeologist	Denise
Schmandt-Besserat	realised	that	each	shape	represented	a	basic	commodity	–	a
sphere	for	grain,	an	egg	for	a	jar	of	oil,	and	so	on.	For	security,	the	tokens	were
sealed	in	clay	wrappings.	But	it	was	a	nuisance	to	break	a	clay	envelope	open	to
find	out	how	many	tokens	were	inside,	so	the	ancient	accountants	scratched
symbols	on	the	outside	to	show	what	was	inside.	Eventually	they	realised	that
once	you	had	these	symbols,	you	could	scrap	the	tokens.	The	result	was	a	series
of	written	symbols	for	numbers	–	the	origin	of	all	later	number	symbols,	and
perhaps	of	writing	too.

Along	with	numbers	came	arithmetic:	methods	for	adding,	subtracting,
multiplying,	and	dividing	numbers.	Devices	like	the	abacus	were	used	to	do	the
sums;	then	the	results	could	be	recorded	in	symbols.	After	a	time,	ways	were
found	to	use	the	symbols	to	perform	the	calculations	without	mechanical
assistance,	although	the	abacus	is	still	widely	used	in	many	parts	of	the	world,
while	electronic	calculators	have	supplanted	pen	and	paper	calculations	in	most
other	countries.

Arithmetic	proved	essential	in	other	ways,	too,	especially	in	astronomy	and
surveying.	As	the	basic	outlines	of	the	physical	sciences	began	to	emerge,	the
fledgeling	scientists	needed	to	perform	ever	more	elaborate	calculations,	by
hand.	Often	this	took	up	much	of	their	time,	sometimes	months	or	years,	getting
in	the	way	of	more	creative	activities.	Eventually	it	became	essential	to	speed	up
the	process.	Innumerable	mechanical	devices	were	invented,	but	the	most
important	breakthrough	was	a	conceptual	one:	think	first,	calculate	later.	Using
clever	mathematics,	you	could	make	difficult	calculations	much	easier.

The	new	mathematics	quickly	developed	a	life	of	its	own,	turning	out	to	have
deep	theoretical	implications	as	well	as	practical	ones.	Today,	those	early	ideas
have	become	an	indispensable	tool	throughout	science,	reaching	even	into
psychology	and	the	humanities.	They	were	widely	used	until	the	1980s,	when
computers	rendered	them	obsolete	for	practical	purposes,	but,	despite	that,	their
importance	in	mathematics	and	science	has	continued	to	grow.

The	central	idea	is	a	mathematical	technique	called	a	logarithm.	Its	inventor



was	a	Scottish	laird,	but	it	took	a	geometry	professor	with	strong	interests	in
navigation	and	astronomy	to	replace	the	laird’s	brilliant	but	flawed	idea	by	a
much	better	one.

In	March	1615	Henry	Briggs	wrote	a	letter	to	James	Ussher,	recording	a	crucial
event	in	the	history	of	science:

Napper,	lord	of	Markinston,	hath	set	my	head	and	hands	a	work
with	his	new	and	admirable	logarithms.	I	hope	to	see	him	this
summer,	if	it	please	God,	for	I	never	saw	a	book	which	pleased	me
better	or	made	me	more	wonder.

Briggs	was	the	first	professor	of	geometry	at	Gresham	College	in	London,	and
‘Napper,	lord	of	Markinston’	was	John	Napier,	eighth	laird	of	Merchiston,	now
part	of	the	city	of	Edinburgh	in	Scotland.	Napier	seems	to	have	been	a	bit	of	a
mystic;	he	had	strong	theological	interests,	but	they	mostly	centred	on	the	book
of	Revelation.	In	his	view,	his	most	important	work	was	A	Plaine	Discovery	of
the	Whole	Revelation	of	St	John,	which	led	him	to	predict	that	the	world	would
end	in	either	1688	or	1700.	He	is	thought	to	have	engaged	in	both	alchemy	and
necromancy,	and	his	interests	in	the	occult	lent	him	a	reputation	as	a	magician.
According	to	rumour,	he	carried	a	black	spider	in	a	small	box	everywhere	he
went,	and	possessed	a	‘familiar’,	or	magical	companion:	a	black	cockerel.
According	to	one	of	his	descendants,	Mark	Napier,	John	employed	his	familiar
to	catch	servants	who	were	stealing.	He	locked	the	suspect	in	a	room	with	the
cockerel	and	instructed	them	to	stroke	it,	telling	them	that	his	magical	bird
would	unerringly	detect	the	guilty.	But	Napier’s	mysticism	had	a	rational	core,
which	in	this	particular	instance	involved	coating	the	cockerel	with	a	thin	layer
of	soot.	An	innocent	servant	would	be	confident	enough	to	stroke	the	bird	as
instructed,	and	would	get	soot	on	their	hands.	A	guilty	one,	fearing	detection,
would	avoid	stroking	the	bird.	So,	ironically,	clean	hands	proved	you	were
guilty.

Napier	devoted	much	of	his	time	to	mathematics,	especially	methods	for
speeding	up	complicated	arithmetical	calculations.	One	invention,	Napier’s
bones,	was	a	set	of	ten	rods,	marked	with	numbers,	which	simplified	the	process
of	long	multiplication.	Even	better	was	the	invention	that	made	his	reputation
and	created	a	scientific	revolution:	not	his	book	on	Revelation,	as	he	had	hoped,
but	his	Mirifici	Logarithmorum	Canonis	Descriptio	(‘Description	of	the
Wonderful	Canon	of	Logarithms’)	of	1614.	The	preface	shows	that	Napier	knew
exactly	what	he	had	produced,	and	what	it	was	good	for.1



Since	nothing	is	more	tedious,	fellow	mathematicians,	in	the
practice	of	the	mathematical	arts,	than	the	great	delays	suffered	in
the	tedium	of	lengthy	multiplications	and	divisions,	the	finding	of
ratios,	and	in	the	extraction	of	square	and	cube	roots	–	and	…	the
many	slippery	errors	that	can	arise:	I	had	therefore	been	turning
over	in	my	mind,	by	what	sure	and	expeditious	art,	I	might	be	able
to	improve	upon	these	said	difficulties.	In	the	end	after	much
thought,	finally	I	have	found	an	amazing	way	of	shortening	the
proceedings	…	it	is	a	pleasant	task	to	set	out	the	method	for	the
public	use	of	mathematicians.

The	moment	Briggs	heard	of	logarithms,	he	was	enchanted.	Like	many
mathematicians	of	his	era,	he	spent	a	lot	of	his	time	performing	astronomical
calculations.	We	know	this	because	another	letter	from	Briggs	to	Ussher,	dated
1610,	mentions	calculating	eclipses,	and	because	Briggs	had	earlier	published
two	books	of	numerical	tables,	one	related	to	the	North	Pole	and	the	other	to
navigation.	All	of	these	works	had	required	vast	quantities	of	complicated
arithmetic	and	trigonometry.	Napier’s	invention	would	save	a	great	deal	of
tedious	labour.	But	the	more	Briggs	studied	the	book,	the	more	convinced	he
became	that	although	Napier’s	strategy	was	wonderful,	he’d	got	his	tactics
wrong.	Briggs	came	up	with	a	simple	but	effective	improvement,	and	made	the
long	journey	to	Scotland.	When	they	met,	‘almost	one	quarter	of	an	hour	was
spent,	each	beholding	the	other	with	admiration,	before	one	word	was	spoken’.2

What	was	it	that	excited	so	much	admiration?	The	vital	observation,	obvious	to
anyone	learning	arithmetic,	was	that	adding	numbers	is	relatively	easy,	but
multiplying	them	is	not.	Multiplication	requires	many	more	arithmetical
operations	than	addition.	For	example,	adding	two	ten-digit	numbers	involves
about	ten	simple	steps,	but	multiplication	requires	200.	With	modern	computers,
this	issue	is	still	important,	but	now	it	is	tucked	away	behind	the	scenes	in	the
algorithms	used	for	multiplication.	But	in	Napier’s	day	it	all	had	to	be	done	by
hand.	Wouldn’t	it	be	great	if	there	were	some	mathematical	trick	that	would
convert	those	nasty	multiplications	into	nice,	quick	addition	sums?	It	sounds	too
good	to	be	true,	but	Napier	realised	that	it	was	possible.	The	trick	was	to	work
with	powers	of	a	fixed	number.

In	algebra,	powers	of	an	unknown	x	are	indicated	by	a	small	raised	number.
That	is,	xx	=	x2,	xxx	=	x3,	xxxx	=	x4,	and	so	on,	where	as	usual	in	algebra	placing
two	letters	next	to	each	other	means	you	should	multiply	them	together.	So,	for



instance,	104	=	10	×	10	×	10	×	10	=	10,000.	You	don’t	need	to	play	around	with
such	expressions	for	long	before	you	discover	an	easy	way	to	work	out,	say,	104
×	103.	Just	write	down

The	number	of	0s	in	the	answer	is	7,	which	equals	4	+	3.	The	first	step	in	the
calculation	shows	why	it	is	4	+	3:	we	stick	four	10s	and	three	10s	next	to	each
other.	In	short,

104	×	103	=	104	+	3	=	107

In	the	same	way,	whatever	the	value	of	x	might	be,	if	we	multiply	its	ath	power
by	its	bth	power,	where	a	and	b	are	whole	numbers,	then	we	get	the	(a	+	b)th
power:

xa	xb	=	xa+b

This	may	seem	an	innocuous	formula,	but	on	the	left	it	multiplies	two	quantities
together,	while	on	the	right	the	main	step	is	to	add	a	and	b,	which	is	simpler.

Suppose	you	wanted	to	multiply,	say,	2.67	by	3.51.	By	long	multiplication
you	get	9.3717,	which	to	two	decimal	places	is	9.37.	What	if	you	try	to	use	the
previous	formula?	The	trick	lies	in	the	choice	of	x.	If	we	take	x	to	be	1.001,	then
a	bit	of	arithmetic	reveals	that

(1.001)983	=	2.67
(1.001)1256	=	3.51

correct	to	two	decimal	places.	The	formula	then	tells	us	that	2.87	×	3.41	is

(1.001)983	+	1256	=	(1.001)2239

which,	to	two	decimal	places,	is	9.37.
The	core	of	the	calculation	is	an	easy	addition:	983	+	1256	=	2239.	However,

if	you	try	to	check	my	arithmetic	you	will	quickly	realise	that	if	anything	I’ve
made	the	problem	harder,	not	easier.	To	work	out	(1.001)983	you	have	to
multiply	1.001	by	itself	983	times.	And	to	discover	that	983	is	the	right	power	to



use,	you	have	to	do	even	more	work.	So	at	first	sight	this	seems	like	a	pretty
useless	idea.

Napier’s	great	insight	was	that	this	objection	is	wrong.	But	to	overcome	it,
some	hardy	soul	has	to	calculate	lots	of	powers	of	1.001,	starting	with	(1.001)2
and	going	up	to	something	like	(1.001)10,000.	Then	they	can	publish	a	table	of	all
these	powers.	After	that,	most	of	the	work	has	been	done.	You	just	have	to	run
your	fingers	down	the	successive	powers	until	you	see	2.67	next	to	983;	you
similarly	locate	3.51	next	to	1256.	Then	you	add	those	two	numbers	to	get	2239.
The	corresponding	row	of	the	table	tells	you	that	this	power	of	1.001	is	9.37.	Job
done.

Really	accurate	results	require	powers	of	something	a	lot	closer	to	1,	such	as
1.000001.	This	makes	the	table	far	bigger,	with	a	million	or	so	powers.	Doing
the	calculations	for	that	table	is	a	huge	enterprise.	But	it	has	to	be	done	only
once.	If	some	self-sacrificing	benefactor	makes	the	effort	up	front,	succeeding
generations	will	be	saved	a	gigantic	amount	of	arithmetic.

In	the	context	of	this	example,	we	can	say	that	the	powers	983	and	1256	are
the	logarithms	of	the	numbers	2.67	and	3.51	that	we	wish	to	multiply.	Similarly
2239	is	the	logarithm	of	their	product	9.38.	Writing	log	as	an	abbreviation,	what
we	have	done	amounts	to	the	equation

log	ab	=	log	a	+	log	b

which	is	valid	for	any	numbers	a	and	b.	The	rather	arbitrary	choice	of	1.001	is
called	the	base.	If	we	use	a	different	base,	the	logarithms	that	we	calculate	are
also	different,	but	for	any	fixed	base	everything	works	the	same	way.

This	is	what	Napier	should	have	done.	But	for	reasons	that	we	can	only	guess
at,	he	did	something	slightly	different.	Briggs,	approaching	the	technique	from	a
fresh	perspective,	spotted	two	ways	to	improve	on	Napier’s	idea.

When	Napier	started	thinking	about	powers	of	numbers,	in	the	late	sixteenth
century,	the	idea	of	reducing	multiplication	to	addition	was	already	circulating
among	mathematicians.	A	rather	complicated	method	known	as
‘prosthapheiresis’,	based	on	a	formula	involving	trigonometric	functions,	was	in
use	in	Denmark.3	Napier,	intrigued,	was	smart	enough	to	realise	that	powers	of	a
fixed	number	could	do	the	same	job	more	simply.	The	necessary	tables	didn’t
exist	–	but	that	was	easily	remedied.	Some	public-spirited	soul	must	carry	out
the	work.	Napier	volunteered	himself	for	the	task,	but	he	made	a	strategic	error.



Instead	of	using	a	base	that	was	slightly	bigger	than	1,	he	used	a	base	slightly
smaller	than	1.	In	consequence,	the	sequence	of	powers	started	out	with	big
numbers,	which	got	successively	smaller.	This	made	the	calculations	slightly
more	clumsy.

Briggs	spotted	this	problem,	and	saw	how	to	deal	with	it:	use	a	base	slightly
larger	than	1.	He	also	spotted	a	subtler	problem,	and	dealt	with	that	as	well.	If
Napier’s	method	were	modified	to	work	with	powers	of	something	like
1.0000000001,	there	would	be	no	straightforward	relation	between	the
logarithms	of,	say,	12.3456	and	1.23456.	So	it	wasn’t	entirely	clear	when	the
table	could	stop.	The	source	of	the	problem	was	the	value	of	log	10,	because

log	10x	=	log	10	+	log	x

Unfortunately	log	10	was	messy:	with	the	base	1.0000000001	the	logarithm	of
10	was	23,025,850,929.	Briggs	thought	it	would	be	much	nicer	if	the	base	could
be	chosen	so	that	log	10	=	1.	Then	log	10x	=	1	+	log	x,	so	that	whatever	log
1.23456	might	be,	you	just	had	to	add	1	to	it	to	get	log	12.3456.	Now	tables	of
logarithms	need	only	run	from	1	to	10.	If	bigger	numbers	turned	up,	you	just
added	the	appropriate	whole	number.

To	make	log	10	=	1,	you	do	what	Napier	did,	using	a	base	of	1.0000000001,
but	then	you	divide	every	logarithm	by	that	curious	number	23,025,850,929.	The
resulting	table	consists	of	logarithms	to	base	10,	which	I’ll	write	as	log10	x.	They
satisfy

log10xy	=	log10x	+	log10y

as	before,	but	also

log10	10x	=	log10x	+	1

Within	two	years	Napier	was	dead,	so	Briggs	started	work	on	a	table	of	base-10
logarithms.	In	1617	he	published	Logarithmorum	Chilias	Prima	(‘Logarithms	of
the	First	Chiliad’),	the	logarithms	of	the	integers	from	1	to	1000	accurate	to	14
decimal	places.	In	1624	he	followed	it	up	with	Arithmetic	Logarithmica
(‘Arithmetic	of	Logarithms’),	a	table	of	base-10	logarithms	of	numbers	from	1	to
20,000	and	from	90,000	to	100,000,	to	the	same	accuracy.	Others	rapidly
followed	Briggs’s	lead,	filling	in	the	large	gap	and	developing	auxiliary	tables
such	as	logarithms	of	trigonometric	functions	like	log	sin	x.



The	same	ideas	that	inspired	logarithms	allow	us	to	define	powers	xa	of	a
positive	variable	x	for	values	of	a	that	are	not	positive	whole	numbers.	All	we
have	to	do	is	insist	that	our	definitions	must	be	consistent	with	the	equation	xaxb
=	xa+b,	and	follow	our	noses.	To	avoid	nasty	complications,	it	is	best	to	assume	x
is	positive,	and	to	define	xa	so	that	this	is	also	positive.	(For	negative	x,	it’s	best
to	introduce	complex	numbers,	as	in	Chapter	5.)

For	example,	what	is	x0?	Bearing	in	mind	that	x1	=	x,	the	formula	says	that	x0
must	satisfy	x0x	=	x0+1	=	x.	Dividing	by	x	we	find	that	x0	=	1.	Now	what	about	x-
1?	Well,	the	formula	says	that	x−1x	=	x−1+1	=	x0	=	1.	Dividing	by	x,	we	get	x−1	=
1/x.	Similarly	x−2	=	1/x2,	x−3	=	1/x3,	and	so	on.

It	starts	to	get	more	interesting,	and	potentially	very	useful,	when	we	think
about	x1/2.	This	has	to	satisfy	x1/2	x1/2	=	x1/2+1/2	=	x1	=	x.	So	x1/2,	multiplied	by
itself,	is	x.	The	only	number	with	this	property	is	the	square	root	of	x.	So	x1/2	=	

.	Similarly,	x1/3	=	 ,	the	cube	root.	Continuing	in	this	manner	we	can	define
xp/q	for	any	fraction	p/q.	Then,	using	fractions	to	approximate	real	numbers,	we
can	define	xa	for	any	real	a.	And	the	equation	xaxb	=	xa+b	still	holds.

It	also	follows	that	log	 	log	x	and	log	 	log	x,	so	we	can	calculate
square	roots	and	cube	roots	easily	using	a	table	of	logarithms.	For	example,	to
find	the	square	root	of	a	number	we	form	its	logarithm,	divide	by	2,	and	then
work	out	which	number	has	the	result	as	its	logarithm.	For	cube	roots,	do	the
same	but	divide	by	3.	Traditional	methods	for	these	problems	were	tedious	and
complicated.	You	can	see	why	Napier	showcased	square	and	cube	roots	in	the
preface	to	his	book.

As	soon	as	complete	tables	of	logarithms	were	available,	they	became	an
indispensable	tool	for	scientists,	engineers,	surveyors,	and	navigators.	They
saved	time,	they	saved	effort,	and	they	increased	the	likelihood	that	the	answer
was	correct.	Early	on,	astronomy	was	a	major	beneficiary,	because	astronomers
routinely	needed	to	perform	long	and	difficult	calculations.	The	French
mathematician	and	astronomer	Pierre	Simon	de	Laplace	said	that	the	invention
of	logarithms	‘reduces	to	a	few	days	the	labour	of	many	months,	doubles	the	life
of	the	astronomer,	and	spares	him	the	errors	and	disgust’.	As	the	use	of
machinery	in	manufacturing	grew,	engineers	started	to	make	more	and	more	use
of	mathematics	–	to	design	complex	gears,	analyse	the	stability	of	bridges	and
buildings,	and	construct	cars,	lorries,	ships,	and	aeroplanes.	Logarithms	were	a
firm	part	of	the	school	mathematics	curriculum	a	few	decades	ago.	And



engineers	carried	what	was	in	effect	an	analogue	calculator	for	logarithms	in
their	pockets,	a	physical	representation	of	the	basic	equation	for	logarithms	for
on-the-spot	use.	They	called	it	a	slide	rule,	and	they	used	it	routinely	in
applications	ranging	from	architecture	to	aircraft	design.

The	first	slide	rule	was	constructed	by	an	English	mathematician,	William
Oughtred,	in	1630,	using	circular	scales.	He	modified	the	design	in	1632,	by
making	the	two	rulers	straight.	This	was	the	first	slide	rule.	The	idea	is	simple:
when	you	place	two	rods	end	to	end,	their	lengths	add.	If	the	rods	are	marked
using	a	logarithmic	scale,	in	which	numbers	are	spaced	according	to	their
logarithms,	then	the	corresponding	numbers	multiply.	For	instance,	set	the	1	on
one	rod	against	the	2	on	the	other.	Then	against	any	number	x	on	the	first	rod,
we	find	2x	on	the	second.	So	opposite	3	we	find	6,	and	so	on,	see	Figure	11.	If
the	numbers	are	more	complicated,	say	2.67	and	3.51,	we	place	1	opposite	2.67
and	read	off	whatever	is	opposite	3.59,	namely	9.37.	It’s	just	as	easy.

Fig	11	Multiplying	2	by	3	on	a	slide	rule.

Engineers	quickly	developed	fancy	slide	rules	with	trigonometric	functions,
square	roots,	log-	log	scales	(logarithms	of	logarithms)	to	calculate	powers,	and
so	on.	Eventually	logarithms	took	a	back	seat	to	digital	computers,	but	even	now
the	logarithm	still	plays	a	huge	role	in	science	and	technology,	alongside	its
inseparable	companion,	the	exponential	function.	For	base-10	logarithms,	this	is
the	function	10x;	for	natural	logarithms,	the	function	ex,	where	e	=	2.71828,
approximately.	In	each	pair,	the	two	functions	are	inverse	to	each	other.	If	you
take	a	number,	form	its	logarithm,	and	then	form	the	exponential	of	that,	you	get
back	the	number	you	started	with.

Why	do	we	need	logarithms	now	that	we	have	computers?
In	2011	a	magnitude	9.0	earthquake	just	off	the	east	coast	of	Japan	caused	a

gigantic	tsunami,	which	devastated	a	large	populated	area	and	killed	around
25,000	people.	On	the	coast	was	a	nuclear	power	plant,	Fukushima	Dai-ichi
(Fukushima	number	1	power	plant,	to	distinguish	it	from	a	second	nuclear	power



plant	situated	nearby).	It	comprised	six	separate	nuclear	reactors:	three	were	in
operation	when	the	tsunami	struck;	the	other	three	had	temporarily	ceased
operating	and	their	fuel	had	been	transferred	to	pools	of	water	outside	the
reactors	but	inside	the	reactor	buildings.

The	tsunami	overwhelmed	the	plant’s	defences,	cutting	the	supply	of
electrical	power.	The	three	operating	reactors	(numbers	1,	2,	and	3)	were	shut
down	as	a	safety	measure,	but	their	cooling	systems	were	still	needed	to	stop	the
fuel	from	melting.	However,	the	tsunami	also	wrecked	the	emergency
generators,	which	were	intended	to	power	the	cooling	system	and	other	safety-
critical	systems.	The	next	level	of	backup,	batteries,	quickly	ran	out	of	power.
The	cooling	system	stopped	and	the	nuclear	fuel	in	several	reactors	began	to
overheat.	Improvising,	the	operators	used	fire	engines	to	pump	seawater	into	the
three	operating	reactors,	but	this	reacted	with	the	zirconium	cladding	on	the	fuel
rods	to	produce	hydrogen.	The	build-up	of	hydrogen	caused	an	explosion	in	the
building	housing	Reactor	1.	Reactors	2	and	3	soon	suffered	the	same	fate.	The
water	in	the	pool	of	Reactor	4	drained	out,	leaving	its	fuel	exposed.	By	the	time
the	operators	regained	some	semblance	of	control,	at	least	one	reactor
containment	vessel	had	cracked,	and	radiation	was	leaking	out	into	the	local
environment.	The	Japanese	authorities	evacuated	200,000	people	from	the
surrounding	area	because	the	radiation	was	well	above	normal	safety	limits.	Six
months	later,	the	company	operating	the	reactors,	TEPCO,	stated	that	the
situation	remained	critical	and	much	more	work	would	be	needed	before	the
reactors	could	be	considered	fully	under	control,	but	claimed	the	leakage	had
been	stopped.

I	don’t	want	to	analyse	the	merits	or	otherwise	of	nuclear	power	here,	but	I	do
want	to	show	how	the	logarithm	answers	a	vital	question:	if	you	know	how
much	radioactive	material	has	been	released,	and	of	what	kind,	how	long	will	it
remain	in	the	environment,	where	it	could	be	hazardous?

Radioactive	elements	decay;	that	is,	they	turn	into	other	elements	through
nuclear	processes,	emitting	nuclear	particles	as	they	do	so.	It	is	these	particles
that	constitute	the	radiation.	The	level	of	radioactivity	falls	away	over	time	just
as	the	temperature	of	a	hot	body	falls	when	it	cools:	exponentially.	So,	in
appropriate	units,	which	I	won’t	discuss	here,	the	level	of	radioactivity	N(t)	at
time	t	follows	the	equation

N(t)	=	N0	e-kt



where	N0	is	the	initial	level	and	k	is	a	constant	depending	on	the	element
concerned.	More	precisely,	it	depends	on	which	form,	or	isotope,	of	the	element
we	are	considering.

A	convenient	measure	of	the	time	radioactivity	persists	is	the	half-life,	a
concept	first	introduced	in	1907.	This	is	the	time	it	takes	for	an	initial	level	N0	to
drop	to	half	that	size.	To	calculate	the	half-life,	we	solve	the	equation

by	taking	logarithms	of	both	sides.	The	result	is

and	we	can	work	this	out	because	k	is	known	from	experiments.
The	half-life	is	a	convenient	way	to	assess	how	long	the	radiation	will	persist.

Suppose	that	the	half-life	is	one	week,	for	instance.	Then	the	original	rate	at
which	the	material	emits	radiation	halves	after	1	week,	is	down	to	one	quarter
after	2	weeks,	one	eighth	after	3	weeks,	and	so	on.	It	takes	10	weeks	to	drop	to
one	thousandth	of	its	original	level	(actually	1/1024),	and	20	weeks	to	drop	to
one	millionth.

In	accidents	with	conventional	nuclear	reactors,	the	most	important
radioactive	products	are	iodine-131	(a	radioactive	isotope	of	iodine)	and
caesium-137	(a	radioactive	isotope	of	caesium).	The	first	can	cause	thyroid
cancer,	because	the	thyroid	gland	concentrates	iodine.	The	half-life	of	iodine-
131	is	only	8	days,	so	it	causes	little	damage	if	the	right	medication	is	available,
and	its	dangers	decrease	fairly	rapidly	unless	it	continues	to	leak.	The	standard
treatment	is	to	give	people	iodine	tablets,	which	reduce	the	amount	of	the
radioactive	form	that	is	taken	up	by	the	body,	but	the	most	effective	remedy	is	to
stop	drinking	contaminated	milk.

Caesium-137	is	very	different:	it	has	a	half-life	of	30	years.	It	takes	about	200
years	for	the	level	of	radioactivity	to	drop	to	one	hundredth	of	its	initial	value,	so
it	remains	a	hazard	for	a	very	long	time.	The	main	practical	issue	in	a	reactor
accident	is	contamination	of	soil	and	buildings.	Decontamination	is	to	some
extent	feasible,	but	expensive.	For	example,	the	soil	can	be	removed,	carted
away,	and	stored	somewhere	safe.	But	this	creates	huge	amounts	of	low-level
radioactive	waste.

Radioactive	decay	is	just	one	area	of	many	in	which	Napier’s	and	Briggs’s



logarithms	continue	to	serve	science	and	humanity.	If	you	thumb	through	later
chapters	you	will	find	them	popping	up	in	thermodynamics	and	information
theory,	for	example.	Even	though	fast	computers	have	now	made	logarithms
redundant	for	their	original	purpose,	rapid	calculations,	they	remain	central	to
science	for	conceptual	rather	than	computational	reasons.

Another	application	of	logarithms	comes	from	studies	of	human	perception:	how
we	sense	the	world	around	us.	The	early	pioneers	of	the	psychophysics	of
perception	made	extensive	studies	of	vision,	hearing,	and	touch,	and	they	turned
up	some	intriguing	mathematical	regularities.

In	the	1840s	a	German	doctor,	Ernst	Weber,	carried	out	experiments	to
determine	how	sensitive	human	perception	is.	His	subjects	were	given	weights	to
hold	in	their	hands,	and	asked	when	they	could	tell	that	one	weight	felt	heavier
than	another.	Weber	could	then	work	out	what	the	smallest	detectable	difference
in	weight	was.	Perhaps	surprisingly,	this	difference	(for	a	given	experimental
subject)	was	not	a	fixed	amount.	It	depended	on	how	heavy	the	weights	being
compared	were.	People	didn’t	sense	an	absolute	minimum	difference	–	50
grams,	say.	They	sensed	a	relative	minimum	difference	–	1%	of	the	weights
under	comparison,	say.	That	is,	the	smallest	difference	that	the	human	senses	can
detect	is	proportional	to	the	stimulus,	the	actual	physical	quantity.

In	the	1850s	Gustav	Fechner	rediscovered	the	same	law,	and	recast	it
mathematically.	This	led	him	to	an	equation,	which	he	called	Weber’s	law,	but
nowadays	it	is	usually	called	Fechner’s	law	(or	the	Weber–Fechner	law	if	you’re
a	purist).	It	states	that	the	perceived	sensation	is	proportional	to	the	logarithm	of
the	stimulus.	Experiments	suggested	that	this	law	applies	not	only	to	our	sense	of
weight	but	to	vision	and	hearing	as	well.	If	we	look	at	a	light,	the	brightness	that
we	perceive	varies	as	the	logarithm	of	the	actual	energy	output.	If	one	source	is
ten	times	as	bright	as	another,	then	the	difference	we	perceive	is	constant,
however	bright	the	two	sources	really	are.	The	same	goes	for	the	loudness	of
sounds:	a	bang	with	ten	times	as	much	energy	sounds	a	fixed	amount	louder.

The	Weber–Fechner	law	is	not	totally	accurate,	but	it’s	a	good	approximation.
Evolution	pretty	much	had	to	come	up	with	something	like	a	logarithmic	scale,
because	the	external	world	presents	our	senses	with	stimuli	over	a	huge	range	of
sizes.	A	noise	may	be	little	more	than	a	mouse	scuttling	in	the	hedgerow,	or	it
may	be	a	clap	of	thunder;	we	need	to	be	able	to	hear	both.	But	the	range	of
sound	levels	is	so	vast	that	no	biological	sensory	device	can	respond	in
proportion	to	the	energy	generated	by	the	sound.	If	an	ear	that	could	hear	the
mouse	did	that,	then	a	thunderclap	would	destroy	it.	If	it	tuned	the	sound	levels



down	so	that	the	thunderclap	produced	a	comfortable	signal,	it	wouldn’t	be	able
to	hear	the	mouse.	The	solution	is	to	compress	the	energy	levels	into	a
comfortable	range,	and	the	logarithm	does	exactly	that.	Being	sensitive	to
proportions	rather	than	absolutes	makes	excellent	sense,	and	makes	for	excellent
senses.

Our	standard	unit	for	noise,	the	decibel,	encapsulates	the	Weber–Fechner	law
in	a	definition.	It	measures	not	absolute	noise,	but	relative	noise.	A	mouse	in	the
grass	produces	about	10	decibels.	Normal	conversation	between	people	a	metre
apart	takes	place	at	40–60	decibels.	An	electric	mixer	directs	about	60	decibels
at	the	person	using	it.	The	noise	in	a	car,	caused	by	engine	and	tyres,	is	60–80
decibels.	A	jet	airliner	a	hundred	metres	away	produces	110–140	decibels,	rising
to	150	at	thirty	metres.	A	vuvuzela	(the	annoying	plastic	trumpet-like	instrument
widely	heard	during	the	football	World	Cup	in	2010	and	brought	home	as
souvenirs	by	misguided	fans)	generates	120	decibels	at	one	metre;	a	military
stun	grenade	produces	up	to	180	decibels.

Scales	like	these	are	widely	encountered	because	they	have	a	safety	aspect.
The	level	at	which	sound	can	potentially	cause	hearing	damage	is	about	120
decibels.	Please	throw	away	your	vuvuzela.



3	Ghosts	of	departed	quantities

Calculus

What	does	it	say?

To	find	the	instantaneous	rate	of	change	of	a	quantity	that	varies	with	(say)	time,
calculate	how	its	value	changes	over	a	short	time	interval	and	divide	by	the	time
concerned.	Then	let	that	interval	become	arbitrarily	small.

Why	is	that	important?

It	provides	a	rigorous	basis	for	calculus,	the	main	way	scientists	model	the
natural	world.

What	did	it	lead	to?

Calculation	of	tangents	and	areas.	Formulas	for	volumes	of	solids	and	lengths	of
curves.	Newton’s	laws	of	motion,	differential	equations.	The	laws	of
conservation	of	energy	and	momentum.	Most	of	mathematical	physics.



	

In	1665	Charles	II	was	king	of	England	and	his	capital	city,	London,	was	a
sprawling	metropolis	of	half	a	million	people.	The	arts	flourished,	and	science
was	in	the	early	stages	of	an	ever-accelerating	ascendancy.	The	Royal	Society,
perhaps	the	oldest	scientific	society	now	in	existence,	had	been	founded	five
years	earlier,	and	Charles	had	granted	it	a	royal	charter.	The	rich	lived	in
impressive	houses,	and	commerce	was	thriving,	but	the	poor	were	crammed	into
narrow	streets	overshadowed	by	ramshackle	buildings	that	jutted	out	ever	further
as	they	rose,	storey	by	storey.	Sanitation	was	inadequate;	rats	and	other	vermin
were	everywhere.	By	the	end	of	1666,	one	fifth	of	London’s	population	had	been
killed	by	bubonic	plague,	spread	first	by	rats	and	then	by	people.	It	was	the
worst	disaster	in	the	capital’s	history,	and	the	same	tragedy	played	out	all	over
Europe	and	North	Africa.	The	king	departed	in	haste	for	the	more	sanitary
countryside	of	Oxfordshire,	returning	early	in	1666.	No	one	knew	what	caused
plague,	and	the	city	authorities	tried	everything	–	burning	fires	continually	to
cleanse	the	air,	burning	anything	that	gave	off	a	strong	smell,	burying	the	dead
quickly	in	pits.	They	killed	many	dogs	and	cats,	which	ironically	removed	two
controls	on	the	rat	population.

During	those	two	years,	an	obscure	and	unassuming	undergraduate	at	Trinity
College,	Cambridge,	completed	his	studies.	Hoping	to	avoid	the	plague,	he
returned	to	the	house	of	his	birth,	from	which	his	mother	managed	a	farm.	His
father	had	died	shortly	before	he	was	born,	and	he	had	been	brought	up	by	his
maternal	grandmother.	Perhaps	inspired	by	rural	peace	and	quiet,	or	lacking
anything	better	to	do	with	his	time,	the	young	man	thought	about	science	and
mathematics.	Later	he	wrote:	‘In	those	days	I	was	in	the	prime	of	my	life	for
invention,	and	minded	mathematics	and	[natural]	philosophy	more	than	at	any
other	time	since.’	His	researches	led	him	to	understand	the	importance	of	the
inverse	square	law	of	gravity,	an	idea	that	had	been	hanging	around	ineffectually
for	at	least	50	years.	He	worked	out	a	practical	method	for	solving	problems	in
calculus,	another	concept	that	was	in	the	air	but	had	not	been	formulated	in	any
generality.	And	he	discovered	that	white	sunlight	is	composed	of	many	different
colours	–	all	the	colours	of	the	rainbow.

When	the	plague	died	down,	he	told	no	one	about	the	discoveries	he	had
made.	He	returned	to	Cambridge,	took	a	master’s	degree,	and	became	a	fellow	at
Trinity.	Elected	to	the	Lucasian	Chair	of	Mathematics,	he	finally	began	to
publish	his	ideas	and	to	develop	new	ones.



The	young	man	was	Isaac	Newton.	His	discoveries	created	a	revolution	in
science,	bringing	about	a	world	that	Charles	II	would	never	have	believed	could
exist:	buildings	with	more	than	a	hundred	floors,	horseless	carriages	doing	80
mph	along	the	M6	motorway	while	the	driver	listens	to	music	using	a	magic	disc
made	from	a	strange	glasslike	material,	heavier-than-air	flying	machines	that
cross	the	Atlantic	in	six	hours,	colour	pictures	that	move,	and	boxes	you	carry	in
your	pocket	that	talk	to	the	other	side	of	the	world…

Previously,	Galileo	Galilei,	Johannes	Kepler,	and	others	had	turned	up	the
corner	of	nature’s	rug	and	seen	a	few	of	the	wonders	concealed	beneath	it.	Now
Newton	cast	the	rug	aside.	Not	only	did	he	reveal	that	the	universe	has	secret
patterns,	laws	of	nature;	he	also	provided	mathematical	tools	to	express	those
laws	precisely	and	to	deduce	their	consequences.	The	system	of	the	world	was
mathematical;	the	heart	of	God’s	creation	was	a	soulless	clockwork	universe.

The	world	view	of	humanity	did	not	suddenly	switch	from	religious	to
secular.	It	still	has	not	done	so	completely,	and	probably	never	will.	But	after
Newton	published	his	Philosophiæ	Naturalis	Principia	Mathematica
(‘Mathematical	Principles	of	Natural	Philosophy’)	the	‘System	of	the	World’	–
the	book’s	subtitle	–	was	no	longer	solely	the	province	of	organised	religion.
Even	so,	Newton	was	not	the	first	modern	scientist;	he	had	a	mystical	side	too,
devoting	years	of	his	life	to	alchemy	and	religious	speculation.	In	notes	for	a
lecture1	the	economist	John	Maynard	Keynes,	also	a	Newtonian	scholar,	wrote:

Newton	was	not	the	first	of	the	age	of	reason.	He	was	the	last	of	the
magicians,	the	last	of	the	Babylonians	and	Sumerians,	the	last	great
mind	which	looked	out	on	the	visible	and	intellectual	world	with	the
same	eyes	as	those	who	began	to	build	our	intellectual	inheritance
rather	less	than	10,000	years	ago.	Isaac	Newton,	a	posthumous	child
born	with	no	father	on	Christmas	Day,	1642,	was	the	last
wonderchild	to	whom	the	Magi	could	do	sincere	and	appropriate
homage.

Today	we	mostly	ignore	Newton’s	mystic	aspect,	and	remember	him	for	his
scientific	and	mathematical	achievements.	Paramount	among	them	are	his
realisation	that	nature	obeys	mathematical	laws	and	his	invention	of	calculus,	the
main	way	we	now	express	those	laws	and	derive	their	consequences.	The
German	mathematician	and	philosopher	Gottfried	Wilhelm	Leibniz	also
developed	calculus,	more	or	less	independently,	at	much	the	same	time,	but	he
did	little	with	it.	Newton	used	calculus	to	understand	the	universe,	though	he



kept	it	under	wraps	in	his	published	work,	recasting	it	in	classical	geometric
language.	He	was	a	transitional	figure	who	moved	humanity	away	from	a
mystical,	medieval	outlook	and	ushered	in	the	modern	rational	world	view.	After
Newton,	scientists	consciously	recognised	that	the	universe	has	deep
mathematical	patterns,	and	were	equipped	with	powerful	techniques	to	exploit
that	insight.

The	calculus	did	not	arise	‘out	of	the	blue’.	It	came	from	questions	in	both	pure
and	applied	mathematics,	and	its	antecedents	can	be	traced	back	to	Archimedes.
Newton	himself	famously	remarked,	‘If	I	have	seen	a	little	further	it	is	by
standing	on	the	shoulders	of	giants.’2	Paramount	among	those	giants	were	John
Wallis,	Pierre	de	Fermat,	Galileo,	and	Kepler.	Wallis	developed	a	precursor	to
calculus	in	his	1656	Arithmetica	Infinitorum	(‘Arithmetic	of	the	Infinite’).
Fermat’s	1679	De	Tangentibus	Linearum	Curvarum	(‘On	Tangents	to	Curved
Lines’)	presented	a	method	for	finding	tangents	to	curves,	a	problem	intimately
related	to	calculus.	Kepler	formulated	three	basic	laws	of	planetary	motion,
which	led	Newton	to	his	law	of	gravity,	the	subject	of	the	next	chapter.	Galileo
made	big	advances	in	astronomy,	but	he	also	investigated	mathematical	aspects
of	nature	down	on	the	ground,	publishing	his	discoveries	in	De	Motu	(‘On
Motion’)	in	1590.	He	investigated	how	a	falling	body	moves,	finding	an	elegant
mathematical	pattern.	Newton	developed	this	hint	into	three	general	laws	of
motion.

To	understand	Galileo’s	pattern	we	need	two	everyday	concepts	from
mechanics:	velocity	and	acceleration.	Velocity	is	how	fast	something	is	moving,
and	in	which	direction.	If	we	ignore	the	direction,	we	get	the	body’s	speed.
Acceleration	is	a	change	in	velocity,	which	usually	involves	a	change	in	speed
(an	exception	arises	when	the	speed	remains	the	same	but	the	direction	changes).
In	everyday	life	we	use	acceleration	to	mean	speeding	up	and	deceleration	for
slowing	down,	but	in	mechanics	both	changes	are	accelerations:	the	first
positive,	the	second	negative.	When	we	drive	along	a	road	the	speed	of	the	car	is
displayed	on	the	speedometer	–	it	might,	for	instance,	be	50	mph.	The	direction
is	whichever	way	the	car	is	pointing.	When	we	put	our	foot	down,	the	car
accelerates	and	the	speed	increases;	when	we	stamp	on	the	brakes,	the	car
decelerates	–	negative	acceleration.

If	the	car	is	moving	at	a	fixed	speed,	it’s	easy	to	work	out	what	that	speed	is.
The	abbreviation	mph	gives	it	away:	miles	per	hour.	If	the	car	travels	50	miles	in
1	hour,	we	divide	the	distance	by	the	time,	and	that’s	the	speed.	We	don’t	need
to	drive	for	an	hour:	if	the	car	goes	5	miles	in	6	minutes,	both	distance	and	time



are	divided	by	10,	and	their	ratio	is	still	50	mph.	In	short,

speed	=	distance	travelled	divided	by	time	taken.

In	the	same	way,	a	fixed	rate	of	acceleration	is	given	by

acceleration	=	change	in	speed	divided	by	time	taken.

This	all	seems	straightforward,	but	conceptual	difficulties	arise	when	the	speed
or	acceleration	is	not	fixed.	And	they	can’t	both	be	constant,	because	constant
(and	nonzero)	acceleration	implies	a	changing	speed.	Suppose	you	drive	along	a
country	lane,	speeding	up	on	the	straights,	slowing	for	the	corners.	Your	speed
keeps	changing,	and	so	does	your	acceleration.	How	can	we	work	them	out	at
any	given	instant	of	time?	The	pragmatic	answer	is	to	take	a	short	interval	of
time,	say	a	second.	Then	your	instantaneous	speed	at	(say)	11.30	am	is	the
distance	you	travel	between	that	moment	and	one	second	later,	divided	by	one
second.	The	same	goes	for	instantaneous	acceleration.

Except	…	that’s	not	quite	your	instantaneous	speed.	It’s	really	an	average
speed,	over	a	one-second	interval	of	time.	There	are	circumstances	in	which	one
second	is	a	huge	length	of	time	–	a	guitar	string	playing	middle	C	vibrates	440
times	every	second;	average	its	motion	over	an	entire	second	and	you’ll	think
it’s	standing	still.	The	answer	is	to	consider	a	shorter	interval	of	time	–	one	ten
thousandth	of	a	second,	perhaps.	But	this	still	doesn’t	capture	instantaneous
speed.	Visible	light	vibrates	one	quadrillion	(1015)	times	every	second,	so	the
appropriate	time	interval	is	less	than	one	quadrillionth	of	a	second.	And	even
then	…	well,	to	be	pedantic,	that’s	still	not	an	instant.	Pursuing	this	line	of
thought,	it	seems	to	be	necessary	to	use	an	interval	of	time	that	is	shorter	than
any	other	interval.	But	the	only	number	like	that	is	0,	and	that’s	useless,	because
now	the	distance	travelled	is	also	0,	and	0/0	is	meaningless.

Early	pioneers	ignored	these	issues	and	took	a	pragmatic	view.	Once	the
probable	error	in	your	measurements	exceeds	the	increased	precision	you	would
theoretically	get	by	using	smaller	intervals	of	time,	there’s	no	point	in	doing	so.
The	clocks	in	Galileo’s	day	were	very	inaccurate,	so	he	measured	time	by
humming	tunes	to	himself	–	a	trained	musician	can	subdivide	a	note	into	very
short	intervals.	Even	then,	timing	a	falling	body	is	tricky,	so	Galileo	hit	on	the
trick	of	slowing	the	motion	down	by	rolling	balls	down	an	inclined	slope.	Then
he	observed	the	position	of	the	ball	at	successive	intervals	of	time.	What	he
found	(I’m	simplifying	the	numbers	to	make	the	pattern	clear,	but	it’s	the	same



pattern)	is	that	for	times	0,	1,	2,	3,	4,	5,	6,	…	these	positions	were
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The	distance	was	(proportional	to)	the	square	of	the	time.	What	about	the
speeds?	Averaged	over	successive	intervals,	these	were	the	differences
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between	the	successive	squares.	In	each	interval,	other	than	the	first,	the	average
speed	increased	by	2	units.	It’s	a	striking	pattern	–	all	the	more	so	to	Galileo
when	he	dug	something	very	similar	out	of	dozens	of	measurements	with	balls
of	many	different	masses	on	slopes	with	many	different	inclinations.

From	these	experiments	and	the	observed	pattern,	Galileo	deduced	something
wonderful.	The	path	of	a	falling	body,	or	one	thrown	into	the	air,	such	as	a
cannonball,	is	a	parabola.	This	is	a	U-shaped	curve,	known	to	the	ancient
Greeks.	(The	U	is	upside	down	in	this	case.	I’m	ignoring	air	resistance,	which
changes	the	shape:	it	didn’t	have	much	effect	on	Galileo’s	rolling	balls.)	Kepler
encountered	a	related	curve,	the	ellipse,	in	his	analysis	of	planetary	orbits:	this
must	have	seemed	significant	to	Newton	too,	but	that	story	must	wait	until	the
next	chapter.

With	only	this	particular	series	of	experiments	to	go	on,	it’s	not	clear	what
general	principles	underlie	Galileo’s	pattern.	Newton	realised	that	the	source	of
the	pattern	is	rates	of	change.	Velocity	is	the	rate	at	which	position	changes	with
respect	to	time;	acceleration	is	the	rate	at	which	velocity	changes	with	respect	to
time.	In	Galileo’s	observations,	position	varied	according	to	the	square	of	time,
velocity	varied	linearly,	and	acceleration	didn’t	vary	at	all.	Newton	realised	that
in	order	to	gain	a	deeper	understanding	of	Galileo’s	patterns,	and	what	they
meant	for	our	view	of	nature,	he	had	to	come	to	grips	with	instantaneous	rates	of
change.	When	he	did,	out	popped	calculus.

You	might	expect	an	idea	as	important	as	calculus	to	be	announced	with	a
fanfare	of	trumpets	and	parades	through	the	streets.	However,	it	takes	time	for
the	significance	of	novel	ideas	to	sink	in	and	to	be	appreciated,	and	so	it	was
with	calculus.	Newton’s	work	on	the	topic	dates	from	1671	or	earlier,	when	he
wrote	The	Method	of	Fluxions	and	Infinite	Series.	We	are	unsure	of	the	date
because	the	book	was	not	published	until	1736,	nearly	a	decade	after	his	death.
Several	other	manuscripts	by	Newton	also	refer	to	ideas	that	we	now	recognise
as	differential	and	integral	calculus,	the	two	main	branches	of	the	subject.



Leibniz’s	notebooks	show	that	he	obtained	his	first	significant	results	in	calculus
in	1675,	but	he	published	nothing	on	the	topic	until	1684.

After	Newton	had	risen	to	scientific	prominence,	long	after	both	men	had
worked	out	the	basics	of	calculus,	some	of	Newton’s	friends	sparked	a	largely
pointless	but	heated	controversy	about	priority,	accusing	Leibniz	of	plagiarising
Newton’s	unpublished	manuscripts.	A	few	mathematicians	from	continental
Europe	responded	with	counter-claims	of	plagiarism	by	Newton.	English	and
continental	mathematicians	were	scarcely	on	speaking	terms	for	a	century,
which	caused	huge	damage	to	English	mathematicians,	but	none	whatsoever	to
the	continental	ones.	They	developed	calculus	into	a	central	tool	of	mathematical
physics	while	their	English	counterparts	were	seething	about	insults	to	Newton
instead	of	exploiting	insights	from	Newton.	The	story	is	tangled	and	still	subject
to	scholarly	disputation	by	historians	of	science,	but	broadly	speaking	it	seems
that	Newton	and	Leibniz	discovered	the	basic	ideas	of	calculus	independently	–
at	least,	as	independently	as	their	common	mathematical	and	scientific	culture
permitted.

Leibniz’s	notation	differs	from	Newton’s,	but	the	underlying	ideas	are	more
or	less	identical.	The	intuition	behind	them,	however,	is	different.	Leibniz’s
approach	was	a	formal	one,	manipulating	algebraic	symbols.	Newton	had	a
physical	model	at	the	back	of	his	mind,	in	which	the	function	under
consideration	was	a	physical	quantity	that	varies	with	time.	This	is	where	his
curious	term	‘fluxion’	comes	from	–	something	that	flows	as	time	passes.

Newton’s	method	can	be	illustrated	using	an	example:	a	quantity	y	that	is	the
square	x2	of	another	quantity	x.	(This	is	the	pattern	that	Galileo	found	for	a
rolling	ball:	its	position	is	proportional	to	the	square	of	the	time	that	has	elapsed.
So	there	y	would	be	position	and	x	time.	The	usual	symbol	for	time	is	t,	but	the
standard	coordinate	system	in	the	plane	uses	x	and	y.)	Start	by	introducing	a	new
quantity	o,	denoting	a	small	change	in	x.	The	corresponding	change	in	y	is	the
difference

(x	+	o)2	−	x2

which	simplifies	to	2xo	+	o2.	The	rate	of	change	(averaged	over	a	small	interval
of	length	o,	as	x	increases	to	x	+	o)	is	therefore



This	depends	on	o,	which	is	only	to	be	expected	since	we	are	averaging	the	rate
of	change	over	a	nonzero	interval.	However,	if	o	becomes	smaller	and	smaller,
‘flowing	towards’	zero,	the	rate	of	change	2x	+	o	gets	closer	and	closer	to	2x.
This	does	not	depend	on	o,	and	it	gives	the	instantaneous	rate	of	change	at	x.

Leibniz	performed	essentially	the	same	calculation,	replacing	o	by	dx	(‘small
difference	in	x’),	and	defining	dy	to	be	the	corresponding	small	change	in	y.
When	a	variable	y	depends	on	another	variable	x,	the	rate	of	change	of	y	with
respect	to	x	is	called	the	derivative	of	y.	Newton	wrote	the	derivative	of	y	by

placing	a	dot	above	it:	ẏ	Leibniz	wrote	 .	For	higher	derivatives,	Newton	used

more	dots,	while	Leibniz	wrote	things	like	 	Today	we	say	that	y	is	a	function
of	x	and	write	y	=	f(x),	but	this	concept	existed	only	in	rudimentary	form	at	the
time.	We	either	use	Leibniz’s	notation,	or	a	variant	of	Newton’s	in	which	the	dot
is	replaced	by	a	dash,	which	is	easier	to	print:	y′,	y″.	We	also	write	f′(x)	and	f″(x)
to	emphasise	that	the	derivatives	are	themselves	functions.	Calculating	the
derivative	is	called	differentiation.

Integral	calculus	–	finding	areas	–	turns	out	to	be	the	inverse	of	differential
calculus	–	finding	slopes.	To	see	why,	imagine	adding	a	thin	slice	on	the	end	of
the	shaded	area	of	Figure	12.	This	slice	is	very	close	to	a	long	thin	rectangle,	of
width	o	and	height	y.	Its	area	is	therefore	very	close	to	oy.	The	rate	at	which	the
area	changes,	with	respect	to	x,	is	the	ratio	oy/o,	which	equals	y.	So	the
derivative	of	the	area	is	the	original	function.	Both	Newton	and	Leibniz
understood	that	the	way	to	calculate	the	area,	a	process	called	integration,	is	the
reverse	of	differentiation	in	this	sense.	Leibniz	first	wrote	the	integral	using	the
symbol	omn.,	short	for	omnia,	or	‘sum’,	in	Latin.	Later	he	changed	this	to	∫,	an
old-fashioned	long	s,	also	standing	for	‘sum’.	Newton	had	no	systematic
notation	for	the	integral.



Fig	12	Adding	a	thin	slice	to	the	area	beneath	the	curve	y	=	f(x).

Newton	did	make	one	crucial	advance,	however.	Wallis	had	calculated	the
derivative	of	any	power	xa:	it	is	axa-1.	So	the	derivatives	of	x3,	x4,	x5	are	3x2,	4x3,
5x4,	for	example.	He	had	extended	this	result	to	any	polynomial	–	a	finite
combination	of	powers,	such	as	3x7	−	25x4	+	x2	−	3.	The	trick	is	to	consider	each
power	separately,	find	the	corresponding	derivatives,	and	combine	them	in	the
same	manner.	Newton	noticed	that	the	same	method	worked	for	infinite	series,
expressions	involving	infinitely	many	powers	of	the	variable.	This	let	him
perform	the	operations	of	calculus	on	many	other	expressions,	more	complicated
than	polynomials.

Given	the	close	correspondence	between	the	two	versions	of	calculus,
differing	mainly	in	unimportant	features	of	the	notation,	it	is	easy	to	see	how	a
priority	dispute	might	have	arisen.	However,	the	basic	idea	is	a	fairly	direct
formulation	of	the	underlying	question,	so	it	is	also	easy	to	see	how	Newton	and
Leibniz	could	have	arrived	at	their	versions	independently,	despite	the
similarities.	In	any	case,	Fermat	and	Wallis	had	beaten	them	both	to	many	of
their	results.	The	dispute	was	pointless.

A	more	fruitful	controversy	concerned	the	logical	structure	of	calculus,	or	more
precisely,	the	illogical	structure	of	calculus.	A	leading	critic	was	the	Anglo-Irish
philosopher	George	Berkeley,	Bishop	of	Cloyne.	Berkeley	had	a	religious
agenda;	he	felt	that	the	materialist	view	of	the	world	that	was	developing	from
Newton’s	work	represented	God	as	a	detached	creator	who	stood	back	from	his
creation	as	soon	as	it	got	going	and	thereafter	left	it	to	its	own	devices,	quite
unlike	the	personal,	immanent	God	of	Christian	belief.	So	he	attacked	logical



inconsistencies	in	the	foundations	of	calculus,	presumably	hoping	to	discredit
the	resulting	science.	His	attack	had	no	discernible	effect	on	the	progress	of
mathematical	physics,	for	a	straightforward	reason:	the	results	obtained	using
calculus	shed	so	much	insight	into	nature,	and	agreed	so	well	with	experiment,
that	the	logical	foundations	seemed	unimportant.	Even	today,	physicists	still	take
this	view:	if	it	works,	who	cares	about	logical	hair-splitting?

Berkeley	argued	that	it	makes	no	logical	sense	to	maintain	that	a	small
quantity	(Newton’s	o,	Leibniz’s	dx)	is	nonzero	for	most	of	a	calculation,	and
then	to	set	it	to	zero,	if	you	have	previously	divided	both	the	numerator	and	the
denominator	of	a	fraction	by	that	very	quantity.	Division	by	zero	is	not	an
acceptable	operation	in	arithmetic,	because	it	has	no	unambiguous	meaning.	For
example,	0	×	1	=	0	×	2,	since	both	are	0,	but	if	we	divide	both	sides	of	this
equation	by	0	we	get	1	=	2,	which	is	false.3	Berkeley	published	his	criticisms	in
1734	in	a	pamphlet	The	Analyst,	a	Discourse	Addressed	to	an	Infidel
Mathematician.

Newton	had,	in	fact,	attempted	to	sort	out	the	logic,	by	appealing	to	a	physical
analogy.	He	saw	o	not	as	a	fixed	quantity,	but	as	something	that	flowed	–	varied
with	time	–	getting	closer	and	closer	to	zero	without	ever	actually	getting	there.
The	derivative	was	also	defined	by	a	quantity	that	flowed:	the	ratio	of	the	change
in	y	to	that	of	x.	This	ratio	also	flowed	towards	something,	but	never	got	there;
that	something	was	the	instantaneous	rate	of	change	–	the	derivative	of	y	with
respect	to	x.	Berkeley	dismissed	this	idea	as	the	‘ghost	of	a	departed	quantity’.

Leibniz	too	had	a	persistent	critic,	the	geometer	Bernard	Nieuwentijt,	who	put
his	criticisms	into	print	in	1694	and	1695.	Leibniz	had	not	helped	his	case	by
trying	to	justify	his	method	in	terms	of	‘infinitesimals’,	a	term	open	to
misinterpretation.	However,	he	did	explain	that	what	he	meant	by	this	term	was
not	a	fixed	nonzero	quantity	that	can	be	arbitrarily	small	(which	makes	no
logical	sense)	but	a	variable	nonzero	quantity	that	can	become	arbitrarily	small.
Newton’s	and	Leibniz’s	defences	were	essentially	identical.	To	their	opponents,
both	must	have	sounded	like	verbal	trickery.

Fortunately,	the	physicists	and	mathematicians	of	the	day	did	not	wait	for	the
logical	foundations	of	calculus	to	be	sorted	out	before	they	applied	it	to	the
frontiers	of	science.	They	had	an	alternative	way	to	make	sure	they	were	doing
something	sensible:	comparison	with	observations	and	experiments.	Newton
himself	invented	calculus	for	precisely	this	purpose.	He	derived	laws	for	how
bodies	move	when	a	force	is	applied	to	them,	and	combined	these	with	a	law	for
the	force	exerted	by	gravity	to	explain	many	riddles	about	the	planets	and	other



bodies	of	the	Solar	System.	His	law	of	gravity	is	such	a	pivotal	equation	in
physics	and	astronomy	that	it	deserves,	and	gets,	a	chapter	of	its	own	(the	next
one).	His	law	of	motion	–	strictly,	a	system	of	three	laws,	one	of	which
contained	most	of	the	mathematical	content	–	led	fairly	directly	to	calculus.

Ironically,	when	Newton	published	these	laws	and	their	scientific	applications
in	his	Principia,	he	eliminated	all	traces	of	calculus	and	replaced	it	by	classical
geometric	arguments.	He	probably	thought	that	geometry	would	be	more
acceptable	to	his	intended	audience,	and	if	he	did,	he	was	almost	certainly	right.
However,	many	of	his	geometric	proofs	are	either	motivated	by	calculus,	or
depend	on	the	use	of	calculus	techniques	to	determine	the	correct	answers,	upon
which	the	strategy	of	the	geometric	proof	relies.	This	is	especially	clear,	to
modern	eyes,	in	his	treatment	of	what	he	called	‘generated	quantities’	in	Book	II
of	Principia.	These	are	quantities	that	increase	or	decrease	by	‘continual	motion
or	flux’,	the	fluxions	of	his	unpublished	book.	Today	we	would	call	them
continuous	(indeed	differentiable)	functions.	In	place	of	explicit	operations	of
the	calculus,	Newton	substituted	a	geometric	method	of	‘prime	and	ultimate
ratios’.	His	opening	lemma	(the	name	given	to	an	auxiliary	mathematical	result
that	is	used	repeatedly	but	has	no	intrinsic	interest	in	its	own	right)	gives	the
game	away,	because	it	defines	equality	of	these	flowing	quantities	like	this:

Quantities,	and	the	ratios	of	quantities,	which	in	any	finite	time
converge	continually	to	equality,	and	before	the	end	of	that	time
approach	nearer	to	each	other	than	by	any	given	difference,	become
ultimately	equal.

In	Never	at	Rest,	Newton’s	biographer	Richard	Westfall	explains	how	radical
and	novel	this	lemma	was:	‘Whatever	the	language,	the	concept	…	was
thoroughly	modern;	classical	geometry	had	contained	nothing	like	it.’4	Newton’s
contemporaries	must	have	struggled	to	figure	out	what	Newton	was	getting	at.
Berkeley	presumably	never	did,	because	–	as	we	will	shortly	see	–	it	contains	the
basic	idea	needed	to	dispose	of	his	objection.

Calculus,	then,	was	playing	an	influential	role	behind	the	scenes	of	the
Principia,	but	it	made	no	appearance	on	stage.	As	soon	as	calculus	peeped	out
from	behind	the	curtains,	however,	Newton’s	intellectual	successors	quickly
reverse-engineered	his	thought	processes.	They	rephrased	his	main	ideas	in	the
language	of	calculus,	because	this	provided	a	more	natural	and	more	powerful
framework,	and	set	out	to	conquer	the	scientific	world.



The	clue	was	already	visible	in	Newton’s	laws	of	motion.	The	question	that
led	Newton	to	these	laws	was	a	philosophical	one:	what	causes	a	body	to	move,
or	to	change	its	state	of	motion?	The	classical	answer	was	Aristotle’s:	a	body
moves	because	a	force	is	applied	to	it,	and	this	affects	its	velocity.	Aristotle	also
stated	that	in	order	to	keep	a	body	moving,	the	force	must	continue	to	be	applied.
You	can	test	Aristotle’s	statements	by	placing	a	book	or	similar	object	on	a
table.	If	you	push	the	book,	it	starts	to	move,	and	if	you	keep	pushing	with	much
the	same	force	it	continues	to	slide	over	the	table	at	a	roughly	constant	velocity.
If	you	stop	pushing,	the	book	stops	moving.	So	Aristotle’s	views	seem	to	agree
with	experiment.	However,	the	agreement	is	superficial,	because	the	push	is	not
the	only	force	that	acts	on	the	book.	There	is	also	friction	with	the	surface	of	the
table.	Moreover,	the	faster	the	book	moves,	the	greater	the	friction	becomes	–	at
least,	while	the	book’s	velocity	remains	reasonably	small.	When	the	book	is
moving	steadily	across	the	table,	propelled	by	a	steady	force,	the	frictional
resistance	cancels	out	the	applied	force,	and	the	total	force	acting	on	the	body	is
actually	zero.

Newton,	following	earlier	ideas	of	Galileo	and	Descartes,	realised	this.	The
resulting	theory	of	motion	is	very	different	from	Aristotle’s.	Newton’s	three	laws
are:

First	law.	Every	body	continues	in	its	state	of	rest,	or	of	uniform
motion	in	a	right	[straight]	line,	unless	it	is	compelled	to	change	that
state	by	forces	impressed	upon	it.
Second	law.	The	change	of	motion	is	proportional	to	the	motive
power	impressed,	and	is	made	in	the	direction	of	the	right	line	in
which	that	force	is	impressed.	(The	constant	of	proportionality	is	the
reciprocal	of	the	body’s	mass;	that	is,	1	divided	by	that	mass.)
Third	law.	To	every	action	there	is	always	opposed	an	equal
reaction.

The	first	law	explicitly	contradicts	Aristotle.	The	third	law	says	that	if	you	push
something,	it	pushes	back.	The	second	law	is	where	calculus	comes	in.	By
‘change	of	motion’	Newton	meant	the	rate	at	which	the	body’s	velocity	changes:
its	acceleration.	This	is	the	derivative	of	velocity	with	respect	to	time,	and	the
second	derivative	of	position.	So	Newton’s	second	law	of	motion	specifies	the
relation	between	a	body’s	position,	and	the	forces	that	act	on	it,	in	the	form	of	a
differential	equation:

second	derivative	of	position	=	force/mass



To	find	the	position	itself,	we	have	to	solve	this	equation,	deducing	the	position
from	its	second	derivative.

This	line	of	thought	leads	to	a	simple	explanation	of	Galileo’s	observations	of
a	rolling	ball.	The	crucial	point	is	that	the	acceleration	of	the	ball	is	constant.	I
stated	this	previously,	using	a	rough-and-ready	calculation	applied	at	discrete
intervals	of	time;	now	we	can	do	it	properly,	allowing	time	to	vary	continuously.
The	constant	is	related	to	the	force	of	gravity	and	the	angle	of	the	slope,	but	here
we	don’t	need	that	much	detail.	Suppose	that	the	constant	acceleration	is	a.
Integrating	the	corresponding	function,	the	velocity	down	the	slope	at	time	t	is	at
+	b,	where	b	is	the	velocity	at	time	zero.	Integrating	again,	the	position	down	the
slope	is	 ,	where	c	is	the	position	at	time	zero.	In	the	special	case	a	=	2,	b
=	0,	c	=	0	the	successive	positions	fit	my	simplified	example:	the	position	at	time
t	is	t2.	A	similar	analysis	recovers	Galileo’s	major	result:	the	path	of	a	projectile
is	a	parabola.

Newton’s	laws	of	motion	did	not	just	provide	a	way	to	calculate	how	bodies
move.	They	led	to	deep	and	general	physical	principles.	Paramount	among	these
are	‘conservation	laws’,	telling	us	that	when	a	system	of	bodies,	no	matter	how
complicated,	moves,	certain	features	of	that	system	do	not	change.	Amid	the
tumult	of	the	motion,	a	few	things	remain	serenely	unaffected.	Three	of	these
conserved	quantities	are	energy,	momentum,	and	angular	momentum.

Energy	can	be	defined	as	the	capacity	to	do	work.	When	a	body	is	raised	to	a
certain	height,	against	the	(constant)	force	of	gravity,	the	work	done	to	put	it
there	is	proportional	to	the	body’s	mass,	the	force	of	gravity,	and	the	height	to
which	it	is	raised.	Conversely,	if	we	then	let	the	body	go,	it	can	perform	the
same	amount	of	work	when	it	falls	back	to	its	original	height.	This	type	of
energy	is	called	potential	energy.

On	its	own,	potential	energy	would	not	be	terribly	interesting,	but	there	is	a
beautiful	mathematical	consequence	of	Newton’s	second	law	of	motion	leading
to	a	second	kind	of	energy:	kinetic	energy.	As	a	body	moves,	both	its	potential
energy	and	its	kinetic	energy	change.	But	the	change	in	one	exactly	compensates
for	the	change	in	the	other.	As	the	body	descends	under	gravity,	it	speeds	up.
Newton’s	law	allows	us	to	calculate	how	its	velocity	changes	with	height.	It
turns	out	that	the	decrease	in	potential	energy	is	exactly	equal	to	half	the	mass
times	the	square	of	the	velocity.	If	we	give	that	quantity	a	name	–	kinetic	energy
–	then	the	total	energy,	potential	plus	kinetic,	is	conserved.	This	mathematical
consequence	of	Newton’s	laws	proves	that	perpetual	motion	machines	are
impossible:	no	mechanical	device	can	keep	going	indefinitely	and	do	work



without	some	external	input	of	energy.
Physically,	potential	and	kinetic	energy	seem	to	be	two	different	things;

mathematically,	we	can	trade	one	for	the	other.	It	is	as	if	motion	somehow
converts	potential	energy	into	kinetic.	‘Energy’,	as	a	term	applicable	to	both,	is	a
convenient	abstraction,	carefully	defined	so	that	it	is	conserved.	As	an	analogy,
travellers	can	convert	pounds	into	dollars.	Currency	exchanges	have	tables	of
exchange	rates,	asserting	that,	say,	1	pound	is	of	equal	value	to	1.4693	dollars.
They	also	deduct	a	sum	of	money	for	themselves.	Subject	to	technicalities	of
bank	charges	and	so	on,	the	total	monetary	value	involved	in	the	transaction	is
supposed	to	balance	out:	the	traveller	gets	exactly	the	amount	in	dollars	that
corresponds	to	their	original	sum	in	pounds,	minus	various	deductions.
However,	there	isn’t	a	physical	thing	built	into	banknotes	that	somehow	gets
swapped	out	of	a	pound	note	into	a	dollar	note	and	some	coins.	What	gets
swapped	is	the	human	convention	that	these	particular	items	have	monetary
value.

Energy	is	a	new	kind	of	‘physical’	quantity.	From	a	Newtonian	viewpoint,
quantities	such	as	position,	time,	velocity,	acceleration,	and	mass	have	direct
physical	interpretations.	You	can	measure	position	with	a	ruler,	time	with	a
clock,	velocity	and	acceleration	using	both	pieces	of	apparatus,	and	mass	with	a
balance.	But	you	don’t	measure	energy	using	an	energy	meter.	Agreed,	you	can
measure	certain	specific	types	of	energy.	Potential	energy	is	proportional	to
height,	so	a	ruler	will	suffice	if	you	know	the	force	of	gravity.	Kinetic	energy	is
half	the	mass	times	the	square	of	the	velocity:	use	a	balance	and	a	speedometer.
But	energy,	as	a	concept,	is	not	so	much	a	physical	thing	as	a	convenient	fiction
that	helps	to	balance	the	mechanical	books.

Momentum,	the	second	conserved	quantity,	is	a	simple	concept:	mass	times
velocity.	It	comes	into	play	when	there	are	several	bodies.	An	important	example
is	a	rocket;	here	one	body	is	the	rocket	and	the	other	is	its	fuel.	As	fuel	is
expelled	by	the	engine,	conservation	of	momentum	implies	that	the	rocket	must
move	in	the	opposite	direction.	This	is	how	a	rocket	works	in	a	vacuum.

Angular	momentum	is	similar,	but	it	relates	to	spin	rather	than	velocity.	It	is
also	central	to	rocketry,	indeed	the	whole	of	mechanics,	terrestrial	or	celestial.
One	of	the	biggest	puzzles	about	the	Moon	is	its	large	angular	momentum.	The
current	theory	is	that	the	Moon	was	splashed	off	when	a	Mars-sized	planet	hit
the	Earth	about	4.5	billion	years	ago.	This	explains	the	angular	momentum,	and
until	recently	was	generally	accepted,	but	it	now	seems	that	the	Moon	has	too
much	water	in	its	rocks.	Such	an	impact	should	have	boiled	a	lot	of	the	water



away.5	Whatever	the	eventual	outcome,	angular	momentum	is	of	central
importance	here.	Calculus	works.	It	solves	problems	in	physics	and	geometry,
getting	the	right	answers.	It	even	leads	to	new	and	fundamental	physical
concepts	like	energy	and	momentum.	But	that	doesn’t	answer	Bishop	Berkeley’s
objection.	Calculus	has	to	work	as	mathematics,	not	just	agree	with	physics.
Both	Newton	and	Leibniz	understood	that	o	or	dx	cannot	be	both	zero	and
nonzero.	Newton	tired	to	escape	from	the	logical	trap	by	employing	the	physical
image	of	a	fluxion.	Leibniz	talked	of	infinitesimals.	Both	referred	to	quantities
that	approach	zero	without	ever	getting	there	–	but	what	are	these	things?
Ironically,	Berkeley’s	gibe	about	‘ghosts	of	departed	quantities’	comes	close	to
resolving	the	issue,	but	what	he	failed	to	take	account	of	–	and	what	both
Newton	and	Leibniz	emphasised	–	was	how	the	quantities	departed.	Make	them
depart	in	the	right	way	and	you	can	leave	a	perfectly	well-formed	ghost.	If	either
Newton	or	Leibniz	had	framed	their	intuition	in	rigorous	mathematical	language,
Berkeley	might	have	understood	what	they	were	getting	at.

The	central	question	is	one	that	Newton	failed	to	answer	explicitly	because	it
seemed	obvious.	Recall	that	in	the	example	where	y	=	x2,	Newton	obtained	the
derivative	as	2x	+	o,	and	then	asserted	that	as	o	flows	towards	zero,	2x	+	o	flows
towards	2x.	This	may	seem	obvious,	but	we	can’t	set	o	=	0	to	prove	it.	It	is	true
that	we	get	the	right	result	by	doing	that,	but	this	is	a	red	herring.6	In	Principia
Newton	slid	round	this	issue	altogether,	replacing	2x	+	o	by	his	‘prime	ratio’	and
2x	by	his	‘ultimate	ratio’.	But	the	real	key	to	progress	is	to	tackle	the	issue	head
on.	How	do	we	know	that	the	closer	o	approaches	zero,	the	closer	2x	+	o
approaches	2x?	It	may	seem	a	rather	pedantic	point,	but	if	I’d	used	more
complicated	examples	the	correct	answer	might	not	seem	so	plausible.

When	mathematicians	returned	to	the	logic	of	calculus,	they	realised	that	this
apparently	simple	question	was	the	heart	of	the	matter.	When	we	say	that	o
approaches	zero,	we	mean	that	given	any	nonzero	positive	number,	o	can	be
chosen	to	be	smaller	than	that	number.	(This	is	obvious:	let	o	be	half	that
number,	for	instance.)	Similarly,	when	we	say	that	2x	+	o	approaches	2x,	we
mean	that	the	difference	approaches	zero,	in	the	previous	sense.	Since	the
difference	happens	to	be	o	itself	in	this	case,	that’s	even	more	obvious:	whatever
‘approaches	zero’	means,	clearly	o	approaches	zero	when	o	approaches	zero.	A
more	complicated	function	than	the	square	would	require	a	more	complicated
analysis.

The	answer	to	this	key	question	is	to	state	the	process	in	formal	mathematical
terms,	avoiding	ideas	of	‘flow’	altogether.	This	breakthrough	came	about



through	the	work	of	the	Bohemian	mathematician	and	theologian	Bernard
Bolzano	and	the	German	mathematician	Karl	Weierstrass.	Bolzano’s	work	dates
from	1816,	but	it	was	not	appreciated	until	about	1870	when	Weierstrass
extended	the	formulation	to	complex	functions.	Their	answer	to	Berkeley	was
the	concept	of	a	limit.	I’ll	state	the	definition	in	words	and	leave	the	symbolic
version	to	the	Notes.7	Say	that	a	function	f(h)	of	a	variable	h	tends	to	a	limit	L	as
h	tends	to	zero	if,	given	any	positive	nonzero	number,	the	difference	between
f(h)	and	L	can	be	made	smaller	than	that	number	by	choosing	sufficiently	small
nonzero	values	of	h.	In	symbols,

The	idea	at	the	heart	of	calculus	is	to	approximate	the	rate	of	change	of	a
function	over	a	small	interval	h,	and	then	take	the	limit	as	h	tends	to	zero.	For	a
general	function	y	=	f(x)	this	procedure	leads	to	the	equation	that	decorates	the
opening	of	this	chapter,	but	using	a	general	variable	x	instead	of	time:

In	the	numerator	we	see	the	change	in	f;	the	denominator	is	the	change	in	x.	This
equation	defines	the	derivative	f′(x)	uniquely,	provided	the	limit	exists.	That	has
to	be	proved	for	any	function	under	consideration:	the	limit	does	exist	for	most
of	the	standard	functions	–	squares,	cubes,	higher	powers,	logarithms,
exponentials,	trigonometric	functions.

Nowhere	in	the	calculation	do	we	ever	divide	by	zero,	because	we	never	set	h
=	0.	Moreover,	nothing	here	actually	flows.	What	matters	is	the	range	of	values
that	h	can	assume,	not	how	it	moves	through	that	range.	So	Berkeley’s	sarcastic
characterisation	is	actually	spot	on.	The	limit	L	is	the	ghost	of	the	departed
quantity	–	my	h,	Newton’s	o.	But	the	manner	of	the	quantity’s	departure	–
approaching	zero,	not	reaching	it	–	leads	to	a	perfectly	sensible	and	logically
well-defined	ghost.

Calculus	now	had	a	sound	logical	basis.	It	deserved,	and	acquired,	a	new
name	to	reflect	its	new	status:	analysis.

It	is	no	more	possible	to	list	all	the	ways	that	calculus	can	be	applied	than	it	is	to
list	everything	in	the	world	that	depends	on	using	a	screwdriver.	On	a	simple
computational	level,	applications	of	calculus	include	finding	lengths	of	curves,
areas	of	surfaces	and	complicated	shapes,	volumes	of	solids,	maximum	and



minimum	values,	and	centres	of	mass.	In	conjunction	with	the	laws	of
mechanics,	calculus	tells	us	how	to	work	out	the	trajectory	of	a	space	rocket,	the
stresses	in	rock	at	a	subduction	zone	that	might	produce	an	earthquake,	the	way
a	building	will	vibrate	if	an	earthquake	hits,	the	way	a	car	bounces	up	and	down
on	its	suspension,	the	time	it	takes	a	bacterial	infection	to	spread,	the	way	a
surgical	wound	heals,	and	the	forces	that	act	on	a	suspension	bridge	in	a	high
wind.

Many	of	these	applications	stem	from	the	deep	structure	of	Newton’s	laws:
they	are	models	of	nature	stated	as	differential	equations.	These	are	equations
involving	derivatives	of	an	unknown	function,	and	techniques	from	calculus	are
needed	to	solve	them.	I	will	say	no	more	here,	because	every	chapter	from
Chapter	8	onwards	involves	calculus	explicitly,	mainly	in	the	guise	of
differential	equations.	The	sole	exception	is	Chapter	15	on	information	theory,
and	even	there	other	developments	that	I	don’t	mention	also	involve	calculus.
Like	the	screwdriver,	calculus	is	simply	an	indispensable	tool	in	the	engineer’s
and	scientist’s	toolkits.	More	than	any	other	mathematical	technique,	it	has
created	the	modern	world.



4	The	system	of	the	world

Newton’s	Law	of	Gravity

What	does	it	say?

It	determines	the	force	of	gravitational	attraction	between	two	bodies	in	terms	of
their	masses	and	the	distance	between	them.

Why	is	that	important?

It	can	be	applied	to	any	system	of	bodies	interacting	through	the	force	of	gravity,
such	as	the	Solar	System.	It	tells	us	that	their	motion	is	determined	by	a	simple
mathematical	law.

What	did	it	lead	to?

Accurate	prediction	of	eclipses,	planetary	orbits,	the	return	of	comets,	the
rotation	of	galaxies.	Artificial	satellites,	surveys	of	the	Earth,	the	Hubble
telescope,	observations	of	solar	flares.	Interplanetary	probes,	Mars	rovers,
satellite	communications	and	television,	the	Global	Positioning	System.



	

Newton’s	laws	of	motion	capture	the	relationship	between	the	forces	that	act	on
a	body	and	how	it	moves	in	response	to	those	forces.	Calculus	provides
mathematical	techniques	for	solving	the	resulting	equations.	One	further
ingredient	is	needed	to	apply	the	laws:	specifying	the	forces.	The	most	ambitious
aspect	of	Newton’s	Principia	was	to	do	precisely	that	for	the	bodies	of	the	Solar
System	–	the	Sun,	planets,	moons,	asteroids,	and	comets.	Newton’s	law	of
gravitation	synthesised,	in	one	simple	mathematical	formula,	millennia	of
astronomical	observations	and	theories.	It	explained	many	puzzling	features	of
planetary	motion,	and	made	it	possible	to	predict	the	future	movements	of	the
Solar	System	with	great	accuracy.	Einstein’s	theory	of	general	relativity
eventually	superseded	the	Newtonian	theory	of	gravity,	as	far	as	fundamental
physics	is	concerned,	but	for	almost	all	practical	purposes	the	simpler	Newtonian
approach	still	reigns	supreme.	Today	the	world’s	space	agencies,	such	as	NASA
and	ESA,	still	use	Newton’s	laws	of	motion	and	gravitation	to	work	out	the	most
effective	trajectories	for	spacecraft.

It	was	Newton’s	law	of	gravitation,	above	all	else,	that	justified	his	subtitle:
The	System	of	the	World.	This	law	demonstrated	the	enormous	power	of
mathematics	to	find	hidden	patterns	in	nature	and	to	reveal	hidden	simplicities
behind	the	world’s	complexities.	And	in	time,	as	mathematicians	and
astronomers	asked	harder	questions,	to	reveal	the	hidden	complexities	implicit	in
Newton’s	simple	law.	To	appreciate	what	Newton	achieved,	we	must	first	go
back	in	time,	to	see	how	previous	cultures	viewed	the	stars	and	planets.

Humans	have	been	watching	the	night	sky	since	the	dawn	of	history.	Their	initial
impression	would	have	been	a	random	scattering	of	bright	points	of	light,	but
they	would	soon	have	noticed	that	across	this	background	the	glowing	orb	of	the
Moon	traced	a	regular	path,	changing	shape	as	it	did	so.	They	would	also	have
seen	that	most	of	those	tiny	bright	specks	of	light	remain	in	the	same	relative
patterns,	which	we	now	call	constellations.	Stars	move	across	the	night	sky,	but
they	move	as	a	single	rigid	unit,	as	if	the	constellations	are	painted	on	the	inside
of	a	gigantic,	rotating	bowl.1	However,	a	small	number	of	stars	behave	quite
differently:	they	seem	to	wander	around	the	sky.	Their	paths	are	quite
complicated,	and	some	appear	to	loop	back	on	themselves	from	time	to	time.
These	are	the	planets,	a	word	that	comes	from	the	Greek	for	‘wanderer’.	The
ancients	recognised	five	of	them,	now	called	Mercury,	Venus,	Mars,	Jupiter,	and
Saturn.	They	move	relative	to	the	fixed	stars	at	different	speeds,	with	Saturn



being	the	slowest.
Other	celestial	phenomena	were	even	more	puzzling.	From	time	to	time	a

comet	would	appear,	as	if	from	nowhere,	trailing	a	long,	curved	tail.	‘Shooting
stars’	would	seem	to	fall	from	the	heavens,	as	if	they	had	become	detached	from
their	supporting	bowl.	It	is	no	wonder	that	early	humans	attributed	the
irregularities	of	the	heavens	to	the	caprices	of	supernatural	beings.

The	regularities	could	be	summed	up	in	terms	so	obvious	that	few	would	ever
dream	of	disputing	them.	The	Sun,	stars,	and	planets	revolve	around	a	stationary
Earth.	That’s	what	it	looks	like,	that’s	what	it	feels	like,	so	that’s	how	it	must	be.
To	the	ancients,	the	cosmos	was	geocentric	–	Earth-centred.	One	lone	voice
disputed	the	obvious:	Aristarchus	of	Samos.	Using	geometrical	principles	and
observations,	Aristarchus	calculated	the	sizes	of	the	Earth,	the	Sun,	and	the
Moon.	Around	270	BC	he	put	forward	the	first	heliocentric	theory:	the	Earth	and
planets	revolve	round	the	Sun.	His	theory	quickly	fell	out	of	favour	and	was	not
revived	for	nearly	2000	years.

By	the	time	of	Ptolemy,	a	Roman	who	lived	in	Egypt	around	120	AD,	the
planets	had	been	tamed.	Their	movements	were	not	capricious,	but	predictable.
Ptolemy’s	Almagest	(‘Great	Treatise’)	proposed	that	we	live	in	a	geocentric
universe	in	which	everything	literally	revolves	around	humanity	in	complex
combinations	of	circles	called	epicycles,	supported	by	giant	crystal	spheres.	His
theory	was	wrong,	but	the	motions	that	it	predicted	were	sufficiently	accurate	for
the	errors	to	remain	undetected	for	centuries.	Ptolemy’s	system	had	an	additional
philosophical	attraction:	it	represented	the	cosmos	in	terms	of	perfect	geometric
figures	–	spheres	and	circles.	It	continued	the	Pythagorean	tradition.	In	Europe,
the	Ptolemaic	theory	remained	unchallenged	for	1400	years.

While	Europe	dawdled,	new	scientific	advances	were	being	made	elsewhere,
especially	in	Arabia,	China,	and	India.	In	499	the	Indian	astronomer	Aryabhata
put	forward	a	mathematical	model	of	the	Solar	System	in	which	the	Earth	spun
on	its	axis	and	the	periods	of	planetary	orbits	were	stated	relative	to	the	position
of	the	Sun.	In	the	Islamic	world,	Alhazen	wrote	a	stinging	criticism	of	the
Ptolemaic	theory,	though	this	was	probably	not	focused	on	its	geocentric	nature.
Around	1000	Abu	Rayhan	Biruni	gave	serious	consideration	to	the	possibility	of
a	heliocentric	Solar	System,	with	the	Earth	spinning	on	its	axis,	but	eventually
plumped	for	the	orthodoxy	of	the	time,	a	stationary	Earth.	Around	1300,	Najm
al-Din	al-Qazwini	al-Katibi	proposed	a	heliocentric	theory,	but	soon	changed	his
mind.

The	big	breakthrough	came	with	the	work	of	Nicolaus	Copernicus,	published



in	1543	as	De	Revolutionibus	Orbium	Coelestium	(‘On	the	Revolutions	of	the
Celestial	Spheres’).	There	is	evidence,	notably	the	occurrence	of	almost	identical
diagrams	labelled	with	the	same	letters,	to	suggest	that	Copernicus	was,	to	say
the	least,	influenced	by	al-Katibi,	but	he	went	much	further.	He	set	out	an
explicitly	heliocentric	system,	argued	that	it	fitted	the	observations	better	and
more	economically	than	Ptolemy’s	geocentric	theory	did,	and	laid	out	some	of
the	philosophical	implications.	Paramount	among	them	was	the	novel	thought
that	humans	were	not	at	the	centre	of	things.	The	Christian	Church	viewed	this
suggestion	as	contrary	to	doctrine	and	did	its	best	to	discourage	it.	Explicit
heliocentrism	was	heresy.

It	prevailed	nevertheless,	because	the	evidence	was	so	strong.	New	and	better
heliocentric	theories	appeared.	Then	the	spheres	were	thrown	away	altogether,	in
favour	of	a	different	shape	from	classical	geometry:	the	ellipse.	Ellipses	are	oval
shapes,	and	indirect	evidence	suggests	they	were	first	studied	in	Greek	geometry
by	Menaechmus	around	350	BC,	along	with	hyperbolas	and	parabolas,	as
sections	of	a	cone,	Figure	13.	Euclid	is	said	to	have	written	four	books	on	conic
sections,	though	nothing	has	survived	if	he	did,	and	Archimedes	investigated
some	of	their	properties.	Greek	research	on	the	topic	reached	its	climax	in	about
240	BC	with	the	eight-volume	Conic	Sections	by	Apollonius	of	Perga,	who	found
a	way	to	define	these	curves	purely	within	a	plane,	avoiding	the	third	dimension.
However,	the	Pythagorean	view	that	circles	and	spheres	attained	a	higher	degree
of	perfection	than	ellipses	and	other	more	complex	curves	persisted.

Fig	13	Conic	sections.

Ellipses	cemented	their	role	in	astronomy	around	1600,	with	the	work	of
Kepler.	His	astronomical	interests	began	in	childhood;	at	the	age	of	six	he
witnessed	the	great	comet	of	1577,2	and	three	years	later	he	saw	an	eclipse	of	the
Moon.	At	the	University	of	Tübingen,	Kepler	showed	great	talent	for



mathematics	and	put	it	to	profitable	use	casting	horoscopes.	In	those	days
mathematics,	astronomy,	and	astrology	often	went	together.	He	combined	a
heady	level	of	mysticism	with	a	level-headed	attention	to	mathematical	detail.	A
typical	example	is	his	Mysterium	Cosmographicum	(‘The	Cosmographic
Mystery’),	a	spirited	defence	of	the	heliocentric	system	published	in	1596.	It
combines	a	clear	grasp	of	Copernicus’s	theory	with	what	to	modern	eyes	is	a
very	strange	speculation	relating	the	distances	of	the	known	planets	from	the	Sun
to	the	regular	solids.	For	a	long	time	Kepler	regarded	this	discovery	as	one	of	his
greatest,	revealing	the	Creator’s	plan	for	the	universe.	He	saw	his	later
researches,	which	we	now	consider	to	be	far	more	significant,	as	mere
elaborations	of	this	basic	plan.	At	the	time,	one	advantage	of	the	theory	was	that
it	explained	why	there	were	precisely	six	planets	(Mercury	through	Saturn).
Between	these	six	orbits	lie	five	gaps,	one	for	each	regular	solid.	With	the
discovery	of	Uranus	and	later	Neptune	and	Pluto	(until	its	recent	demotion	from
planetary	status)	this	feature	quickly	became	a	fatal	flaw.

Kepler’s	lasting	contribution	has	its	roots	in	his	employment	by	Tycho	Brahe.
The	two	first	met	in	1600.	After	a	two-month	stay	and	a	heated	argument	Kepler
negotiated	an	acceptable	salary.	Following	a	spate	of	problems	in	his	home	city
of	Graz	he	moved	to	Prague,	assisting	Tycho	in	the	analysis	of	his	planetary
observations,	especially	of	Mars.	When	Tycho	unexpectedly	died	in	1601	Kepler
took	over	his	employer’s	position	as	imperial	mathematician	to	Rudolph	II.	His
primary	role	was	casting	imperial	horoscopes,	but	he	also	had	time	to	continue
his	analysis	of	the	orbit	of	Mars.	Following	traditional	epicyclic	principles	he
refined	his	model	to	the	point	at	which	its	errors,	compared	with	observation,
were	usually	a	mere	two	minutes	of	arc,	the	typical	error	in	the	observations
themselves.	However,	he	didn’t	stop	there	because	sometimes	the	errors	were
bigger,	up	to	eight	minutes	of	arc.

His	search	eventually	led	him	to	two	laws	of	planetary	motion,	published	in
Astronomia	Nova	(‘A	New	Astronomy’).	For	many	years	he	had	tried	to	fit	the
orbit	of	Mars	to	an	ovoid	–	an	egg-shaped	curve,	sharper	at	one	end	than	the
other	–	without	success.	Perhaps	he	expected	the	orbit	to	be	more	curved	closer
to	the	Sun.	In	1605	it	occurred	to	Kepler	to	try	an	ellipse,	equally	rounded	at
both	ends,	and	to	his	surprise	this	did	a	much	better	job.	He	concluded	that	all
planetary	orbits	are	ellipses,	his	first	law.	His	second	law	described	how	the
planet	moves	along	its	orbit,	stating	that	planets	sweep	out	equal	areas	in	equal
times.	The	book	appeared	in	1609.	Kepler	then	devoted	much	of	his	effort	to
preparing	various	astronomical	tables,	but	he	returned	to	the	regularities	of
planetary	orbits	in	1619	in	his	Harmonices	Mundi	(‘The	Harmony	of	the



World’).	This	book	had	some	ideas	we	now	find	strange,	for	example	that	the
planets	emit	musical	sounds	as	they	roll	round	the	Sun.	But	it	also	includes	his
third	law:	the	squares	of	the	orbital	periods	are	proportional	to	the	cubes	of	the
distances	from	the	Sun.

Kepler’s	three	laws	were	all	but	buried	amid	a	mass	of	mysticism,	religious
symbolism,	and	philosophical	speculation.	But	they	represented	a	giant	leap
forward,	leading	Newton	to	one	of	the	greatest	scientific	discoveries	of	all	time.

Newton	derived	his	law	of	gravity	from	Kepler’s	three	laws	of	planetary	motion.
It	states	that	every	particle	in	the	universe	attracts	every	other	particle	with	a
force	that	is	proportional	to	the	product	of	their	masses	and	inversely
proportional	to	the	square	of	the	distance	between	them.	In	symbols,

Here	F	is	the	attractive	force,	d	is	the	distance,	the	ms	are	the	two	masses,	and	G
is	a	specific	number,	the	gravitational	constant.3

Who	discovered	Newton’s	law	of	gravity?	It	sounds	like	one	of	those	self-
answering	questions,	like	‘whose	statue	stands	on	top	of	Nelson’s	column?’.	But
a	reasonable	answer	is	the	curator	of	experiments	at	the	Royal	Society,	Robert
Hooke.	When	Newton	published	the	law	in	1687,	in	his	Principia,	Hooke
accused	him	of	plagiarism.	However,	Newton	provided	the	first	mathematical
derivation	of	elliptical	orbits	from	the	law,	which	was	vital	in	establishing	its
correctness,	and	Hooke	acknowledged	this.	Moreover,	Newton	had	cited	Hooke,
along	with	several	others,	in	the	book.	Presumably	Hooke	felt	he	deserved	more
credit;	he	had	suffered	similar	problems	several	times	before	and	it	was	a	sore
point.

The	idea	that	bodies	attract	each	other	had	been	floating	around	for	a	while,
and	so	had	its	likely	mathematical	expression.	In	1645	the	French	astronomer
Ismaël	Boulliau	(Bullialdus)	wrote	his	Astronomia	Philolaica	(‘Philolaic
Astronomy’	–	Philolaus	was	a	Greek	philosopher	who	thought	that	a	central	fire,
not	the	Earth,	was	the	centre	of	the	universe).	In	it	he	wrote:

As	for	the	power	by	which	the	Sun	seizes	or	holds	the	planets,	and
which,	being	corporeal,	functions	in	the	manner	of	hands,	it	is
emitted	in	straight	lines	throughout	the	whole	extent	of	the	world,
and	like	the	species	of	the	Sun,	it	turns	with	the	body	of	the	Sun;
now,	seeing	that	it	is	corporeal,	it	becomes	weaker	and	attenuated	at



a	greater	distance	or	interval,	and	the	ratio	of	its	decrease	in	strength
is	the	same	as	in	the	case	of	light,	namely,	the	duplicate	proportion,
but	inversely,	of	the	distances.

This	is	the	famous	‘inverse	square’	dependency	of	the	force	on	distance.	There
are	simple,	though	naive,	reasons	to	expect	such	a	formula,	because	the	surface
area	of	a	sphere	varies	as	the	square	of	its	radius.	If	the	same	amount	of
gravitational	‘stuff’	spreads	out	over	ever-increasing	spheres	as	it	departs	from
the	Sun,	then	the	amount	of	it	received	at	any	point	must	vary	in	the	inverse
proportion	to	the	surface	area.	Exactly	this	happens	with	light,	and	Boulliau
assumed,	without	much	evidence,	that	gravity	must	be	analogous.	He	also
thought	that	the	planets	move	along	their	orbits	under	their	own	power,	so	to
speak:	‘No	kind	of	motion	presses	upon	the	remaining	planets,	[which]	are
driven	round	by	individual	forms	with	which	they	were	provided.’

Hooke’s	contribution	dates	to	1666,	when	he	presented	a	paper	to	the	Royal
Society	with	the	title	‘On	gravity’.	Here	he	sorted	out	what	Boulliau	had	got
wrong,	arguing	that	an	attractive	force	from	the	Sun	could	interfere	with	a
planet’s	natural	tendency	to	move	in	a	straight	line	(as	specified	by	Newton’s
third	law	of	motion)	and	cause	it	to	follow	a	curve.	He	also	stated	that	‘these
attractive	powers	are	so	much	the	more	powerful	in	operating,	by	how	much	the
nearer	the	body	wrought	upon	is	to	their	own	Centers’,	showing	that	he	thought
the	force	fell	off	with	distance.	But	he	didn’t	tell	anyone	else	the	mathematical
form	for	this	decrease	until	1679,	when	he	wrote	to	Newton:	‘The	Attraction
always	is	in	a	duplicate	proportion	to	the	Distance	from	the	Center	Reciprocall.’
In	the	same	letter	he	said	that	this	implies	that	the	velocity	of	a	planet	varies	as
the	reciprocal	of	its	distance	from	the	Sun.	Which	is	wrong.

When	Hooke	complained	that	Newton	had	stolen	his	law,	Newton	was	having
none	of	it,	pointing	out	that	he	had	discussed	the	idea	with	Christopher	Wren
before	Hooke	had	sent	his	letter.	To	demonstrate	prior	art,	he	cited	Boulliau,	and
also	Giovanni	Borelli,	an	Italian	physiologist	and	mathematical	physicist.	Borelli
had	suggested	that	three	forces	combine	to	create	planetary	motion:	an	inward
force	caused	by	the	planet’s	desire	to	approach	the	Sun,	a	sideways	force	caused
by	sunlight,	and	an	outward	force	caused	by	the	Sun’s	rotation.	Score	one	out	of
three,	and	that’s	generous.

Newton’s	main	point,	generally	considered	decisive,	is	that	whatever	else
Hooke	had	done,	he	had	not	deduced	the	exact	form	of	orbits	from	inverse
square	law	attraction.	Newton	had.	In	fact,	he	had	deduced	all	three	of	Kepler’s
laws	of	planetary	motion:	elliptical	orbits,	sweeping	out	equal	areas	in	equal



intervals	of	time,	with	the	square	of	the	period	being	proportional	to	the	cube	of
the	distance.	‘Without	my	Demonstrations,’	Newton	insisted,	the	inverse	square
law	‘cannot	be	believed	by	a	judicious	philosopher	to	be	anywhere	accurate.’
But	he	did	also	accept	that	‘Mr	Hook	is	yet	a	stranger’	to	this	proof.	A	key
feature	of	Newton’s	argument	is	that	it	applies	not	just	to	a	point	particle,	but	to
a	sphere.	This	extension,	which	is	crucial	to	planetary	motion,	had	caused
Newton	considerable	effort.	His	geometric	proof	is	a	disguised	application	of
integral	calculus,	and	he	was	justifiably	proud	of	it.	There	is	also	documentary
evidence	that	Newton	had	been	thinking	about	such	questions	for	quite	a	while.

At	any	rate,	we	name	the	law	after	Newton,	and	this	does	justice	to	the
importance	of	his	contribution.

The	most	important	aspect	of	Newton’s	law	of	gravitation	is	not	the	inverse
square	law	as	such.	It	is	the	assertion	that	gravitation	acts	universally.	Any	two
bodies,	anywhere	in	the	universe,	attract	each	other.	Of	course	you	need	an
accurate	force	law	(inverse	square)	to	get	accurate	results,	but	without
universality,	you	don’t	know	how	to	write	down	the	equations	for	any	system
with	more	than	two	bodies.	Almost	all	of	the	interesting	systems,	such	as	the
Solar	System	itself,	or	the	fine	structure	of	the	motion	of	the	Moon	under	the
influence	of	(at	least)	the	Sun	and	the	Earth,	involve	more	than	two	bodies,	so
Newton’s	law	would	have	been	almost	useless	if	it	had	applied	only	to	the
context	in	which	he	first	deduced	it.

What	motivated	this	vision	of	universality?	In	his	1752	Memoirs	of	Sir	Isaac
Newton’s	Life,	William	Stukeley	reported	a	tale	Newton	had	told	him	in	1726:

The	notion	of	gravitation	…	was	occasioned	by	the	fall	of	an	apple,
as	he	sat	in	contemplative	mood.	Why	should	that	apple	always
descend	perpendicularly	to	the	ground,	thought	he	to	himself.	Why
should	it	not	go	sideways	or	upwards,	but	constantly	to	the	Earth’s
centre?	Assuredly	the	reason	is,	that	the	Earth	draws	it.	There	must
be	a	drawing	power	in	matter.	And	the	sum	of	the	drawing	power	in
the	matter	of	the	Earth	must	be	in	the	Earth’s	centre,	not	in	any	side
of	the	Earth.	Therefore	does	this	apple	fall	perpendicularly	or
towards	the	centre?	If	matter	thus	draws	matter;	it	must	be	in
proportion	of	its	quantity.	Therefore	the	apple	draws	the	Earth,	as
well	as	the	Earth	draws	the	apple.

Whether	the	story	is	the	literal	truth,	or	a	convenient	fiction	that	Newton



invented	to	help	him	explain	his	ideas	later	on,	is	not	entirely	clear,	but	it	seems
reasonable	to	take	the	tale	at	face	value	because	the	idea	does	not	end	with
apples.	The	apple	was	important	to	Newton	because	it	made	him	realise	that	the
same	law	of	forces	can	explain	both	the	motion	of	the	apple	and	that	of	the
Moon.	The	only	difference	is	that	the	Moon	also	moves	sideways;	this	is	why	it
stays	up.	Actually,	it	is	always	falling	towards	the	Earth,	but	the	sideways
motion	causes	the	Earth’s	surface	to	fall	away	as	well.	Newton,	being	Newton,
didn’t	stop	with	this	qualitative	argument.	He	did	the	sums,	compared	them	with
observations,	and	was	satisfied	that	his	idea	must	be	correct.

If	gravity	acts	on	the	apple,	the	Moon,	and	the	Earth,	as	an	inherent	feature	of
matter,	then	presumably	it	acts	on	everything.

It	is	not	possible	to	verify	the	universality	of	gravitational	forces	directly;	you
would	have	to	study	all	pairs	of	bodies	in	the	entire	universe,	and	find	a	way	to
remove	the	influence	of	all	the	other	bodies.	But	that’s	not	how	science	works.
Instead,	it	employs	a	mixture	of	inference	and	observations.	Universality	is	a
hypothesis,	capable	of	being	falsified	every	time	it	is	applied.	Every	time	it
survives	falsification	–	a	fancy	way	to	say	it	gives	good	results	–	the	justification
for	using	it	becomes	a	little	stronger.	If	(as	in	this	case)	it	survives	thousands	of
such	tests,	the	justification	becomes	very	strong	indeed.	However,	the	hypothesis
can	never	be	proved	true:	for	all	we	know,	the	next	experiment	might	produce
incompatible	results.	Perhaps	somewhere	in	a	galaxy	far,	far	away	there	is	one
speck	of	matter,	one	atom,	that	is	not	attracted	to	everything	else.	If	so,	we	will
never	find	it;	equally,	it	won’t	upset	our	calculations.	The	inverse	square	law
itself	is	exceedingly	difficult	to	verify	directly,	that	is,	by	actually	measuring	the
attractive	force.	Instead,	we	apply	the	law	to	systems	that	we	can	measure	by
using	it	to	predict	orbits,	and	then	check	whether	the	predictions	agree	with
observations.

Even	granting	universality,	it	is	not	enough	to	write	down	an	accurate	law	of
attraction.	That	just	produces	an	equation	describing	the	motion.	In	order	to	find
the	motion	itself,	you	have	to	solve	the	equation.	Even	for	two	bodies,	this	is	not
straightforward,	and	even	bearing	in	mind	that	he	knew	in	advance	what	answer
to	expect,	Newton’s	deduction	of	elliptical	orbits	is	a	tour	de	force.	It	explains
why	Kepler’s	three	laws	provide	a	very	accurate	description	of	each	planet’s
orbit.	It	also	explains	why	that	description	is	not	exact:	other	bodies	in	the	solar
system,	other	than	the	Sun	and	the	planet	itself,	affect	the	motion.	In	order	to
account	for	these	disturbances,	you	have	to	solve	the	equations	of	motion	for
three	or	more	bodies.	In	particular,	if	you	want	to	predict	the	motion	of	the
Moon	with	high	precision,	you	have	to	include	the	Sun	and	the	Earth	in	your



equations.	The	effects	of	the	other	planets,	especially	Jupiter,	are	not	entirely
negligible	either,	but	they	show	up	only	in	the	long	term.	So,	fresh	from
Newton’s	success	with	the	motion	of	two	bodies	under	gravity,	mathematicians
and	physicists	moved	on	to	the	next	case:	three	bodies.	Their	initial	optimism
dissipated	rapidly:	the	three-body	case	turned	out	to	be	very	different	from	the
two-body	case.	In	fact,	it	defied	solution.

It	was	often	possible	to	calculate	good	approximations	to	the	motion	(which
often	solved	the	problem	for	practical	purposes),	but	there	no	longer	seemed	to
be	an	exact	formula.	This	problem	bedevilled	even	simplified	versions,	such	as
the	restricted	three-body	problem.	Suppose	that	a	planet	orbits	a	star	in	a	perfect
circle:	how	will	a	speck	of	dust,	of	negligible	mass,	move?

Calculating	approximate	orbits	for	three	or	more	bodies,	by	hand,	using
pencil	and	paper,	was	just	about	feasible,	but	very	laborious.	Mathematicians
devised	innumerable	tricks	and	short	cuts,	leading	to	a	reasonable	understanding
of	several	astronomical	phenomena.	Only	in	the	late	nineteenth	century	did	the
true	complexity	of	the	three-body	problem	become	apparent,	when	Henri
Poincaré	realised	that	the	geometry	involved	was	necessarily	extraordinarily
intricate.	And	only	in	the	late	twentieth	century	did	the	advent	of	powerful
computers	reduce	the	labour	of	hand	calculations,	permitting	accurate	long-term
predictions	of	the	motion	of	the	Solar	System.

Poincaré’s	breakthrough	–	if	it	can	be	called	that,	since	at	the	time	it	seemed	to
be	telling	everyone	that	the	problem	was	hopeless	and	it	was	pointless	to	seek	a
solution	–	came	about	because	he	competed	for	a	mathematical	prize.	Oscar	II,
king	of	Sweden	and	Norway,	announced	a	competition	to	celebrate	his	60th
birthday	in	1889.	Taking	advice	from	the	mathematician	Gösta	Mittag-Leffler,
the	king	chose	the	general	problem	of	arbitrarily	many	bodies	moving	under
Newtonian	gravitation.	Since	it	was	well	understood	that	an	explicit	formula
akin	to	the	two-body	ellipse	was	an	unrealistic	aim,	the	requirement	was	relaxed:
the	prize	would	be	awarded	for	an	approximation	method	of	a	very	specific	kind.
Namely,	the	motion	must	be	determined	as	an	infinite	series,	giving	results	as
accurate	as	we	please	if	enough	terms	are	included.

Poincaré	did	not	answer	this	question.	Instead,	his	memoir	on	the	topic,
published	in	1890,	provided	evidence	that	it	might	not	possess	that	kind	of
answer,	even	for	just	three	bodies	–	star,	planet,	and	dust	particle.	By	thinking
about	the	geometry	of	hypothetical	solutions,	Poincaré	discovered	that	in	some
cases	the	orbit	of	the	dust	particle	must	be	exceedingly	complex	and	tangled.	He
then,	in	effect,	threw	up	his	hands	in	horror	and	made	the	pessimistic	statement



that	‘When	one	tries	to	depict	the	figure	formed	by	these	two	curves	and	their
infinity	of	intersections,	each	of	which	corresponds	to	a	doubly	asymptotic
solution,	these	intersections	form	a	kind	of	net,	web	or	infinitely	tight	mesh…
One	is	struck	by	the	complexity	of	this	figure	that	I	am	not	even	attempting	to
draw.’

We	now	see	Poincaré’s	work	as	a	breakthrough,	and	discount	his	pessimism,
because	the	complicated	geometry	that	led	him	to	despair	of	ever	solving	the
problem	actually	provides	powerful	insights	if	it	is	properly	developed	and
understood.	The	complex	geometry	of	the	associated	dynamics	turned	out	to	be
one	of	the	earliest	examples	of	chaos:	the	occurrence,	in	non-random	equations,
of	solutions	so	complicated	that	in	some	respects	they	appear	to	be	random,	see
Chapter	16.

There	are	several	ironies	in	the	story.	Mathematical	historian	June	Barrow-
Green	discovered	that	the	published	version	of	Poincaré’s	prizewinning	memoir
was	not	the	one	that	won	the	prize.4	This	earlier	version	contained	a	major	error,
overlooking	the	chaotic	solutions.	The	work	was	at	proof	stage	when	an
embarrassed	Poincaré	realised	his	blunder,	and	he	paid	for	a	new	printing	of	a
corrected	version.	Almost	all	copies	of	the	original	were	destroyed,	but	one
remained	tucked	away	in	the	archives	of	the	Mittag-Leffler	Institute	in	Sweden,
where	Barrow-Green	found	it.

It	also	turned	out	that	the	presence	of	chaos	does	not,	in	fact,	rule	out	series
solutions,	but	these	are	valid	almost	always	rather	than	always.	Karl	Frithiof
Sundman,	a	Finnish	mathematician,	discovered	this	in	1912	for	the	three-body
problem,	using	series	formed	from	powers	of	the	cube	root	of	time.	(Powers	of
time	won’t	hack	it.)	The	series	converge	–	have	a	sensible	sum	–	unless	the
initial	state	has	zero	angular	momentum,	but	such	states	are	infinitely	rare,	in	the
sense	that	a	random	choice	of	angular	momentum	is	almost	always	nonzero.	In
1991	the	Chinese	mathematician	Qiudong	Wang	extended	these	results	to	any
number	of	bodies,	but	did	not	classify	the	rare	exceptions	when	the	series	fail	to
converge.	Such	a	classification	is	likely	to	be	very	complicated:	it	must	include
solutions	where	bodies	escape	to	infinity	in	finite	time,	or	oscillate	ever	faster,
both	of	which	can	happen	for	five	or	more	bodies.

Newton’s	law	of	gravity	is	routinely	applied	to	design	orbits	for	space	missions.
Here	even	two-body	dynamics	is	useful	in	its	own	right.	In	its	early	days,	the
exploration	of	the	Solar	System	mainly	used	two-body	orbits,	segments	of
ellipses.	By	burning	its	rockets	the	spacecraft	could	be	switched	from	one	ellipse
to	a	different	one.	But	as	the	aims	of	space	programmes	got	more	ambitious,



more	efficient	methods	were	needed.	They	came	from	many-body	dynamics,
usually	three	bodies	but	occasionally	as	great	as	five.	The	new	methods	of	chaos
and	topological	dynamics	became	the	basis	of	practical	solutions	to	engineering
problems.

Fig	14	Hohmann	transfer	ellipse	from	low-Earth	orbit	to	lunar	orbit.

It	all	started	with	a	simple	question:	What	is	the	most	efficient	route	from	the
Earth	to	the	Moon	or	the	planets?	The	classic	answer,	known	as	a	Hohmann
transfer	ellipse	(Figure	14),	starts	from	a	circular	orbit	round	the	Earth,	and	then
follows	part	of	a	long,	thin	ellipse	to	join	up	with	a	second	circular	orbit	round
the	destination.	This	method	was	employed	for	the	Apollo	missions	of	the	1960s
and	1970s,	but	for	many	types	of	mission	it	has	one	disadvantage.	The	spacecraft
must	be	boosted	out	of	Earth	orbit	and	slowed	again	to	enter	lunar	orbit;	this
wastes	fuel.	There	are	alternatives	involving	many	loops	round	the	Earth,	a
transition	through	the	point	between	Earth	and	Moon	where	their	gravitational
fields	cancel,	and	many	loops	round	the	Moon.	But	trajectories	like	that	take
longer	than	Hohmann	ellipses,	so	they	were	not	used	for	the	manned	Apollo
missions	where	food	and	oxygen,	hence	time,	were	of	the	essence.	For
unmanned	missions,	however,	time	is	relatively	cheap,	whereas	anything	that
adds	to	the	overall	weight	of	the	spacecraft,	including	fuel,	costs	money.

By	taking	a	fresh	look	at	Newton’s	law	of	gravity	and	his	second	law	of
motion,	mathematicians	and	space	engineers	have	recently	discovered	a	new,
and	remarkable,	approach	to	fuel-efficient	interplanetary	travel.

Go	by	tube.
It’s	an	idea	straight	out	of	science	fiction.	In	his	2004	Pandora’s	Star,	Peter



Hamilton	portrays	a	future	where	people	travel	to	planets	encircling	distant	stars
by	train,	running	the	railway	lines	through	a	wormhole,	a	short	cut	through
space-time.	In	his	Lensman	series	from	1934	to	1948,	Edward	Elmer	‘Doc’
Smith	came	up	with	the	hyperspatial	tube,	which	malevolent	aliens	used	to
invade	human	worlds	from	the	fourth	dimension.

Although	we	don’t	yet	have	wormholes	or	aliens	from	the	fourth	dimension,
it	has	been	discovered	that	the	planets	and	moons	of	the	Solar	System	are	tied
together	by	a	network	of	tubes,	whose	mathematical	definition	requires	many
more	dimensions	than	four.	The	tubes	provide	energy-efficient	routes	from	one
world	to	another.	They	can	be	seen	only	through	mathematical	eyes,	because
they	are	not	made	of	matter:	their	walls	are	energy	levels.	If	we	could	visualise
the	ever-changing	landscape	of	gravitational	fields	that	controls	how	the	planets
move,	we	would	be	able	to	see	the	tubes,	swirling	along	with	the	planets	as	they
orbit	the	Sun.

Tubes	explain	some	puzzling	orbital	dynamics.	Consider,	for	example,	the
comet	called	Oterma.	A	century	ago,	Oterma’s	orbit	was	well	outside	that	of
Jupiter.	But	after	a	close	encounter	with	the	giant	planet,	the	comet’s	orbit
shifted	inside	that	of	Jupiter.	After	another	close	encounter,	it	switched	back
outside	again.	We	can	confidently	predict	that	Oterma	will	continue	to	switch
orbits	in	this	way	every	few	decades:	not	because	it	breaks	Newton’s	law,	but
because	it	obeys	it.

This	is	a	far	cry	from	tidy	ellipses.	The	orbits	predicted	by	Newtonian	gravity
are	elliptical	only	when	no	other	bodies	exert	a	significant	gravitational	pull.	But
the	Solar	System	is	full	of	other	bodies,	and	they	can	make	a	huge	–	and
surprising	–	difference.	It	is	here	that	the	tubes	enter	the	story.	Oterma’s	orbit
lies	inside	two	tubes,	which	meet	near	Jupiter.	One	tube	lies	inside	Jupiter’s
orbit,	the	other	outside.	They	enclose	special	orbits	in	3:2	and	2:3	resonance	with
Jupiter,	meaning	that	a	body	in	such	an	orbit	will	go	round	the	Sun	three	times
for	every	two	revolutions	of	Jupiter,	or	two	times	for	every	three.	At	the	tube
junction	near	Jupiter,	the	comet	can	switch	tubes,	or	not,	depending	on	rather
subtle	effects	of	Jovian	and	solar	gravity.	But	once	inside	a	tube,	Oterma	is	stuck
there	until	the	tube	returns	to	the	junction.	Like	a	train	that	has	to	stay	on	the
rails,	but	can	change	its	route	to	another	set	of	rails	if	someone	switches	the
points,	Oterma	has	some	freedom	to	change	its	itinerary,	but	not	a	lot	(Figure
15).



Fig	15	Left:	Two	periodic	orbits,	in	2	:	3	and	3	:	2	resonance	with	Jupiter,
connected	via	Lagrange	points.	Right:	Actual	orbit	of	comet	Oterma,	1910–
1980.

The	tubes	and	their	junctions	may	seem	bizarre,	but	they	are	natural	and
important	features	of	the	gravitational	geography	of	the	Solar	System.	Victorian
railway-builders	understood	the	need	to	exploit	natural	features	of	the	landscape,
running	railways	through	valleys	and	along	contour	lines,	and	digging	tunnels
through	hills	rather	than	taking	the	train	over	the	top.	One	reason	was	that	trains
tend	to	slip	on	steep	gradients,	but	the	main	one	was	energy.	Climbing	a	hill,
against	the	force	of	gravity,	costs	energy,	which	shows	up	as	increased	fuel
consumption,	which	costs	money.

It’s	much	the	same	with	interplanetary	travel.	Imagine	a	spacecraft	moving
through	space.	Where	it	goes	next	does	not	depend	solely	on	where	it	is	now:	it
also	depends	on	how	fast	it	is	moving	and	in	which	direction.	It	takes	three
numbers	to	specify	the	spacecraft’s	position	–	for	example	its	direction	from	the
Earth,	which	requires	two	numbers	(astronomers	use	right	ascension	and
declination,	which	are	analogous	to	longitude	and	latitude	on	the	celestial
sphere,	the	apparent	sphere	formed	by	the	night	sky),	and	its	distance	from	the
Earth.	It	takes	a	further	three	numbers	to	specify	its	velocity	in	those	three
directions.	So	the	spacecraft	travels	through	a	mathematical	landscape	that	has
six	dimensions	rather	than	two.

A	natural	landscape	is	not	flat:	it	has	hills	and	valleys.	It	takes	energy	to
climb	a	hill,	but	a	train	can	gain	energy	by	rolling	down	into	a	valley.	In	fact,
two	types	of	energy	come	into	play.	The	height	above	sea-level	determines	the
train’s	potential	energy,	which	represents	work	done	against	the	force	of	gravity.



The	higher	you	go,	the	more	potential	energy	you	must	create.	The	second	kind
is	kinetic	energy,	which	corresponds	to	speed.	The	faster	you	go,	the	greater
your	kinetic	energy	becomes.	When	the	train	rolls	downhill	and	accelerates,	it
trades	potential	energy	for	kinetic.	When	it	climbs	a	hill	and	slows	down,	the
trade	is	in	the	reverse	direction.	The	total	energy	is	constant,	so	the	train’s
trajectory	is	analogous	to	a	contour	line	in	the	energy	landscape.	However,	trains
have	a	third	source	of	energy:	coal,	diesel,	or	electricity.	By	expending	fuel,	a
train	can	climb	a	gradient	or	speed	up,	freeing	itself	from	its	natural	free-running
trajectory.	The	total	energy	still	cannot	change,	but	all	else	is	negotiable.

It	is	much	the	same	with	spacecraft.	The	combined	gravitational	fields	of	the
Sun,	planets,	and	other	bodies	of	the	Solar	System	provide	potential	energy.	The
speed	of	the	spacecraft	corresponds	to	kinetic	energy.	And	its	motive	power	–	be
it	rocket	fuel,	ions,	or	light-pressure	–	adds	a	further	energy	source,	which	can	be
switched	on	or	off	as	required.	The	path	followed	by	the	spacecraft	is	a	kind	of
contour	line	in	the	corresponding	energy	landscape,	and	along	that	path	the	total
energy	remains	constant.	And	some	types	of	contour	line	are	surrounded	by
tubes,	corresponding	to	nearby	energy	levels.

Those	Victorian	railway	engineers	were	also	aware	that	the	terrestrial
landscape	has	special	features	–	peaks,	valleys,	mountain	passes	–	which	have	a
big	effect	on	efficient	routes	for	railway	lines,	because	they	constitute	a	kind	of
skeleton	for	the	overall	geometry	of	the	contours.	For	instance,	near	a	peak	or	a
valley	bottom	the	contours	form	closed	curves.	At	peaks,	potential	energy	is
locally	at	a	maximum;	in	a	valley,	it	is	at	a	local	minimum.	Passes	combine
features	of	both,	being	at	a	maximum	in	one	direction,	but	a	minimum	in
another.	Similarly,	the	energy	landscape	of	the	Solar	System	has	special	features.
The	most	obvious	are	the	planets	and	moons	themselves,	which	sit	at	the	bottom
of	gravity	wells,	like	valleys.	Equally	important,	but	less	visible,	are	the	peaks
and	passes	of	the	energy	landscape.	All	these	features	organise	the	overall
geometry,	and	with	it,	the	tubes.

The	energy	landscape	has	other	attractive	features	for	the	tourist,	notably
Lagrange	points.	Imagine	a	system	consisting	only	of	the	Earth	and	the	Moon.	In
1772	Joseph-Louis	Lagrange	discovered	that	at	any	instant	there	are	precisely
five	places	where	the	gravitational	fields	of	the	two	bodies,	together	with
centrifugal	force,	cancel	out	exactly.	Three	are	in	line	with	both	Earth	and	Moon
–	L1	lies	between	them,	L2	is	on	the	far	side	of	the	Moon,	and	L3	is	on	the	far
side	of	the	Earth.	The	Swiss	mathematician	Leonhard	Euler	had	already
discovered	these	around	1750.	But	there	are	also	L4	and	L5,	known	as	Trojan
points,	which	lie	in	the	same	orbit	as	the	Moon	but	60	degrees	ahead	of	it	or



behind	it.	As	the	Moon	rotates	round	the	Earth,	the	Lagrange	points	rotate	with
it.	Other	pairs	of	bodies	also	have	Lagrange	points	–	Earth/Sun,	Jupiter/Sun,
Titan/Saturn.

The	old-fashioned	Hohmann	transfer	orbit	is	built	from	pieces	of	circles	and
ellipses,	which	are	the	natural	trajectories	for	two-body	systems.	The	new	tube-
based	paths	are	built	from	pieces	of	the	natural	trajectories	of	three-body
systems,	such	as	Sun/Earth/spacecraft.	Lagrange	points	play	a	special	role,	just
as	peaks	and	passes	did	for	railways:	they	are	the	junctions	where	tubes	meet.	L1
is	a	great	place	to	make	small	course	changes,	because	the	natural	dynamics	of	a
spacecraft	near	L1	is	chaotic,	Figure	16.	Chaos	has	a	useful	feature	(see	Chapter
16):	very	small	changes	in	position	or	speed	can	create	large	changes	to	the
trajectory.	So	it	is	easy	to	redirect	the	spacecraft	in	a	fuel-efficient,	though
possibly	slow,	manner.

The	first	person	to	take	this	idea	seriously	was	the	German-born
mathematician	Edward	Belbruno,	an	orbital	analyst	at	the	Jet	Propulsion
Laboratory	from	1985	to	1990.	He	realised	that	chaotic	dynamics	in	many-body
systems	provided	an	opportunity	for	novel	low-energy	transfer	orbits,	naming
the	technique	fuzzy	boundary	theory.	In	1991	he	put	his	ideas	into	practice.
Hiten,	a	Japanese	probe,	had	been	surveying	the	Moon,	and	had	completed	its
intended	mission,	returning	to	orbit	the	Earth.	Belbruno	designed	a	new	orbit
that	would	take	it	back	to	the	Moon	despite	having	pretty	much	run	out	of	fuel.
After	approaching	the	Moon	as	intended,	Hiten	visited	its	L4	and	L5	points	to
search	for	cosmic	dust	that	might	have	been	trapped	there.

A	similar	trick	was	used	in	1985	to	redirect	the	almost-dead	International
Sun–Earth	Explorer	ISEE-3	to	rendezvous	with	comet	Giacobini–Zinner,	and	it
was	used	again	for	NASA’s	Genesis	mission	to	bring	back	samples	of	the	solar
wind.	Mathematicians	and	engineers	wanted	to	repeat	the	trick,	and	to	find
others	of	the	same	kind,	which	meant	finding	out	what	really	made	it	work.	It
turned	out	to	be	tubes.



Fig	16	Chaos	near	Jupiter.	The	diagram	shows	a	cross-section	of	orbits.	The
nested	loops	are	quasiperiodic	orbits	and	the	remaining	stippled	region	is	a
chaotic	orbit.	The	two	thin	loops	crossing	each	other	at	the	right	are	cross-
sections	of	tubes.

The	underlying	idea	is	simple	but	clever.	Those	special	places	in	the	energy
landscape	that	resemble	mountain	passes	create	bottlenecks	that	would-be
travellers	cannot	easily	avoid.	Ancient	humans	discovered,	the	hard	way,	that
even	though	it	takes	energy	to	climb	a	pass,	it	takes	more	energy	to	follow	any
other	route	–	unless	you	can	go	round	the	mountain	in	a	totally	different
direction.	The	pass	makes	the	best	of	a	bad	choice.

In	the	energy	landscape,	the	analogues	of	passes	include	Lagrange	points.
Associated	with	them	are	very	specific	inbound	paths,	which	are	like	the	most
efficient	way	to	climb	up	the	pass.	There	are	also	equally	specific	outbound
paths,	analogous	to	the	natural	routes	down	from	the	pass.	To	follow	these
inbound	and	outbound	paths	exactly,	you	have	to	travel	at	just	the	right	speed,
but	if	your	speed	is	slightly	different	you	can	still	stay	near	those	paths.	In	the
late	1960s	American	mathematicians	Charles	Conley	and	Richard	McGehee
followed	up	Belbruno’s	pioneering	work,	pointing	out	that	each	such	path	is
surrounded	by	a	nested	set	of	tubes,	one	inside	the	other.	Each	tube	corresponds
to	a	particular	choice	of	speed;	the	further	away	it	is	from	the	optimal	speed,	the



wider	the	tube	is.	On	the	surface	of	any	given	tube,	the	total	energy	is	constant,
but	the	constants	differ	from	one	tube	to	another.	Much	as	a	contour	line	is	at	a
constant	height,	but	that	height	is	different	for	each	contour.

The	way	to	plan	an	efficient	mission	profile,	then,	is	to	work	out	which	tubes	are
relevant	to	your	choice	of	destination.	Then	you	route	your	spacecraft	along	the
inside	of	the	first	inbound	tube,	and	when	it	gets	to	the	associated	Lagrange
point	you	fire	a	quick	burst	on	the	motors	to	redirect	it	along	the	most	suitable
outbound	tube,	Figure	17.	That	tube	naturally	flows	into	the	corresponding
inbound	tube	of	the	next	switching	point…	and	so	it	goes.

Fig	17	Left:	Tubes	meeting	near	Jupiter.	Right:	Close-up	of	region	where	the
tubes	join.

Plans	for	future	tubular	missions	are	already	being	drawn	up.	In	2000	Wang
Sang	Koon,	Martin	Lo,	Jerrold	Marsden,	and	Shane	Ross	used	the	tube
technique	to	find	a	‘Petit	Grand	Tour’	of	the	moons	of	Jupiter,	ending	with	a
capture	orbit	round	Europa,	which	was	very	tricky	with	previous	methods.	The
path	involves	a	gravitational	boost	near	Ganymede	followed	by	a	tube	trip	to
Europa.	A	more	complex	route,	requiring	even	less	energy,	includes	Callisto	as
well.	It	makes	use	of	another	feature	of	the	energy	landscape	–	resonances.
These	occur	when,	say,	two	moons	repeatedly	return	to	the	same	relative
positions,	but	one	revolves	twice	round	Jupiter	while	the	other	revolves	three
times.	Any	small	numbers	can	replace	2	and	3	here.	This	route	uses	five-body
dynamics:	Jupiter,	the	three	moons,	and	the	spacecraft.

In	2005,	Michael	Dellnitz,	Oliver	Junge,	Marcus	Post,	and	Bianca	Thiere
used	tubes	to	plan	an	energy-efficient	mission	from	the	Earth	to	Venus.	The



main	tube	here	links	the	Sun/Earth	L1	point	to	the	Sun/Venus	L2	point.	As	a
comparison,	this	route	uses	only	one	third	of	the	fuel	required	by	the	European
Space	Agency’s	Venus	Express	mission,	because	it	can	use	low-thrust	engines;
the	price	paid	is	a	lengthening	of	the	transit	time	from	150	days	to	about	650
days.

The	influence	of	tubes	may	go	further.	In	unpublished	work,	Dellnitz	has
discovered	evidence	of	a	natural	system	of	tubes	connecting	Jupiter	to	each	of
the	inner	planets.	This	remarkable	structure,	now	called	the	Interplanetary
Superhighway,	hints	that	Jupiter,	long	known	to	be	the	dominant	planet	of	the
Solar	System,	also	plays	the	role	of	a	celestial	Grand	Central	Station.	Its	tubes
may	well	have	organised	the	formation	of	the	entire	Solar	System,	determining
the	spacings	of	the	inner	planets.

Why	were	the	tubes	not	spotted	sooner?	Until	very	recently,	two	vital	things
were	missing.	One	was	powerful	computers,	capable	of	carrying	out	the
necessary	many-body	calculations.	They	are	far	too	cumbersome	by	hand.	But
the	other,	even	more	important,	was	a	deep	mathematical	understanding	of	the
geography	of	the	energy	landscape.	Without	this	imaginative	triumph	of	modern
mathematical	methods,	there	would	be	nothing	for	the	computers	to	calculate.
And	without	Newton’s	law	of	gravity,	the	mathematical	methods	would	never
have	been	devised.



5	Portent	of	the	ideal	world

The	Square	Root	of	Minus	One

What	does	it	say?

Even	though	it	ought	to	be	impossible,	the	square	of	the	number	i	is	minus	one.

Why	is	that	important?

It	led	to	the	creation	of	complex	numbers,	which	in	turn	led	to	complex	analysis,
one	of	the	most	powerful	areas	of	mathematics.

What	did	it	lead	to?

Improved	methods	to	calculate	trigonometric	tables.	Generalisations	of	almost
all	mathematics	to	the	complex	realm.	More	powerful	methods	to	understand
waves,	heat,	electricity,	and	magnetism.	The	mathematical	basis	of	quantum
mechanics.



	

Renaissance	Italy	was	a	hotbed	of	politics	and	violence.	The	north	of	the	country
was	controlled	by	a	dozen	warring	city-states,	among	them	Milan,	Florence,
Pisa,	Genoa,	and	Venice.	In	the	south,	Guelphs	and	Gibellines	were	in	conflict
as	Popes	and	Holy	Roman	Emperors	battled	for	supremacy.	Bands	of
mercenaries	roamed	the	land,	villages	were	laid	waste,	coastal	cities	waged
naval	warfare	against	each	other.	In	1454	Milan,	Naples,	and	Florence	signed	the
Treaty	of	Lodi,	and	peace	reigned	for	the	next	four	decades,	but	the	papacy
remained	embroiled	in	corrupt	politics.	This	was	the	time	of	the	Borgias,
notorious	for	poisoning	anyone	who	got	in	the	way	of	their	quest	for	political
and	religious	power,	but	it	was	also	the	time	of	Leonardo	da	Vinci,	Brunelleschi,
Piero	della	Francesca,	Titian,	and	Tintoretto.	Against	a	backdrop	of	intrigue	and
murder,	long-held	assumptions	were	coming	into	question.	Great	art	and	great
science	flourished	in	symbiosis,	each	feeding	off	the	other.

Great	mathematics	flourished	as	well.	In	1545	the	gambling	scholar	Girolamo
Cardano	was	writing	an	algebra	text,	and	he	encountered	a	new	kind	of	number,
one	so	baffling	that	he	declared	it	‘as	subtle	as	it	is	useless’	and	dismissed	the
notion.	Rafael	Bombelli	had	a	solid	grasp	of	Cardano’s	algebra	book,	but	he
found	the	exposition	confusing,	and	decided	he	could	do	better.	By	1572	he	had
noticed	something	intriguing:	although	these	baffling	new	numbers	made	no
sense,	they	could	be	used	in	algebraic	calculations	and	led	to	results	that	were
demonstrably	correct.

For	centuries	mathematicians	engaged	in	a	love–hate	relationship	with	these
‘imaginary	numbers’,	as	they	are	still	called	today.	The	name	betrays	an
ambivalent	attitude:	they’re	not	real	numbers,	the	usual	numbers	encountered	in
arithmetic,	but	in	most	respects	they	behave	like	them.	The	main	difference	is
that	when	you	square	an	imaginary	number,	the	result	is	negative.	But	that	ought
not	to	be	possible,	because	squares	are	always	positive.

Only	in	the	eighteenth	century	did	mathematicians	figure	out	what	imaginary
numbers	were.	Only	in	the	nineteenth	did	they	start	to	feel	comfortable	with
them.	But	by	the	time	the	logical	status	of	imaginary	numbers	was	seen	to	be
entirely	comparable	to	that	of	the	more	traditional	real	numbers,	imaginaries	had
become	indispensable	throughout	mathematics	and	science,	and	the	question	of
their	meaning	hardly	seemed	interesting	any	more.	In	the	late	nineteenth	and
early	twentieth	centuries,	revived	interest	in	the	foundations	of	mathematics	led
to	a	rethink	of	the	concept	of	number,	and	traditional	‘real’	numbers	were	seen



to	be	no	more	real	than	imaginary	ones.	Logically,	the	two	kinds	of	number	were
as	alike	as	Tweedledum	and	Tweedledee.	Both	were	constructs	of	the	human
mind,	both	represented	–	but	were	not	synonymous	with	–	aspects	of	nature.	But
they	represented	reality	in	different	ways	and	in	different	contexts.

By	the	second	half	of	the	twentieth	century,	imaginary	numbers	were	simply
part	and	parcel	of	every	mathematician’s	and	every	scientist’s	mental	toolkit.
They	were	built	into	quantum	mechanics	in	such	a	fundamental	way	that	you
could	no	more	do	physics	without	them	than	you	could	scale	the	north	face	of
the	Eiger	without	ropes.	Even	so,	imaginary	numbers	are	seldom	taught	in
schools.	The	sums	are	easy	enough,	but	the	mental	sophistication	needed	to
appreciate	why	imaginaries	are	worth	studying	is	still	too	great	for	the	vast
majority	of	students.	Very	few	adults,	even	educated	ones,	are	aware	of	how
deeply	their	society	depends	on	numbers	that	do	not	represent	quantities,
lengths,	areas,	or	amounts	of	money.	Yet	most	modern	technology,	from	electric
lighting	to	digital	cameras,	could	not	have	been	invented	without	them.

Let	me	backtrack	to	a	crucial	question.	Why	are	squares	always	positive?
In	Renaissance	times,	where	equations	were	generally	rearranged	to	make

every	number	in	them	positive,	they	wouldn’t	have	phrased	the	question	quite
this	way.	They	would	have	said	that	if	you	add	a	number	to	a	square	then	you
have	to	get	a	bigger	number	–	you	can’t	get	zero.	But	even	if	you	allow	negative
numbers,	as	we	now	do,	squares	still	have	to	be	positive.	Here’s	why.

Real	numbers	can	be	positive	or	negative.	However,	the	square	of	any	real
number,	whatever	its	sign,	is	always	positive,	because	the	product	of	two
negative	numbers	is	positive.	So	both	3	×	3	and	−3	×	−3	yield	the	same	result:	9.
Therefore	9	has	two	square	roots,	3	and	−3.

What	about	—9?	What	are	its	square	roots?
It	doesn’t	have	any.
It	all	seems	terribly	unfair:	the	positive	numbers	hog	two	square	roots	each,

while	the	negative	numbers	go	without.	It	is	tempting	to	change	the	rule	for
multiplying	two	negative	numbers,	so	that,	say,	−3	×	−3	=	−9.	Then	positive	and
negative	numbers	each	get	one	square	root;	moreover,	this	has	the	same	sign	as
its	square,	which	seems	neat	and	tidy.	But	this	seductive	line	of	reasoning	has	an
unintended	downside:	it	wrecks	the	usual	rules	of	arithmetic.	The	problem	is	that
—9	already	occurs	as	3	×	−3	itself	a	consequence	of	the	usual	rules	of
arithmetic,	and	a	fact	that	almost	everyone	is	happy	to	accept.	If	we	insist	that	−3
×	−3	is	also	9,	then	−3	×	−3	=	3	×	−3.	There	are	several	ways	to	see	that	this



causes	problems;	the	simplest	is	to	divide	both	sides	by	−3,	to	get	3	=	−3.
Of	course	you	can	change	the	rules	of	arithmetic.	But	now	it	all	gets

complicated	and	messy.	A	more	creative	solution	is	to	retain	the	rules	of
arithmetic,	and	to	extend	the	system	of	real	numbers	by	permitting	imaginaries.
Remarkably	–	and	no	one	could	have	anticipated	this,	you	just	have	to	follow	the
logic	through	–	this	bold	step	leads	to	a	beautiful,	consistent	system	of	numbers,
with	a	myriad	uses.	Now	all	numbers	except	0	have	two	square	roots,	one	being
minus	the	other.	This	is	true	even	for	the	new	kinds	of	number;	one	enlargement
of	the	system	suffices.	It	took	a	while	for	this	to	become	clear,	but	in	retrospect	it
has	an	air	of	inevitability.	Imaginary	numbers,	impossible	though	they	were,
refused	to	go	away.	They	seemed	to	make	no	sense,	but	they	kept	cropping	up	in
calculations.	Sometimes	the	use	of	imaginary	numbers	made	the	calculations
simpler,	and	the	result	was	more	comprehensive	and	more	satisfactory.
Whenever	an	answer	that	had	been	obtained	using	imaginary	numbers,	but	did
not	explicitly	involve	them,	could	be	verified	independently,	it	turned	out	to	be
right.	But	when	the	answer	did	involve	explicit	imaginary	numbers	it	seemed	to
be	meaningless,	and	often	logically	contradictory.	The	enigma	simmered	for	two
hundred	years,	and	when	it	finally	boiled	over,	the	results	were	explosive.

Cardano	is	known	as	the	gambling	scholar	because	both	activities	played	a
prominent	role	in	his	life.	He	was	both	genius	and	rogue.	His	life	consists	of	a
bewildering	series	of	very	high	highs	and	very	low	lows.	His	mother	tried	to
abort	him,	his	son	was	beheaded	for	killing	his	(the	son’s)	wife,	and	he
(Cardano)	gambled	away	the	family	fortune.	He	was	accused	of	heresy	for
casting	the	horoscope	of	Jesus.	Yet	in	between	he	also	became	Rector	of	the
University	of	Padua,	was	elected	to	the	College	of	Physicians	in	Milan,	gained
2000	gold	crowns	for	curing	the	Archbishop	of	St	Andrews’	asthma,	and
received	a	pension	from	Pope	Gregory	XIII.	He	invented	the	combination	lock
and	gimbals	to	hold	a	gyroscope,	and	he	wrote	a	number	of	books,	including	an
extraordinary	autobiography	De	Vita	Propria	(‘The	Book	of	My	Life’).	The
book	that	is	relevant	to	our	tale	is	the	Ars	Magna	of	1545.	The	title	means	‘great
art’,	and	refers	to	algebra.	In	it,	Cardano	assembled	the	most	advanced	algebraic
ideas	of	his	day,	including	new	and	dramatic	methods	for	solving	equations,
some	invented	by	a	student	of	his,	some	obtained	from	others	in	controversial
circumstances.

Algebra,	in	its	familiar	sense	from	school	mathematics,	is	a	system	for
representing	numbers	symbolically.	Its	roots	go	back	to	the	Greek	Diophantus
around	250	AD,	whose	Arithmetica	employed	symbols	to	describe	ways	to	solve



equations.	Most	of	the	work	was	verbal	–	‘find	two	numbers	whose	sum	is	10
and	whose	product	is	24’.	But	Diophantus	summarised	the	methods	he	used	to
find	the	solutions	(here	4	and	6)	symbolically.	The	symbols	(see	Table	1)	were
very	different	from	those	we	use	today,	and	most	were	abbreviations,	but	it	was
a	start.	Cardano	mainly	used	words,	with	a	few	symbols	for	roots,	and	again	the
symbols	scarcely	resemble	those	in	current	use.	Later	authors	homed	in,	rather
haphazardly,	on	today’s	notation,	most	of	which	was	standardised	by	Euler	in	his
numerous	textbooks.	However,	Gauss	still	used	xx	instead	of	x2	as	late	as	1800.

Table	1	The	development	of	algebraic	notation.

The	most	important	topics	in	the	Ars	Magna	were	new	methods	for	solving
cubic	and	quartic	equations.	These	are	like	quadratic	equations,	which	most	of	us
meet	in	school	algebra,	but	more	complicated.	A	quadratic	equation	states	a
relationship	involving	an	unknown	quantity,	normally	symbolised	by	the	letter	x,
and	its	square	x2.	‘Quadratic’	comes	from	the	Latin	for	‘square’.	A	typical
example	is

x2	−	5x	+	6	=	0

Verbally,	this	says:	‘Square	the	unknown,	subtract	5	times	the	unknown,	and	add
6:	the	result	is	zero.’	Given	an	equation	involving	an	unknown,	our	task	is	to
solve	the	equation	–	to	find	the	value	or	values	of	the	unknown	that	make	the
equation	correct.

For	a	randomly	chosen	value	of	x,	this	equation	will	usually	be	false.	For
example,	if	we	try	x	=	1,	then	x2	−	5x	+	6	=	1	−	5	+	6	=	2,	which	isn’t	zero.	But
for	rare	choices	of	x,	the	equation	is	true.	For	example,	when	x	=	2	we	have	x2	–



5x	+	6	=	4	−	10	+	6	=	0.	But	this	is	not	the	only	solution!	When	x	=	3	we	have	x2
−	5x	+	6	=	9	−	15	+	6	=	0	as	well.	There	are	two	solutions,	x	=	2	and	x	=	3,	and	it
can	be	shown	that	there	are	no	others.	A	quadratic	equation	can	have	two
solutions,	one,	or	none	(in	real	numbers).	For	example,	x2	−	2x	+	1	=	0	has	only
the	solution	x	=	1,	and	x2	+	1	=	0	has	no	solutions	in	real	numbers.

Cardano’s	masterwork	provides	methods	for	solving	cubic	equations,	which
along	with	x	and	x2	also	involve	the	cube	x3	of	the	unknown,	and	quartic
equations,	where	x4	turns	up	as	well.	The	algebra	gets	very	complicated;	even
with	modern	symbolism	it	takes	a	page	or	two	to	derive	the	answers.	Cardano
did	not	go	on	to	quintic	equations,	involving	x5,	because	he	did	not	know	how	to
solve	them.	Much	later	it	was	proved	that	no	solutions	(of	the	type	Cardano
would	have	wanted)	exist:	although	highly	accurate	numerical	solutions	can	be
calculated	in	any	particular	case,	there	is	no	general	formula	for	them,	unless
you	invent	new	symbols	specifically	for	the	task.

I’m	going	to	write	down	a	few	algebraic	formulas,	because	I	think	the	topic
makes	more	sense	if	we	don’t	try	to	avoid	them.	You	don’t	need	to	follow	the
details,	but	I’d	like	to	show	you	what	everything	looks	like.	Using	modern
symbols,	we	can	write	out	Cardano’s	solution	of	the	cubic	equation	in	a	special
case,	when	x3	+	ax	+	b	=	0	for	specific	numbers	a	and	b.	(If	x2	is	present,	a
cunning	trick	gets	rid	of	it,	so	this	case	actually	deals	with	everything.)	The
answer	is:

This	may	appear	a	bit	of	a	mouthful,	but	it’s	a	lot	simpler	than	many	algebraic
formulas.	It	tells	us	how	to	calculate	the	unknown	x	by	working	out	the	square	of
b	and	the	cube	of	a,	adding	a	few	fractions,	and	taking	a	couple	of	square	roots
(the	 	symbol)	and	a	couple	of	cube	roots	(the	 	symbol).	The	cube	root	of	a
number	is	whatever	you	have	to	cube	to	get	that	number.

The	discovery	of	the	solution	for	cubic	equations	involves	at	least	three	other
mathematicians,	one	of	whom	complained	bitterly	that	Cardano	had	promised
not	to	reveal	his	secret.	The	story,	though	fascinating,	is	too	complicated	to
relate	here.1	The	quartic	was	solved	by	Cardano’s	student	Lodovico	Ferrari.	I’ll
spare	you	the	even	more	complicated	formula	for	quartic	equations.

The	results	reported	in	the	Ars	Magna	were	a	mathematical	triumph,	the



culmination	of	a	story	that	spanned	millennia.	The	Babylonians	knew	how	to
solve	quadratic	equations	around	1500	BC,	perhaps	earlier.	The	ancient	Greeks
and	Omar	Khayyam	knew	geometric	methods	for	solving	cubics,	but	algebraic
solutions	of	cubic	equations,	let	alone	quartics,	were	unprecedented.	At	a	stroke,
mathematics	outstripped	its	classical	origins.

There	was	one	tiny	snag,	however.	Cardano	noticed	it,	and	several	people
tried	to	explain	it;	they	all	failed.	Sometimes	the	method	works	brilliantly;	at
other	times,	the	formula	is	as	enigmatic	as	the	Delphic	oracle.	Suppose	we	apply
Cardano’s	formula	to	the	equation	x3	−	15x	−	4	=	0.	The	result	is

However,	−121	is	negative,	so	it	has	no	square	root.	To	compound	the	mystery,
there	is	a	perfectly	good	solution,	x	=	4.	The	formula	doesn’t	give	it.

Light	of	a	kind	was	shed	in	1572	when	Bombelli	published	L’Algebra.	His
main	aim	was	to	clarify	Cardano’s	book,	but	when	he	came	to	this	particular
thorny	issue	he	spotted	something	Cardano	had	missed.	If	you	ignore	what	the
symbols	mean,	and	just	perform	routine	calculations,	the	standard	rules	of
algebra	show	that

Therefore	you	are	entitled	to	write

Similarly,

Now	the	formula	that	baffled	Cardano	can	be	rewritten	as

which	is	equal	to	4	because	the	troublesome	square	roots	cancel	out.	So
Bombelli’s	nonsensical	formal	calculations	got	the	right	answer.	And	that	was	a
perfectly	normal	real	number.

Somehow,	pretending	that	square	roots	of	negative	numbers	made	sense,	even



though	they	obviously	did	not,	could	lead	to	sensible	answers.	Why?

To	answer	this	question,	mathematicians	had	to	develop	good	ways	to	think
about	square	roots	of	negative	quantities,	and	do	calculations	with	them.	Early
writers,	among	them	Descartes	and	Newton,	interpreted	these	‘imaginary’
numbers	as	a	sign	that	a	problem	has	no	solutions.	If	you	wanted	to	find	a
number	whose	square	was	minus	one,	the	formal	solution	‘square	root	of	minus
one’	was	imaginary,	so	no	solution	existed.	But	Bombelli’s	calculation	implied
that	there	was	more	to	imaginaries	than	that.	They	could	be	used	to	find
solutions;	they	could	arise	as	part	of	the	calculation	of	solutions	that	did	exist.

Leibniz	had	no	doubt	about	the	importance	of	imaginary	numbers.	In	1702	he
wrote:	‘The	Divine	Spirit	found	a	sublime	outlet	in	that	wonder	of	analysis,	that
portent	of	the	ideal	world,	that	amphibian	between	being	and	non-being,	which
we	call	the	imaginary	root	of	negative	unity.’	But	the	eloquence	of	his	statement
fails	to	obscure	a	fundamental	problem:	he	didn’t	have	a	clue	what	imaginary
numbers	actually	were.

One	of	the	first	people	to	come	up	with	a	sensible	representation	of	complex
numbers	was	Wallis.	The	image	of	real	numbers	lying	along	a	line,	like	marked
points	on	a	ruler,	was	already	commonplace.	In	1673	Wallis	suggested	that	a
complex	number	x	+iy	should	be	thought	of	as	a	point	in	a	plane.	Draw	a	line	in
the	plane,	and	identify	points	on	this	line	with	real	numbers	in	the	usual	way.
Then	think	of	x	+iy	as	a	point	lying	to	one	side	of	the	line,	distance	y	away	from
the	point	x.

Wallis’s	idea	was	largely	ignored,	or	worse,	criticised.	François	Daviet	de
Foncenex,	writing	about	imaginaries	in	1758,	said	that	thinking	of	imaginaries	as
forming	a	line	at	right	angles	to	the	real	line	was	pointless.	But	eventually	the
idea	was	revived	in	a	slightly	more	explicit	form.	In	fact,	three	people	came	up
with	exactly	the	same	method	for	representing	complex	numbers,	at	intervals	of
a	few	years,	Figure	18.	One	was	a	Norwegian	surveyor,	one	a	French
mathematician,	and	one	a	German	mathematician.	Respectively,	they	were
Caspar	Wessel,	who	published	in	1797,	Jean-Robert	Argand	in	1806,	and	Gauss
in	1811.	They	basically	said	the	same	as	Wallis,	but	they	added	a	second	line	to
the	picture,	an	imaginary	axis	at	right	angles	to	the	real	one.	Along	this	second
axis	lived	the	imaginary	numbers	i,	2i,	3i,	and	so	on.	A	general	complex	number,
such	as	3	+	2i,	lived	out	in	the	plane,	three	units	along	the	real	axis	and	two
along	the	imaginary	one.



Fig	18	The	complex	plane.	Left:	according	to	Wallis.	Right:	according	to
Wessel,	Argand,	and	Gauss.

This	geometric	representation	was	all	very	well,	but	it	didn’t	explain	why
complex	numbers	form	a	logically	consistent	system.	It	didn’t	tell	us	in	what
sense	they	are	numbers.	It	just	provided	a	way	to	visualise	them.	This	no	more
defined	what	a	complex	number	is	than	a	drawing	of	a	straight	line	defines	a	real
number.	It	did	provide	some	sort	of	psychological	prop,	a	slightly	artificial	link
between	those	crazy	imaginaries	and	the	real	world,	but	nothing	more.

What	convinced	mathematicians	that	they	should	take	imaginary	numbers
seriously	wasn’t	a	logical	description	of	what	they	were.	It	was	overwhelming
evidence	that	whatever	they	were,	mathematics	could	make	good	use	of	them.
You	don’t	ask	difficult	questions	about	the	philosophical	basis	of	an	idea	when
you	are	using	it	every	day	to	solve	problems	and	you	can	see	that	it	gives	the
right	answers.	Foundational	questions	still	have	some	interest,	of	course,	but
they	take	a	back	seat	to	the	pragmatic	issues	of	using	the	new	idea	to	solve	old
and	new	problems.

Imaginary	numbers,	and	the	system	of	complex	numbers	that	they	spawned,
cemented	their	place	in	mathematics	when	a	few	pioneers	turned	their	attention
to	complex	analysis:	calculus	(Chapter	3)	but	with	complex	numbers	instead	of
real	ones.	The	first	step	was	to	extend	all	the	usual	functions	–	powers,
logarithms,	exponentials,	trigonometric	functions	–	to	the	complex	realm.	What
is	sin	z	when	z	=	x	+	iy	is	complex?	What	is	ez	or	log	z?

Logically,	these	things	can	be	whatever	we	wish.	We	are	operating	in	a	new
domain	where	the	old	ideas	don’t	apply.	It	doesn’t	make	much	sense,	for
instance,	to	think	of	a	right-angled	triangle	whose	sides	have	complex	lengths,	so
the	geometric	definition	of	the	sine	function	is	irrelevant.	We	could	take	a	deep



breath,	insist	that	sin	z	has	its	usual	value	when	z	is	real,	but	equals	42	whenever
z	isn’t	real:	job	done.	But	that	would	be	a	pretty	silly	definition:	not	because	it’s
imprecise,	but	because	it	bears	no	sensible	relationship	to	the	original	one	for
real	numbers.	One	requirement	for	an	extended	definition	must	be	that	it	agrees
with	the	old	one	when	applied	to	real	numbers,	but	that’s	not	enough.	It’s	true
for	my	silly	extension	of	the	sine.	Another	requirement	is	that	the	new	concept
should	retain	as	many	features	of	the	old	one	as	we	can	manage;	it	should
somehow	be	‘natural’.

What	properties	of	sine	and	cosine	do	we	want	to	preserve?	Presumably	we’d
like	all	the	pretty	formulas	of	trigonometry	to	remain	valid,	such	as	sin	2z	=	2	sin
z	cos	z.	This	imposes	a	constraint	but	doesn’t	help.	A	more	interesting	property,
derived	using	analysis	(the	rigorous	formulation	of	calculus),	is	the	existence	of
an	infinite	series:

(The	sum	of	such	a	series	is	defined	to	be	the	limit	of	the	sum	of	finitely	many
terms	as	the	number	of	terms	increases	indefinitely.)	There	is	a	similar	series	for
the	cosine:

and	the	two	are	obviously	related	in	some	way	to	the	series	for	the	exponential:

These	series	may	seem	complicated,	but	they	have	an	attractive	feature:	we
know	how	to	make	sense	of	them	for	complex	numbers.	All	they	involve	is
integer	powers	(which	we	obtain	by	repeated	multiplication)	and	a	technical
issue	of	convergence	(making	sense	of	the	infinite	sum).	Both	of	these	extend
naturally	into	the	complex	realm	and	have	all	of	the	expected	properties.	So	we
can	define	sines	and	cosines	of	complex	numbers	using	the	same	series	that
work	in	the	real	case.

Since	all	of	the	usual	formulas	in	trigonometry	are	consequences	of	these
series,	those	formulas	automatically	carry	over	as	well.	So	do	the	basic	facts	of
calculus,	such	as	‘the	derivative	of	sine	is	cosine’.	So	does	ez	+	w	=	ezew.	This	is



all	so	pleasant	that	mathematicians	were	happy	to	settle	on	the	series	definitions.
And	once	they’d	done	that,	a	great	deal	else	necessarily	had	to	fit	in	with	it.	If
you	followed	your	nose,	you	could	discover	where	it	led.

For	example,	those	three	series	look	very	similar.	Indeed,	if	you	replace	z	by
iz	in	the	series	for	the	exponential,	you	can	split	the	resulting	series	into	two
parts,	and	what	you	get	are	precisely	the	series	for	sine	and	cosine.	So	the	series
definitions	imply	that

eiz	=	cos	z	+	i	sin	z:

You	can	also	express	both	sine	and	cosine	using	exponentials:

This	hidden	relationship	is	extraordinarily	beautiful.	But	you’d	never	suspect
anything	like	it	could	exist	if	you	remained	stuck	in	the	realm	of	the	reals.
Curious	similarities	between	trigonometric	formulas	and	exponential	ones	(for
example,	their	infinite	series)	would	remain	just	that.	Viewed	through	complex
spectacles,	everything	suddenly	slots	into	place.

One	of	the	most	beautiful,	yet	enigmatic,	equations	in	the	whole	of
mathematics	emerges	almost	by	accident.	In	the	trigonometric	series,	the	number
z	(when	real)	has	to	be	measured	in	radians,	for	which	a	full	circle	of	360°
becomes	2π	radians.	In	particular,	the	angle	180°	is	π	radians.	Moreover,	sin	π	=
0	and	cos	π	=	1.	Therefore

eiπ	=	cos	π	+	i	sin	π	=	−1

The	imaginary	number	i	unites	the	two	most	remarkable	numbers	in
mathematics,	e	and	π,	in	a	single	elegant	equation.	If	you’ve	never	seen	this
before,	and	have	any	mathematical	sensitivity,	the	hairs	on	your	neck	raise	and
prickles	run	down	your	spine.	This	equation,	attributed	to	Euler,	regularly	comes
top	of	the	list	in	polls	for	the	most	beautiful	equation	in	mathematics.	That
doesn’t	mean	that	it	is	the	most	beautiful	equation,	but	it	does	show	how	much
mathematicians	appreciate	it.	Armed	with	complex	functions	and	knowing	their
properties,	the	mathematicians	of	the	nineteenth	century	discovered	something
remarkable:	they	could	use	these	things	to	solve	differential	equations	in
mathematical	physics.	They	could	apply	the	method	to	static	electricity,
magnetism,	and	fluid	flow.	Not	only	that:	it	was	easy.



In	Chapter	3	we	talked	of	functions	–	mathematical	rules	that	assign,	to	any
given	number,	a	corresponding	number,	such	as	its	square	or	sine.	Complex
functions	are	defined	in	the	same	way,	but	now	we	allow	the	numbers	involved
to	be	complex.	The	method	for	solving	differential	equations	was	delightfully
simple.	All	you	had	to	do	was	take	some	complex	function,	call	it	f(z),	and	split
it	into	its	real	and	imaginary	parts:

f(z)	=	u(z)	+	iv(z)

Now	you	have	two	real-valued	functions	u	and	v,	defined	for	any	z	in	the
complex	plane.	Moreover,	whatever	function	you	start	with,	these	two
component	functions	satisfy	differential	equations	found	in	physics.	In	a	fluid-
flow	interpretation,	for	example,	u	and	v	determine	the	flow-lines.	In	an
electrostatic	interpretation,	the	two	components	determine	the	electric	field	and
how	a	small	charged	particle	would	move;	in	a	magnetic	interpretation,	they
determine	the	magnetic	field	and	the	lines	of	force.

I’ll	give	just	one	example:	a	bar	magnet.	Most	of	us	remember	seeing	a
famous	experiment	in	which	a	magnet	is	placed	beneath	a	sheet	of	paper,	and
iron	filings	are	scattered	over	the	paper.	They	automatically	line	up	to	show	the
lines	of	magnetic	force	associated	with	the	magnet	–	the	paths	that	a	tiny	test
magnet	would	follow	if	placed	in	the	magnetic	field.	The	curves	look	like	Figure
19	(left).

Fig	19	Left:	Magnetic	field	of	bar	magnet.	Right:	Field	derived	using	complex
analysis.

To	obtain	this	picture	using	complex	functions,	we	just	let	f(z)	=	1/z.	The	lines
of	force	turn	out	to	be	circles,	tangent	to	the	real	axis,	as	in	Figure	19	(right).
This	is	what	the	magnetic	fields	lines	of	a	very	tiny	bar	magnet	would	look	like.
A	more	complicated	choice	of	function	corresponds	to	a	magnet	of	finite	size:	I



chose	this	function	to	keep	everything	as	simple	as	possible.
This	was	wonderful.	There	were	endless	functions	to	work	with.	You	decided

which	function	to	look	at,	found	its	real	and	imaginary	parts,	worked	out	their
geometry	…	and,	lo	and	behold,	you	had	solved	a	problem	in	magnetism,	or
electricity,	or	fluid	flow.	Experience	soon	told	you	which	function	to	use	for
which	problem.	The	logarithm	was	a	point	source,	minus	the	logarithm	was	a
sink	through	which	fluid	disappeared	like	the	plughole	in	a	kitchen	sink,	i	times
the	logarithm	was	a	point	vortex	where	the	fluid	spun	round	and	round…	It	was
magic!	Here	was	a	method	that	could	churn	out	solution	after	solution	to
problems	that	would	otherwise	be	opaque.	Yet	it	came	with	a	guarantee	of
success,	and	if	you	were	worried	about	all	that	complex	analysis	stuff,	you	could
check	directly	that	the	results	you	obtained	really	did	represent	solutions.

This	was	just	the	beginning.	As	well	as	special	solutions,	you	could	prove
general	principles,	hidden	patterns	in	the	physical	laws.	You	could	analyse
waves	and	solve	differential	equations.	You	could	transform	shapes	into	other
shapes,	using	complex	equations,	and	the	same	equations	transformed	the	flow-
lines	round	them.	The	method	was	limited	to	systems	in	the	plane,	because	that
was	where	a	complex	number	naturally	lived,	but	the	method	was	a	godsend
when	previously	even	problems	in	the	plane	were	out	of	reach.	Today,	every
engineer	is	taught	how	to	use	complex	analysis	to	solve	practical	problems,	early
in	their	university	course.	The	Joukowski	transformation	z	+	1/z	turns	a	circle
into	an	aerofoil	shape,	the	cross-section	of	a	rudimentary	aeroplane	wing,	see
Figure	20.	It	therefore	turns	the	flow	past	a	circle,	easy	to	find	if	you	knew	the
tricks	of	the	trade,	into	the	flow	past	an	aerofoil.	This	calculation,	and	more
realistic	improvements,	were	important	in	the	early	days	of	aerodynamics	and
aircraft	design.

This	wealth	of	practical	experience	made	the	foundational	issues	moot.	Why
look	a	gift	horse	in	the	mouth?	There	had	to	be	a	sensible	meaning	for	complex
numbers	–	they	wouldn’t	work	otherwise.	Most	scientists	and	mathematicians
were	much	more	interested	in	digging	out	the	gold	than	they	were	in	establishing
exactly	where	it	had	come	from	and	what	distinguished	it	from	fools’	gold.	But	a
few	persisted.	Eventually,	the	Irish	mathematician	William	Rowan	Hamilton
knocked	the	whole	thing	on	the	head.	He	took	the	geometric	representation
proposed	by	Wessel,	Argand,	and	Gauss,	and	expressed	it	in	coordinates.	A
complex	number	was	a	pair	of	real	numbers	(x,	y).	The	real	numbers	were	those
of	the	form	(x,	0).	The	imaginary	i	was	(0,	1).	There	were	simple	formulas	for
adding	and	multiplying	these	pairs.	If	you	were	worried	about	some	law	of



algebra,	such	as	the	commutative	law	ab	=	ba,	you	could	routinely	work	out	both
sides	as	pairs,	and	make	sure	they	were	the	same.	(They	were.)	If	you	identified
(x,	0)	with	plain	x,	you	embedded	the	real	numbers	into	the	complex	ones.	Better
still,	x	+iy	then	worked	out	as	the	pair	(x,	y).

Fig	20	Flow	past	a	wing	derived	from	the	Joukowski	transformation.

This	wasn’t	just	a	representation,	but	a	definition.	A	complex	number,	said
Hamilton,	is	nothing	more	nor	less	than	a	pair	of	ordinary	real	numbers.	What
made	them	so	useful	was	an	inspired	choice	of	the	rules	for	adding	and
multiplying	them.	What	they	actually	were	was	trite;	it	was	how	you	used	them
that	produced	the	magic.	With	this	simple	stroke	of	genius,	Hamilton	cut	through
centuries	of	heated	argument	and	philosophical	debate.	But	by	then,
mathematicians	had	become	so	used	to	working	with	complex	numbers	and
functions	that	no	one	cared	any	more.	All	you	needed	to	remember	was	that	i2	=
−1.



6	Much	ado	about	knotting

Euler’s	Formula	for	Polyhedra

What	does	it	say?

The	numbers	of	faces,	edges,	and	vertices	of	a	solid	are	not	independent,	but	are
related	in	a	simple	manner.

Why	is	that	important?

It	distinguishes	between	solids	with	different	topologies	using	the	earliest
example	of	a	topological	invariant.	This	paved	the	way	to	more	general	and
more	powerful	techniques,	creating	a	new	branch	of	mathematics.

What	did	it	lead	to?

One	of	the	most	important	and	powerful	areas	of	pure	mathematics:	topology,
which	studies	geometric	properties	that	are	unchanged	by	continuous
deformations.	Examples	include	surfaces,	knots,	and	links.	Most	applications	are
indirect,	but	its	influence	behind	the	scenes	is	vital.	It	helps	us	understand	how
enzymes	act	on	DNA	in	a	cell,	and	why	the	motion	of	celestial	bodies	can	be
chaotic.



	

As	the	nineteenth	century	approached	its	end,	mathematicians	began	to	develop
a	new	kind	of	geometry,	one	in	which	familiar	concepts	such	as	lengths	and
angles	played	no	role	whatsoever	and	no	distinction	was	made	between	triangles,
squares,	and	circles.	Initially	it	was	called	analysis	situs,	the	analysis	of	position,
but	mathematicians	quickly	settled	on	another	name:	topology.

Topology	has	its	roots	in	a	curious	numerical	pattern	that	Descartes	noticed	in
1639	when	thinking	about	Euclid’s	five	regular	solids.	Descartes	was	a	French-
born	polymath	who	spent	most	of	his	life	in	the	Dutch	Republic,	present-day
Netherlands.	His	fame	mainly	rests	on	his	philosophy,	which	proved	so
influential	that	for	a	long	time	Western	philosophy	consisted	largely	of
responses	to	Descartes.	Not	always	in	agreement,	you	appreciate,	but	motivated
by	his	arguments	nonetheless.	His	sound	bite	cogito	ergo	sum	–	‘I	think,
therefore	I	am’	–	has	become	common	cultural	currency.	But	Descartes’s
interests	extended	beyond	philosophy	into	science	and	mathematics.

In	1639	Descartes	turned	his	attention	to	the	regular	solids,	and	this	was	when
he	noticed	his	curious	numerical	pattern.	A	cube	has	6	faces,	12	edges,	and	8
vertices;	the	sum	6	–	12	+	8	equals	2.	A	dodecahedron	has	12	faces,	30	edges,
and	20	vertices;	the	sum	12	–	30	+	20	=	2.	An	icosahedron	has	20	faces,	30
edges,	and	12	vertices;	the	sum	20	–	30	+	12	=	2.	The	same	relationship	holds
for	the	tetrahedron	and	octahedron.	In	fact,	it	applies	to	a	solid	of	any	shape,
regular	or	not.	If	the	solid	has	F	faces,	E	edges,	and	V	vertices,	then	F–E	+	V	=	2.
Descartes	viewed	this	formula	as	a	minor	curiosity	and	did	not	publish	it.	Only
much	later	did	mathematicians	see	this	simple	little	equation	as	one	of	the	first
tentative	steps	towards	the	great	success	story	in	twentieth-century	mathematics,
the	inexorable	rise	of	topology.	In	the	nineteenth	century,	the	three	pillars	of
pure	mathematics	were	algebra,	analysis,	and	geometry.	By	the	end	of	the
twentieth,	they	were	algebra,	analysis,	and	topology.	Topology	is	often
characterised	as	‘rubber-sheet	geometry’	because	it	is	the	kind	of	geometry	that
would	be	appropriate	for	figures	drawn	on	a	sheet	of	elastic,	so	that	lines	can
bend,	shrink,	or	stretch,	and	circles	can	be	squashed	so	that	they	turn	into
triangles	or	squares.	All	that	matters	is	continuity:	you	are	not	allowed	to	rip	the
sheet	apart.	It	may	seem	remarkable	that	anything	so	weird	could	have	any
importance,	but	continuity	is	a	basic	aspect	of	the	natural	world	and	a
fundamental	feature	of	mathematics.	Today	we	mostly	use	topology	indirectly,
as	one	mathematical	technique	among	many.	You	don’t	find	anything	obviously



topological	in	your	kitchen.	However,	a	Japanese	company	did	market	a	chaotic
dishwasher,	which	according	to	their	marketing	people	cleaned	dishes	more
efficiently,	and	our	understanding	of	chaos	rests	on	topology.	So	do	some
important	aspects	of	quantum	field	theory	and	that	iconic	molecule	DNA.	But,
when	Descartes	counted	the	most	obvious	features	of	the	regular	solids	and
noticed	that	they	were	not	independent,	all	this	was	far	in	the	future.

It	was	left	to	the	indefatigable	Euler,	the	most	prolific	mathematician	in
history,	to	prove	and	publish	this	relationship,	which	he	did	in	1750	and	1751.
I’ll	sketch	a	modern	version.	The	expression	F–E	+	V	may	seem	fairly	arbitrary,
but	it	has	a	very	interesting	structure.	Faces	(F)	are	polygons,	of	dimension	2,
edges	(E)	are	lines,	so	have	dimension	1,	and	vertices	(V)	are	points,	of
dimension	0.	The	signs	in	the	expression	alternate,	+	–	+,	with	+	being	assigned
to	features	of	even	dimension	and	–	to	those	of	odd	dimension.	This	implies	that
you	can	simplify	a	solid	by	merging	its	faces	or	removing	edges	and	vertices,
and	these	changes	will	not	alter	the	number	F	–	E	+	V	provided	that	every	time
you	get	rid	of	a	face	you	also	remove	an	edge,	or	every	time	you	get	rid	of	a
vertex	you	also	remove	an	edge.	The	alternating	signs	mean	that	changes	of	this
kind	cancel	out.

Now	I’ll	explain	how	this	clever	structure	makes	the	proof	work.	Figure	21
shows	the	key	stages.	Take	your	solid.	Deform	it	into	a	nice	round	sphere,	with
its	edges	being	curves	on	that	sphere.	If	two	faces	meet	along	a	common	edge,
then	you	can	remove	that	edge	and	merge	the	faces	into	one.	Since	this	merger
reduces	both	F	and	E	by	1,	it	doesn’t	change	F–E	+	V.	Keep	doing	this	until	you
get	down	to	a	single	face,	which	covers	almost	all	of	the	sphere.	Aside	from	this
face,	you	are	left	with	only	edges	and	vertices.	These	must	form	a	tree,	a
network	with	no	closed	loops,	because	any	closed	loop	on	a	sphere	separates	at
least	two	faces:	one	inside	it,	the	other	outside	it.	The	branches	of	this	tree	are
the	remaining	edges	of	the	solid,	and	they	join	together	at	the	remaining	vertices.
At	this	stage	only	one	face	remains:	the	entire	sphere,	minus	the	tree.	Some
branches	of	this	tree	connect	to	other	branches	at	both	ends,	but	some,	at	the
extremes,	terminate	in	a	vertex,	to	which	no	other	branches	attach.	If	you	remove
one	of	these	terminating	branches	together	with	that	vertex,	then	the	tree	gets
smaller,	but	since	both	E	and	V	decrease	by	1,	F–E	+	V	again	remains
unchanged.

This	process	continues	until	you	are	left	with	a	single	vertex	sitting	on	an
otherwise	featureless	sphere.	Now	V	=	1,	E	=	0,	and	F	=1.	So	F–E	+	V	=1–	0	+	1
=	2.	But	since	each	step	leaves	F–E	+	V	unchanged,	its	value	at	the	beginning
must	also	have	been	2,	which	is	what	we	want	to	prove.



Fig	21	Key	stages	in	simplifying	a	solid.	Left	to	right:	(1)	Start.	(2)	Merging
adjacent	faces.	(3)	Tree	that	remains	when	all	faces	have	been	merged.	(4)
Removing	an	edge	and	a	vertex	from	the	tree.	(5)	End.

It’s	a	cunning	idea,	and	it	contains	the	germ	of	a	far-reaching	principle.	The
proof	has	two	ingredients.	One	is	a	simplification	process:	remove	either	a	face
and	an	adjacent	edge	or	a	vertex	and	an	edge	that	meets	it.	The	other	is	an
invariant,	a	mathematical	expression	that	remains	unchanged	whenever	you
carry	out	a	step	in	the	simplification	process.	Whenever	these	two	ingredients
coexist,	you	can	compute	the	value	of	the	invariant	for	any	initial	object	by
simplifying	it	as	far	as	you	can,	and	then	computing	the	value	of	the	invariant	for
this	simplified	version.	Because	it	is	an	invariant,	the	two	values	must	be	equal.
Because	the	end	result	is	simple,	the	invariant	is	easy	to	calculate.

Now	I	have	to	admit	that	I’ve	been	keeping	one	technical	issue	up	my	sleeve.
Descartes’s	formula	does	not,	in	fact,	apply	to	any	solid.	The	most	familiar	solid
for	which	it	fails	is	a	picture	frame.	Think	of	a	picture	frame	made	from	four
lengths	of	wood,	each	rectangular	in	cross-section,	joined	at	the	four	corners	by
45°	mitres	as	in	Figure	22	(left).	Each	length	of	wood	contributes	4	faces,	so	F	=
16.	Each	length	also	contributes	4	edges,	but	the	mitre	joint	creates	4	more	at
each	corner,	so	E	=	32.	Each	corner	comprises	4	vertices,	so	V	=	16.	Therefore
F–E	+	V	=0.

What	went	wrong?

Fig	22	Left:	A	picture	frame	with	F–E	+	V	=0.	Right:	Final	configuration	when
the	picture	frame	is	smoothed	and	then	simplified.



There’s	no	problem	with	F	–	E	+	V	being	invariant.	Neither	is	there	much	of	a
problem	with	the	simplification	process.	But	if	you	work	through	it	for	the
frame,	always	cancelling	one	face	against	one	edge,	or	one	vertex	against	one
edge,	then	the	final	simplified	configuration	is	not	a	single	vertex	sitting	in	a
single	face.	Performing	the	cancellation	in	the	most	obvious	way,	what	you	get
is	Figure	22	(right),	with	F	=	1,	V	=1,	E	=2.	I’ve	smoothed	the	faces	and	edges
for	reasons	that	will	quickly	become	apparent.	At	this	stage	removing	an	edge
just	merges	the	sole	remaining	face	with	itself,	so	the	changes	to	the	numbers	no
longer	cancel.	This	is	why	we	stop,	but	we’re	home	and	dry	anyway:	for	this
configuration,	F–E	+	V	=	0.	So	the	method	performs	perfectly.	It	just	yields	a
different	result	for	the	picture	frame.	There	must	be	some	fundamental
difference	between	a	picture	frame	and	a	cube,	and	the	invariant	F–E	+	V	is
picking	it	up.

The	difference	turns	out	to	be	a	topological	one.	Early	in	my	version	of
Euler’s	proof,	I	told	you	to	take	the	solid	and	‘deform	it	into	a	nice	round
sphere’.	But	this	is	not	possible	for	the	picture	frame.	It’s	not	shaped	like	a
sphere,	even	after	being	simplified.	It	is	a	torus,	which	looks	like	an	inflatable
rubber	ring	with	a	hole	through	the	middle.	The	hole	is	also	clearly	visible	in	the
original	shape:	it’s	where	the	picture	would	go.	A	sphere,	in	contrast,	has	no
holes.	The	hole	in	the	frame	is	why	the	simplification	process	leads	to	a	different
result.	However,	we	can	wrest	victory	from	the	jaws	of	defeat,	because	F–E	+	V
is	still	an	invariant.	So	the	proof	tells	us	that	any	solid	that	is	deformable	into	a
torus	will	satisfy	the	slightly	different	equation	F–E	+V	=	0.	In	consequence,	we
have	the	basis	of	a	rigorous	proof	that	a	torus	cannot	be	deformed	into	a	sphere:
that	is,	the	two	surfaces	are	topologically	different.

Of	course	this	is	intuitively	obvious,	but	now	we	can	support	intuition	with
logic.	Just	as	Euclid	started	from	obvious	properties	of	points	and	lines,	and
formalised	them	into	a	rigorous	theory	of	geometry,	the	mathematicians	of	the
nineteenth	and	twentieth	centuries	could	now	develop	a	rigorous	formal	theory
of	topology.

Fig	23	Left:	2-holed	torus.	Right:	3-holed	torus.

Where	to	start	was	a	no-brainer.	There	exist	solids	like	a	torus	but	with	two	or



more	holes,	as	in	Figure	23,	and	the	same	invariant	should	tell	us	something
useful	about	those.	It	turns	out	that	any	solid	deformable	into	a	2-holed	torus
satisfies	F–E	+	V	=	–	2,	any	solid	deformable	into	a	3-holed	torus	satisfies	F–E	+
V	=	–	4,	and	in	general	any	solid	deformable	into	a	g-holed	torus	satisfies	F–E	+
V	=	2–2g.	The	symbol	g	is	short	for	‘genus’,	the	technical	name	for	‘number	of
holes’.	Pursuing	the	line	of	thought	that	Descartes	and	Euler	began	leads	to	a
connection	between	a	quantitative	property	of	solids,	the	number	of	faces,
vertices,	and	edges,	and	a	qualitative	property,	possessing	holes.	We	call	F–E	+
V	the	Euler	characteristic	of	the	solid,	and	observe	that	it	depends	only	on	which
solid	we	are	considering	and	not	on	how	we	cut	it	into	faces,	edges,	and	vertices.
This	makes	it	an	intrinsic	feature	of	the	solid	itself.

Agreed,	we	count	the	number	of	holes,	a	quantitative	operation,	but	‘hole’
itself	is	qualitative	in	the	sense	that	it’s	not	obviously	a	feature	of	the	solid	at	all.
Intuitively,	it’s	a	region	in	space	where	the	solid	isn’t.	But	not	any	such	region.
After	all,	that	description	applies	to	all	of	the	space	surrounding	the	solid,	and	no
one	would	consider	it	all	to	be	a	hole.	And	it	also	applies	to	all	of	the	space
surrounding	a	sphere	…	which	doesn’t	have	a	hole.	In	fact,	the	more	you	start	to
think	about	what	a	hole	is,	the	more	you	realise	that	it’s	quite	tricky	to	define
one.	My	favourite	example	to	show	just	how	confusing	it	all	gets	is	the	shape	in
Figure	24,	known	as	a	hole-through-a-hole-in-a-hole.	Apparently	you	can	thread
a	hole	through	another	hole,	which	is	actually	a	hole	in	a	third	hole.

This	way	lies	madness.
It	wouldn’t	much	matter	if	solids	with	holes	in	them	never	turned	up

anywhere	important.	But	by	the	end	of	the	nineteenth	century	they	were	turning
up	all	over	mathematics	–	in	complex	analysis,	algebraic	geometry,	and
Riemann’s	differential	geometry.	Worse,	higher-dimensional	analogues	of	solids
were	taking	centre	stage,	in	all	areas	of	pure	and	applied	mathematics;	as	already
noted,	the	dynamics	of	the	Solar	System	requires	6	dimensions	per	body.	And
they	had	higher-dimensional	analogues	of	holes.	Somehow	it	was	necessary	to
bring	a	modicum	of	order	into	the	area.	And	the	answer	turned	out	to	be	…
invariants.



Fig	24	Hole-through-a-hole-in-a-hole.

The	idea	of	a	topological	invariant	goes	back	to	Gauss’s	work	on	magnetism.	He
was	interested	in	how	magnetic	and	electrical	field	lines	could	link	with	each
other,	and	he	defined	the	linking	number,	which	counts	how	many	times	one
field	line	winds	round	another.	This	is	a	topological	invariant:	it	remains	the
same	if	the	curves	are	continuously	deformed.	He	found	a	formula	for	this
number	using	integral	calculus,	and	every	so	often	he	expressed	a	wish	for	a
better	understanding	of	the	‘basic	geometric	properties’	of	diagrams.	It	is	no
coincidence	that	the	first	serious	inroads	into	such	an	understanding	came
through	the	work	of	one	of	Gauss’s	students,	Johann	Listing,	and	Gauss’s
assistant	August	Möbius.	Listing’s	Vorstudien	zur	Topologie	(‘Studies	in
Topology’)	of	1847	introduced	the	word	‘topology’,	and	Möbius	made	the	role
of	continuous	transformations	explicit.

Listing	had	a	bright	idea:	seek	generalisations	of	Euler’s	formula.	The
expression	F–E	+	V	is	a	combinatorial	invariant:	a	feature	of	a	specific	way	of
describing	a	solid,	based	on	cutting	it	into	faces,	edges,	and	vertices.	The	number
g	of	holes	is	a	topological	invariant:	something	that	does	not	change	however	the
solid	is	deformed,	as	long	as	the	deformation	is	continuous.	A	topological
invariant	captures	a	qualitative	conceptual	feature	of	a	shape;	a	combinatorial
one	provides	a	method	for	calculating	it.	The	two	together	are	very	powerful,
because	we	can	use	the	conceptual	invariant	to	think	about	shapes,	and	the
combinatorial	version	to	pin	down	what	we	are	talking	about.

In	fact,	the	formula	lets	us	sidestep	the	tricky	issue	of	defining	‘hole’
altogether.	Instead,	we	define	‘number	of	holes’	as	a	package,	without	either
defining	a	hole	or	counting	how	many	there	are.	How?	Easy.	Just	rewrite	the



generalised	version	of	Euler’s	formula	F–E	+	V	=	2–2g	in	the	form

g	=	1	F/2	+	E/2	V/2

Now	we	can	calculate	g	by	drawing	faces	and	so	forth	on	our	solid,	counting	F,
E,	and	V,	and	substituting	those	values	into	the	formula.	Since	the	expression	is
an	invariant,	it	doesn’t	matter	how	we	cut	the	solid	up:	we	always	get	the	same
answer.	But	nothing	that	we	do	depends	on	having	a	definition	of	a	hole.	Instead,
‘number	of	holes’	becomes	an	interpretation,	in	intuitive	terms,	derived	by
looking	at	simple	examples	where	we	feel	we	know	what	the	phrase	should
mean.

It	may	seem	like	a	cheat,	but	it	makes	significant	inroads	into	a	central
question	in	topology:	when	can	one	shape	be	continuously	deformed	into
another?	That	is,	as	far	as	topologists	are	concerned,	are	the	two	shapes	the	same
or	not?	If	they	are	the	same,	their	invariants	must	also	be	the	same;	conversely,	if
the	invariants	are	different,	so	are	the	shapes.	(However,	sometimes	two	shapes
might	have	the	same	invariant,	but	be	different;	it	depends	on	the	invariant.)
Since	a	sphere	has	Euler	characteristic	2,	but	a	torus	has	Euler	characteristic	0,
there	is	no	way	to	deform	a	sphere	continuously	into	a	torus.	This	may	seem
obvious,	because	of	the	hole…	but	we’ve	seen	the	turbulent	waters	into	which
that	way	of	thinking	can	lead.	You	don’t	have	to	interpret	the	Euler	characteristic
in	order	to	use	it	to	distinguish	shapes,	and	here	it	is	decisive.

Less	obviously,	the	Euler	characteristic	shows	that	the	puzzling	hole-through-
a-hole-in-a-hole	(Figure	24)	is	actually	just	a	3-holed	torus	in	disguise.	Most	of
the	apparent	complexity	stems	not	from	the	intrinsic	topology	of	the	surface,	but
from	the	way	I	have	chosen	to	embed	it	in	space.

The	first	really	significant	theorem	in	topology	grew	out	of	the	formula	for	the
Euler	characteristic.	It	was	a	complete	classification	of	surfaces,	curved	two-
dimensional	shapes	like	the	surface	of	a	sphere	or	that	of	a	torus.	A	couple	of
technical	conditions	were	also	imposed:	the	surface	should	have	no	boundary,
and	it	should	be	of	finite	extent	(the	jargon	is	‘compact’).

For	this	purpose	a	surface	is	described	intrinsically;	that	is,	it	is	not	conceived
as	existing	in	some	surrounding	space.	One	way	to	do	this	is	to	view	the	surface
as	a	number	of	polygonal	regions	(which	topologically	are	equivalent	to	circular
discs)	that	are	glued	together	along	their	edges	according	to	specified	rules,	like
the	‘glue	tab	A	to	tab	B’	instructions	you	get	when	assembling	a	cardboard	cut-
out.	A	sphere,	for	instance,	can	be	described	using	two	discs,	glued	together



along	their	boundaries.	One	disc	becomes	the	northern	hemisphere,	the	other	the
southern	hemisphere.	A	torus	has	an	especially	elegant	description	as	a	square
with	opposite	edges	glued	to	each	other.	This	construction	can	be	visualised	in	a
surrounding	space	(Figure	25),	which	explains	why	it	creates	a	torus,	but	the
mathematics	can	be	carried	out	using	just	the	square	together	with	the	gluing
rules,	and	this	offers	advantages	precisely	because	it	is	intrinsic.

Fig	25	Gluing	the	edges	of	a	square	to	make	a	torus.

The	possibility	of	gluing	bits	of	boundary	together	leads	to	a	rather	strange
phenomenon:	surfaces	with	only	one	side.	The	most	famous	example	is	the
Möbius	band,	introduced	by	Möbius	and	Listing	in	1858,	which	is	a	rectangular
strip	whose	ends	are	glued	together	with	a	180°	turn	(usually	called	a	half-twist,
on	the	convention	that	360°	constitutes	a	full	twist).	The	Möbius	band,	see
Figure	26	(left),	has	an	edge,	comprising	the	edges	of	the	rectangle	that	don’t	get
glued	to	anything.	This	is	the	only	edge,	because	the	two	separate	edges	of	the
rectangle	are	connected	together	into	a	closed	loop	by	the	half-twist,	which	glues
them	end	to	end.

It	is	possible	to	make	a	model	of	a	Möbius	band	from	paper,	because	it
embeds	naturally	in	three-dimensional	space.	The	band	has	only	one	side,	in	the
sense	that	if	you	start	painting	one	of	its	surfaces,	and	keep	going,	you	will
eventually	cover	the	entire	surface,	front	and	back.	This	happens	because	the
half-twist	connects	the	front	to	the	back.	That’s	not	an	intrinsic	description,
because	it	relies	on	embedding	the	band	in	space,	but	there	is	an	equivalent,
more	technical	property	known	as	orientability,	which	is	intrinsic.



Fig	26	Left:Möbius	band.	Right:	Klein	bottle.	The	apparent	self-intersection
occurs	because	the	drawing	embeds	it	in	three-dimensional	space.

There	is	a	related	surface	with	only	one	side,	having	no	edges	at	all,	Figure	26
(right).	It	arises	if	we	glue	two	sides	of	a	rectangle	together	like	a	Möbius	band,
and	glue	the	other	two	sides	together	without	any	twisting.	Any	model	in	three-
dimensional	space	has	to	pass	through	itself,	even	though	from	an	intrinsic	point
of	view	the	gluing	rules	do	not	introduce	any	self-intersections.	If	this	surface	is
pictured	with	such	a	crossing,	it	looks	like	a	bottle	whose	neck	has	been	poked
through	the	side	wall	and	joined	to	the	bottom.	It	was	invented	by	Felix	Klein,
and	is	known	as	a	Klein	bottle	–	almost	certainly	a	joke	based	on	a	German	pun,
changing	Kleinsche	Flaäche	(Klein’s	surface)	to	Kleinsche	Flasche	(Klein’s
bottle).

The	Klein	bottle	has	no	boundary	and	is	compact,	so	any	classification	of
surfaces	must	include	it.	It	is	the	best	known	of	an	entire	family	of	onesided
surfaces,	and	surprisingly	it	is	not	the	simplest.	This	honour	goes	to	the
projective	plane,	which	arises	if	you	glue	both	pairs	of	opposite	sides	of	a	square
together,	with	a	half-twist	for	each.	(This	is	difficult	to	do	with	paper	because
paper	is	too	rigid;	like	the	Klein	bottle	it	requires	the	surface	to	intersect	itself.	It
is	best	done	‘conceptually’,	that	is,	by	drawing	pictures	on	the	square	but
remembering	the	gluing	rules	when	lines	go	off	the	edge	and	‘wrap	round’.)	The
classification	theorem	for	surfaces,	proved	by	Johann	Listing	around	1860,	leads
to	two	families	of	surfaces.	Those	with	two	sides	are	the	sphere,	torus,	2-holed
torus,	3-holed	torus,	and	so	on.	Those	with	only	one	side	form	a	similar	infinite
family,	starting	with	the	projective	plane	and	the	Klein	bottle.	They	can	be
obtained	by	cutting	a	small	disc	out	of	the	corresponding	two-sided	surface	and
gluing	in	a	Möbius	band	instead.

Surfaces	turn	up	naturally	in	many	areas	of	mathematics.	They	are	important
in	complex	analysis,	where	surfaces	are	associated	with	singularities,	points	at
which	functions	behave	strangely	–	for	instance,	the	derivative	fails	to	exist.



Singularities	are	the	key	to	many	problems	in	complex	analysis;	in	a	sense	they
capture	the	essence	of	the	function.	Since	singularities	are	associated	with
surfaces,	the	topology	of	surfaces	provides	an	important	technique	for	complex
analysis.	Historically,	this	motivated	the	classification.

Most	modern	topology	is	highly	abstract,	and	a	lot	of	it	happens	in	four	or	more
dimensions.	We	can	get	a	feel	for	the	subject	in	a	more	familiar	setting:	knots.	In
the	real	world,	a	knot	is	a	tangle	tied	in	a	length	of	string.	Topologists	need	a
way	to	stop	the	knot	escaping	off	the	ends	once	it	has	been	tied,	so	they	join	the
ends	of	the	string	together	to	form	a	closed	loop.	Now	a	knot	is	just	a	circle
embedded	in	space.	Intrinsically,	a	knot	is	topologically	identical	to	a	circle,	but
on	this	occasion	what	counts	is	how	the	circle	sits	inside	its	surrounding	space.
This	might	seem	contrary	to	the	spirit	of	topology,	but	the	essence	of	a	knot	lies
in	the	relation	between	the	loop	of	string	and	the	space	that	surrounds	it.	By
considering	not	just	the	loop,	but	how	it	relates	to	space,	topology	can	tackle
important	questions	about	knots.	Among	these	are:

	How	do	we	know	a	knot	is	really	knotted?
	How	can	we	distinguish	topologically	different	knots?
	Can	we	classify	all	possible	knots?

Experience	tells	us	that	there	are	many	different	types	of	knot.	Figure	27	shows	a
few	of	them:	the	overhand	or	trefoil	knot,	reef	knot,	granny	knot,	figure-8,
stevedore’s	knot,	and	so	on.	There	is	also	the	unknot,	an	ordinary	circular	loop;
as	the	name	reflects,	this	loop	is	not	knotted.	Many	different	kinds	of	knot	have
been	used	by	generations	of	mariners,	mountaineers,	and	boy	scouts.	Any
topological	theory	should	of	course	reflect	this	wealth	of	experience,	but
everything	has	to	be	proved,	rigorously,	within	the	formal	setting	of	topology,
just	as	Euclid	had	to	prove	Pythagoras’s	theorem	instead	of	just	drawing	a	few
triangles	and	measuring	them.	Remarkably,	the	first	topological	proof	that	knots
exist,	in	the	sense	that	there	is	an	embedding	of	the	circle	that	cannot	be
deformed	into	the	unknot,	first	appeared	in	1926	in	the	German	mathematician
Kurt	Reidemeister’s	Knoten	und	Gruppen	(‘Knots	and	Groups’).	The	word
‘group’	is	a	technical	term	in	abstract	algebra,	which	quickly	became	the	most
effective	source	of	topological	invariants.	In	1927	Reidemeister,	and
independently	the	American	James	Waddell	Alexander,	in	collaboration	with	his
student	G.	B.	Briggs,	found	a	simpler	proof	of	the	existence	of	knots	using	the
‘knot	diagram’.	This	is	a	cartoon	image	of	the	knot,	drawn	with	tiny	breaks	in
the	loop	to	show	how	the	separate	strands	overlap,	as	in	Figure	27.	The	breaks



are	not	present	in	the	knotted	loop	itself,	but	they	represent	its	three-dimensional
structure	in	a	two-dimensional	diagram.	Now	we	can	use	the	breaks	to	split	the
knot	diagram	into	a	number	of	distinct	pieces,	its	components,	and	then	we	can
manipulate	the	diagram	and	see	what	happens	to	the	components.

Fig	27	Five	knots	and	the	unknot.

If	you	look	back	at	how	I	used	the	invariance	of	the	Euler	characteristic,
you’ll	see	that	I	simplified	the	solid	using	a	series	of	special	moves:	merge	two
faces	by	removing	an	edge,	merge	two	edges	by	removing	a	point.	The	same
trick	applies	to	knot	diagrams,	but	now	you	need	three	types	of	move	to	simplify
them,	called	Reidemeister	moves,	Figure	28.	Each	move	can	be	carried	out	in
either	direction:	add	or	remove	a	twist,	overlap	two	strands	or	pull	them	apart,
move	one	strand	through	the	place	where	two	others	cross.

Fig	28	Reidemeister	moves.

With	some	preliminary	fiddling	to	tidy	up	the	knot	diagram,	such	as
modifying	places	where	three	curves	overlap	if	that	ever	happens,	it	can	be



proved	that	any	deformation	of	a	knot	can	be	represented	as	a	finite	series	of
Reidemeister	moves	applied	to	its	diagram.	Now	we	can	play	the	Euler	game;	all
we	have	to	do	is	find	an	invariant.	Among	them	is	the	knot	group,	but	there	is	a
far	simpler	invariant	that	proves	the	trefoil	really	is	a	knot.	I	can	explain	it	in
terms	of	colouring	the	separate	components	in	a	knot	diagram.	I’m	starting	with
a	slightly	more	complicated	diagram	than	I	have	to,	with	an	extra	loop,	in	order
to	illustrate	some	features	of	the	idea,	Figure	29.

Fig	29	Colouring	a	trefoil	knot	with	an	extra	twist.

The	extra	twist	creates	four	separate	components.	Suppose	I	colour	the
components	using	three	colours	for	each,	say	red,	yellow,	and	blue	(shown	in	the
figure	as	black,	light	grey,	and	dark	grey).	Then	this	colouring	obeys	two	simple
rules:

	At	least	two	distinct	colours	are	used.	(Actually	all	three	are,	but	that’s	extra
information	that	I	don’t	need.)
	At	each	crossing,	either	the	three	strands	near	the	crossing	all	have	different
colours	or	they	are	all	the	same	colour.	Near	the	crossing	caused	by	my	extra
loop,	all	three	components	are	yellow.	Two	of	these	components	(in	yellow)
join	up	elsewhere,	but	near	the	crossing	they	are	separate.

The	wonderful	observation	is	that	if	a	knot	diagram	can	be	coloured	using	three
colours,	obeying	these	two	rules,	then	the	same	is	true	after	any	Reidemeister
move.	You	can	prove	this	very	easily	by	working	out	how	the	Reidemeister
moves	affect	the	colours.	For	example,	if	I	untwist	the	extra	loop	in	my	picture
then	I	can	leave	the	colours	unchanged	and	everything	still	works.	Why	is	this
wonderful?	Because	it	proves	that	the	trefoil	really	is	knotted.	Suppose	for	the
sake	of	argument	that	it	can	be	unknotted;	then	some	series	of	Reidemeister
moves	turns	it	into	an	unknotted	loop.	Since	the	trefoil	can	be	coloured	to	obey
the	two	rules,	the	same	must	apply	to	the	unknotted	loop.	But	an	unknotted	loop
consists	of	a	single	strand	with	no	overlaps,	so	the	only	way	to	colour	it	is	to	use



the	same	colour	everywhere.	But	this	violates	the	first	rule.	By	contradiction,	no
such	series	of	Reidemeister	moves	can	exist;	that	is,	the	trefoil	can’t	be
unknotted.

This	proves	that	the	trefoil	is	knotted,	but	doesn’t	distinguish	it	from	other	knots
such	as	the	reef	knot	or	the	stevedore’s	knot.	One	of	the	earliest	effective	ways
to	do	this	was	invented	by	Alexander.	It	was	derived	from	Reidemeister’s
abstract	algebra	methods,	but	it	leads	to	an	invariant	that	is	algebraic	in	the	more
familiar	sense	of	school	algebra.	It’s	called	the	Alexander	polynomial,	and	it
associates	to	any	knot	a	formula	formed	from	powers	of	a	variable	x.	Strictly
speaking,	the	term	‘polynomial’	applies	only	when	the	powers	are	positive
integers,	but	here	we	also	allow	negative	powers.	Table	2	lists	a	few	Alexander
polynomials.	If	two	knots	in	the	list	have	different	Alexander	polynomials,	and
here	all	but	the	reef	and	granny	do,	then	the	knots	must	be	topologically
different.	The	converse	is	not	true:	the	reef	and	granny	have	the	same	Alexander
polynomials,	but	in	1952	Ralph	Fox	proved	that	they	are	topologically	different.
The	proof	required	surprisingly	sophisticated	topology.	It	was	far	more	difficult
than	anyone	expected.

Table	2	Alexander	polynomials	of	knots.

After	about	1960	knot	theory	entered	the	topological	doldrums,	becalmed	in	a
vast	ocean	of	unsolved	questions,	awaiting	a	breath	of	creative	insight.	It	came
in	1984,	when	the	New	Zealand	mathematician	Vaughan	Jones	had	an	idea	so
simple	that	it	could	have	occurred	to	anyone	from	Reidemeister	onwards.	Jones
wasn’t	a	knot	theorist;	he	wasn’t	even	a	topologist.	He	was	an	analyst,	working
on	operator	algebras,	an	area	with	strong	links	to	mathematical	physics.	It	wasn’t
a	total	surprise	that	the	ideas	applied	to	knots,	because	mathematicians	and
physicists	already	knew	of	interesting	connections	between	operator	algebras
and	braids,	which	are	a	special	kind	of	multi-stranded	knot.	The	new	knot
invariant	he	invented,	called	the	Jones	polynomial,	is	also	defined	using	the	knot



diagram	and	three	types	of	move.	However,	the	moves	do	not	preserve	the
topological	type	of	the	knot;	they	do	not	preserve	the	new	‘Jones	polynomial’.
Amazingly,	however,	the	idea	can	still	be	made	to	work,	and	the	Jones
polynomial	is	a	knot	invariant.

Fig	30	Jones	moves.

For	this	invariant	we	have	to	choose	a	specific	direction	along	the	knot,
shown	by	an	arrow.	The	Jones	polynomial	V(x)	is	defined	to	be	one	for	the
unknot.	Given	any	knot	L0,	move	two	separate	strands	close	together	without
changing	any	crossings	in	its	diagram.	Be	careful	to	align	the	directions	as
shown:	that’s	why	the	arrow	is	needed,	and	the	process	doesn’t	work	without	it.
Replace	that	region	of	L0	by	two	strands	that	cross	in	the	two	possible	ways
(Figure	30).	Let	the	resulting	knot	diagrams	be	L+and	L–.	Now	define

(x1/2	−	x−1/2)	V(L0)=	x−1V(L+)	−	xV(L−)

By	starting	with	the	unknot	and	applying	such	moves	in	the	right	way,	you	can
work	out	the	Jones	polynomial	for	any	knot.	Mysteriously,	it	turns	out	to	be	a
topological	invariant.	And	it	outperforms	the	traditional	Alexander	polynomial;
for	instance,	it	can	distinguish	reef	from	granny,	because	they	have	different
Jones	polynomials.

Jones’s	discovery	won	him	the	Fields	medal,	the	most	prestigious	prize	in
mathematics.	It	also	triggered	an	outburst	of	new	knot	invariants.	In	1985	four
different	groups	of	mathematicians,	eight	people	in	total,	simultaneously
discovered	the	same	generalisation	of	the	Jones	polynomial	and	submitted	their
papers	independently	to	the	same	journal.	All	four	proofs	were	different,	and	the
editor	persuaded	the	eight	authors	to	join	forces	and	publish	one	combined



article.	Their	invariant	is	often	called	the	HOMFLY	polynomial,	based	on	their
initials.	But	even	the	Jones	and	HOMFLY	polynomials	have	not	fully	answered
the	three	problems	of	knot	theory.	It	is	not	known	whether	a	knot	with	Jones
polynomial	1	must	be	unknotted,	though	many	topologists	think	this	is	probably
true.	There	exist	topologically	distinct	knots	with	the	same	Jones	polynomial;	the
simplest	examples	known	have	ten	crossings	in	their	knot	diagrams.	A
systematic	classification	of	all	possible	knots	remains	a	mathematician’s
pipedream.

It’s	pretty,	but	is	it	useful?	Topology	has	many	uses,	but	they	are	usually
indirect.	Topological	principles	provide	insight	into	other,	more	directly
applicable,	areas.	For	instance,	our	understanding	of	chaos	is	founded	on
topological	properties	of	dynamical	systems,	such	as	the	bizarre	behaviour	that
Poincaré	noted	when	he	rewrote	his	prizewinning	memoir	(Chapter	4).	The
Interplanetary	Superhighway	is	a	topological	feature	of	the	dynamics	of	the
Solar	System.

More	esoteric	applications	of	topology	arise	at	the	frontiers	of	fundamental
physics.	Here	the	main	consumers	of	topology	are	quantum	field	theorists,
because	the	theory	of	superstrings,	the	hoped-for	unification	of	quantum
mechanics	and	relativity,	is	based	on	topology.	Here	analogues	of	the	Jones
polynomial	in	knot	theory	arise	in	the	context	of	Feynman	diagrams,	which
show	how	quantum	particles	such	as	electrons	and	photons	move	through	space-
time,	colliding,	merging,	and	breaking	apart.	A	Feynman	diagram	is	a	bit	like	a
knot	diagram,	and	Jones’s	ideas	can	be	extended	to	this	context.

To	me	one	of	the	most	fascinating	applications	of	topology	is	its	growing	use
in	biology,	helping	us	to	understand	the	workings	of	the	molecule	of	life,	DNA.
Topology	turns	up	because	DNA	is	a	double	helix,	like	two	spiral	staircases
winding	around	each	other.	The	two	strands	are	intricately	intertwined,	and
important	biological	processes,	in	particular	the	way	a	cell	copies	its	DNA	when
it	divides,	have	to	take	account	of	this	complex	topology.	When	Francis	Crick
and	James	Watson	published	their	work	on	the	molecular	structure	of	DNA	in
1953	they	ended	with	a	brief	allusion	to	a	possible	copying	mechanism,
presumably	involved	in	cell	division,	in	which	the	two	strands	were	pulled	apart
and	each	was	used	as	the	template	for	a	new	copy.	They	were	reluctant	to	claim
too	much,	because	they	were	aware	that	there	are	topological	obstacles	to	pulling
apart	intertwined	strands.	Being	too	specific	about	their	proposal	might	have
muddied	the	waters	at	such	an	early	stage.

As	things	turned	out,	Crick	and	Watson	were	right.	The	topological	obstacles



are	real,	but	evolution	has	provided	methods	for	overcoming	them,	such	as
special	enzymes	that	cut-and-paste	strands	of	DNA.	It	is	no	coincidence	that	one
of	these	is	called	topoisomerase.	In	the	1990s	mathematicians	and	molecular
biologists	used	topology	to	analyse	the	twists	and	turns	of	DNA,	and	to	study
how	it	works	in	the	cell,	where	the	usual	method	of	X-ray	diffraction	can’t	be
used	because	it	requires	the	DNA	to	be	in	crystalline	form.

Fig	31	Loop	of	DNA	forming	a	trefoil	knot.

Some	enzymes,	called	recombinases,	cut	the	two	DNA	strands	and	rejoin
them	in	a	different	way.	To	determine	how	such	an	enzyme	acts	when	it	is	in	a
cell,	biologists	apply	the	enzyme	to	a	closed	loop	of	DNA.	Then	they	observe
the	shape	of	the	modified	loop	using	an	electron	microscope.	If	the	enzyme	joins
distinct	strands	together,	the	image	is	a	knot,	Figure	31.	If	the	enzyme	keeps	the
strands	separate,	the	image	shows	two	linked	loops.	Methods	from	knot	theory,
such	as	the	Jones	polynomial	and	another	theory	known	as	‘tangles’,	make	it
possible	to	work	out	which	knots	and	links	occur,	and	this	provides	detailed
information	about	what	the	enzyme	does.	They	also	make	new	predictions	that
have	been	verified	experimentally,	giving	some	confidence	that	the	mechanism
indicated	by	the	topological	calculations	is	correct.1

One	the	whole,	you	won’t	run	into	topology	in	everyday	life,	aside	from	that
dishwasher	I	mentioned	at	the	start	of	this	chapter.	But	behind	the	scenes,
topology	informs	the	whole	of	mainstream	mathematics,	enabling	the
development	of	other	techniques	with	more	obvious	practical	uses.	This	is	why
mathematicians	consider	topology	to	be	of	vast	importance,	while	the	rest	of	the
world	has	hardly	heard	of	it.



7	Patterns	of	chance

Normal	Distribution

What	does	it	say?

The	probability	of	observing	a	particular	data	value	is	greatest	near	the	mean
value	–	the	average	–	and	dies	away	rapidly	as	the	difference	from	the	mean
increases.	How	rapidly	depends	on	a	quantity	called	the	standard	deviation.

Why	is	that	important?

It	defines	a	special	family	of	bell-shaped	probability	distributions,	which	are
often	good	models	of	common	real-world	observations.

What	did	it	lead	to?

The	concept	of	the	‘average	man’,	tests	of	the	significance	of	experimental
results,	such	as	medical	trials,	and	an	unfortunate	tendency	to	default	to	the	bell
curve	as	if	nothing	else	existed.



	

Mathematics	is	about	patterns.	The	random	workings	of	chance	seem	to	be	about
as	far	from	patterns	as	you	can	get.	In	fact,	one	of	the	current	definitions	of
‘random’	boils	down	to	‘lacking	any	discernible	pattern’.	Mathematicians	had
been	investigating	patterns	in	geometry,	algebra,	and	analysis	for	centuries
before	they	realised	that	even	randomness	has	its	own	patterns.	But	the	patterns
of	chance	do	not	conflict	with	the	idea	that	random	events	have	no	pattern,
because	the	regularities	of	random	events	are	statistical.	They	are	features	of	a
whole	series	of	events,	such	as	the	average	behaviour	over	a	long	run	of	trials.
They	tell	us	nothing	about	which	event	occurs	at	which	instant.	For	example,	if
you	throw	a	dice1	repeatedly,	then	about	one	sixth	of	the	time	you	will	roll	1,
and	the	same	holds	for	2,	3,	4,	5,	and	6	–	a	clear	statistical	pattern.	But	this	tells
you	nothing	about	which	number	will	turn	up	on	the	next	throw.

Only	in	the	nineteenth	century	did	mathematicians	and	scientists	realise	the
importance	of	statistical	patterns	in	chance	events.	Even	human	actions,	such	as
suicide	and	divorce,	are	subject	to	quantitative	laws,	on	average	and	in	the	long
run.	It	took	time	to	get	used	to	what	seemed	at	first	to	contradict	free	will.	But
today	these	statistical	regularities	form	the	basis	of	medical	trials,	social	policy,
insurance	premiums,	risk	assessments,	and	professional	sports.

And	gambling,	which	is	where	it	all	began.

Appropriately,	it	was	all	started	by	the	gambling	scholar,	Girolamo	Cardano.
Being	something	of	a	wastrel,	Cardano	brought	in	muchneeded	cash	by	taking
wagers	on	games	of	chess	and	games	of	chance.	He	applied	his	powerful
intellect	to	both.	Chess	does	not	depend	on	chance:	winning	depends	on	a	good
memory	for	standard	positions	and	moves,	and	an	intuitive	sense	of	the	overall
flow	of	the	game.	In	a	game	of	chance,	however,	the	player	is	subject	to	the
whims	of	Lady	Luck.	Cardano	realised	that	he	could	apply	his	mathematical
talents	to	good	effect	even	in	this	tempestuous	relationship.	He	could	improve
his	performance	at	games	of	chance	by	having	a	better	grasp	of	the	odds	–	the
likelihood	of	winning	or	losing	–	than	his	opponents	did.	He	put	together	a	book
on	the	topic,	Liber	de	Ludo	Aleae	(‘Book	on	Games	of	Chance’).	It	remained
unpublished	until	1633.	Its	scholarly	content	is	the	first	systematic	treatment	of
the	mathematics	of	probability.	Its	less	reputable	content	is	a	chapter	on	how	to
cheat	and	get	away	with	it.

One	of	Cardano’s	fundamental	principles	was	that	in	a	fair	bet,	the	stakes



should	be	proportional	to	the	number	of	ways	in	which	each	player	can	win.	For
example,	suppose	the	players	roll	a	dice,	and	the	first	player	wins	if	he	throws	a
6,	while	the	second	player	wins	if	he	throws	anything	else.	The	game	would	be
highly	unfair	if	each	bet	the	same	amount	to	play	the	game,	because	the	first
player	has	only	one	way	to	win,	whereas	the	second	has	five.	If	the	first	player
bets	£1	and	the	second	bets	£5,	however,	the	odds	become	equitable.	Cardano
was	aware	that	this	method	of	calculating	fair	odds	depends	on	the	various	ways
of	winning	being	equally	likely,	but	in	games	of	dice,	cards,	or	coin-tossing	it
was	clear	how	to	ensure	that	this	condition	applied.	Tossing	a	coin	has	two
outcomes,	heads	or	tails,	and	these	are	equally	likely	if	the	coin	is	fair.	If	the
coin	tends	to	throw	more	heads	than	tails,	it	is	clearly	biased	–	unfair.	Similarly
the	six	outcomes	for	a	fair	dice	are	equally	likely,	as	are	the	52	outcomes	for	a
card	drawn	from	a	pack.

The	logic	behind	the	concept	of	fairness	here	is	slightly	circular,	because	we
infer	bias	from	a	failure	to	match	the	obvious	numerical	conditions.	But	those
conditions	are	supported	by	more	than	mere	counting.	They	are	based	on	a
feeling	of	symmetry.	If	the	coin	is	a	flat	disc	of	metal,	of	uniform	density,	then
the	two	outcomes	are	related	by	a	symmetry	of	the	coin	(flip	it	over).	For	dice,
the	six	outcomes	are	related	by	symmetries	of	the	cube.	And	for	cards,	the
relevant	symmetry	is	that	no	card	differs	significantly	from	any	other,	except	for
the	value	written	on	its	face.	The	frequencies	1/2,	1/6,	and	1/52	for	any	given
outcome	rest	on	these	basic	symmetries.	A	biased	coin	or	biased	dice	can	be
created	by	the	covert	insertion	of	weights;	a	biased	card	can	be	created	using
subtle	marks	on	the	back,	which	reveal	its	value	to	those	in	the	know.

There	are	other	ways	to	cheat,	involving	sleight	of	hand	–	say,	to	swap	a
biased	dice	into	and	out	of	the	game	before	anyone	notices	that	it	always	throws
a	6.	But	the	safest	way	to	‘cheat’	–	to	win	by	subterfuge	–	is	to	be	perfectly
honest,	but	to	know	the	odds	better	than	your	opponent.	In	one	sense	you	are
taking	the	moral	high	ground,	but	you	can	improve	your	chances	of	finding	a
suitably	naive	opponent	by	rigging	not	the	odds	but	your	opponent’s	expectation
of	the	odds.	There	are	many	examples	where	the	actual	odds	in	a	game	of	chance
are	significantly	different	from	what	many	people	would	naturally	assume.

An	example	is	the	game	of	crown	and	anchor,	widely	played	by	British
seamen	in	the	eighteenth	century.	It	uses	three	dice,	each	bearing	not	the
numbers	1–6	but	six	symbols:	a	crown,	an	anchor,	and	the	four	card	suits	of
diamond,	spade,	club,	and	heart.	These	symbols	are	also	marked	on	a	mat.
Players	bet	by	placing	money	on	the	mat	and	throwing	the	three	dice.	If	any	of
the	symbols	that	they	have	bet	on	shows	up,	the	banker	pays	them	their	stake,



multiplied	by	the	number	of	dice	showing	that	symbol.	For	example,	if	they	bet
£1	on	the	crown,	and	two	crowns	turn	up,	they	win	£2	in	addition	to	their	stake;
if	three	crowns	turn	up,	they	win	£3	in	addition	to	their	stake.	It	all	sounds	very
reasonable,	but	probability	theory	tells	us	that	in	the	long	run	a	player	can	expect
to	lose	8%	of	his	stake.

Probability	theory	began	to	take	off	when	it	attracted	the	attention	of	Blaise
Pascal.	Pascal	was	the	son	of	a	Rouen	tax	collector	and	a	child	prodigy.	In	1646
he	was	converted	to	Jansenism,	a	sect	of	Roman	Catholicism	that	Pope	Innocent
X	deemed	heretical	in	1655.	The	year	before,	Pascal	had	experienced	what	he
called	his	‘second	conversion’,	probably	triggered	by	a	near-fatal	accident	when
his	horses	fell	off	the	edge	of	Neuilly	bridge	and	his	carriage	nearly	did	the
same.	Most	of	his	output	from	then	on	was	religious	philosophy.	But	just	before
the	accident,	he	and	Fermat	were	writing	to	each	other	about	a	mathematical
problem	to	do	with	gambling.	The	Chevalier	de	Meré,	a	French	writer	who
called	himself	a	knight	even	though	he	wasn’t,	was	a	friend	of	Pascal’s,	and	he
asked	how	the	stakes	in	a	series	of	games	of	chance	should	be	divided	if	the
contest	had	to	be	abandoned	part	way	through.	This	question	was	not	new:	it
goes	back	to	the	Middle	Ages.	What	was	new	was	its	solution.	In	an	exchange	of
letters,	Pascal	and	Fermat	found	the	correct	answer.	Along	the	way	they	created
a	new	branch	of	mathematics:	probability	theory.

A	central	concept	in	their	solution	was	what	we	now	call	‘expectation’.	In	a
game	of	chance,	this	is	a	player’s	average	return	in	the	long	run.	It	would,	for
example,	be	92	pence	for	crown	and	anchor	with	a	£1	stake.	After	his	second
conversion,	Pascal	put	his	gambling	past	behind	him,	but	he	enlisted	its	aid	in	a
famous	philosophical	argument,	Pascal’s	wager.2	Pascal	assumed,	playing
Devil’s	advocate,	that	someone	might	consider	the	existence	of	God	to	be	highly
unlikely.	In	his	Pensées	(‘Thoughts’)	of	1669,	Pascal	analysed	the	consequences
from	the	point	of	view	of	probabilities:

Let	us	weigh	the	gain	and	the	loss	in	wagering	that	God	is	[exists].
Let	us	estimate	these	two	chances.	If	you	gain,	you	gain	all;	if	you
lose,	you	lose	nothing.	Wager,	then,	without	hesitation	that	He	is…
There	is	here	an	infinity	of	an	infinitely	happy	life	to	gain,	a	chance
of	gain	against	a	finite	number	of	chances	of	loss,	and	what	you
stake	is	finite.	And	so	our	proposition	is	of	infinite	force,	when	there
is	the	finite	to	stake	in	a	game	where	there	are	equal	risks	of	gain
and	of	loss,	and	the	infinite	to	gain.



Probability	theory	arrived	as	a	fully	fledged	area	of	mathematics	in	1713	when
Jacob	Bernoulli	published	his	Ars	Conjectandi	(‘Art	of	Conjecturing’).	He
started	with	the	usual	working	definition	of	the	probability	of	an	event:	the
proportion	of	occasions	on	which	it	will	happen,	in	the	long	run,	nearly	all	the
time.	I	say	‘working	definition’	because	this	approach	to	probabilities	runs	into
trouble	if	you	try	to	make	it	fundamental.	For	example,	suppose	that	I	have	a	fair
coin	and	keep	tossing	it.	Most	of	the	time	I	get	a	random-looking	sequence	of
heads	and	tails,	and	if	I	keep	tossing	for	long	enough	I	will	get	heads	roughly
half	the	time.	However,	I	seldom	get	heads	exactly	half	the	time:	this	is
impossible	on	odd-numbered	tosses,	for	example.	If	I	try	to	modify	the	definition
by	taking	inspiration	from	calculus,	so	that	the	probability	of	throwing	heads	is
the	limit	of	the	proportion	of	heads	as	the	number	of	tosses	tends	to	infinity,	I
have	to	prove	that	this	limit	exists.	But	sometimes	it	doesn’t.	For	example,
suppose	that	the	sequence	of	heads	and	tails	goes

THHTTTHHHHHHTTTTTTTTTTTT…

with	one	tail,	two	heads,	three	tails,	six	heads,	twelve	tails,	and	so	on	–	the
numbers	doubling	at	each	stage	after	the	three	tails.	After	three	tosses	the
proportion	of	heads	is	2/3,	after	six	tosses	it	is	1/3,	after	twelve	tosses	it	is	back
to	2/3,	after	twenty-four	it	is	1/3,…	so	the	proportion	oscillates	to	and	fro,
between	2/3	and	1/3,	and	therefore	has	no	well-defined	limit.

Agreed,	such	a	sequence	of	tosses	is	very	unlikely,	but	to	define	‘unlikely’	we
need	to	define	probability,	which	is	what	the	limit	is	supposed	to	achieve.	So	the
logic	is	circular.	Moreover,	even	if	the	limit	exists,	it	might	not	be	the	‘correct’
value	of	1/2.	An	extreme	case	occurs	when	the	coin	always	lands	heads.	Now	the
limit	is	1.	Again,	this	is	wildly	improbable,	but…

Bernoulli	decided	to	approach	the	whole	issue	from	the	opposite	direction.
Start	by	simply	defining	the	probability	of	heads	and	tails	to	be	some	number	p
between	0	and	1.	Say	that	the	coin	is	fair	if	p	=	 ,	and	biased	if	not.	Now
Bernoulli	proves	a	basic	theorem,	the	law	of	large	numbers.	Introduce	a
reasonable	rule	for	assigning	probabilities	to	a	series	of	repeated	events.	The	law
of	large	numbers	states	that	in	the	long	run,	with	the	exception	of	a	fraction	of
trials	that	becomes	arbitrarily	small,	the	proportion	of	heads	does	have	a	limit,
and	that	limit	is	p.	Philosophically,	this	theorem	shows	that	by	assigning
probabilities	–	that	is,	numbers	–	in	a	natural	way,	the	interpretation	‘proportion
of	occurrences	in	the	long	run,	ignoring	rare	exceptions’	is	valid.	So	Bernoulli
takes	the	point	of	view	that	the	numbers	assigned	as	probabilities	provide	a



consistent	mathematical	model	of	the	process	of	tossing	a	coin	over	and	over
again.

His	proof	depends	on	a	numerical	pattern	that	was	very	familiar	to	Pascal.	It
is	usually	called	Pascal’s	triangle,	even	though	he	wasn’t	the	first	person	to
notice	it.	Historians	have	traced	its	origins	back	to	the	Chandas	Shastra,	a
Sanskit	text	attributed	to	Pingala,	written	some	time	between	500	BC	and	200	BC.
The	original	has	not	survived,	but	the	work	is	known	through	tenth-century
Hindu	commentaries.	Pascal’s	triangle	looks	like	this:

where	all	rows	start	and	end	in	1,	and	each	number	is	the	sum	of	the	two
immediately	above	it.	We	now	call	these	numbers	binomial	coefficients,	because
they	arise	in	the	algebra	of	the	binomial	(two-variable)	expression	(p	+	q)n.
Namely,

and	Pascal’s	triangle	is	visible	as	the	coefficients	of	the	separate	terms.
Bernoulli’s	key	insight	is	that	if	we	toss	a	coin	n	times,	with	a	probability	p	of

getting	heads,	then	the	probability	of	a	specific	number	of	tosses	yielding	heads
is	the	corresponding	term	of	(p	+	q)n,	where	q	=	1	−	p.	For	example,	suppose	that
I	toss	the	coin	three	times.	Then	the	eight	possible	results	are:



where	I’ve	grouped	the	sequences	according	to	the	number	of	heads.	So	out	of
the	eight	possible	sequences,	there	are

1	sequence	with	3	heads
3	sequences	with	2	heads
3	sequences	with	1	heads
1	sequence	with	0	heads

The	link	with	binomial	coefficients	is	no	coincidence.	If	you	expand	the
algebraic	formula	(H	+	T)3	but	don’t	collect	the	terms	together,	you	get

HHH	+	HHT	+	HTH	+	THH	+	HTT	+	THT	+	TTH	+	TTT

Collecting	terms	according	to	the	number	of	Hs	then	gives

H3	+	3H2T	+	3HT2	+	T3

After	that,	it’s	a	matter	of	replacing	each	of	H	and	T	by	its	probability,	p	or	q
respectively.

Even	in	this	case,	each	extreme	HHH	and	TTT	occurs	only	once	in	eight
trials,	and	more	equitable	numbers	occur	in	the	other	six.	A	more	sophisticated
calculation	using	standard	properties	of	binomial	coefficients	proves	Bernoulli’s
law	of	large	numbers.

Advances	in	mathematics	often	come	about	because	of	ignorance.	When
mathematicians	don’t	know	how	to	calculate	something	important,	they	find	a
way	to	sneak	up	on	it	indirectly.	In	this	case,	the	problem	is	to	calculate	those
binomial	coefficients.	There’s	an	explicit	formula,	but	if,	for	instance,	you	want
to	know	the	probability	of	getting	exactly	42	heads	when	tossing	a	coin	100
times,	you	have	to	do	200	multiplications	and	then	simplify	a	very	complicated
fraction.	(There	are	short	cuts;	it’s	still	a	big	mess.)	My	computer	tells	me	in	a
split	second	that	the	answer	is

28,	258,	808,	871,	162,	574,	166,	368,	460,	400	p42q58



but	Bernoulli	didn’t	have	that	luxury.	No	one	did	until	the	1960s,	and	computer
algebra	systems	didn’t	really	become	widely	available	until	the	late	1980s.

Since	this	kind	of	direct	calculation	wasn’t	feasible,	Bernoulli’s	immediate
successors	tried	to	find	good	approximations.	Around	1730	Abraham	De	Moivre
derived	an	approximate	formula	for	the	probabilities	involved	in	repeated	tosses
of	a	biased	coin.	This	led	to	the	error	function	or	normal	distribution,	often
referred	to	as	the	‘bell	curve’	because	of	its	shape.	What	he	proved	was	this.
Define	the	normal	distribution	Φ(x)	with	mean	μ	and	variance	σ2	by	the	formula

Then	for	large	n	the	probability	of	getting	m	heads	in	n	tosses	of	a	biased	coin	is
very	close	to	Φ(x)	when

x	=	m/n	−	p				μ	=	np			σ	=	npq

Here	‘mean’	refers	to	the	average,	and	‘variance’	is	a	measure	of	how	far	the
data	spread	out	–	the	width	of	the	bell	curve.	The	square	root	of	the	variance,	σ
itself,	is	called	the	standard	deviation.	Figure	32	(left)	shows	how	the	value	of
Φ(x)	depends	on	x.	The	curve	looks	a	bit	like	a	bell,	hence	the	informal	name.
The	bell	curve	is	an	example	of	a	probability	distribution;	this	means	that	the
probability	of	obtaining	data	between	two	given	values	is	equal	to	the	area	under
the	curve	and	between	the	vertical	lines	corresponding	to	those	values.	The	total
area	under	the	curve	is	1,	thanks	to	that	unexpected	factor	

The	idea	is	most	easily	grasped	using	an	example.	Figure	32	(right)	shows	a
graph	of	the	probabilities	of	getting	various	numbers	of	heads	when	tossing	a
fair	coin	15	times	(rectangular	bars)	together	with	the	approximating	bell	curve.



Fig	32	Left:	Bell	curve.	Right:	How	it	approximates	the	number	of	heads	in	15
tosses	of	a	fair	coin.

The	bell	curve	began	to	acquire	iconic	status	when	it	started	showing	up	in
empirical	data	in	the	social	sciences,	not	just	theoretical	mathematics.	In	1835
Adolphe	Quetelet,	a	Belgian	who	among	other	things	pioneered	quantitative
methods	in	sociology,	collected	and	analysed	large	quantities	of	data	on	crime,
the	divorce	rate,	suicide,	births,	deaths,	human	height,	weight,	and	so	on	–
variables	that	no	one	expected	to	conform	to	any	mathematical	law,	because
their	underlying	causes	were	too	complex	and	involved	human	choices.
Consider,	for	example,	the	emotional	torment	that	drives	someone	to	commit
suicide.	It	seemed	ridiculous	to	think	that	this	could	be	reduced	to	a	simple
formula.

These	objections	make	good	sense	if	you	want	to	predict	exactly	who	will	kill
themselves,	and	when.	But	when	Quetelet	concentrated	on	statistical	questions,
such	as	the	proportion	of	suicides	in	various	groups	of	people,	various	locations,
and	different	years,	he	started	to	see	patterns.	These	proved	controversial:	if	you
predict	that	there	will	be	six	suicides	in	Paris	next	year,	how	can	this	make	sense
when	each	person	involved	has	free	will?	They	could	all	change	their	minds.	But
the	population	formed	by	those	who	do	kill	themselves	is	not	specified
beforehand;	it	comes	together	as	a	consequence	of	choices	made	not	just	by
those	who	commit	suicide,	but	by	those	who	thought	about	it	and	didn’t.	People
exercise	free	will	in	the	context	of	many	other	things,	which	influence	what	they
freely	decide:	here	the	constraints	include	financial	problems,	relationship
problems,	mental	state,	religious	background…	In	any	case,	the	bell	curve	does
not	make	exact	predictions;	it	just	states	which	figure	is	most	likely.	Five	or
seven	suicides	might	occur,	leaving	plenty	of	room	for	anyone	to	exercise	free
will	and	change	their	mind.

The	data	eventually	won	the	day:	for	whatever	reason,	people	en	masse
behaved	more	predictably	than	individuals.	Perhaps	the	simplest	example	was
height.	When	Quetelet	plotted	the	proportions	of	people	with	a	given	height,	he
obtained	a	beautiful	bell	curve,	Figure	33.	He	got	the	same	shape	of	curve	for
many	other	social	variables.

Quetelet	was	so	struck	by	his	results	that	he	wrote	a	book,	Sur	l’homme	et	le
développement	de	ses	facultés	(‘Treatise	on	Man	and	the	Development	of	His
Faculties’)	published	in	1835.	In	it,	he	introduced	the	notion	of	the	‘average
man’,	a	fictitious	individual	who	was	in	every	respect	average.	It	has	long	been
noted	that	this	doesn’t	entirely	work:	the	average	‘man’	–	that	is,	person,	so	the



calculation	includes	males	and	females	–	has	(slightly	less	than)	one	breast,	one
testicle,	2.3	children,	and	so	on.	Nevertheless	Quetelet	viewed	his	average	man
as	the	goal	of	social	justice,	not	just	a	suggestive	mathematical	fiction.	It’s	not
quite	as	absurd	as	it	sounds.	For	example,	if	human	wealth	is	spread	equally	to
all,	then	everyone	will	have	average	wealth.	It’s	not	a	practical	goal,	barring
enormous	social	changes,	but	someone	with	strong	egalitarian	views	might
defend	it	as	a	desirable	target.

Fig	33	Quetelet’s	graph	of	how	many	people	(vertical	axis)	have	a	given	height
(horizontal	axis).

The	bell	curve	rapidly	became	an	icon	in	probability	theory,	especially	its
applied	arm,	statistics.	There	were	two	main	reasons:	the	bell	curve	was
relatively	simple	to	calculate,	and	there	was	a	theoretical	reason	for	it	to	occur	in
practice.	One	of	the	main	sources	for	this	way	of	thinking	was	eighteenth-
century	astronomy.	Observational	data	are	subject	to	errors,	caused	by	slight
variations	in	apparatus,	human	mistakes,	or	merely	the	movement	of	air	currents
in	the	atmosphere.	Astronomers	of	the	period	wanted	to	observe	planets,	comets,
and	asteroids,	and	calculate	their	orbits,	and	this	required	finding	whichever
orbit	fitted	the	data	best.	The	fit	would	never	be	perfect.

The	practical	solution	to	this	problem	appeared	first.	It	boiled	down	to	this:
run	a	straight	line	through	the	data,	and	choose	this	line	so	that	the	total	error	is
as	small	as	possible.	Errors	here	have	to	be	considered	positive,	and	the	easy
way	to	achieve	this	while	keeping	the	algebra	nice	is	to	square	them.	So	the	total
error	is	the	sum	of	the	squares	of	the	deviations	of	observations	from	the	straight



line	model,	and	the	desired	line	minimises	this.	In	1805	the	French
mathematician	Adrien-Marie	Legendre	discovered	a	simple	formula	for	this	line,
making	it	easy	to	calculate.	The	result	is	called	the	method	of	least	squares.
Figure	34	illustrates	the	method	on	artificial	data	relating	stress	(measured	by	a
questionnaire)	and	blood	pressure.	The	line	in	the	figure,	found	using	Legendre’s
formula,	fits	the	data	most	closely	according	to	the	squared-error	measure.
Within	ten	years	the	method	of	least	squares	was	standard	among	astronomers	in
France,	Prussia,	and	Italy.	Within	another	twenty	years	it	was	standard	in
England.

Fig	34	Using	the	method	of	least	squares	to	relate	blood	pressure	and	stress.
Dots:	data.	Solid	line:	best-fitting	straight	line.

Gauss	made	the	method	of	least	squares	a	cornerstone	of	his	work	in	celestial
mechanics.	He	got	into	the	area	in	1801	by	successfully	predicting	the	return	of
the	asteroid	Ceres	after	it	was	hidden	in	the	glare	of	the	Sun,	when	most
astronomers	thought	the	available	data	were	too	limited.	This	triumph	sealed	his
mathematical	reputation	among	the	public	and	set	him	up	for	life	as	professor	of
astronomy	at	the	University	of	Göttingen.	Gauss	didn’t	use	least	squares	for	this
particular	prediction:	his	calculations	boiled	down	to	solving	an	algebraic
equation	of	the	eighth	degree,	which	he	did	by	a	specially	invented	numerical
method.	But	in	his	later	work,	culminating	in	his	1809	Theoria	Motus	Corporum
Coelestium	in	Sectionibus	Conicis	Solem	Ambientum	(‘Theory	of	Motion	of	the
Celestial	Bodies	Moving	in	Conic	Sections	around	the	Sun’)	he	placed	great
emphasis	on	the	method	of	least	squares.	He	also	stated	that	he	had	developed
the	idea,	and	used	it,	ten	years	before	Legendre,	which	caused	a	bit	of	a	fuss.	It



was	very	likely	true,	however,	and	Gauss’s	justification	of	the	method	was	quite
different.	Legendre	had	viewed	it	as	an	exercise	in	curve-fitting,	whereas	Gauss
saw	it	as	a	way	to	fit	a	probability	distribution.	His	justification	of	the	formula
assumed	that	the	underlying	data,	to	which	the	straight	line	was	being	fitted,
followed	a	bell	curve.

It	remained	to	justify	the	justification.	Why	should	observational	errors	be
normally	distributed?	In	1810	Laplace	supplied	an	astonishing	answer,	also
motivated	by	astronomy.	In	many	branches	of	science	it	is	standard	to	make	the
same	observation	several	times,	independently,	and	then	take	the	average.	So	it
is	natural	to	model	this	procedure	mathematically.	Laplace	used	the	Fourier
transform,	see	Chapter	9,	to	prove	that	the	average	of	many	observations	is
described	by	a	bell	curve,	even	if	the	individual	observations	are	not.	His	result,
the	central	limit	theorem,	was	a	major	turning	point	in	probability	and	statistics,
because	it	provided	a	theoretical	justification	for	using	the	mathematicians’
favourite	distribution,	the	bell	curve,	in	the	analysis	of	observational	errors.3

The	central	limit	theorem	singled	out	the	bell	curve	as	the	probability
distribution	uniquely	suited	to	the	mean	of	many	repeated	observations.	It
therefore	acquired	the	name	‘normal	distribution’,	and	was	seen	as	the	default
choice	for	a	probability	distribution.	Not	only	did	the	normal	distribution	have
pleasant	mathematical	properties,	but	there	was	also	a	solid	reason	for	assuming
it	modelled	real	data.	This	combination	of	attributes	proved	very	attractive	to
scientists	wishing	to	gain	insights	into	the	social	phenomena	that	had	interested
Quetelet,	because	it	offered	a	way	to	analyse	data	from	official	records.	In	1865
Francis	Galton	studied	how	a	child’s	height	relates	to	its	parents’	heights.	This
was	part	of	a	wider	goal:	understanding	heredity	–	how	human	characteristics
pass	from	parent	to	child.	Ironically,	Laplace’s	central	limit	theorem	initially	led
Galton	to	doubt	that	this	kind	of	inheritance	existed.	And,	even	if	it	did,	proving
that	would	be	difficult,	because	the	central	limit	theorem	was	a	double-edged
sword.	Quetelet	had	found	a	beautiful	bell	curve	for	heights,	but	that	seemed	to
imply	very	little	about	the	different	factors	that	affected	height,	because	the
central	limit	theorem	predicted	a	normal	distribution	anyway,	whatever	the
distributions	of	those	factors	might	be.	Even	if	characteristics	of	the	parents	were
among	those	factors,	they	might	be	overwhelmed	by	all	the	others	–	such	as
nutrition,	health,	social	status,	and	so	on.

By	1889,	however,	Galton	had	found	a	way	out	of	this	dilemma.	The	proof	of
Laplace’s	wonderful	theorem	relied	on	averaging	out	the	effects	of	many	distinct
factors,	but	these	had	to	satisfy	some	stringent	conditions.	In	1875	Galton



described	these	conditions	as	‘highly	artificial’,	and	noted	that	the	influences
being	averaged

must	be	(1)	all	independent	in	their	effects,	(2)	all	equal	[having	the
same	probability	distribution],	(3)	all	admitting	of	being	treated	as
simple	alternatives	‘above	average’	or	‘below	average’;	and	(4)	…
calculated	on	the	supposition	that	the	variable	influences	are
infinitely	numerous.

None	of	these	conditions	applied	to	human	heredity.	Condition	(4)	corresponds
to	Laplace’s	assumption	that	the	number	of	factors	being	added	tends	to	infinity,
so	‘infinitely	numerous’	is	a	bit	of	an	exaggeration;	however,	what	the
mathematics	established	was	that	to	get	a	good	approximation	to	a	normal
distribution,	you	had	to	combine	a	large	number	of	factors.	Each	of	these
contributed	a	small	amount	to	the	average:	with,	say,	a	hundred	factors,	each
contributed	one	hundredth	of	its	value.	Galton	referred	to	such	factors	as	‘petty’.
Each	on	its	own	had	no	significant	effect.

There	was	a	potential	way	out,	and	Galton	seized	on	it.	The	central	limit
theorem	provided	a	sufficient	condition	for	a	distribution	to	be	normal,	not	a
necessary	one.	Even	when	its	assumptions	failed,	the	distribution	concerned
might	still	be	normal	for	other	reasons.	Galton’s	task	was	to	find	out	what	those
reasons	might	be.	To	have	any	hope	of	linking	to	heredity,	they	had	to	apply	to	a
combination	of	a	few	large	and	disparate	influences,	not	to	a	huge	number	of
insignificant	influences.	He	slowly	groped	his	way	towards	a	solution,	and	found
it	through	two	experiments,	both	dating	to	1877.	One	was	a	device	he	called	a
quincunx,	in	which	ball	bearings	fell	down	a	slope,	bouncing	off	an	array	of
pins,	with	an	equal	chance	of	going	left	or	right.	In	theory	the	balls	should	pile
up	at	the	bottom	according	to	a	binomial	distribution,	a	discrete	approximation
to	the	normal	distribution,	so	they	should	–	and	did	–	form	a	roughly	bell-shaped
heap,	like	Figure	32	(right).	His	key	insight	was	to	imagine	temporarily	halting
the	balls	when	they	were	part	way	down.	They	would	still	form	a	bell	curve,	but
it	would	be	narrower	than	the	final	one.	Imagine	releasing	just	one	compartment
of	balls.	It	would	fall	to	the	bottom,	spreading	out	into	a	tiny	bell	curve.	The
same	went	for	any	other	compartment.	And	that	meant	that	the	final,	large	bell
curve	could	be	viewed	as	a	sum	of	lots	of	tiny	ones.	The	bell	curve	reproduces
itself	when	several	factors,	each	following	its	own	separate	bell	curve,	are
combined.

The	clincher	arrived	when	Galton	bred	sweet	peas.	In	1875	he	distributed



seeds	to	seven	friends.	Each	received	70	seeds,	but	one	received	very	light	seeds,
one	slightly	heavier	ones,	and	so	on.	In	1877	he	measured	the	weights	of	the
seeds	of	the	resulting	progeny.	Each	group	was	normally	distributed,	but	the
mean	weight	differed	in	each	case,	being	comparable	to	the	weight	of	each	seed
in	the	original	group.	When	he	combined	the	data	for	all	of	the	groups,	the
results	were	again	normally	distributed,	but	the	variance	was	bigger	–	the	bell
curve	was	wider.	Again,	this	suggested	that	combining	several	bell	curves	led	to
another	bell	curve.	Galton	tracked	down	the	mathematical	reason	for	this.
Suppose	that	two	random	variables	are	normally	distributed,	not	necessarily	with
the	same	means	or	the	same	variances.	Then	their	sum	is	also	normally
distributed;	its	mean	is	the	sum	of	the	two	means,	and	its	variance	is	the	sum	of
the	two	variances.	Obviously	the	same	goes	for	sums	of	three,	four,	or	more
normally	distributed	random	variables.

This	theorem	works	when	a	small	number	of	factors	are	combined,	and	each
factor	can	be	multiplied	by	a	constant,	so	it	actually	works	for	any	linear
combination.	The	normal	distribution	is	valid	even	when	the	effect	of	each	factor
is	large.	Now	Galton	could	see	how	this	result	applied	to	heredity.	Suppose	that
the	random	variable	given	by	the	height	of	a	child	is	some	combination	of	the
corresponding	random	variables	for	the	heights	of	its	parents,	and	these	are
normally	distributed.	Assuming	that	the	hereditary	factors	work	by	addition,	the
child’s	height	will	also	be	normally	distributed.

Galton	wrote	his	ideas	up	in	1889	under	the	title	Natural	Inheritance.	In
particular,	he	discussed	an	idea	he	called	regression.	When	one	tall	parent	and
one	short	one	have	children,	the	mean	height	of	the	children	should	be
intermediate	–	in	fact,	it	should	be	the	average	of	the	parents’	heights.	The
variance	likewise	should	be	the	average	of	the	variances,	but	the	variances	for
the	parents	seemed	to	be	roughly	equal,	so	the	variance	didn’t	change	much.	As
successive	generations	passed,	the	mean	height	would	‘regress’	to	a	fixed
middle-of-the-road	value,	while	the	variance	would	stay	pretty	much	unchanged.
So	Quetelet’s	neat	bell	curve	could	survive	from	one	generation	to	the	next.	Its
peak	would	quickly	settle	to	a	fixed	value,	the	overall	mean,	while	its	width
would	stay	the	same.	So	each	generation	would	have	the	same	diversity	of
heights,	despite	regression	to	the	mean.	Diversity	would	be	maintained	by	rare
individuals	who	failed	to	regress	and	was	self-sustaining	in	a	sufficiently	large
population.

With	the	central	role	of	the	bell	curve	firmly	cemented	to	what	at	the	time	were
considered	solid	foundations,	statisticians	could	build	on	Galton’s	insights	and



workers	in	other	fields	could	apply	the	results.	Social	science	was	an	early
beneficiary,	but	biology	soon	followed,	and	the	physical	sciences	were	already
ahead	of	the	game	thanks	to	Legendre,	Laplace,	and	Gauss.	Soon	an	entire
statistical	toolbox	was	available	for	anyone	who	wanted	to	extract	patterns	from
data.	I’ll	focus	on	just	one	technique,	because	it	is	routinely	used	to	determine
the	efficacy	of	drugs	and	medical	procedures,	along	with	many	other
applications.	It	is	called	hypothesis	testing,	and	its	goal	is	to	assess	the
significance	of	apparent	patterns	in	data.	It	was	founded	by	four	people:	the
Englishmen	Ronald	Aylmer	Fisher,	Karl	Pearson,	and	his	son	Egon,	together
with	a	Russian-born	Pole	who	spent	most	of	his	life	in	America,	Jerzy	Neyman.
I’ll	concentrate	on	Fisher,	who	developed	the	basic	ideas	when	working	as	an
agricultural	statistician	at	Rothamstead	Experimental	Station,	analysing	new
breeds	of	plants.

Suppose	you	are	breeding	a	new	variety	of	potato.	Your	data	suggest	that	this
breed	is	more	resistant	to	some	pest.	But	all	such	data	are	subject	to	many
sources	of	error,	so	you	can’t	be	fully	confident	that	the	numbers	support	that
conclusion	–	certainly	not	as	confident	as	a	physicist	who	can	make	very	precise
measurements	and	eliminate	most	errors.	Fisher	realised	that	the	key	issue	is	to
distinguish	a	genuine	difference	from	one	arising	purely	by	chance,	and	that	the
way	to	do	this	is	to	ask	how	probable	that	difference	would	be	if	only	chance
were	involved.

Assume,	for	instance,	that	the	new	breed	of	potato	appears	to	confer	twice	as
much	resistance,	in	the	sense	that	the	proportion	of	the	new	breed	that	survives
the	pest	is	double	the	proportion	for	the	old	breed.	It	is	conceivable	that	this
effect	is	due	to	chance,	and	you	can	calculate	its	probability.	In	fact,	what	you
calculate	is	the	probability	of	a	result	at	least	as	extreme	as	the	one	observed	in
the	data.	What	is	the	probability	that	the	proportion	of	the	new	breed	that
survives	the	pest	is	at	least	twice	what	it	was	for	the	old	breed?	Even	larger
proportions	are	permitted	here	because	the	probability	of	getting	exactly	twice
the	proportion	is	bound	to	be	very	small.	The	wider	the	range	of	results	you
include,	the	more	probable	the	effects	of	chance	become,	so	you	can	have
greater	confidence	in	your	conclusion	if	your	calculation	suggests	it	is	not	the
result	of	chance.	If	this	probability	derived	by	this	calculation	is	low,	say	0.05,
then	the	result	is	unlikely	to	be	the	result	of	chance;	it	is	said	to	be	significant	at
the	95%	level.	If	the	probability	is	lower,	say	0.01,	then	the	result	is	extremely
unlikely	to	be	the	result	of	chance,	and	it	is	said	to	be	significant	at	the	99%
level.	The	percentages	indicate	that	by	chance	alone,	the	result	would	not	be	as
extreme	as	the	one	observed	in	95%	of	trials,	or	in	99%	of	them.



Fisher	described	his	method	as	a	comparison	between	two	distinct
hypotheses:	the	hypothesis	that	the	data	are	significant	at	the	stated	level,	and	the
so-called	null	hypothesis	that	the	results	are	due	to	chance.	He	insisted	that	his
method	must	not	be	interpreted	as	confirming	the	hypothesis	that	the	data	are
significant;	it	should	be	interpreted	as	a	rejection	of	the	null	hypothesis.	That	is,
it	provides	evidence	against	the	data	not	being	significant.

This	may	seem	a	very	fine	distinction,	since	evidence	against	the	data	not
being	significant	surely	counts	as	evidence	in	favour	of	it	being	significant.
However,	that’s	not	entirely	true,	and	the	reason	is	that	the	null	hypothesis	has
an	extra	built-in	assumption.	In	order	to	calculate	the	probability	that	a	result	at
least	as	extreme	is	due	to	chance,	you	need	a	theoretical	model.	The	simplest
way	to	get	one	is	to	assume	a	specific	probability	distribution.	This	assumption
applies	only	in	connection	with	the	null	hypothesis,	because	that’s	what	you	use
to	do	the	sums.	You	don’t	assume	the	data	are	normally	distributed.	But	the
default	distribution	for	the	null	hypothesis	is	normal:	the	bell	curve.

This	built-in	model	has	an	important	consequence,	which	‘reject	the	null
hypothesis’	tends	to	conceal.	The	null	hypothesis	is	‘the	data	are	due	to	chance’.
So	it	is	all	too	easy	to	read	that	statement	as	‘reject	the	data	being	due	to	chance’,
which	in	turn	means	you	accept	that	they’re	not	due	to	chance.	Actually,	though,
the	null	hypothesis	is	‘the	data	are	due	to	chance	and	the	effects	of	chance	are
normally	distributed’,	so	there	might	be	two	reasons	to	reject	the	null	hypothesis:
the	data	are	not	due	to	chance,	or	they	are	not	normally	distributed.	The	first
supports	the	significance	of	the	data,	but	the	second	does	not.	It	says	you	might
be	using	the	wrong	statistical	model.

In	Fisher’s	agricultural	work,	there	was	generally	plenty	of	evidence	for
normal	distributions	in	the	data.	So	the	distinction	I’m	making	didn’t	really
matter.	In	other	applications	of	hypothesis	testing,	though,	it	might.	Saying	that
the	calculations	reject	the	null	hypothesis	has	the	virtue	of	being	true,	but
because	the	assumption	of	a	normal	distribution	is	not	explicitly	mentioned,	it	is
all	too	easy	to	forget	that	you	need	to	check	normality	of	the	distribution	of	the
data	before	you	conclude	that	your	results	are	statistically	significant.	As	the
method	gets	used	by	more	and	more	people,	who	have	been	trained	in	how	to	do
the	sums	but	not	in	the	assumptions	behind	them,	there	is	a	growing	danger	of
wrongly	assuming	that	the	test	shows	your	data	to	be	significant.	Especially
when	the	normal	distribution	has	become	the	automatic	default	assumption.

In	the	public	consciousness,	the	term	‘bell	curve’	is	indelibly	associated	with	the
controversial	1994	book	The	Bell	Curve	by	two	Americans,	the	psychologist



Richard	J.	Herrnstein	and	the	political	scientist	Charles	Murray.	The	main	theme
of	the	book	is	a	claimed	link	between	intelligence,	measured	by	intelligence
quotient	(IQ),	and	social	variables	such	as	income,	employment,	pregnancy
rates,	and	crime.	The	authors	argue	that	IQ	levels	are	better	at	predicting	such
variables	than	the	social	and	economic	status	of	the	parents	or	their	level	of
education.	The	reasons	for	the	controversy,	and	the	arguments	involved,	are
complex.	A	quick	sketch	cannot	really	do	justice	to	the	debate,	but	the	issues	go
right	back	to	Quetelet	and	deserve	mention.

Controversy	was	inevitable,	no	matter	what	the	academic	merits	or	demerits
of	the	book	might	have	been,	because	it	touched	a	sensitive	nerve:	the	relation
between	race	and	intelligence.	Media	reports	tended	to	stress	the	proposal	that
differences	in	IQ	have	a	predominantly	genetic	origin,	but	the	book	was	more
cautious	about	this	link,	leaving	the	interaction	between	genes,	environment,	and
intelligence	open.	Another	controversial	issue	was	an	analysis	suggesting	that
social	stratification	in	the	United	States	(and	indeed	elsewhere)	increased
significantly	throughout	the	twentieth	century,	and	that	the	main	cause	was
differences	in	intelligence.	Yet	another	was	a	series	of	policy	recommendations
for	dealing	with	this	alleged	problem.	One	was	to	reduce	immigration,	which	the
book	claimed	was	lowering	average	IQ.	Perhaps	the	most	contentious	was	the
suggestion	that	social	welfare	policies	allegedly	encouraging	poor	women	to
have	children	should	be	stopped.

Ironically,	this	idea	goes	back	to	Galton	himself.	His	1869	book	Hereditary
Genius	built	on	earlier	writings	to	develop	the	idea	that	‘a	man’s	natural	abilities
are	derived	by	inheritance,	under	exactly	the	same	limitations	as	are	the	form
and	physical	features	of	the	whole	organic	world.	Consequently	…	it	would	be
quite	practicable	to	produce	a	highly-gifted	race	of	men	by	judicious	marriages
during	several	consecutive	generations.’	He	asserted	that	fertility	was	higher
among	the	less	intelligent,	but	avoided	any	suggestion	of	deliberate	selection	in
favour	of	intelligence.	Instead,	he	expressed	the	hope	that	society	might	change
so	that	the	more	intelligent	people	understood	the	need	to	have	plenty	of
children.

To	many,	Herrnstein	and	Murray’s	proposal	to	re-engineer	the	welfare	system
was	uncomfortably	close	to	the	eugenics	movement	of	the	early	twentieth
century,	in	which	60,000	Americans	were	sterilised,	allegedly	because	of	mental
illness.	Eugenics	became	widely	discredited	when	it	became	associated	with
Nazi	Germany	and	the	holocaust,	and	many	of	its	practices	are	now	considered
to	be	violations	of	human	rights	legislation,	in	some	cases	amounting	to	crimes
against	humanity.	Proposals	to	breed	humans	selectively	are	widely	viewed	as



inherently	racist.	A	number	of	social	scientists	endorsed	the	book’s	scientific
conclusions	but	disputed	the	charge	of	racism;	some	of	them	were	less	sure
about	the	policy	proposals.
The	Bell	Curve	initiated	a	lengthy	debate	about	the	methods	used	to	compile

data,	the	mathematical	methods	used	to	analyse	them,	the	interpretation	of	the
results,	and	the	policy	suggestions	based	on	those	interpretations.	A	task	force
set	up	by	the	American	Psychological	Association	concluded	that	some	points
made	in	the	book	are	valid:	IQ	scores	are	good	for	predicting	academic
achievement,	this	correlates	with	employment	status,	and	there	is	no	significant
difference	in	the	performance	of	males	and	females.	On	the	other	hand,	the	task
force’s	report	reaffirmed	that	both	genes	and	environment	influence	IQ	and	it
found	no	significant	evidence	that	racial	differences	in	IQ	scores	are	genetically
determined.

Other	critics	have	argued	that	there	are	flaws	in	the	scientific	methodology,
such	as	inconvenient	data	being	ignored,	and	that	the	study	and	some	responses
to	it	may	to	some	extent	have	been	politically	motivated.	For	example,	it	is	true
that	social	stratification	has	increased	dramatically	in	the	United	States,	but	it
could	be	argued	that	the	main	cause	is	the	refusal	of	the	rich	to	pay	taxes,	rather
than	differences	in	intelligence.	There	also	seems	to	be	an	inconsistency	between
the	alleged	problem	and	the	proposed	solution.	If	poverty	causes	people	to	have
more	children,	and	you	believe	that	this	is	a	bad	thing,	why	on	earth	would	you
want	to	make	them	even	poorer?

An	important	part	of	the	background,	often	ignored,	is	the	definition	of	IQ.
Rather	than	being	something	directly	measurable,	such	as	height	or	weight,	IQ	is
inferred	statistically	from	tests.	Subjects	are	set	questions,	and	their	scores	are
analysed	using	an	offshoot	of	the	method	of	least	squares	called	analysis	of
variance.	Like	the	method	of	least	squares,	this	technique	assumes	that	the	data
are	normally	distributed,	and	it	seeks	to	isolate	those	factors	that	determine	the
largest	amount	of	variability	in	the	data,	and	are	therefore	the	most	important	for
modelling	the	data.	In	1904	the	psychologist	Charles	Spearman	applied	this
technique	to	several	different	intelligence	tests.	He	observed	that	the	scores	that
subjects	obtained	on	different	tests	were	highly	correlated;	that	is,	if	someone
did	well	on	one	test,	they	tended	to	do	well	on	them	all.	Intuitively,	they	seemed
to	be	measuring	the	same	thing.	Spearman’s	analysis	showed	that	a	single
common	factor	–	one	mathematical	variable,	which	he	called	g,	standing	for
‘general	intelligence’	–	explained	almost	all	of	the	correlation.	IQ	is	a
standardised	version	of	Spearman’s	g.



A	key	question	is	whether	g	is	a	real	quantity	or	a	mathematical	fiction.	The
answer	is	complicated	by	the	methods	used	to	choose	IQ	tests.	These	assume
that	the	‘correct’	distribution	of	intelligence	in	the	population	is	normal	–	the
eponymous	bell	curve	–	and	calibrate	the	tests	by	manipulating	scores
mathematically	to	standardise	the	mean	and	standard	deviation.	A	potential
danger	here	is	that	you	get	what	you	expect	because	you	take	steps	to	filter	out
anything	that	would	contradict	it.	Stephen	Jay	Gould	made	an	extensive	critique
of	such	dangers	in	1981	in	The	Mismeasure	of	Man,	pointing	out	among	other
things	that	raw	scores	on	IQ	tests	are	often	not	normally	distributed	at	all.

The	main	reason	for	thinking	that	g	represents	a	genuine	feature	of	human
intelligence	is	that	it	is	one	factor:	mathematically,	it	defines	a	single	dimension.
If	many	different	tests	all	seem	to	be	measuring	the	same	thing,	it	is	tempting	to
conclude	that	the	thing	concerned	must	be	real.	If	not,	why	would	the	results	all
be	so	similar?	Part	of	the	answer	could	be	that	the	results	of	IQ	tests	are	reduced
to	a	single	numerical	score.	This	squashes	a	multidimensional	set	of	questions
and	potential	attitudes	down	to	a	one-dimensional	answer.	Moreover,	the	test	has
been	selected	so	that	the	score	correlates	strongly	with	the	designer’s	view	of
intelligent	answers	–	if	not,	no	one	would	consider	using	it.

By	analogy,	imagine	collecting	data	on	several	different	aspects	of	‘size’	in
the	animal	kingdom.	One	might	measure	mass,	another	height,	others	length,
width,	diameter	of	left	hind	leg,	tooth	size,	and	so	on.	Each	such	measure	would
be	a	single	number.	They	would	in	general	be	closely	correlated:	tall	animals
tend	to	weight	more,	have	bigger	teeth,	thicker	legs…	If	you	ran	the	data	through
an	analysis	of	variance	you	would	very	probably	find	that	a	single	combination
of	those	data	accounted	for	the	vast	majority	of	the	variability,	just	like
Spearman’s	g	does	for	different	measurements	of	things	thought	to	relate	to
intelligence.	Would	this	necessarily	imply	that	all	of	these	features	of	animals
have	the	same	underlying	cause?	That	one	thing	controls	them	all?	Possibly:	a
growth	hormone	level,	perhaps?	But	probably	not.	The	richness	of	animal	form
does	not	comfortably	compress	into	a	single	number.	Many	other	features	do	not
correlate	with	size	at	all:	ability	to	fly,	being	striped	or	spotted,	eating	flesh	or
vegetation.	The	single	special	combination	of	measurements	that	accounts	for
most	of	the	variability	could	be	a	mathematical	consequence	of	the	methods	used
to	find	it	–	especially	if	those	variables	were	chosen,	as	here,	to	have	a	lot	in
common	to	begin	with.

Going	back	to	Spearman,	we	see	that	his	much-vaunted	g	may	be	one-
dimensional	because	IQ	tests	are	one-dimensional.	IQ	is	a	statistical	method	for
quantifying	specific	kinds	of	problem-solving	ability,	mathematically	convenient



but	not	necessarily	corresponding	to	a	real	attribute	of	the	human	brain,	and	not
necessarily	representing	whatever	it	is	that	we	mean	by	‘intelligence’.

By	focusing	on	one	issue,	IQ,	and	using	that	to	set	policy,	The	Bell	Curve
ignores	the	wider	context.	Even	if	it	were	sensible	to	genetically	engineer	a
nation’s	population,	why	confine	the	process	to	the	poor?	Even	if	on	average	the
poor	have	lower	IQs	than	the	rich,	a	bright	poor	child	will	outperform	a	dumb
rich	one	any	day,	despite	the	obvious	social	and	educational	advantages	that
children	of	the	rich	enjoy.	Why	resort	to	welfare	cuts	when	you	could	aim	more
accurately	at	what	you	claim	to	be	the	real	problem:	intelligence	itself?	Why	not
improve	education?	Indeed,	why	aim	your	policy	at	increasing	intelligence	at
all?	There	are	many	other	desirable	human	traits.	Why	not	reduce	gullibility,
aggressiveness,	or	greed?

It	is	a	mistake	to	think	about	a	mathematical	model	as	if	it	were	the	reality.	In
the	physical	sciences,	where	the	model	often	fits	reality	very	well,	this	may	be	a
convenient	way	of	thinking	that	causes	little	harm.	But	in	the	social	sciences,
models	are	often	little	better	than	caricatures.	The	choice	of	title	for	The	Bell
Curve	hints	at	this	tendency	to	conflate	model	with	reality.	The	idea	that	IQ	is
some	sort	of	precise	measure	of	human	ability,	merely	because	it	has	a
mathematical	pedigree,	makes	the	same	error.	It	is	not	sensible	to	base	sweeping
and	highly	contentious	social	policy	on	simplistic,	flawed	mathematical	models.
The	real	point	about	The	Bell	Curve,	one	that	it	makes	extensively	but
inadvertently,	is	that	cleverness,	intelligence,	and	wisdom	are	not	the	same.

Probability	theory	is	widely	used	in	medical	trials	of	new	drugs	and	treatments
to	test	the	statistical	significance	of	data.	The	tests	are	often,	but	not	always,
based	on	the	assumption	that	the	underlying	distribution	is	normal.	A	typical
example	is	the	detection	of	cancer	clusters.	A	cluster,	for	some	disease,	is	a
group	within	which	the	disease	occurs	more	frequently	than	expected	in	the
overall	population.	The	cluster	may	be	geographical,	or	it	may	refer	more
metaphorically	to	people	with	a	particular	lifestyle,	or	a	specific	period	of	time.
For	example,	retired	professional	wrestlers,	or	boys	born	between	1960	and
1970.

Apparent	clusters	may	be	due	entirely	to	chance.	Random	numbers	are
seldom	spread	out	in	a	roughly	uniform	way;	instead,	they	often	cluster	together.
In	random	simulations	of	the	UK	National	Lottery,	where	six	numbers	between
1	and	49	are	randomly	drawn,	more	than	half	appear	to	show	some	kind	of
regular	pattern	such	as	two	numbers	being	consecutive	or	three	numbers
separated	by	the	same	amount,	for	example	5,	9,	13.	Contrary	to	common



intuition,	random	is	clumped.	When	an	apparent	cluster	is	found,	the	medical
authorities	try	to	assess	whether	it	is	due	to	chance	or	whether	there	might	be
some	possible	causal	connection.	At	one	time,	most	children	of	Israeli	fighter
pilots	were	boys.	It	would	be	easy	to	think	of	possible	explanations	–	pilots	are
very	virile	and	virile	men	sire	more	boys	(not	true,	by	the	way),	pilots	are
exposed	to	more	radiation	than	normal,	they	experience	higher	g-forces	–	but
this	phenomenon	was	shortlived,	just	a	random	cluster.	In	later	data	it
disappeared.	In	any	population	of	people,	it	is	always	likely	that	there	will	be
more	children	of	one	sex	or	the	other;	exact	equality	is	very	improbable.	To
assess	the	significance	of	the	cluster,	you	should	keep	observing	and	see	whether
it	persists.

However,	this	procrastination	can’t	be	continued	indefinitely,	especially	if	the
cluster	involves	a	serious	disease.	AIDS	was	first	detected	as	a	cluster	of
pneumonia	cases	in	American	homosexual	men	in	the	1980s,	for	instance.
Asbestos	fibres	as	a	cause	of	a	form	of	lung	cancer,	mesothelioma,	first	showed
up	as	a	cluster	among	former	asbestos	workers.	So	statistical	methods	are	used	to
assess	how	probable	such	a	cluster	would	be	if	it	arose	for	random	reasons.
Fisher’s	methods	of	significance	testing,	and	related	methods,	are	widely	used
for	that	purpose.

Probability	theory	is	also	fundamental	to	our	understanding	of	risk.	This	word
has	a	specific,	technical	meaning.	It	refers	to	the	potential	for	some	action	to	lead
to	an	undesirable	outcome.	For	example,	flying	in	an	aircraft	could	result	in
being	involved	in	a	crash,	smoking	cigarettes	could	lead	to	lung	cancer,	building
a	nuclear	power	station	could	lead	to	the	release	of	radiation	in	an	accident	or	a
terrorist	attack,	building	a	dam	for	hydroelectric	power	could	cause	deaths	if	the
dam	collapses.	‘Action’	here	can	refer	to	not	doing	something:	failing	to
vaccinate	a	child	might	lead	to	its	death	from	a	disease,	for	example.	In	this	case
there	is	also	a	risk	associated	with	vaccinating	the	child,	such	as	an	allergic
reaction.	Over	the	whole	population	this	risk	is	smaller,	but	for	specific	groups	it
can	be	larger.

Many	different	concepts	of	risk	are	employed	in	different	contexts.	The	usual
mathematical	definition	is	that	the	risk	associated	with	some	action	or	inaction	is
the	probability	of	an	adverse	result,	multiplied	by	the	loss	that	would	then	be
incurred.	By	this	definition	a	one	in	ten	chance	of	killing	ten	people	has	the	same
level	of	risk	as	a	one	in	a	million	chance	of	killing	a	million	people.	The
mathematical	definition	is	rational	in	the	sense	that	there	is	a	specific	rationale
behind	it,	but	that	doesn’t	mean	that	it	is	necessarily	sensible.	We’ve	already
seen	that	‘probability’	refers	to	the	long	run,	but	for	rare	events	the	long	run	is



very	long	indeed.	Humans,	and	their	societies,	can	adapt	to	repeated	small
numbers	of	deaths,	but	a	country	that	suddenly	lost	a	million	people	at	once
would	be	in	serious	trouble,	because	all	public	services	and	industry	would
simultaneously	come	under	a	severe	strain.	It	would	be	little	comfort	to	be	told
that	over	the	next	10	million	years,	the	total	deaths	in	the	two	cases	would	be
comparable.	So	new	methods	are	being	developed	to	quantify	risk	in	such	cases.

Statistical	methods,	derived	from	questions	about	gambling,	have	a	huge
variety	of	uses.	They	provide	tools	for	analysing	social,	medical,	and	scientific
data.	Like	all	tools,	what	happens	depends	on	how	they	are	used.	Anyone	using
statistical	methods	needs	to	be	aware	of	the	assumptions	behind	those	methods,
and	their	implications.	Blindly	feeding	numbers	into	a	computer	and	taking	the
results	as	gospel,	without	understanding	the	limitations	of	the	method	being
used,	is	a	recipe	for	disaster.	The	legitimate	use	of	statistics,	however,	has
improved	our	world	out	of	all	recognition.	And	it	all	began	with	Quetelet’s	bell
curve.



8	Good	vibrations

Wave	Equation

What	does	it	say?

The	acceleration	of	a	small	segment	of	a	violin	string	is	proportional	to	the
average	displacement	of	neighbouring	segments.

Why	is	that	important?

It	predicts	that	the	string	will	move	in	waves,	and	it	generalises	naturally	to	other
physical	systems	in	which	waves	occur.

What	did	it	lead	to?

Big	advances	in	our	understanding	of	water	waves,	sound	waves,	light	waves,
elastic	vibrations…	Seismologists	use	modified	versions	of	it	to	deduce	the
structure	of	the	interior	of	the	Earth	from	how	it	vibrates.	Oil	companies	use
similar	methods	to	find	oil.	In	Chapter	11	we	will	see	how	it	predicted	the
existence	of	electromagnetic	waves,	leading	to	radio,	television,	radar,	and
modern	communications.



	

We	live	in	a	world	of	waves.	Our	ears	detect	waves	of	compression	in	the	air:	we
call	this	‘hearing’.	Our	eyes	detect	waves	of	electromagnetic	radiation:	we	call
this	‘seeing’.	When	an	earthquake	hits	a	town	or	a	city,	the	destruction	is	caused
by	waves	in	the	solid	body	of	the	Earth.	When	a	ship	bobs	up	and	down	on	the
ocean,	it	is	reacting	to	waves	in	the	water.	Surfers	use	ocean	waves	for
recreation;	radio,	television,	and	large	parts	of	the	mobile	telephone	network	use
waves	of	electromagnetic	radiation,	similar	to	those	that	we	see	by,	but	of
differing	wavelengths.	Microwave	ovens	…	well,	the	name	gives	it	away,
doesn’t	it?

With	so	many	practical	instances	of	waves	impinging	on	daily	life,	even
centuries	ago,	the	mathematicians	who	decided	to	follow	up	Newton’s	epic
discovery	that	nature	has	laws	could	hardly	fail	to	start	thinking	about	waves.
What	got	them	started,	though,	came	from	the	arts:	specifically,	music.	How
does	a	violin	string	create	sound?	What	does	it	do?

There	was	a	reason	for	starting	with	violins,	the	kind	of	reason	that	appeals	to
mathematicians,	though	not	to	governments	or	businessmen	considering
investing	in	mathematicians	and	expecting	a	quick	payback.	A	violin	string	can
sensibly	be	modelled	as	an	infinitely	thin	line,	and	its	motion	–	which	is	clearly
the	cause	of	the	sound	that	the	instrument	makes	–	can	be	assumed	to	take	place
in	a	plane.	This	makes	the	problem	‘low-dimensional’,	which	means	you	have	a
chance	of	solving	it.	Once	you	have	understood	this	simple	example	of	waves,
there’s	a	good	chance	that	the	understanding	can	be	transferred,	often	in	small
stages,	to	more	realistic	and	more	practical	instances	of	waves.

The	alternative,	to	plough	headlong	into	highly	complex	problems,	may
appear	attractive	to	politicians	and	captains	of	industry,	but	it	usually	gets
bogged	down	in	complexities.	Mathematics	thrives	on	simplicities,	and	if
necessary	mathematicians	will	invent	them	artificially	to	provide	an	entry	route
into	more	complex	problems.	They	deprecatingly	refer	to	such	models	as	‘toys’,
but	these	are	toys	with	a	serious	purpose.	Toy	models	of	waves	led	to	today’s
world	of	electronics	and	high-speed	global	communications,	wide-bodied
passenger	jets	and	artificial	satellites,	radio,	television,	tsunami	warning
systems…	but	we’d	never	have	achieved	any	of	those	if	a	few	mathematicians
hadn’t	started	to	puzzle	out	how	a	violin	works,	using	a	model	that	wasn’t
realistic,	even	for	a	violin.



The	Pythagoreans	believed	that	the	world	was	based	on	numbers,	by	which	they
meant	whole	numbers	or	ratios	between	whole	numbers.	Some	of	their	beliefs
tended	towards	the	mystical,	investing	specific	numbers	with	human	attributes:	2
was	male,	3	female,	5	symbolised	marriage,	and	so	on.	The	number	10	was	very
important	to	the	Pythagoreans	because	it	was	1	+	2	+	3	+	4	and	they	believed
there	were	four	elements:	earth,	air,	fire,	water.	This	kind	of	speculation	strikes
the	modern	mind	as	slightly	crazy	–	well,	my	mind,	at	least	–	but	it	was
reasonable	in	an	age	when	humans	were	only	just	starting	to	investigate	the
world	around	them,	seeking	crucial	patterns.	It	just	took	a	while	to	work	out
which	patterns	were	significant	and	which	were	dross.

One	of	the	great	triumphs	of	the	Pythagorean	world	view	came	from	music.
Various	stories	circulate:	according	to	one,	Pythagoras	was	passing	a
blacksmith’s	shop	and	he	noticed	that	hammers	of	different	sizes	made	noises	of
different	pitch,	and	that	hammers	related	by	simple	numbers	–	one	twice	the	size
of	the	other,	for	instance	–	made	noises	that	harmonised.	Charming	though	this
tale	is,	anyone	who	actually	tries	it	out	with	real	hammers	will	discover	that	a
blacksmith’s	operations	are	not	especially	musical,	and	hammers	are	too
complicated	a	shape	to	vibrate	in	harmony.	But	there’s	a	grain	of	truth:	on	the
whole,	small	objects	make	higher-pitched	noises	than	large	ones.

The	stories	are	on	stronger	ground	when	they	refer	to	a	series	of	experiments
that	the	Pythagoreans	performed	using	a	stretched	string,	a	rudimentary	musical
instrument	known	as	a	canon.	We	know	about	these	experiments	because
Ptolemy	reported	them	in	his	Harmonics	around	150	AD.	By	moving	a	support	to
various	positions	along	the	string,	the	Pythagoreans	found	that	when	two	strings
of	equal	tension	had	lengths	in	a	simple	ratio,	such	as	2	:	1	or	3	:	2,	they
produced	unusually	harmonious	notes.	More	complex	ratios	were	discordant	and
unpleasant	to	the	ear.	Later	scientists	pushed	these	ideas	much	further,	probably
a	bit	too	far:	what	seems	pleasant	to	us	depends	on	the	physics	of	the	ear,	which
is	more	complicated	than	that	of	a	single	string,	and	it	also	has	a	cultural
dimension	because	the	ears	of	growing	children	are	trained	by	being	exposed	to
the	sounds	that	are	common	in	their	society.	I	predict	that	today’s	children	will
be	unusually	sensitive	to	differences	in	mobile	phone	ringtones.	However,	there
is	a	solid	scientific	story	behind	these	complexities,	and	a	lot	of	it	confirms	and
explains	the	early	Pythagorean	discoveries	with	their	single-stringed
experimental	instrument.

Musicians	describe	pairs	of	notes	in	terms	of	the	interval	between	them,	a
measure	of	how	many	steps	separate	them	in	some	musical	scale.	The	most
fundamental	interval	is	the	octave,	eight	white	notes	on	a	piano.	Notes	an	octave



apart	sound	remarkably	similar,	except	that	one	note	is	higher	than	the	other,	and
they	are	extremely	harmonious.	So	much	so,	in	fact,	that	harmonies	based	on	the
octave	can	seem	a	bit	bland.	On	a	violin,	the	way	to	play	the	note	one	octave
above	an	open	string	is	to	press	the	middle	of	that	string	against	the	fingerboard.
A	string	half	as	long	plays	a	note	one	octave	higher.	So	the	octave	is	associated
with	a	simple	numerical	ratio	of	2:1.

Other	harmonious	intervals	are	also	associated	with	simple	numerical	ratios.
The	most	important	for	Western	music	are	the	fourth,	a	ratio	of	4:3,	and	the	fifth,
a	ratio	of	3:2.	The	names	make	sense	if	you	consider	a	musical	scale	of	whole
notes	C	D	E	F	G	A	B	C.	With	C	as	base,	the	note	corresponding	to	a	fourth	is	F,
the	fifth	is	G,	and	the	octave	C.	If	we	number	the	notes	consecutively	with	the
base	as	1,	these	are	respectively	the	4th,	5th,	and	8th	notes	along	the	scale.	The
geometry	is	especially	clear	on	an	instrument	like	a	guitar,	which	has	segments
of	wire,	‘frets’,	inserted	at	the	relevant	positions.	The	fret	for	the	fourth	is	one-
quarter	of	the	way	along	the	string,	that	for	a	fifth	is	one-third	of	the	way	along,
and	the	octave	is	halfway	along.	You	can	check	this	with	a	tape	measure.

These	ratios	provide	a	theoretical	basis	for	a	musical	scale	and	led	to	the
scale(s)	now	used	in	most	Western	music.	The	story	is	complex,	so	I’ll	give	a
simplified	version.	For	later	convenience	I’ll	rewrite	a	ratio	like	3:2	as	a	fraction
3/2	from	now	on.	Start	at	a	base	note	and	ascend	in	fifths,	to	get	strings	of
lengths

Multiplied	out,	these	fractions	become

All	of	these	notes,	except	the	first	two,	are	too	high-pitched	to	remain	within	an
octave,	but	we	can	lower	them	by	one	or	more	octaves,	repeatedly	dividing	the
fractions	by	2	until	the	result	lies	between	1	and	2.	This	yields	the	fractions

Finally,	arrange	these	in	ascending	numerical	order,	obtaining



These	correspond	fairly	closely	to	the	notes	C	D	E	G	A	B	on	a	piano.	Notice	that
F	is	missing.	In	fact,	to	the	ear,	the	gap	between	81/64	and	3/2	sounds	wider	than
the	others.	To	fill	that	gap,	we	insert	4/3,	the	ratio	for	the	fourth,	which	is	very
close	to	F	on	the	piano.	It	is	also	useful	to	complete	the	scale	with	a	second	C,
one	octave	up,	a	ratio	of	2.	Now	we	obtain	a	musical	scale	based	entirely	on
fourths,	fifths,	and	octaves,	with	pitches	in	the	ratios

The	length	is	inversely	proportional	to	the	pitch,	so	we	would	have	to	invert	the
fractions	to	get	the	corresponding	lengths.

We	have	now	accounted	for	all	the	white	notes	on	the	piano,	but	there	are
also	black	notes.	These	appear	because	successive	numbers	in	the	scale	bear	two
different	ratios	to	each	other:	9/8	(called	a	tone)	and	256/243	(semitone).	For
example	the	ratio	of	81/64	to	9/8	is	9/8,	but	that	of	4/3	to	81/64	is	256/243.	The
names	‘tone’	and	‘semitone’	indicate	an	approximate	comparison	of	the
intervals.	Numerically	they	are	1.125	and	1.05.	The	first	is	larger,	so	a	tone
corresponds	to	a	bigger	change	in	pitch	than	a	semitone.	Two	semitones	give	a
ratio	1.052,	which	is	about	1.11;	not	far	from	1.25.	So	two	semitones	are	close	to
a	tone.	Not	very	close,	I	admit.

Continuing	in	this	vein	we	can	divide	each	tone	into	two	intervals,	each	close
to	a	semitone,	to	get	a	12-note	scale.	This	can	be	done	in	several	different	ways,
yielding	slightly	different	results.	However	it	is	done,	there	can	be	subtle	but
audible	problems	when	changing	the	key	of	a	piece	of	music:	the	intervals
change	slightly	if,	say,	we	move	every	note	up	a	semitone.	This	effect	could
have	been	avoided	if	we	had	chosen	a	specific	ratio	for	a	semitone	and	arranged
for	its	twelfth	power	to	equal	2.	Then	two	tones	would	make	an	exact	semitone,
12	semitones	would	make	an	octave,	and	you	could	change	scale	by	shifting	all
notes	up	or	down	by	a	fixed	amount.

There	is	such	a	number,	namely	the	twelfth	root	of	2,	which	is	about	1.059,
and	it	leads	to	the	so-called	‘equitempered	scale’.	It’s	a	compromise;	for
example	on	the	equitempered	scale	the	4/3	ratio	for	a	fourth	is	1.0595	=	1.335,
instead	of	4/3	=	1.333.	A	highly	trained	musician	can	detect	the	difference,	but



it’s	easy	to	get	used	to	it	and	most	of	us	never	notice.

The	Pythagorean	theory	of	harmony	in	nature,	then,	is	actually	built	into	the
basis	of	Western	music.	To	explain	why	simple	ratios	go	hand	in	hand	with
musical	harmony,	we	have	to	look	at	the	physics	of	a	vibrating	string.	The
psychology	of	human	perception	also	comes	into	the	tale,	but	not	yet.

The	key	is	Newton’s	second	law	of	motion,	relating	acceleration	to	force.
You	also	need	to	know	how	the	force	exerted	by	a	string	under	tension	changes
as	the	string	moves,	stretching	or	contracting	slightly.	For	this,	we	use	something
that	Newton’s	unwilling	sparring	partner	Hooke	discovered	in	1660,	called
Hooke’s	law:	the	change	in	length	of	a	spring	is	proportional	to	the	force	exerted
on	it.	(This	is	not	a	misprint	for	string	–	a	violin	string	is	effectively	a	kind	of
spring,	so	the	same	law	applies.)	One	obstacle	remains.	We	can	apply	Newton’s
laws	to	a	system	composed	of	a	finite	number	of	masses:	we	get	one	equation
per	mass,	and	then	do	our	best	to	solve	the	resulting	system.	But	a	violin	string	is
a	continuum,	a	line	composed	of	infinitely	many	points.	So	the	mathematicians
of	the	period	thought	of	the	string	as	a	large	number	of	closely	spaced	point
masses,	linked	together	by	Hooke’s-law	springs.	They	wrote	down	the
equations,	slightly	simplified	to	make	them	soluble;	solved	them;	finally	they	let
the	number	of	masses	become	arbitrarily	large,	and	worked	out	what	happened
to	the	solution.

John	Bernoulli	carried	out	this	programme	in	1727,	and	the	outcome	was
extraordinarily	pretty,	considering	what	difficulties	were	being	swept	under	the
carpet.	To	avoid	confusion	in	the	descriptions	that	follow,	imagine	that	the	violin
is	lying	on	its	back	with	the	string	horizontal.	If	you	pluck	the	string	it	vibrates
up	and	down	at	right	angles	to	the	violin.	This	is	the	image	to	bear	in	mind.
Using	the	bow	causes	the	string	to	vibrate	sideways,	and	the	presence	of	the	bow
is	confusing.	In	the	mathematical	model,	all	we	have	is	one	string,	fixed	at	its
ends,	and	no	violin;	the	string	vibrates	up	and	down	in	a	plane.	In	this	set-up
Bernoulli	found	that	the	shape	of	the	vibrating	string,	at	any	instant	of	time,	was
a	sine	curve.	The	amplitude	of	the	vibration	–	the	maximum	height	of	this	curve
–	also	followed	a	sine	curve,	in	time	rather	than	space.	In	symbols,	his	solution
looked	like	sin	ct	sin	x,	where	c	is	a	constant,	Figure	35.	The	spatial	part	sin	x
tells	us	the	shape,	but	this	is	scaled	by	a	factor	sin	ct	at	time	t.	The	formula	says
that	the	string	vibrates	up	and	down,	repeating	the	same	motion	over	and	over
again.	The	period	of	oscillation,	the	time	between	successive	repeats,	is	2π/c.



Fig	35	Successive	snapshots	of	a	vibrating	string.	The	shape	is	a	sine	curve	at
each	instant.	The	amplitude	also	varies	sinusoidally	with	time.

This	was	the	simplest	solution	that	Bernoulli	obtained,	but	there	were	others;
all	of	them	sine	curves,	different	‘modes’	of	vibration,	with	1,	2,	3,	or	more
waves	along	the	length	of	the	string,	Figure	36.	Again,	the	sine	curve	was	a
snapshot	of	the	shape	at	any	instant,	and	its	amplitude	was	multiplied	by	a	time-
dependent	factor,	which	also	varied	sinusoidally.	The	formulas	were	sin	2ct	sin
2x,	sin	3ct	sin	3x,	and	so	on.	The	vibrational	periods	were	2π/2c,	2π/3c,	and	so
on;	so	the	more	waves	there	were,	the	faster	the	string	vibrated.

Fig	36	Snapshots	of	modes	1,	2,	3	of	a	vibrating	string.	In	each	case,	the	string
vibrates	up	and	down,	and	its	amplitude	varies	sinusoidally	with	time.	The	more
waves	there	are,	the	faster	the	vibration.

The	string	is	always	at	rest	at	its	ends,	by	the	construction	of	the	instrument
and	the	assumptions	of	the	mathematical	model.	In	all	modes	except	the	first,
there	are	additional	points	where	the	string	is	not	vibrating;	these	occur	where
the	curve	crosses	the	horizontal	axis.	These	‘nodes’	are	the	mathematical	reason
for	the	occurrence	of	simple	numerical	ratios	in	the	Pythagorean	experiments.
For	example,	since	vibrational	modes	2	and	3	occur	in	the	same	string,	the	gap
between	successive	nodes	in	the	mode-2	curve	is	3/2	times	the	corresponding
gap	in	the	mode-3	curve.	This	explains	why	ratios	like	3	:	2	arise	naturally	from
the	dynamics	of	the	vibrating	spring,	but	not	why	these	ratios	are	harmonious



while	others	are	not.	Before	tackling	this	question,	we	introduce	the	main	topic
of	this	chapter:	the	wave	equation.

The	wave	equation	emerges	from	Newton’s	second	law	of	motion	if	we	apply
Bernoulli’s	approach	at	the	level	of	equations	rather	than	solutions.	In	1746	Jean
Le	Rond	d’Alembert	followed	standard	procedure,	treating	a	vibrating	violin
string	as	a	collection	of	point	masses,	but	instead	of	solving	the	equations	and
looking	for	a	pattern	when	the	number	of	masses	tended	to	infinity,	he	worked
out	what	happened	to	the	equations	themselves.	He	derived	an	equation	that
described	how	the	shape	of	the	string	changes	over	time.	But	before	I	show	you
what	it	looks	like,	we	need	a	new	idea,	called	a	‘partial	derivative’.

Imagine	yourself	in	the	middle	of	the	ocean,	watching	waves	of	various
shapes	and	sizes	pass	by.	As	they	do	so,	you	bob	up	and	down.	Physically,	you
can	describe	how	your	surroundings	are	changing	in	several	different	ways.	In
particular,	you	can	focus	on	changes	in	time	or	changes	in	space.	As	time	passes
at	your	location,	the	rate	at	which	your	height	changes,	with	respect	to	time,	is
the	derivative	(in	the	sense	of	calculus,	Chapter	3)	of	your	height,	also	with
respect	to	time.	But	this	doesn’t	describe	the	shape	of	the	ocean	near	you,	just
how	high	the	waves	are	as	they	pass	you.	To	describe	the	shape,	you	can	freeze
time	(conceptually)	and	work	out	how	high	the	waves	are:	not	just	at	your
location,	but	at	nearby	ones.	Then	you	can	use	calculus	to	work	out	how	steeply
the	wave	slopes	at	your	location.	Are	you	at	a	peak	or	trough?	If	so,	the	slope	is
zero.	Are	you	halfway	down	the	side	of	a	wave?	If	so,	the	slope	is	quite	large.	In
terms	of	calculus,	you	can	put	a	number	to	that	slope	by	working	out	the
derivative	of	the	wave’s	height	with	respect	to	space.

If	a	function	u	depends	on	just	one	variable,	call	it	x,	we	write	the	derivative
as	du/dx:	‘small	change	in	u	divided	by	small	change	in	x’.	But	in	the	context	of
ocean	waves	the	function	u,	the	wave	height,	depends	not	just	on	space	x	but
also	on	time	t.	At	any	fixed	instant	of	time,	we	can	still	work	out	du/dx;	it	tells	us
the	local	slope	of	the	wave.	But	instead	of	fixing	time	and	letting	space	vary,	we
can	also	fix	space	and	let	time	vary;	this	tells	us	the	rate	at	which	we	are	bobbing
up	and	down.	We	could	use	the	notation	du/dt	for	this	‘time	derivative’	and
interpret	it	as	‘small	change	in	u	divided	by	small	change	in	t’.	But	this	notation
hides	an	ambiguity:	the	small	change	in	height,	du,	may	be,	and	usually	is,
different	in	the	two	cases.	If	you	forget	that,	you	are	likely	to	get	your	sums
wrong.	When	we	are	differentiating	with	respect	to	space,	we	let	the	space
variable	change	a	little	bit	and	see	how	the	height	changes;	when	we	are
differentiating	with	respect	to	time,	we	let	the	time	variable	change	a	little	bit



and	see	how	the	height	changes.	There	is	no	reason	why	changes	over	time
should	equal	changes	over	space.

So	mathematicians	decided	to	remind	themselves	of	this	ambiguity	by
changing	the	symbol	d	to	something	that	did	not	(directly)	make	them	think
‘small	change’.	They	settled	on	a	very	cute	curly	d,	written	∂.	Then	they	wrote
the	two	derivatives	as	∂u/∂x	and	∂u/∂t.	You	could	argue	that	this	isn’t	a	big
advance,	because	it’s	just	as	easy	to	confuse	two	different	meanings	of	∂u.	There
are	two	answers	to	this	criticism.	One	is	that	in	this	context	you	are	not	supposed
to	think	of	∂u	as	a	specific	small	change	in	u.	The	other	is	that	using	a	fancy	new
symbol	reminds	you	not	to	get	confused.	The	second	answer	definitely	works:	as
soon	as	you	see	∂,	it	tells	you	that	you	will	be	looking	at	rates	of	change	with
respect	to	several	different	variables.	These	rates	of	change	are	called	partial
derivatives,	because	conceptually	you	change	only	part	of	the	set	of	variables,
keeping	the	rest	fixed.

When	d’Alembert	worked	out	his	equation	for	the	vibrating	string,	he	faced	just
this	situation.	The	shape	of	the	string	depends	on	space	–	how	far	along	the
string	you	look	–	and	on	time.	Newton’s	second	law	of	motion	told	him	that	the
acceleration	of	a	small	segment	of	string	is	proportional	to	the	force	that	acts	on
it.	Acceleration	is	a	(second)	time	derivative.	But	the	force	is	caused	by
neighbouring	segments	of	the	string	pulling	on	the	one	we’re	interested	in,	and
‘neighbouring’	means	small	changes	in	space.	When	he	calculated	those	forces,
he	was	led	to	the	equation

where	u(x,	t)	is	the	vertical	position	at	location	x	on	the	string	at	time	t,	and	c	is	a
constant	related	to	the	tension	in	the	string	and	how	springy	it	is.	The
calculations	were	actually	easier	than	Bernoulli’s,	because	they	avoided
introducing	special	features	of	particular	solutions.1

D’Alembert’s	elegant	formula	is	the	wave	equation.	Like	Newton’s	second
law,	it	is	a	differential	equation	–	it	involves	(second)	derivatives	of	u.	Since
these	are	partial	derivatives,	it	is	a	partial	differential	equation.	The	second
space	derivative	represents	the	net	force	acting	on	the	string,	and	the	second	time
derivative	is	the	acceleration.	The	wave	equation	set	a	precedent:	most	of	the	key
equations	of	classical	mathematical	physics,	and	a	lot	of	the	modern	ones	for	that
matter,	are	partial	differential	equations.



Once	d’Alembert	had	written	down	his	wave	equation,	he	was	in	a	position	to
solve	it.	This	task	was	made	much	easier	because	it	turned	out	to	be	a	linear
equation.	Partial	differential	equations	have	many	solutions,	typically	infinitely
many,	because	each	initial	state	leads	to	a	distinct	solution.	For	example,	the
violin	string	can	in	principle	be	bent	into	any	shape	you	like	before	it	is	released
and	the	wave	equation	takes	over.	‘Linear’	means	that	if	u(x,	t)	and	v(x,	t)	are
solutions,	then	so	is	any	linear	combination	au(x,	t)	+	bv(x,	t),	where	a	and	b	are
constants.	Another	term	is	‘superposition’.	The	linearity	of	the	wave	equation
stems	from	the	approximation	that	Bernoulli	and	d’Alembert	had	to	make	to	get
something	they	could	solve:	all	disturbances	are	assumed	to	be	small.	Now	the
force	exerted	by	the	string	can	be	closely	approximated	by	a	linear	combination
of	the	displacements	of	the	individual	masses.	A	better	approximation	would
lead	to	a	nonlinear	partial	differential	equation,	and	life	would	be	far	more
complicated.	In	the	long	run,	these	complications	have	to	be	tackled	head-on,	but
the	pioneers	had	enough	to	contend	with	already,	so	they	worked	with	an
approximate	but	very	elegant	equation	and	confined	their	attention	to	small-
amplitude	waves.	It	worked	very	well.	In	fact,	it	often	worked	pretty	well	for
waves	of	larger	amplitude	too,	a	lucky	bonus.

D’Alembert	knew	he	was	on	the	right	track	because	he	found	solutions	in
which	a	fixed	shape	travelled	along	the	string,	just	like	a	wave.2	The	speed	of	the
wave	turned	out	to	be	the	constant	c	in	the	equation.	The	wave	could	travel
either	to	the	left	or	to	the	right,	and	here	the	superposition	principle	came	into
play.	D’Alembert	proved	that	every	solution	is	a	superposition	of	two	waves,
one	travelling	leftwards	and	the	other	rightwards.	Moreover,	each	separate	wave
could	have	any	shape	whatsoever.3	The	standing	waves	found	in	the	violin
string,	with	fixed	ends,	turn	out	to	be	a	combination	of	two	waves	of	the	same
shape,	one	being	upside	down	compared	to	the	other,	with	one	travelling	to	the
left	and	the	other	(upside	down)	travelling	to	the	right.	At	the	ends,	the	two
waves	exactly	cancel	each	other	out:	peaks	of	one	coincide	with	troughs	of	the
other.	So	they	comply	with	the	physical	boundary	conditions.

Mathematicians	now	had	an	embarrassment	of	riches.	There	were	two	ways	to
solve	the	wave	equation:	Bernoulli’s,	which	led	to	sines	and	cosines,	and
d’Alembert’s,	which	led	to	waves	with	any	shape	whatsoever.	At	first	it	looked
as	though	d’Alembert’s	solution	must	be	more	general:	sines	and	cosines	are
functions,	but	most	functions	are	not	sines	and	cosines.	However,	the	wave
equation	is	linear,	so	you	could	combine	Bernoulli’s	solutions	by	adding
constant	multiples	of	them	together.	To	keep	it	simple	consider	just	a	snapshot	at



a	fixed	time,	getting	rid	of	the	time-dependence.	Figure	37	shows	5	sin	x	+	4	sin
2x	−	2	cos	6x,	for	example.	It	has	a	fairly	irregular	shape,	and	it	wiggles	a	lot,	but
it’s	still	smooth	and	wavy.

Fig	37	Typical	combination	of	sines	and	cosines	with	various	amplitudes	and
frequencies.

What	bothered	the	more	thoughtful	mathematicians	was	that	some	functions
are	very	rough	and	jagged,	and	you	can’t	get	those	as	a	linear	combination	of
sines	and	cosines.	Well,	not	if	you	use	finitely	many	terms	–	and	that	suggested	a
way	out.	A	convergent	infinite	series	of	sines	and	cosines	(one	whose	sum	to
infinity	makes	sense)	also	satisfies	the	wave	equation.	Does	it	allow	jagged
functions	as	well	as	smooth	ones?	The	leading	mathematicians	argued	about	this
question,	which	finally	came	to	a	head	when	the	same	issue	turned	up	in	the
theory	of	heat.	Problems	about	heat	flow	naturally	involved	discontinuous
functions,	with	sudden	jumps,	which	was	even	worse	than	jagged	ones.	I’ll	tell
that	story	in	Chapter	9,	but	the	upshot	is	that	most	‘reasonable’	wave	shapes	can
be	represented	by	an	infinite	series	of	sines	and	cosines,	so	they	can	be
approximated	as	closely	as	you	wish	by	finite	combinations	of	sines	and	cosines.

Sines	and	cosines	explain	the	harmonious	ratios	that	so	impressed	the
Pythagoreans.	These	special	shapes	of	waves	are	important	in	the	theory	of
sound	because	they	represent	‘pure’	tones	–	single	notes	on	an	ideal	instrument,
so	to	speak.	Any	real	instrument	produces	mixtures	of	pure	notes.	If	you	pluck	a
violin	string,	the	main	note	you	hear	is	the	sin	x	wave,	but	superposed	on	that	is
a	bit	of	sin	2x,	maybe	some	sin	3x,	and	so	on.	The	main	note	is	called	the
fundamental	and	the	others	are	its	harmonics.	The	number	in	front	of	x	is	called



the	wave	number.	Bernoulli’s	calculations	tell	us	that	the	wave	number	is
proportional	to	the	frequency:	how	many	times	the	string	vibrates,	for	that
particular	sine	wave,	during	a	single	oscillation	of	the	fundamental.

In	particular,	sin	2x	has	twice	the	frequency	of	sin	x.	What	does	it	sound	like?
It	is	the	note	one	octave	higher.	This	is	the	note	that	sounds	most	harmonious
when	played	alongside	the	fundamental.	If	you	look	at	the	shape	of	the	string	for
the	second	mode	(sin	2x)	in	Figure	36,	you’ll	notice	that	it	crosses	the	axis	at	its
midpoint	as	well	as	the	two	ends.	At	that	point,	a	so-called	node,	it	remains
fixed.	If	you	placed	your	finger	at	that	point,	the	two	halves	of	the	string	would
still	be	able	to	vibrate	in	the	sin	2x	pattern,	but	not	in	the	sin	x	one.	This	explains
the	Pythagorean	discovery	that	a	string	half	as	long	produced	a	note	one	octave
higher.	A	similar	explanation	deals	with	the	other	simple	ratios	that	they
discovered:	they	are	all	associated	with	sine	curves	whose	frequencies	have	that
ratio,	and	such	curves	fit	together	neatly	on	a	string	of	fixed	length	whose	ends
are	not	allowed	to	move.

Why	do	these	ratios	sound	harmonious?	Part	of	the	explanation	is	that	sine
waves	with	frequencies	that	are	not	in	simple	ratios	produce	an	effect	called
‘beats’	when	they	are	superposed.	For	instance,	a	ratio	like	11:23	corresponds	to
sin	11x	+	sin	23x,	which	looks	like	Figure	38,	with	lots	of	sudden	changes	in
shape.	Another	part	is	that	the	ear	responds	to	incoming	sounds	in	roughly	the
same	way	as	the	violin	string.	The	ear,	too,	vibrates.	When	two	notes	beat,	the
corresponding	sound	is	like	a	buzzing	noise	that	repeatedly	gets	louder	and
softer.	So	it	doesn’t	sound	harmonious.	However,	there	is	a	third	part	of	the
explanation:	the	ears	of	babies	become	attuned	to	the	sounds	that	they	hear	most
often.	There	are	more	nerve	connections	from	the	brain	to	the	ear	than	there	are
in	the	other	direction.	So	the	brain	adjusts	the	ear’s	response	to	incoming	sounds.
In	other	words,	what	we	consider	to	be	harmonious	has	a	cultural	dimension.	But
the	simplest	ratios	are	naturally	harmonious,	so	most	cultures	use	them.



Fig	38	Beats.

Mathematicians	first	derived	the	wave	equation	in	the	simplest	setting	they
could	think	of:	a	vibrating	line,	a	one-dimensional	system.	Realistic	applications
required	a	more	general	theory,	modelling	waves	in	two	and	three	dimensions.
Even	staying	within	music,	a	drum	requires	two	dimensions	to	model	the
patterns	in	which	the	drumskin	vibrates.	The	same	goes	for	water	waves	on	the
surface	of	the	ocean.	When	an	earthquake	strikes,	the	whole	Earth	rings	like	a
bell,	and	our	planet	is	three-dimensional.	Many	other	areas	of	physics	involve
models	with	two	or	three	dimensions.	Extending	the	wave	equation	to	higher
dimensions	turned	out	to	be	straightforward;	all	you	had	to	do	was	repeat	the
same	kinds	of	calculation	that	had	worked	for	the	violin	string.	Having	learned
to	play	the	game	in	this	simple	setting,	it	wasn’t	hard	to	play	it	for	real.

In	three	dimensions,	for	example,	we	use	three	space	coordinates	(x,	y,	z)	and
time	t.	The	wave	is	described	by	a	function	u	that	depends	on	these	four
coordinates.	For	instance,	this	might	describe	the	pressure	in	a	body	of	air	as
sound	waves	pass	through	it.	Making	the	same	assumptions	as	d’Alembert,	in
particular	that	the	amplitude	of	the	disturbance	is	small,	the	same	approach	leads
to	an	equally	pretty	equation:

The	formula	inside	the	brackets	is	called	the	Laplacian,	and	it	corresponds	to	the
average	difference	between	the	value	of	u	at	the	point	in	question,	and	its	value
nearby.	This	expression	arises	so	often	in	mathematical	physics	that	it	has	its
own	special	symbol:	∇2u.	To	get	the	Laplacian	in	two	dimensions,	we	just	omit



the	term	involving	z,	leading	to	the	wave	equation	in	that	setting.
The	main	novelty	in	higher	dimensions	is	that	the	shape	within	which	the

waves	arise,	called	the	domain	of	the	equation,	can	be	complicated.	In	one
dimension	the	only	connected	shape	is	an	interval,	a	segment	of	the	line.	In	two
dimensions,	however,	it	can	be	any	shape	you	can	draw	in	the	plane,	and	in	three
dimensions,	any	shape	in	space.	You	can	model	a	square	drum,	a	rectangular
drum,	a	circular	drum,4	or	a	drum	shaped	like	the	silhouette	of	a	cat.	For
earthquakes,	you	might	employ	a	spherical	domain,	or	for	greater	accuracy,	an
ellipsoid	squashed	slightly	at	the	poles.	If	you	are	designing	a	car	and	want	to
eliminate	unwanted	vibrations,	your	domain	should	be	car-shaped	–	or	whatever
part	of	the	car	the	engineers	want	to	focus	on.

Fig	39	Left:	Snapshot	of	one	mode	of	a	vibrating	rectangular	drum,	with	wave
numbers	2	and	3.	Right:	Snapshot	of	one	mode	of	a	vibrating	circular	drum.

For	any	chosen	shape	of	domain,	there	are	functions	analogous	to	Bernoulli’s
sines	and	cosines:	the	simplest	patterns	of	vibration.	These	patterns	are	called
modes,	or	normal	modes	if	you	want	to	make	it	absolutely	clear	what	you’re
talking	about.	All	other	waves	can	be	obtained	by	superposing	normal	modes,
again	using	an	infinite	series	if	necessary.	The	frequencies	of	the	normal	modes
represent	the	natural	vibrational	frequencies	of	the	domain.	If	the	domain	is	a
rectangle,	these	are	trigonometric	functions	of	the	form	sin	mx	cos	ny,	for
integers	m	and	n,	producing	waves	shaped	like	Figure	39	(left).	If	it	is	a	circle,
they	are	determined	by	new	functions,	called	Bessel	functions,	with	more
interesting	shapes,	Figure	39	(right).	The	resulting	mathematics	applies	not	only
to	drums,	but	to	water	waves,	sound	waves,	electromagnetic	waves	such	as	light
(Chapter	11),	even	quantum	waves	(Chapter	14).	It	is	fundamental	to	all	of	these
areas.	The	Laplacian	also	turns	up	in	equations	for	other	physical	phenomena;	in
particular,	electric,	magnetic,	and	gravitational	fields.	The	mathematician’s



favourite	trick	of	starting	with	a	toy	problem,	one	so	simple	that	it	cannot
possibly	be	realistic,	pays	off	big	time	for	waves.

This	is	one	reason	why	it	is	unwise	to	judge	a	mathematical	idea	by	the
context	in	which	it	first	arises.	Modelling	a	violin	string	may	seem	pointless
when	what	you	want	to	understand	is	earthquakes.	But	if	you	jump	in	at	the	deep
end,	and	try	to	cope	with	all	of	the	complexities	of	real	earthquakes,	you’ll
drown.	You	should	start	out	paddling	in	the	shallow	end	and	gain	confidence	to
swim	a	few	lengths	of	the	pool.	Then	you’ll	be	ready	for	the	high	diving	board.

The	wave	equation	was	a	spectacular	success,	and	in	some	areas	of	physics	it
describes	reality	very	closely.	However,	its	derivation	requires	several
simplifying	assumptions.	When	those	assumptions	are	unrealistic,	the	same
physical	ideas	can	be	modified	to	suit	the	context,	leading	to	different	versions
of	the	wave	equation.

Earthquakes	are	a	typical	example.	Here	the	main	problem	is	not
d’Alembert’s	assumption	that	the	amplitude	of	the	wave	is	small,	but	changes	in
the	physical	properties	of	the	domain.	These	properties	can	have	a	strong	effect
on	seismic	waves,	vibrations	that	travel	through	the	Earth.	By	understanding
those	effects,	we	can	look	deep	inside	our	planet	and	find	out	what	it	is	made	of.

There	are	two	main	kinds	of	seismic	wave:	pressure	waves	and	shear	waves,
usually	abbreviated	to	P-waves	and	S-waves.	(There	are	many	others:	this	is	a
simplified	account,	covering	some	of	the	basics.)	Both	can	occur	in	a	solid
medium,	but	S-waves	don’t	occur	in	fluids.	P-waves	are	waves	of	pressure,
analogous	to	sound	waves	in	air,	and	the	changes	in	pressure	point	in	the
direction	along	which	the	wave	propagates.	Such	waves	are	said	to	be
longitudinal.	S-waves	are	transverse	waves,	changing	at	right	angles	to	the
direction	of	travel,	like	the	waves	on	a	violin	string.	They	cause	solids	to	shear,
that	is,	deform	like	a	pack	of	cards	pushed	sideways,	so	that	the	cards	slide	along
one	another.	Fluids	don’t	behave	like	packs	of	cards.

When	an	earthquake	happens,	it	sends	out	both	kinds	of	wave.	The	P-waves
travel	faster,	so	a	seismologist	somewhere	else	on	the	Earth’s	surface	observes
those	first.	Then	the	slower	S-waves	arrive.	In	1906	the	English	geologist
Richard	Oldham	exploited	this	difference	to	make	a	major	discovery	about	our
planet’s	interior.	Roughly	speaking,	the	Earth	has	an	iron	core,	surrounded	by	a
rocky	mantle,	and	the	continents	float	on	top	of	the	mantle.	Oldham	suggested
that	the	outer	layers	of	the	core	must	be	liquid.	If	so,	S-waves	can’t	pass	through
those	regions,	but	P-waves	can.	So	there	is	a	kind	of	S-wave	shadow,	and	you



can	work	out	where	it	is	by	observing	signals	from	earthquakes.	The	English
mathematician	Harold	Jeffreys	sorted	out	the	details	in	1926	and	confirmed	that
Oldham	was	right.

If	the	earthquake	is	big	enough,	it	can	cause	the	entire	planet	to	vibrate	in	one
of	its	normal	modes	–	the	analogues	for	the	Earth	of	sines	and	cosines	for	a
violin.	The	whole	planet	rings	like	a	bell,	in	a	sense	that	would	be	literal	if	only
we	could	hear	the	very	low	frequencies	involved.	Instruments	sensitive	enough
to	record	these	modes	appeared	in	the	1960s,	and	they	were	used	to	observe	the
two	most	powerful	earthquakes	yet	recorded	scientifically.	These	were	the
Chilean	earthquake	of	1960	(magnitude	9.5)	and	the	Alaskan	earthquake	of	1964
(magnitude	9.2).	The	first	killed	around	5000	people;	the	second	killed	about
130	thanks	to	its	remote	location.	Both	caused	tsunamis	and	did	a	huge	amount
of	damage.	Both	offered	an	unprecedented	view	of	the	Earth’s	deep	interior,	by
exciting	the	Earth’s	basic	vibrational	modes.

Sophisticated	versions	of	the	wave	equation	have	given	seismologists	the
ability	to	see	what’s	happening	hundreds	of	kilometres	beneath	our	feet.	They
can	map	the	Earth’s	tectonic	plates	as	one	slides	beneath	another,	known	as
subduction.	Subduction	causes	earthquakes,	especially	so-called	megathrust
earthquakes	like	the	two	just	mentioned.	It	also	gives	rise	to	mountain	chains
along	the	edges	of	continents,	such	as	the	Andes,	and	volcanoes,	where	the	plate
gets	so	deep	that	it	starts	to	melt	and	magma	rises	to	the	surface.	A	recent
discovery	is	that	the	plates	need	not	subduct	as	a	whole,	but	can	break	up	into
gigantic	slabs,	sinking	back	into	the	mantle	at	different	depths.

The	biggest	prize	in	this	area	would	be	a	reliable	way	to	predict	earthquakes
and	volcanic	eruptions.	This	is	proving	elusive,	because	the	conditions	that
trigger	such	events	are	complex	combinations	of	many	factors	in	many	locations.
However,	some	progress	is	being	made,	and	the	seismologists’	version	of	the
wave	equation	underpins	many	of	the	methods	being	investigated.

The	same	equations	have	more	commercial	applications.	Oil	companies
prospect	for	liquid	gold,	a	few	kilometres	underground,	by	setting	off	explosions
at	the	surface	and	using	returning	echoes	from	the	seismic	waves	they	generate
to	map	out	the	underlying	geology.	The	main	mathematical	problem	here	is	to
reconstruct	the	geology	from	the	signals	received,	which	is	a	bit	like	using	the
wave	equation	backwards.	Instead	of	solving	the	equation	in	a	known	domain	to
work	out	what	the	waves	do,	mathematicians	use	the	observed	wave	patterns	to
reconstruct	the	geological	features	of	the	domain.	As	is	often	the	case,	working
backwards	like	this	–	solving	the	inverse	problem,	in	the	jargon	–	is	harder	than



going	the	other	way.	But	practical	methods	exist.	One	of	the	major	oil
companies	performs	such	calculations	a	quarter	of	a	million	times	every	day.

Drilling	for	oil	has	its	own	problems,	as	the	blowout	at	the	Deepwater
Horizon	oil	rig	in	2010	made	clear.	But	at	the	moment,	human	society	is	heavily
dependent	on	oil,	and	it	would	take	decades	to	reduce	this	significantly,	even	if
everyone	wanted	to.	Next	time	you	fill	up	your	tank,	give	a	thought	to	the
mathematical	pioneers	who	wanted	to	know	how	a	violin	produces	its	sounds.	It
wasn’t	a	practical	problem	then,	and	it	still	isn’t	today.	But	without	their
discoveries,	your	car	would	take	you	nowhere.



9	Ripples	and	blips

Fourier	Transform

What	does	it	say?

Any	pattern	in	space	and	time	can	be	thought	of	as	a	superposition	of	sinusoidal
patterns	with	different	frequencies.

Why	is	that	important?

The	component	frequencies	can	be	used	to	analyse	the	patterns,	create	them	to
order,	extract	important	features,	and	remove	random	noise.

What	did	it	lead	to?

Fourier’s	technique	is	very	widely	used,	for	example	in	image	processing	and
quantum	mechanics.	It	is	used	to	find	the	structure	of	large	biological	molecules
like	DNA,	to	compress	image	data	in	digital	photography,	to	clean	up	old	or
damaged	audio	recordings,	and	to	analyse	earthquakes.	Modern	variants	are	used
to	store	fingerprint	data	efficiently	and	to	improve	medical	scanners.



	

Newton’s	Principia	opened	the	door	to	the	mathematical	study	of	nature,	but	his
fellow	countrymen	were	too	obsessed	with	the	priority	dispute	over	calculus	to
find	out	what	lay	beyond.	While	England’s	finest	were	seething	over	what	they
perceived	to	be	disgraceful	allegations	about	the	country’s	greatest	living
mathematician	–	much	of	it	probably	his	own	fault	for	listening	to	well-
intentioned	but	foolish	friends	–	their	continental	colleagues	were	extending
Newton’s	ideas	about	laws	of	nature	to	most	of	the	physical	sciences.	The	wave
equation	was	quickly	followed	by	remarkably	similar	equations	for	gravitation,
electrostatics,	elasticity,	and	heat	flow.	Many	bore	the	names	of	their	inventors:
Laplace’s	equation,	Poisson’s	equation.	The	equation	for	heat	does	not;	it	bears
the	unimaginative	and	not	entirely	accurate	name	‘heat	equation’.	It	was
introduced	by	Joseph	Fourier,	and	his	ideas	led	to	the	creation	of	a	new	area	of
mathematics	whose	ramifications	were	to	spread	far	beyond	its	original	source.
Those	ideas	could	have	been	triggered	by	the	wave	equation,	where	similar
methods	were	floating	around	in	the	collective	mathematical	consciousness,	but
history	plumped	for	heat.

The	new	method	had	a	promising	beginning:	in	1807	Fourier	submitted	an
article	on	heat	flow	to	the	French	Academy	of	Sciences,	based	on	a	new	partial
differential	equation.	Although	that	prestigious	body	declined	to	publish	the
work,	it	encouraged	Fourier	to	develop	his	ideas	further	and	try	again.	At	that
time	the	Academy	offered	an	annual	prize	for	research	on	whatever	topic	they
felt	was	sufficiently	interesting,	and	they	made	heat	the	topic	of	the	1812	prize.
Fourier	duly	submitted	his	revised	and	extended	article,	and	won.	His	heat
equation	looks	like	this:

Here	u(x,	t)	is	the	temperature	of	a	metal	rod	at	position	x	and	time	t,	considering
the	rod	to	be	infinitely	thin,	and	a	is	a	constant,	the	thermal	diffusivity.	So	it
really	ought	to	be	called	the	temperature	equation.	He	also	developed	a	higher-
dimensional	version,

valid	on	any	specified	region	of	the	plane	or	space.



The	heat	equation	bears	an	uncanny	resemblance	to	the	wave	equation,	with
one	crucial	difference.	The	wave	equation	uses	the	second	time	derivative	∂2u/
∂t2,	but	in	the	heat	equation	this	is	replaced	by	the	first	derivative	∂u/∂t.	This
change	may	seem	small,	but	its	physical	meaning	is	huge.	Heat	does	not	persist
indefinitely,	in	the	way	that	a	vibrating	violin	string	continues	to	vibrate	forever
(according	to	the	wave	equation,	which	assumes	no	friction	or	other	damping).
Instead,	heat	dissipates,	dies	away,	as	time	passes,	unless	there	is	some	heat
source	that	can	top	it	up.	So	a	typical	problem	might	be:	heat	one	end	of	a	rod	to
keep	its	temperature	steady,	cool	the	other	end	to	do	the	same,	and	find	out	how
the	temperature	varies	along	the	rod	when	it	settles	to	a	steady	state.	The	answer
is	that	it	falls	off	exponentially.	Another	typical	problem	is	to	specify	the	initial
temperature	profile	along	the	rod,	and	then	ask	how	it	changes	as	time	passes.
Perhaps	the	left	half	starts	at	a	high	temperature	and	the	right	half	at	a	cooler
one;	the	equation	then	tells	us	how	the	heat	from	the	hot	part	diffuses	into	the
cooler	part.

The	most	intriguing	aspect	of	Fourier’s	prizewinning	memoir	was	not	the
equation,	but	how	he	solved	it.	When	the	initial	profile	is	a	trigonometric
function,	such	as	sin	x,	it	is	easy	(to	those	with	experience	in	such	matters)	to
solve	the	equation,	and	the	answer	is	e−αt	sin	x.	This	resembles	the	fundamental
mode	of	the	wave	equation,	but	there	the	formula	was	sin	ct	sin	x.	The	eternal
oscillation	of	a	violin	string,	corresponding	to	the	sin	ct	factor,	has	been	replaced
by	an	exponential,	and	the	minus	sign	in	the	exponent	−αt	tells	us	that	the	entire
temperature	profile	dies	away	at	the	same	rate,	all	along	the	rod.	(The	physical
difference	here	is	that	waves	conserve	energy,	but	heat	flow	does	not.)	Similarly,
for	a	profile	sin	5x,	say,	the	solution	is	e−25αt	sin	5x,	which	also	dies	out,	but	at	a
much	faster	rate.	The	25	is	52,	and	this	is	an	example	of	a	general	pattern,
applicable	to	initial	profiles	of	the	form	sin	nx	or	cos	nx.1	To	solve	the	heat
equation,	just	multiply	by	e−n

2αt.
Now	the	story	follows	the	same	general	outline	as	the	wave	equation.	The

heat	equation	is	linear,	so	we	can	superpose	solutions.	If	the	initial	profile	is

u(x;	0)	=	sin	x	+	sin	5x

then	the	solution	is

and	each	mode	dies	way	at	a	different	rate.	But	initial	profiles	like	this	are	a	bit



artificial.	To	solve	the	problem	I	mentioned	earlier,	we	want	an	initial	profile
where	u(x,	0)	=	1	for	half	the	rod	but	−1	for	the	other	half.	This	profile	is
discontinuous,	a	square	wave	in	engineering	terminology.	But	sine	and	cosine
curves	are	continuous.	So	no	superposition	of	sine	and	cosine	curves	can
represent	a	square	wave.

No	finite	superposition,	certainly.	But,	again,	what	if	we	allowed	infinitely
many	terms?	Then	we	can	try	to	express	the	initial	profile	as	an	infinite	series,	of
the	form

for	suitable	constants	a0,	a1,	a2,	a3,…,	b1,	b2,	b3,	….	(There	is	no	b0because	sin
0x	=	0.)	Now	it	does	seem	possible	to	get	a	square	wave	(see	Figure	40).	In	fact,
most	coefficients	can	be	set	to	zero.	Only	the	bn	for	n	odd	are	needed,	and	then
bn	=	8/nπ.

Fig	40	How	to	get	a	square	wave	from	sines	and	cosines.	Left:	The	component
sinusoidal	waves.	Right:	Their	sum	and	a	square	wave.	Here	we	show	the	first
few	terms	of	the	Fourier	series.	Additional	terms	make	the	approximation	to	a
square	wave	ever	better.

Fourier	even	had	general	formulas	for	the	coefficients	an	and	bn	for	a	general
profile	f(x),	in	terms	of	integrals:

After	a	lengthy	trek	through	power	series	expansions	of	trigonometric	functions,
he	realised	that	there	was	a	much	simpler	way	to	derive	these	formulas.	If	you
take	two	different	trigonometric	functions,	say	cos	2x	and	sin	5x,	multiply	them
together,	and	integrate	from	0	to	2π,	you	get	zero.	This	is	even	the	case	when
they	look	like	cos	5x	and	sin	5x.	But	if	they	are	the	same	–	say	both	equal	to	sin
5x	–	the	integral	of	their	product	is	not	zero.	In	fact,	it	is	π.	If	you	start	by



assuming	that	f(x)	is	the	sum	of	a	trigonometric	series,	multiply	everything	by
sin	5x,	and	integrate,	all	of	the	terms	disappear	except	for	the	one	corresponding
to	sin	5x,	namely	b5	sin	5x.	Here	the	integral	is	π.	Divide	by	that,	and	you	have
Fourier’s	formula	for	b5.	The	same	goes	for	all	the	other	coefficients.

Although	it	won	the	academy’s	prize,	Fourier’s	memoir	was	roundly	criticised
for	being	insufficiently	rigorous,	and	the	academy	declined	to	publish	it.	This
was	highly	unusual	and	it	greatly	irritated	Fourier,	but	the	academy	held	its
ground.	Fourier	was	incensed.	Physical	intuition	told	him	he	was	right,	and	if
you	plugged	his	series	into	this	equation	it	was	clearly	a	solution.	It	worked.	The
real	problem	was	that	unwittingly	he	had	reopened	an	old	wound.	As	we	saw	in
Chapter	8,	Euler	and	Bernoulli	had	been	arguing	for	ages	about	a	similar	issue
for	the	wave	equation,	where	Fourier’s	exponential	dissipation	over	time	was
replaced	by	an	unending	sinusoidal	oscillation	in	the	wave	amplitude.	The
underlying	mathematical	issues	were	identical.	In	fact,	Euler	had	already
published	the	integral	formulas	for	the	coefficients	in	the	context	of	the	wave
equation.

However,	Euler	had	never	claimed	that	the	formula	worked	for	discontinuous
functions	f(x),	the	most	controversial	feature	of	Fourier’s	work.	The	violin-string
model	didn’t	involve	discontinuous	initial	conditions	anyway	–	those	would
model	a	broken	string,	which	would	not	vibrate	at	all.	But	for	heat,	it	was	natural
to	consider	holding	one	region	of	a	rod	at	one	temperature	and	an	adjacent
region	at	a	different	one.	In	practice	the	transition	would	be	smooth	and	very
steep,	but	a	discontinuous	model	was	reasonable	and	more	convenient	for
calculations.	In	fact,	the	solution	to	the	heat	equation	explained	why	the
transition	would	rapidly	become	smooth	and	very	steep,	as	the	heat	diffused
sideways.	So	an	issue	that	Euler	hadn’t	needed	to	worry	about	was	becoming
unavoidable,	and	Fourier	suffered	from	the	fallout.

Mathematicians	were	starting	to	realise	that	infinite	series	were	dangerous
beasts.	They	didn’t	always	behave	like	nice	finite	sums.	Eventually,	these
tangled	complexities	got	sorted	out,	but	it	took	a	new	view	of	mathematics	and	a
hundred	years	of	hard	work	to	do	that.	In	Fourier’s	day,	everyone	thought	they
already	knew	what	integrals,	functions,	and	infinite	series	were,	but	in	reality	it
was	all	rather	vague	–	‘I	know	one	when	I	see	one.’	So	when	Fourier	submitted
his	epoch-making	paper,	there	were	good	reasons	for	the	academy	officials	to	be
wary.	They	refused	to	budge,	so	in	1822	Fourier	got	round	their	objections	by
publishing	his	work	as	a	book,	Théorie	analytique	de	la	chaleur	(‘Analytic
Theory	of	Heat’).	In	1824	he	got	himself	appointed	secretary	of	the	academy,



thumbed	his	nose	at	all	the	critics,	and	published	his	original	1811	memoir,
unchanged,	in	the	academy’s	prestigious	journal.

We	now	know	that	although	Fourier	was	right	in	spirit,	his	critics	had	good
reasons	for	worrying	about	rigour.	The	problems	are	subtle	and	the	answers	are
not	terribly	intuitive.	Fourier	analysis,	as	we	now	call	it,	works	very	well,	but	it
has	hidden	depths	of	which	Fourier	was	unaware.

The	question	seemed	to	be:	when	does	the	Fourier	series	converge	to	the
function	it	allegedly	represents?	That	is,	if	you	take	more	and	more	terms,	does
the	approximation	to	the	function	get	ever	better?	Even	Fourier	knew	that	the
answer	was	not	‘always’.	It	seemed	to	be	‘usually,	but	with	possible	problems	at
discontinuities’.	For	instance	at	its	midpoint,	where	the	temperature	jumps,	the
square	wave’s	Fourier	series	converges	–	but	to	the	wrong	number.	The	sum	is	0,
but	the	square	wave	takes	value	1.

For	most	physical	purposes,	it	doesn’t	greatly	matter	if	you	change	the	value
of	a	function	at	one	isolated	point.	The	square	wave,	thus	modified,	still	looks
square.	It	just	does	something	slightly	different	at	the	discontinuity.	To	Fourier,
this	kind	of	issue	didn’t	really	matter.	He	was	modelling	the	flow	of	heat,	and	he
didn’t	mind	if	the	model	was	a	bit	artificial,	or	needed	technical	changes	that	had
no	important	effect	on	the	end	result.	But	the	convergence	issue	could	not	be
dismissed	so	lightly,	because	functions	can	have	far	more	complicated
discontinuities	than	a	square	wave.

However,	Fourier	was	claiming	that	his	method	worked	for	any	function,	so	it
ought	to	apply	even	to	functions	such	as:	f(x)	=	0	when	x	is	rational,	1	when	x	is
irrational.	This	function	is	discontinuous	everywhere.	For	such	functions,	at	that
time,	it	wasn’t	even	clear	what	the	integral	meant.	And	that	turned	out	to	be	the
real	cause	of	the	controversy.	No	one	had	defined	what	an	integral	was,	not	for
strange	functions	like	this	one.	Worse,	no	one	had	defined	what	a	function	was.
And	even	if	you	could	tidy	up	those	omissions,	it	wasn’t	just	a	matter	of	whether
the	Fourier	series	converged.	The	real	difficulty	was	to	sort	out	in	what	sense	it
converged.

Resolving	these	issues	was	tricky.	It	required	a	new	theory	of	integration,
supplied	by	Henri	Lebesgue,	a	reformulation	of	the	foundations	of	mathematics
in	terms	of	set	theory,	started	by	Georg	Cantor	and	opening	up	several	entirely
new	cans	of	worms,	major	insights	from	such	towering	figures	as	Riemann,	and
a	dose	of	twentieth–century	abstraction	to	sort	out	the	convergence	issues.	The
final	verdict	was	that,	with	the	right	interpretations,	Fourier’s	idea	could	be	made



rigorous.	It	worked	for	a	very	broad,	though	not	universal,	class	of	functions.
Whether	the	series	converged	to	f(x)	for	every	value	of	x	wasn’t	quite	the	right
question;	everything	was	fine	provided	the	exceptional	values	of	x	where	it
didn’t	converge	were	sufficiently	rare,	in	a	precise	but	technical	sense.	If	the
function	was	continuous,	the	series	converged	for	any	x.	At	a	jump	discontinuity,
like	the	change	from	1	to	–1	in	the	square	wave,	the	series	converged	very
democratically	to	the	average	of	the	values	immediately	to	either	side	of	the
jump.	But	the	series	always	converged	to	the	function	with	the	right
interpretation	of	‘converge’.	It	converged	as	a	whole,	rather	than	point	by	point.
Stating	this	rigorously	depended	on	finding	the	right	way	to	measure	the	distance
between	two	functions.	With	all	this	in	place,	Fourier	series	did	indeed	solve	the
heat	equation.	But	their	real	significance	was	much	broader,	and	the	main
beneficiary	outside	pure	mathematics	was	not	the	physics	of	heat	but
engineering.	Especially	electronic	engineering.

In	its	most	general	form	Fourier’s	method	represents	a	signal,	determined	by	a
function	f,	as	a	combination	of	waves	of	all	possible	frequencies.	This	is	called
the	Fourier	transform	of	the	wave.	It	replaces	the	original	signal	by	its	spectrum:
a	list	of	amplitudes	and	frequencies	for	the	component	sines	and	cosines,
encoding	the	same	information	in	a	different	way	–	engineers	talk	of
transforming	from	the	time	domain	to	the	frequency	domain.	When	data	are
represented	in	different	ways,	operations	that	are	difficult	or	impossible	in	one
representation	may	become	easy	in	the	other.	For	example,	you	can	start	with	a
telephone	conversation,	form	its	Fourier	transform,	and	strip	out	all	parts	of	the
signal	whose	Fourier	components	have	frequencies	too	high	or	too	low	for	the
human	ear	to	hear.	This	makes	it	possible	to	send	more	conversations	over	the
same	communication	channels,	and	it’s	one	reason	why	today’s	phone	bills	are,
relatively	speaking,	so	small.	You	can’t	play	this	game	on	the	original,
untransformed	signal,	because	that	doesn’t	have	‘frequency’	as	an	obvious
characteristic.	You	don’t	know	what	to	strip	out.

One	application	of	this	technique	is	to	design	buildings	that	will	survive
earthquakes.	The	Fourier	transform	of	the	vibrations	produced	by	a	typical
earthquake	reveals,	among	other	things,	the	frequencies	at	which	the	energy
imparted	by	the	shaking	ground	is	greatest.	A	building	has	its	own	natural	modes
of	vibration,	where	it	will	resonate	with	the	earthquake,	that	is,	respond
unusually	strongly.	So	the	first	sensible	step	towards	earthquake-proofing	a
building	is	to	make	sure	that	the	building’s	preferred	frequencies	are	different
from	the	earthquake’s.	The	earthquake’s	frequencies	can	be	obtained	from



observations;	those	of	the	building	can	be	calculated	using	a	computer	model.
This	is	just	one	of	many	ways	in	which,	tucked	away	behind	the	scenes,	the

Fourier	transform	affects	our	lives.	People	who	live	or	work	in	buildings	in
earthquake	zones	don’t	need	to	know	how	to	calculate	a	Fourier	transform,	but
their	chance	of	surviving	an	earthquake	is	considerably	improved	because	some
people	do.	The	Fourier	transform	has	become	a	routine	tool	in	science	and
engineering;	its	applications	include	removing	noise	from	old	sound	recordings,
such	as	clicks	caused	by	scratches	on	vinyl	records,	finding	the	structure	of	large
biochemical	molecules	such	as	DNA	using	X-ray	diffraction,	improving	radio
reception,	tidying	up	photographs	taken	from	the	air,	sonar	systems	such	as	those
used	by	submarines,	and	preventing	unwanted	vibrations	in	cars	at	the	design
stage.	I’ll	focus	here	on	just	one	of	the	thousands	of	everyday	uses	of	Fourier’s
magnificent	insight,	one	that	most	of	us	unwittingly	take	advantage	of	every
time	we	go	on	holiday:	digital	photography.

On	a	recent	trip	to	Cambodia	I	took	about	1400	photographs,	using	a	digital
camera,	and	they	all	went	on	a	2	GB	memory	card	with	room	for	about	400
more.	Now,	I	don’t	take	particularly	high-resolution	photographs,	so	each	photo
file	is	about	1.1	MB.	But	the	pictures	are	full	colour,	and	they	don’t	show	any
noticeable	pixellation	on	a	27-inch	computer	screen,	so	the	loss	in	quality	isn’t
obvious.	Somehow,	my	camera	manages	to	cram	into	a	single	2	GB	card	about
ten	times	as	much	data	as	the	card	can	possibly	hold.	It’s	like	pouring	a	litre	of
milk	into	an	eggcup.	Yet	it	all	fits	in.	The	question	is:	how?

The	answer	is	data	compression.	The	information	that	specifies	the	image	is
processed	to	reduce	its	quantity.	Some	of	this	processing	is	‘lossless’,	meaning
that	the	original	raw	information	can	if	necessary	be	retrieved	from	the
compressed	version.	This	is	possible	because	most	real-world	images	contain
redundant	information.	Big	blocks	of	sky,	for	instance,	are	often	the	same	shade
of	blue	(well,	they	are	where	we	tend	to	go).	Instead	of	repeating	the	colour	and
brightness	information	for	a	blue	pixel	over	and	over	again,	you	could	store	the
coordinates	of	two	opposite	corners	of	a	rectangle	and	a	short	code	that	means
‘colour	this	entire	region	blue’.	That’s	not	quite	how	it’s	done,	of	course,	but	it
shows	why	lossless	compression	is	sometimes	possible.	When	it’s	not,	‘lossy’
compression	is	often	acceptable.	The	human	eye	is	not	especially	sensitive	to
certain	features	of	images,	and	these	features	can	be	recorded	on	a	coarser	scale
without	most	of	us	noticing,	especially	if	we	don’t	have	the	original	image	to
compare	with.	Compressing	information	this	way	is	like	scrambling	an	egg:	it’s
easy	in	one	direction,	and	does	the	required	job,	but	it’s	not	possible	to	reverse	it.



Non-redundant	information	is	lost.	It	was	just	information	that	didn’t	do	a	lot	to
begin	with,	given	how	human	vision	works.

My	camera,	like	most	point-and-click	ones,	saves	its	images	in	files	with
labels	like	P1020339.JPG.	The	suffix	refers	to	JPEG,	the	Joint	Photographic
Experts	Group,	and	it	indicates	that	a	particular	system	of	data	compression	has
been	used.	Software	for	manipulating	and	printing	photos,	such	as	Photoshop	or
iPhoto,	is	written	so	that	it	can	decode	the	JPEG	format	and	turn	the	data	back
into	a	picture.	Millions	of	us	use	JPEG	files	regularly,	fewer	are	aware	that
they’re	compressed,	and	fewer	still	wonder	how	it’s	done.	This	is	not	a	criticism:
you	don’t	have	to	know	how	it	works	to	use	it,	that’s	the	point.	The	camera	and
software	handle	it	all	for	you.	But	it’s	often	sensible	to	have	a	rough	idea	of	what
software	does,	and	how,	if	only	to	discover	how	cunning	some	of	it	is.	You	can
skip	the	details	here	if	you	wish:	I’d	like	you	to	appreciate	just	how	much
mathematics	goes	into	each	image	on	your	camera’s	memory	card,	but	exactly
what	mathematics	is	less	important.

The	JPEG	format2	combines	five	different	compression	steps.	The	first
converts	the	colour	and	brightness	information,	which	starts	out	as	three
intensities	for	red,	green,	and	blue,	into	three	different	mathematically	equivalent
ones	that	are	more	suited	to	the	way	the	human	brain	perceives	images.	One
(luminance)	represents	the	overall	brightness	–	what	you	would	see	with	a	black-
and-white	or	‘greyscale’	version	of	the	same	image.	The	other	two
(chrominance)	are	the	differences	between	this	and	the	amounts	of	blue	and	red
light,	respectively.

Next,	the	chrominance	data	are	coarsened:	reduced	to	a	smaller	range	of
numerical	values.	This	step	alone	halves	the	amount	of	data.	It	does	no
perceptible	harm	because	the	human	visual	system	is	much	less	sensitive	to
colour	differences	than	the	camera	is.

The	third	step	uses	a	variant	of	the	Fourier	transform.	This	works	not	with	a
signal	that	changes	over	time,	but	with	a	pattern	in	two	dimensions	of	space.	The
mathematics	is	virtually	identical.	The	space	concerned	is	an	8	×	8	sub-block	of
pixels	from	the	image.	For	simplicity	think	just	of	the	luminance	component:	the
same	idea	applies	to	the	colour	information	as	well.	We	start	with	a	block	of	64
pixels,	and	for	each	of	them	we	need	to	store	one	number,	the	luminance	value
for	that	pixel.	The	discrete	cosine	transform,	a	special	case	of	the	Fourier
transform,	decomposes	the	image	into	a	superposition	of	standard	‘striped’
images	instead.	In	half	of	them	the	stripes	run	horizontally;	in	the	other	half	they
are	vertical.	They	are	spaced	at	different	intervals,	like	the	various	harmonics	in



the	usual	Fourier	transform,	and	their	greyscale	values	are	a	close	approximation
to	a	cosine	curve.	In	coordinates	on	the	block	they	are	discrete	versions	of	cos
mx	cos	ny	for	various	integers	m	and	n,	see	Figure	41.

Fig	41	The	64	basic	patterns	from	which	any	block	of	8×8	pixels	can	be
obtained.

This	step	paves	the	way	to	step	four,	a	second	exploitation	of	the	deficiencies
of	human	vision.	We	are	more	sensitive	to	variations	in	brightness	(or	colour)
over	large	regions	than	we	are	to	closely	spaced	variations.	So	the	patterns	in	the
figure	can	be	recorded	less	accurately	as	the	spacing	of	the	stripes	becomes	finer.
This	compresses	the	data	further.	The	fifth	and	final	step	uses	a	‘Huffman	code’
to	express	the	list	of	strengths	of	the	64	basic	patterns	in	a	more	efficient
manner.

Every	time	you	take	a	digital	image	using	JPEG,	the	electronics	in	your
camera	does	all	of	these	things,	except	perhaps	step	one.	(Professionals	are	now
moving	over	to	RAW	files,	which	record	the	actual	data	without	compression,
together	with	the	usual	‘metadata’	such	as	date,	time,	exposure,	and	so	on.	Files
in	this	format	take	up	more	memory,	but	memory	gets	bigger	and	cheaper	by	the
month,	so	that	no	longer	matters.)	A	trained	eye	can	spot	the	loss	of	image
quality	created	by	JPEG	compression	when	the	quantity	of	data	is	reduced	to
about	10%	of	the	original,	and	an	untrained	eye	can	see	it	clearly	by	the	time	the
file	size	is	down	to	2–3%.	So	your	camera	can	record	about	ten	times	as	many
images	on	a	memory	card,	compared	with	the	raw	image	data,	before	anyone
other	than	an	expert	would	notice.



Because	of	applications	like	these,	Fourier	analysis	has	become	a	reflex	among
engineers	and	scientists,	but	for	some	purposes	the	technique	has	one	major
fault:	sines	and	cosines	go	on	forever.	Fourier’s	method	runs	into	problems	when
it	tries	to	represent	a	compact	signal.	It	takes	huge	numbers	of	sines	and	cosines
to	mimic	a	localised	blip.	The	problem	is	not	getting	the	basic	shape	of	the	blip
right,	but	making	everything	outside	the	blip	equal	to	zero.	You	have	to	kill	off
the	infinitely	long	rippling	tails	of	all	those	sines	and	cosines,	which	you	do	by
adding	on	even	more	high-frequency	sines	and	cosines	in	a	desperate	effort	to
cancel	out	the	unwanted	junk.	So	the	Fourier	transform	is	hopeless	for	blip-like
signals:	the	transformed	version	is	more	complicated,	and	needs	more	data	to
describe	it,	than	the	original.

What	saves	the	day	is	the	generality	of	Fourier’s	method.	Sines	and	cosines
work	because	they	satisfy	one	simple	condition:	they	are	mathematically
independent.	Formally,	this	means	that	they	are	orthogonal:	in	an	abstract	but
meaningful	sense,	they	are	at	right	angles	to	each	other.	This	is	where	Euler’s
trick,	eventually	rediscovered	by	Fourier,	comes	in.	Multiplying	two	of	the	basic
sinusoidal	waveforms	together	and	integrating	over	one	period	is	a	way	to
measure	how	closely	related	they	are.	If	this	number	is	large,	they	are	very
similar;	if	it	is	zero	(the	condition	for	orthogonality),	they	are	independent.
Fourier	analysis	works	because	its	basic	waveforms	are	both	orthogonal	and
complete:	they	are	independent	and	there	are	enough	of	them	to	represent	any
signal	if	they	are	suitably	superposed.	In	effect,	they	provide	a	coordinate	system
on	the	space	of	all	signals,	just	like	the	usual	three	axes	of	ordinary	space.	The
main	new	feature	is	that	we	now	have	infinitely	many	axes:	one	for	each	basic
waveform.	But	this	doesn’t	cause	many	difficulties	mathematically,	once	you	get
used	to	it.	It	just	means	you	have	to	work	with	infinite	series	instead	of	finite
sums,	and	worry	a	little	about	when	the	series	converge.

Even	in	finite-dimensional	spaces,	there	are	many	different	coordinate
systems;	the	axes	can	be	rotated	to	point	in	new	directions,	for	example.	It’s	not
surprising	to	find	that	in	an	infinite-dimensional	space	of	signals,	there	are
alternative	coordinate	systems	that	differ	wildly	from	Fourier’s.	One	of	the	most
important	discoveries	in	the	whole	area,	in	recent	years,	is	a	new	coordinate
system	in	which	the	basic	waveforms	are	confined	to	a	limited	region	of	space.
They	are	called	wavelets,	and	they	can	represent	blips	very	efficiently	because
they	are	blips.

Only	recently	did	anyone	realise	that	blip-like	Fourier	analysis	was	possible.
Getting	started	is	straightforward:	choose	a	particular	shape	of	blip,	the	mother
wavelet	(Figure	42).	Then	generate	daughter	wavelets	(and	granddaughters,



great-granddaughters,	whatever)	by	sliding	the	mother	wavelet	sideways	into
various	positions,	and	expanding	her	or	compressing	her	by	a	change	of	scale.	In
the	same	way,	Fourier’s	basic	sine	and	cosine	curves	are	‘mother	sinelets’,	and
the	higher-frequency	sines	and	cosines	are	daughters.	Being	periodic,	these
curves	cannot	be	blip-like.

Fig	42	Daubechies	wavelet.

Wavelets	are	designed	to	describe	bliplike	data	efficiently.	Moreover,	because
the	daughter	and	granddaughter	wavelets	are	just	rescaled	versions	of	mother,	it
is	possible	to	focus	on	particular	levels	of	detail.	If	you	don’t	want	to	see	small-
scale	structure,	you	just	remove	all	the	great-granddaughter	wavelets	from	the
wavelet	transform.	To	represent	a	leopard	by	wavelets,	you	need	a	few	big	ones
to	get	the	body	right,	smaller	ones	for	the	eyes,	nose,	and	of	course	the	spots,	and
very	tiny	ones	for	individual	hairs.	To	compress	the	data	representing	the
leopard,	you	might	decide	that	the	individual	hairs	don’t	matter,	so	you	just
remove	those	particular	component	wavelets.	The	great	thing	is,	the	image	still
looks	like	a	leopard,	and	it	still	has	spots.	If	you	try	to	do	this	with	the	Fourier
transform	of	a	leopard	then	the	list	of	components	is	huge,	it’s	not	clear	which
items	you	should	remove,	and	you	probably	won’t	recognise	the	result	as	a
leopard.

All	very	well	and	good,	but	what	shape	should	the	mother	wavelet	be?	For	a
long	time	nobody	could	work	that	out,	or	even	show	that	a	good	shape	exists.
But	in	the	early	1980s	geophysicist	Jean	Morlet	and	mathematical	physicist
Alexander	Grossmann	found	the	first	suitable	mother	wavelet.	In	1985	Yves
Meyer	found	a	better	mother	wavelet,	and	in	1987	Ingrid	Daubechies,	a
mathematician	at	Bell	Laboratories,	blew	the	whole	field	wide	open.	Although
the	previous	mother	wavelets	looked	suitably	bliplike,	they	all	had	a	very	tiny



mathematical	tail	that	wiggled	off	to	infinity.	Daubechies	found	a	mother
wavelet	with	no	tail	at	all:	outside	some	interval,	mother	was	always	exactly	zero
–	a	genuine	blip,	confined	entirely	to	a	finite	region	of	space.

The	bliplike	features	of	wavelets	make	them	especially	good	for	compressing
images.	One	of	their	first	large-scale	practical	uses	was	to	store	fingerprints,	and
the	customer	was	the	Federal	Bureau	of	Investigation.	The	FBI’s	fingerprint
database	contains	300	million	records,	each	of	eight	fingerprints	and	two
thumbprints,	which	were	originally	stored	as	inked	impressions	on	paper	cards.
This	is	not	a	convenient	storage	medium,	so	the	records	have	been	modernised
by	digitising	the	images	and	storing	the	results	on	a	computer.	Obvious
advantages	include	being	able	to	mount	a	rapid	automated	search	for	prints	that
match	those	found	at	the	scene	of	a	crime.

The	computer	file	for	each	fingerprint	card	is	10	megabytes	long:	80	million
binary	digits.	So	the	entire	archive	occupies	3000	terabytes	of	memory:	24
quadrillion	binary	digits.	To	make	matters	worse,	the	number	of	new	sets	of
fingerprints	grows	by	30,000	every	day,	so	the	storage	requirement	would	grow
by	2.4	trillion	binary	digits	every	day.	The	FBI	sensibly	decided	that	they	needed
some	method	for	data	compression.	JPEG	wasn’t	suitable,	for	various	reasons,
so	in	2002	the	FBI	decided	to	develop	a	new	system	of	compression	using
wavelets,	the	wavelet/scalar	quantization	(WSQ)	method.	WSQ	reduces	the	data
to	5%	of	its	size	by	removing	fine	detail	throughout	the	image.	This	is	irrelevant
to	the	eye’s	ability,	as	well	as	a	computer’s,	to	recognise	the	fingerprint.

There	are	also	many	recent	applications	of	wavelets	to	medical	imaging.
Hospitals	now	employ	several	different	kinds	of	scanner,	which	assemble	two-
dimensional	cross-sections	of	the	human	body	or	important	organs	such	as	the
brain.	The	techniques	include	CT	(computerised	tomography),	PET	(positron
emission	tomography),	and	MRI	(magnetic	resonance	imaging).	In	tomography,
the	machine	observes	the	total	tissue	density,	or	a	similar	quantity,	in	a	single
direction	through	the	body,	rather	like	what	you	would	see	from	a	fixed	position
if	all	the	tissue	were	to	become	slightly	transparent.	A	two-dimensional	picture
can	be	reconstructed	by	applying	some	clever	mathematics	to	a	whole	series	of
such	‘projections’,	taken	at	many	different	angles.	In	CT,	each	projection
requires	an	X-ray	exposure,	so	there	are	good	reasons	to	limit	the	amount	of	data
acquired.	In	all	such	scanning	methods,	less	data	takes	less	time	to	acquire,	so
more	patients	can	use	the	same	amount	of	equipment.	On	the	other	hand,	good
images	need	more	data	so	that	the	reconstruction	method	can	work	more
effectively.	Wavelets	provide	a	compromise,	in	which	reducing	the	amount	of



data	leads	to	equally	acceptable	images.	By	taking	a	wavelet	transform,
removing	unwanted	components,	and	‘detransforming’	back	to	an	image	again,	a
poor	image	can	be	smoothed	and	cleaned	up.	Wavelets	also	improve	the
strategies	by	which	the	scanners	acquire	their	data	in	the	first	place.

In	fact,	wavelets	are	turning	up	almost	everywhere.	Researchers	in	areas	as
wide	apart	as	geophysics	and	electrical	engineering	are	taking	them	on	board	and
putting	them	to	work	in	their	own	fields.	Ronald	Coifman	and	Victor
Wickerhauser	have	used	them	to	remove	unwanted	noise	from	recordings:	a
recent	triumph	was	a	performance	of	Brahms	playing	one	of	his	own	Hungarian
Dances.	It	was	originally	recorded	on	a	wax	cylinder	in	1889,	which	partially
melted;	it	was	re-recorded	on	to	a	78	rpm	disc.	Coifman	started	from	a	radio
broadcast	of	the	disc,	by	which	time	the	music	was	virtually	inaudible	amid	the
surrounding	noise.	After	wavelet	cleansing,	you	could	hear	what	Brahms	was
playing	–	not	perfectly,	but	at	least	it	was	audible.	It’s	an	impressive	track	record
for	an	idea	that	first	arose	in	the	physics	of	heat	flow	200	years	ago,	and	was
rejected	for	publication.



10	The	ascent	of	humanity

Navier–Stokes	Equation

What	does	it	say?

It’s	Newton’s	second	law	of	motion	in	disguise.	The	left-hand	side	is	the
acceleration	of	a	small	region	of	fluid.	The	right-hand	side	is	the	forces	that	act
on	it:	pressure,	stress,	and	internal	body	forces.

Why	is	that	important?

It	provides	a	really	accurate	way	to	calculate	how	fluids	move.	This	is	a	key
feature	of	innumerable	scientific	and	technological	problems.

What	did	it	lead	to?

Modern	passenger	jets,	fast	and	quiet	submarines,	Formula	1	racing	cars	that
stay	on	the	track	at	high	speeds,	and	medical	advances	on	blood	flow	in	veins
and	arteries.	Computer	methods	for	solving	the	equations,	known	as
computational	fluid	dynamics	(CFD),	are	widely	used	by	engineers	to	improve
technology	in	such	areas.



	

Seen	from	space,	the	Earth	is	a	beautiful	glowing	blue-and-white	sphere	with
patches	of	green	and	brown,	quite	unlike	any	other	planet	in	the	Solar	System	–
or	any	of	the	500-plus	planets	now	known	to	be	circling	other	stars,	for	that
matter.	The	very	word	‘Earth’	instantly	brings	this	image	to	mind.	Yet	a	little
over	fifty	years	ago,	the	almost	universal	image	for	the	same	word	would	have
been	a	handful	of	dirt,	earth	in	the	gardening	sense.	Before	the	twentieth	century,
people	looked	at	the	sky	and	wondered	about	the	stars	and	planets,	but	they	did
so	from	ground	level.	Human	flight	was	nothing	more	than	a	dream,	the	subject
of	myths	and	legends.	Hardly	anyone	thought	about	travelling	to	another	world.

A	few	intrepid	pioneers	began	the	slow	climb	into	the	sky.	The	Chinese	were
the	first.	Around	500	BC	Lu	Ban	invented	a	wooden	bird,	which	might	have	been
a	primitive	glider.	In	559	AD	the	upstart	Gao	Yang	strapped	Yuan	Huangtou,	the
emperor’s	son,	to	a	kite	–	against	his	will	–	to	spy	on	the	enemy	from	above.
Yuan	survived	the	experience	but	was	later	executed.	With	the	seventeeth-
century	discovery	of	hydrogen	the	urge	to	fly	spread	to	Europe,	inspiring	a	few
brave	individuals	to	ascend	into	the	lower	reaches	of	Earth’s	atmosphere	in
balloons.	Hydrogen	is	explosive,	and	in	1783	the	French	brothers	Joseph-Michel
and	Jacques-Étienne	Montgolfier	gave	a	public	demonstration	of	their	new	and
much	safer	idea,	the	hot-air	balloon	–	first	with	an	unmanned	test	flight,	then
with	Étienne	as	pilot.

The	pace	of	progress,	and	the	heights	to	which	humans	could	ascend,	began
to	increase	rapidly.	In	1903	Orville	and	Wilbur	Wright	made	the	first	powered
flight	in	an	aeroplane.	The	first	airline,	DELAG	(Deutsche	Luftschiffahrts-
Aktiengesellschaft),	began	operations	in	1910,	flying	passengers	from	Frankfurt
to	Baden-Baden	and	Düsseldorf	using	airships	made	by	the	Zeppelin
Corporation.	By	1914	the	St	Petersburg–Tampa	Airboat	Line	was	flying
passengers	commercially	between	the	two	Florida	cities,	a	journey	that	took	23
minutes	in	Tony	Jannus’s	flying	boat.	Commercial	air	travel	quickly	became
commonplace,	and	jet	aircraft	arrived:	the	De	Havilland	Comet	began	regular
flights	in	1952,	but	metal	fatigue	caused	several	crashes,	and	the	Boeing	707
became	the	market	leader	from	its	launch	in	1958.

Ordinary	individuals	could	now	routinely	be	found	at	an	altitude	of	8
kilometres,	their	limit	to	this	day,	at	least	until	Virgin	Galactic	starts	low-orbital
flights.	Military	flights	and	experimental	aircraft	rose	to	greater	heights.	Space
flight,	hitherto	the	dream	of	a	few	visionaries,	started	to	become	a	plausible



proposition.	In	1961	the	Soviet	cosmonaut	Yuri	Gagarin	made	the	first	manned
orbit	of	the	Earth	in	Vostok	1.	In	1969	NASA’s	Apollo	11	mission	landed	two
American	astronauts,	Neil	Armstrong	and	Buzz	Aldrin,	on	the	Moon.	The	space
shuttle	began	operational	flights	in	1982,	and	while	budget	constraints	prevented
it	achieving	the	original	aims	–	a	reusable	vehicle	with	a	rapid	turnaround	–	it
became	one	of	the	workhorses	of	low-orbit	spaceflight,	along	with	Russia’s
Soyuz	spacecraft.	Atlantis	has	now	made	the	final	flight	of	the	space	shuttle
programme,	but	new	vehicles	are	being	planned,	mainly	by	private	companies.
Europe,	India,	China,	and	Japan	have	their	own	space	programmes	and	agencies.

This	literal	ascent	of	humanity	has	changed	our	view	of	who	we	are	and
where	we	live	–	the	main	reason	why	‘Earth’	now	means	a	blue–white	globe.
Those	colours	hold	a	clue	to	our	newfound	ability	to	fly.	The	blue	is	water,	and
the	white	is	water	vapour	in	the	form	of	clouds.	Earth	is	a	water	world,	with
oceans,	seas,	rivers,	lakes.	What	water	does	best	is	to	flow,	often	to	places	where
it’s	not	wanted.	The	flow	might	be	rain	dripping	from	a	roof	or	the	mighty
torrent	of	a	waterfall.	It	can	be	gentle	and	smooth,	or	rough	and	turbulent	–	the
steady	flow	of	the	Nile	across	what	would	otherwise	be	desert,	or	the	frothy
white	water	of	its	six	cataracts.

It	was	the	patterns	formed	by	water,	or	more	generally	any	moving	fluid,	that
attracted	the	attention	of	mathematicians	in	the	nineteenth	century,	when	they
derived	the	first	equations	for	fluid	flow.	The	vital	fluid	for	flight	is	less	visible
than	water,	but	just	as	ubiquitous:	air.	The	flow	of	air	is	more	complex
mathematically,	because	air	can	be	compressed.	By	modifying	their	equations	so
that	they	applied	to	a	compressible	fluid,	mathematicians	initiated	the	science
that	would	eventually	get	the	Age	of	Flight	off	the	ground:	aerodynamics.	Early
pioneers	might	fly	by	rule	of	thumb,	but	commercial	airliners	and	the	space
shuttle	fly	because	engineers	have	done	the	calculations	that	make	them	safe	and
reliable	(barring	occasional	accidents).	Aircraft	design	requires	a	deep
understanding	of	the	mathematics	of	fluid	flow.	And	the	pioneer	of	fluid
dynamics	was	the	renowned	mathematician	Leonhard	Euler,	who	died	in	the
year	the	Montgolfiers	made	their	first	balloon	flight.

There	are	few	areas	of	mathematics	towards	which	the	prolific	Euler	did	not	turn
his	attention.	It	has	been	suggested	that	one	reason	for	his	prodigious	and
versatile	output	was	politics,	or	more	precisely,	its	avoidance.	He	worked	in
Russia	for	many	years,	at	the	court	of	Catherine	the	Great,	and	an	effective	way
to	avoid	being	caught	up	in	political	intrigue,	with	potentially	disastrous
consequences,	was	to	be	so	busy	with	his	mathematics	that	no	one	would	believe



he	had	any	time	to	spare	for	politics.	If	this	is	what	he	was	doing,	we	have
Catherine’s	court	to	thank	for	many	wonderful	discoveries.	But	I’m	inclined	to
think	that	Euler	was	prolific	because	he	had	that	sort	of	mind.	He	created	huge
quantities	of	mathematics	because	he	could	do	no	other.

There	were	predecessors.	Archimedes	studied	the	stability	of	floating	bodies
over	2200	years	ago.	In	1738	the	Dutch	mathematician	Daniel	Bernoulli
published	Hydrodynamica	(‘Hydrodynamics’),	containing	the	principle	that
fluids	flow	faster	in	regions	where	the	pressure	is	lower.	Bernoulli’s	principle	is
often	invoked	today	to	explain	why	aircraft	can	fly:	the	wing	is	shaped	so	that
the	air	flows	faster	across	the	top	surface,	lowering	the	pressure	and	creating	lift.
This	explanation	is	a	bit	too	simplistic,	and	many	other	factors	are	involved	in
flight,	but	it	does	illustrate	the	close	relationship	between	basic	mathematical
principles	and	practical	aircraft	design.	Bernoulli	embodied	his	principle	in	an
algebraic	equation	relating	velocity	and	pressure	in	an	incompressible	fluid.

In	1757	Euler	turned	his	fertile	mind	to	fluid	flow,	publishing	an	article
‘Principes	généraux	du	mouvement	des	fluides’	(General	principles	of	the
movement	of	fluids)	in	the	Memoirs	of	the	Berlin	Academy.	It	was	the	first
serious	attempt	to	model	fluid	flow	using	a	partial	differential	equation.	To	keep
the	problem	within	reasonable	bounds,	Euler	made	some	simplifying
assumptions:	in	particular,	he	assumed	the	fluid	was	incompressible,	like	water
rather	than	air,	and	had	zero	viscosity	–	no	stickiness.	These	assumptions
allowed	him	to	find	some	solutions,	but	they	also	made	his	equations	rather
unrealistic.	Euler’s	equation	is	still	in	use	today	for	some	types	of	problem,	but
on	the	whole	it	is	too	simple	to	be	of	much	practical	use.

Two	scientists	came	up	with	a	more	realistic	equation.	Claude-Louis	Navier
was	a	French	engineer	and	physicist;	George	Gabriel	Stokes	was	an	Irish
mathematician	and	physicist.	Navier	derived	a	system	of	partial	differential
equations	for	the	flow	of	a	viscous	fluid	in	1822;	Stokes	started	publishing	on
the	topic	twenty	years	later.	The	resulting	model	of	fluid	flow	is	now	called	the
Navier–Stokes	equation	(often	the	plural	is	used	because	the	equation	is	stated	in
terms	of	a	vector,	so	it	has	several	components).	This	equation	is	so	accurate	that
nowadays	engineers	often	use	computer	solutions	instead	of	performing	physical
tests	in	wind	tunnels.	This	technique,	known	as	computational	fluid	dynamics
(CFD),	is	now	standard	in	any	problem	involving	fluid	flow:	the	aerodynamics
of	the	space	shuttle,	the	design	of	Formula	1	racing	cars	and	everyday	road	cars,
and	blood	circulating	through	the	human	body	or	an	artificial	heart.

There	are	two	ways	to	look	at	the	geometry	of	a	fluid.	One	is	to	follow	the



movements	of	individual	tiny	particles	of	fluid	and	see	where	they	go.	The	other
is	to	focus	on	the	velocities	of	such	particles:	how	fast,	and	in	which	direction,
they	are	moving	at	any	instant.	The	two	are	intimately	related,	but	the
relationship	is	difficult	to	disentangle	except	in	numerical	approximations.	One
of	the	great	insights	of	Euler,	Navier,	and	Stokes	was	the	realisation	that
everything	looks	a	lot	simpler	in	terms	of	the	velocities.	The	flow	of	a	fluid	is
best	understood	in	terms	of	a	velocity	field:	a	mathematical	description	of	how
the	velocity	varies	from	point	to	point	in	space	and	from	instant	to	instant	in
time.	So	Euler,	Navier,	and	Stokes	wrote	down	equations	describing	the	velocity
field.	The	actual	flow	patterns	of	the	fluid	can	then	be	calculated,	at	least	to	a
good	approximation.

The	Navier–Stokes	equation	looks	like	this:

where	p	is	the	density	of	the	fluid,	v	is	its	velocity	field,	p	is	pressure,	T
determines	the	stresses,	and	f	represents	body	forces	–	forces	that	act	throughout
the	entire	region,	not	just	at	its	surface.	The	dot	is	an	operation	on	vectors,	and	∇
is	an	expression	in	partial	derivatives,	namely

The	equation	is	derived	from	basic	physics.	As	with	the	wave	equation,	a	crucial
first	step	is	to	apply	Newton’s	second	law	of	motion	to	relate	the	movement	of	a
fluid	particle	to	the	forces	that	act	on	it.	The	main	force	is	elastic	stress,	and	this
has	two	main	constituents:	frictional	forces	caused	by	the	viscosity	of	the	fluid,
and	the	effects	of	pressure,	either	positive	(compression)	or	negative
(rarefaction).	There	are	also	body	forces,	which	stem	from	the	acceleration	of	the
fluid	particle	itself.	Combining	all	this	information	leads	to	the	Navier–Stokes
equation,	which	can	be	seen	as	a	statement	of	the	law	of	conservation	of
momentum	in	this	particular	context.	The	underlying	physics	is	impeccable,	and
the	model	is	realistic	enough	to	include	most	of	the	significant	factors;	this	is
why	it	fits	reality	so	well.	Like	all	of	the	traditional	equations	of	classical
mathematical	physics	it	is	a	continuum	model:	it	assumes	that	the	fluid	is
infinitely	divisible.

This	is	perhaps	the	main	place	where	the	Navier–Stokes	equation	potentially
loses	touch	with	reality,	but	the	discrepancy	shows	up	only	when	the	motion
involves	rapid	changes	on	the	scale	of	individual	molecules.	Such	small-scale



motions	are	important	in	one	vital	context:	turbulence.	If	you	turn	on	a	tap	and
let	the	water	flow	out	slowly,	it	arrives	in	a	smooth	trickle.	Turn	the	tap	on	full,
however,	and	you	often	get	a	surging,	frothy,	foaming	gush	of	water.	Similar
frothy	flows	occur	in	rapids	on	a	river.	This	effect	is	known	as	turbulence,	and
those	of	us	who	fly	regularly	are	well	aware	of	its	effects	when	it	occurs	in	air.	It
feels	as	though	the	aircraft	is	driving	along	a	very	bumpy	road.

Solving	the	Navier–Stokes	equation	is	hard.	Until	really	fast	computers	were
invented,	it	was	so	hard	that	mathematicians	were	reduced	to	short	cuts	and
approximations.	But	when	you	think	about	what	a	real	fluid	can	do,	it	ought	to
be	hard.	You	only	have	to	look	at	water	flowing	in	a	stream,	or	waves	breaking
on	a	beach,	to	see	that	fluids	can	flow	in	extremely	complex	ways.	There	are
ripples	and	eddies,	wave	patterns	and	whirlpools,	and	fascinating	structures	like
the	Severn	bore,	a	wall	of	water	that	races	up	the	estuary	of	the	River	Severn	in
south-west	England	when	the	tide	comes	in.	The	patterns	of	fluid	flow	have	been
the	source	of	innumerable	mathematical	investigations,	yet	one	of	the	biggest
and	most	basic	questions	in	the	area	remains	unanswered:	is	there	a
mathematical	guarantee	that	solutions	of	the	Navier–Stokes	equation	actually
exist,	valid	for	all	future	time?	There	is	a	million-dollar	prize	for	anyone	who
can	solve	it,	one	of	the	seven	Clay	Institute	Millennium	Prize	problems,	chosen
to	represent	the	most	important	unsolved	mathematical	problems	of	our	age.	The
answer	is	‘yes’	in	two-dimensional	flow,	but	no	one	knows	for	three-
dimensional	flow.

Despite	this,	the	Navier–Stokes	equation	provides	a	useful	model	of	turbulent
flow	because	molecules	are	extremely	small.	Turbulent	vortices	a	few
millimetres	across	already	capture	many	of	the	main	features	of	turbulence,
whereas	a	molecule	is	far	smaller,	so	a	continuum	model	remains	appropriate.
The	main	problem	that	turbulence	causes	is	practical:	it	makes	it	virtually
impossible	to	solve	the	Navier–Stokes	equation	numerically,	because	a	computer
can’t	handle	infinitely	complex	calculations.	Numerical	solutions	of	partial
differential	equations	use	a	grid,	dividing	space	into	discrete	regions	and	time
into	discrete	intervals.	To	capture	the	vast	range	of	scales	on	which	turbulence
operates	–	its	big	vortices,	middle-sized	ones,	right	down	to	the	millimetre-scale
ones	–	you	need	an	impossibly	fine	computational	grid.	For	this	reason,
engineers	often	use	statistical	models	of	turbulence	instead.

The	Navier–Stokes	equation	has	revolutionised	modern	transport.	Perhaps	its
greatest	influence	is	on	the	design	of	passenger	aircraft,	because	not	only	do
these	have	to	fly	efficiently,	but	they	have	to	fly,	stably	and	reliably.	Ship	design



also	benefits	from	the	equation,	because	water	is	a	fluid.	But	even	ordinary
household	cars	are	now	designed	on	aerodynamic	principles,	not	just	because	it
makes	them	look	sleek	and	cool,	but	because	efficient	fuel	consumption	relies	on
minimising	drag	caused	by	the	flow	of	air	past	the	vehicle.	One	way	to	reduce
your	carbon	footprint	is	to	drive	an	aerodynamically	efficient	car.	Of	course
there	are	other	ways,	ranging	from	smaller,	slower	cars	to	electric	motors,	or	just
driving	less.	Some	of	the	big	improvements	in	fuel	consumption	figures	have
come	from	improved	engine	technology,	some	from	better	aerodynamics.

In	the	earliest	days	of	aircraft	design,	pioneers	put	their	aeroplanes	together
using	back-of-the-envelope	calculations,	physical	intuition,	and	trial	and	error.
When	your	aim	was	to	fly	more	than	a	hundred	metres	no	more	than	three
metres	off	the	ground,	that	was	good	enough.	The	first	time	that	Wright	Flyer	I
got	properly	off	the	ground,	instead	of	stalling	and	crashing	after	three	seconds
in	the	air,	it	travelled	120	feet	at	a	speed	just	below	7	mph.	Orville,	the	pilot	on
that	occasion,	managed	to	keep	it	aloft	for	a	staggering	12	seconds.	But	the	size
of	passenger	aircraft	quickly	grew,	for	economic	reasons:	the	more	people	you
can	carry	in	one	flight,	the	more	profitable	it	will	be.	Soon	aircraft	design	had	to
be	based	on	a	more	rational	and	reliable	method.	The	science	of	aerodynamics
was	born,	and	its	basic	mathematical	tools	were	equations	for	fluid	flow.	Since
air	is	both	viscous	and	compressible,	the	Navier–Stokes	equation,	or	some
simplification	that	makes	sense	for	a	given	problem,	took	centre	stage	as	far	as
theory	went.

However,	solving	those	equations,	in	the	absence	of	modern	computers,	was
virtually	impossible.	So	the	engineers	resorted	to	an	analogue	computer:	placing
models	of	the	aircraft	in	a	wind	tunnel.	Using	a	few	general	properties	of	the
equations	to	work	out	how	variables	change	as	the	scale	of	the	model	changes,
this	method	provided	basic	information	quickly	and	reliably.	Most	Formula	1
teams	today	use	wind	tunnels	to	test	their	designs	and	evaluate	potential
improvements,	but	computer	power	is	now	so	great	that	most	also	use	CFD.	For
example,	Figure	43	shows	a	CFD	calculation	of	air	flow	past	a	BMW	Sauber
car.	As	I	write,	one	team,	Virgin	Racing,	uses	only	CFD,	but	they	will	be	using	a
wind	tunnel	as	well	next	year.



Fig	43	Computed	air	flow	past	a	Formula	1	car.

Wind	tunnels	are	not	terribly	convenient;	they	are	expensive	to	build	and	run,
and	they	need	lots	of	scale	models.	Perhaps	the	biggest	difficulty	is	to	make
accurate	measurements	of	the	flow	of	air	without	affecting	it.	If	you	put	an
instrument	in	the	wind	tunnel	to	measure,	say,	air	pressure,	then	the	instrument
itself	disturbs	the	flow.	Perhaps	the	biggest	practical	advantage	of	CFD	is	that
you	can	calculate	the	flow	without	affecting	it.	Anything	you	might	wish	to
measure	is	easily	available.	Moreover,	you	can	modify	the	design	of	the	car,	or	a
component,	in	software,	which	is	a	lot	quicker	and	cheaper	than	making	lots	of
different	models.	Modern	manufacturing	processes	often	involve	computer
models	at	the	design	stage	anyway.

Supersonic	flight,	where	the	aircraft	goes	faster	than	sound,	is	especially
tricky	to	study	using	models	in	a	wind	tunnel,	because	the	wind	speeds	are	so
great.	At	such	speeds,	the	air	cannot	move	away	from	the	aircraft	as	quickly	as
the	aircraft	pushes	itself	through	the	air,	and	this	causes	shockwaves	–	sudden
discontinuities	in	air	pressure,	heard	on	the	ground	as	a	sonic	boom.	This
environmental	problem	was	one	reason	why	the	joint	Anglo-French	airliner
Concorde,	the	only	supersonic	commercial	aircraft	ever	to	go	into	service,	had
limited	success:	it	was	not	allowed	to	fly	at	supersonic	speeds	except	over
oceans.	CFD	is	widely	used	to	predict	the	flow	of	air	past	a	supersonic	aircraft.

There	are	about	600	million	cars	on	the	planet	and	tens	of	thousands	of	civil
aircraft,	so	even	though	these	applications	of	CFD	may	seem	hightech,	they	are
significant	in	everyday	life.	Other	ways	to	use	CFD	have	a	more	human
dimension.	It	is	widely	used	by	medical	researchers	to	understand	blood	flow	in
the	human	body,	for	example.	Heart	malfunction	is	one	of	the	leading	causes	of



death	in	the	developed	world,	and	it	can	be	triggered	either	by	problems	with	the
heart	itself	or	by	clogged	arteries,	which	disrupt	the	blood	flow	and	can	cause
clots.	The	mathematics	of	blood	flow	in	the	human	body	is	especially	intractable
analytically	because	the	walls	of	the	arteries	are	elastic.	It’s	difficult	enough	to
calculate	the	movement	of	fluid	through	a	rigid	tube;	it’s	much	harder	if	the	tube
can	change	its	shape	depending	on	the	pressure	that	the	fluid	exerts,	because
now	the	domain	for	the	calculation	doesn’t	stay	the	same	as	time	passes.	The
shape	of	the	domain	affects	the	flow	pattern	of	the	fluid,	and	simultaneously	the
flow	pattern	of	the	fluid	affects	the	shape	of	the	domain.	Pen-and-paper
mathematics	can’t	handle	that	sort	of	feedback	loop.

CFD	is	ideal	for	this	kind	of	problem	because	computers	can	perform	billions
of	calculations	every	second.	The	equation	has	to	be	modified	to	include	the
effects	of	elastic	walls,	but	that’s	mostly	a	matter	of	extracting	the	necessary
principles	from	elasticity	theory,	another	well-developed	part	of	classical
continuum	mechanics.	For	example,	a	CFD	calculation	of	how	blood	flows
through	the	aorta,	the	main	artery	entering	the	heart,	has	been	carried	out	at	the
École	Polytechnique	Féderale	de	Lausanne	in	Switzerland.	The	results	provide
information	that	can	help	doctors	get	a	better	understanding	of	cardiovascular
problems.

They	also	help	engineers	to	develop	improved	medical	devices	such	as	stents
–	small	metal-mesh	tubes	that	keep	the	artery	open.	Suncica	Canic	has	used	CFD
and	models	of	elastic	properties	to	design	better	stents,	deriving	a	mathematical
theorem	that	caused	one	design	to	be	abandoned	and	suggested	better	designs.
Models	of	this	type	have	become	so	accurate	that	the	US	Food	and	Drugs
Administration	is	considering	requiring	any	group	designing	stents	to	carry	out
mathematical	modelling	before	performing	clinical	trials.	Mathematicians	and
doctors	are	joining	forces	to	use	the	Navier–Stokes	equation	to	obtain	better
predictions	of,	and	better	treatments	for,	the	main	causes	of	heart	attacks.

Another,	related,	application	is	to	heart	bypass	operations,	in	which	a	vein	is
removed	from	elsewhere	in	the	body	and	grafted	into	the	coronary	artery.	The
geometry	of	the	graft	has	a	strong	effect	on	the	blood	flow.	This	in	turn	affects
clotting,	which	is	more	likely	if	the	flow	has	vortices	because	blood	can	become
trapped	in	a	vortex	and	fail	to	circulate	properly.	So	here	we	see	a	direct	link
between	the	geometry	of	the	flow	and	potential	medical	problems.

The	Navier–Stokes	equation	has	another	application:	climate	change,	otherwise
known	as	global	warming.	Climate	and	weather	are	related,	but	different.
Weather	is	what	happens	at	a	given	place,	at	a	given	time.	It	may	be	raining	in



London,	snowing	in	New	York,	or	baking	in	the	Sahara.	Weather	is	notoriously
unpredictable,	and	there	are	good	mathematical	reasons	for	this:	see	Chapter	16
on	chaos.	However,	much	of	the	unpredictability	concerns	small-scale	changes,
both	in	space	and	time:	the	fine	details.	If	the	TV	weatherman	predicts	showers
in	your	town	tomorrow	afternoon	and	they	happen	six	hours	later	and	20
kilometres	away,	he	thinks	he	did	a	good	job	and	you	are	wildly	unimpressed.
Climate	is	the	long-term	‘texture’	of	weather	–	how	rainfall	and	temperature
behave	when	averaged	over	long	periods,	perhaps	decades.	Because	climate
averages	out	these	discrepancies,	it	is	paradoxically	easier	to	predict.	The
difficulties	are	still	considerable,	and	much	of	the	scientific	literature
investigates	possible	sources	of	error,	trying	to	improve	the	models.

Climate	change	is	a	politically	contentious	issue,	despite	a	very	strong
scientific	consensus	that	human	activity	over	the	past	century	or	so	has	caused
the	average	temperature	of	the	Earth	to	rise.	The	increase	to	date	sounds	small,
about	0.75	degrees	Celsius	during	the	twentieth	century,	but	the	climate	is	very
sensitive	to	temperature	changes	on	a	global	scale.	They	tend	to	make	the
weather	more	extreme,	with	droughts	and	floods	becoming	more	common.

‘Global	warming’	does	not	imply	that	the	temperature	everywhere	is
changing	by	the	same	tiny	amount.	On	the	contrary,	there	are	large	fluctuations
from	place	to	place	and	from	time	to	time.	In	2010	Britain	experienced	its
coldest	winter	for	31	years,	prompting	the	Daily	Express	to	print	the	headline
‘and	still	they	claim	it’s	global	warming’.	As	it	happens,	2010	tied	with	2005	as
the	hottest	year	on	record,	across	the	globe.1	So	‘they’	were	right.	In	fact,	the
cold	snap	was	caused	by	the	jet	stream	changing	position,	pushing	cold	air	south
from	the	Arctic,	and	this	happened	because	the	Arctic	was	unusually	warm.	Two
weeks	of	frost	in	central	London	does	not	disprove	global	warming.	Oddly,	the
same	newspaper	reported	that	Easter	Sunday	2011	was	the	hottest	on	record,	but
made	no	connection	to	global	warming.	On	that	occasion	they	correctly
distinguished	weather	from	climate.	I’m	fascinated	by	the	selective	approach.

Similarly,	‘climate	change’	does	not	simply	mean	that	the	climate	is
changing.	It	has	done	that	without	human	assistance	repeatedly,	mainly	on	long
timescales,	thanks	to	volcanic	ash	and	gases,	long-term	variations	in	the	Earth’s
orbit	around	the	Sun,	even	India	colliding	with	Asia	to	create	the	Himalayas.	In
the	context	currently	under	debate,	‘climate	change’	is	short	for	‘anthropogenic
climate	change’	–	changes	in	global	climate	caused	by	human	activity.	The	main
causes	are	the	production	of	two	gases:	carbon	dioxide	and	methane.	There	are
greenhouse	gases:	they	trap	incoming	radiation	(heat)	from	the	Sun.	Basic
physics	implies	that	the	more	of	these	gases	the	atmosphere	contains,	the	more



heat	it	traps;	although	the	planet	does	radiate	some	heat	away,	on	balance	it	will
get	warmer.	Global	warming	was	predicted,	on	this	basis,	in	the	1950s,	and	the
predicted	temperature	increase	is	in	line	with	what	has	been	observed.

The	evidence	that	carbon	dioxide	levels	have	increased	dramatically	comes
from	many	sources.	The	most	direct	is	ice	cores.	When	snow	falls	in	the	polar
regions,	it	packs	together	to	form	ice,	with	the	most	recent	snow	at	the	top	and
the	oldest	at	the	bottom.	Air	is	trapped	in	the	ice,	and	the	conditions	that	prevail
there	leave	it	virtually	unchanged	for	very	long	periods	of	time,	keeping	the
original	air	in	and	more	recent	air	out.	With	care,	it	is	possible	to	measure	the
composition	of	the	trapped	air	and	to	determine	the	date	when	it	was	trapped,
very	accurately.	Measurements	made	in	the	Antarctic	show	that	the
concentration	of	carbon	dioxide	in	the	atmosphere	was	pretty	much	constant
over	the	past	100,000	years	–	except	for	the	last	200,	when	it	shot	up	by	30%.
The	source	of	the	excess	carbon	dioxide	can	be	inferred	from	the	proportions	of
carbon-13,	one	of	the	isotopes	(different	atomic	forms)	of	carbon.	Human
activity	is	by	far	the	most	likely	explanation.

The	main	reason	why	the	skeptics	have	even	faint	glimmerings	of	a	case	is
the	complexity	of	climate	forecasting.	This	has	to	be	done	using	mathematical
models,	because	it’s	about	the	future.	No	model	can	include	every	single	feature
of	the	real	world,	and,	if	it	did,	you	could	never	work	out	what	it	predicted,
because	no	computer	could	ever	simulate	it.	Every	discrepancy	between	model
and	reality,	however	insignificant,	is	music	to	the	skeptics’	ears.	There	is
certainly	room	for	differences	of	opinion	about	the	likely	effects	of	climate
change,	or	what	we	should	do	to	mitigate	it.	But	burying	our	heads	in	the	sand
isn’t	a	sensible	option.

Two	vital	aspects	of	climate	are	the	atmosphere	and	the	oceans.	Both	are
fluids,	and	both	can	be	studied	using	the	Navier–Stokes	equation.	In	2010	the
UK’s	main	science	funding	body,	the	Engineering	and	Physical	Sciences
Research	Council,	published	a	document	on	climate	change,	singling	out
mathematics	as	a	unifying	force:	‘Researchers	in	meteorology,	physics,
geography	and	a	host	of	other	fields	all	contribute	their	expertise,	but
mathematics	is	the	unifying	language	that	enables	this	diverse	group	of	people	to
implement	their	ideas	in	climate	models.’	The	document	also	explained	that	‘The
secrets	of	the	climate	system	are	locked	away	in	the	Navier–Stokes	equation,	but
it	is	too	complex	to	be	solved	directly.’	Instead,	climate	modellers	use	numerical
methods	to	calculate	the	fluid	flow	at	the	points	of	a	three-dimensional	grid,
covering	the	globe	from	the	ocean	depths	to	the	upper	reaches	of	the	atmosphere.
The	horizontal	spacing	of	the	grid	is	100	kilometres	–	anything	smaller	would



make	the	computations	impractical.	Faster	computers	won’t	help	much,	so	the
best	way	forward	is	to	think	harder.	Mathematicians	are	working	on	more
efficient	ways	to	solve	the	Navier–Stokes	equation	numerically.

The	Navier–Stokes	equation	is	only	part	of	the	climate	puzzle.	Other	factors
include	heat	flow	within	and	between	the	oceans	and	the	atmosphere,	the	effect
of	clouds,	non-human	contributions	such	as	volcanoes,	even	aircraft	emissions	in
the	stratosphere.	Skeptics	like	to	emphasise	such	factors	to	suggest	the	models
are	wrong,	but	most	of	them	are	known	to	be	irrelevant.	For	example,	every	year
volcanoes	contribute	a	mere	0.6%	of	the	carbon	dioxide	produced	by	human
activity.	All	of	the	main	models	suggest	that	there	is	a	serious	problem,	and
humans	have	caused	it.	The	main	question	is	just	how	much	the	planet	will
warm	up,	and	what	level	of	disaster	will	result.	Since	perfect	forecasting	is
impossible,	it	is	in	everybody’s	interests	to	make	sure	that	our	climate	models
are	the	best	we	can	devise,	so	that	we	can	take	appropriate	action.	As	the	glaciers
melt,	the	Northwest	Passage	opens	up	as	Arctic	ice	shrinks,	and	Antarctic	ice
shelves	are	breaking	off	and	sliding	into	the	ocean,	we	can	no	longer	take	the
risk	of	believing	that	we	don’t	need	to	do	anything	and	it	will	all	sort	itself	out.



11	Waves	in	the	ether

Maxwell’s	Equations

What	do	they	say?

Electricity	and	magnetism	can’t	just	leak	away.	A	spinning	region	of	electric
field	creates	a	magnetic	field	at	right	angles	to	the	spin.	A	spinning	region	of
magnetic	field	creates	an	electric	field	at	right	angles	to	the	spin,	but	in	the
opposite	direction.

Why	is	that	important?

It	was	the	first	major	unification	of	physical	forces,	showing	that	electricity	and
magnetism	are	intimately	interrelated.

What	did	it	lead	to?

The	prediction	that	electromagnetic	waves	exist,	travelling	at	the	speed	of	light,
so	light	itself	is	such	a	wave.	This	motivated	the	invention	of	radio,	radar,
television,	wireless	connections	for	computer	equipment,	and	most	modern
communications.



	

At	the	start	of	the	nineteenth	century	most	people	lit	their	houses	using	candles
and	lanterns.	Gas	lighting,	which	dates	from	1790,	was	occasionally	used	in
homes	and	business	premises,	mainly	by	inventors	and	entrepreneurs.	Gas	street
lighting	came	into	use	in	Paris	in	1820.	At	that	time,	the	standard	way	to	send
messages	was	to	write	a	letter	and	send	it	by	horse-drawn	carriage;	for	urgent
messages,	keep	the	horse	but	omit	the	carriage.	The	main	alternative,	mostly
restricted	to	military	and	official	communications,	was	the	optical	telegraph.
This	used	semaphore:	mechanical	devices	placed	on	towers,	which	could
represent	letters	or	words	in	code	by	arranging	rigid	arms	at	various	angles.
These	configurations	could	be	seen	through	a	telescope	and	relayed	to	the	next
tower	in	line.	The	first	extensive	system	of	this	kind	dates	from	1792,	when	the
French	engineer	Claude	Chappe	built	556	towers	to	create	a	4800	kilometre
network	across	most	of	France.	It	remained	in	use	for	sixty	years.

Within	a	hundred	years,	homes	and	streets	had	electric	lighting,	electric
telegraphy	had	come	and	gone,	and	people	could	talk	to	each	other	by	telephone.
Physicists	had	demonstrated	radio	communications	in	their	laboratories,	and	one
entrepreneur	had	already	set	up	a	factory	selling	‘wirelesses’	–	radio	sets	–	to	the
public.	Two	scientists	made	the	main	discoveries	that	triggered	this	social	and
technological	revolution.	One	was	the	Englishman	Michael	Faraday,	who
established	the	basic	physics	of	electromagnetism	–	a	tightly-knit	combination	of
the	previously	separate	phenomena	of	electricity	and	magnetism.	The	other	was
a	Scotsman,	James	Clerk	Maxwell,	who	turned	Faraday’s	mechanical	theories
into	mathematical	equations	and	used	them	to	predict	the	existence	of	radio
waves	travelling	at	the	speed	of	light.

The	Royal	Institution	in	London	is	an	imposing	building,	fronted	by	classical
columns,	tucked	away	on	a	side	street	near	Piccadilly	Circus.	Today	its	main
activity	is	to	host	popular	science	events	for	the	public,	but	when	it	was	founded
in	1799	its	brief	also	included	‘diffusing	the	knowledge,	and	facilitating	the
general	introduction,	of	useful	mechanical	inventions’.	When	John	‘Mad	Jack’
Fuller	established	a	Chair	in	Chemistry	at	the	Royal	Institution,	its	first
incumbent	was	not	an	academic.	He	was	the	son	of	a	would-be	blacksmith,	and
he	had	trained	as	a	bookseller’s	apprentice.	The	position	allowed	him	to	read
voraciously,	despite	his	family’s	lack	of	cash,	and	Jane	Marcet’s	Conversations
on	Chemistry	and	Isaac	Watts’s	The	Improvement	of	the	Mind	inspired	a	deep
interest	in	science	in	general	and	electricity	in	particular.



The	young	man	was	Michael	Faraday.	He	had	attended	lectures	at	the	Royal
Institution	given	by	the	eminent	chemist	Humphry	Davy,	and	he	sent	the	lecturer
300	pages	of	notes.	Shortly	afterwards	Davy	had	an	accident	that	damaged	his
eyesight,	and	asked	Faraday	to	become	his	secretary.	Then	an	assistant	at	the
Royal	Institution	got	the	sack,	and	Davy	suggested	Faraday	as	a	replacement,
setting	him	to	work	on	the	chemistry	of	chlorine.

The	Royal	Institution	allowed	Faraday	to	pursue	his	own	scientific	interests
as	well,	and	he	carried	out	innumerable	experiments	on	the	newly	discovered
topic	of	electricity.	In	1821	he	learned	of	the	work	of	the	Danish	scientist	Hans
Christian	Ørsted,	linking	electricity	to	the	much	older	phenomenon	of
magnetism.	Faraday	exploited	this	link	to	invent	an	electric	motor,	but	Davy	got
upset	when	he	didn’t	get	any	credit,	and	told	Faraday	to	work	on	other	things.
Davy	died	in	1831,	and	two	years	later	Faraday	began	a	series	of	experiments	on
electricity	and	magnetism	that	sealed	his	reputation	as	one	of	the	greatest
scientists	ever	to	have	lived.	His	extensive	investigations	were	partly	motivated
by	the	need	to	come	up	with	large	numbers	of	novel	experiments	to	edify	the
man	in	the	street	and	entertain	the	great	and	the	good,	as	part	of	the	Royal
Institution’s	brief	to	encourage	the	public	understanding	of	science.

Among	Faraday’s	inventions	were	methods	for	turning	electricity	into
magnetism	and	both	into	motion	(a	motor)	and	for	turning	motion	into	electricity
(a	generator).	These	exploited	his	greatest	discovery,	electromagnetic	induction.
If	material	that	can	conduct	electricity	moves	through	a	magnetic	field,	an
electrical	current	will	flow	through	it.	Faraday	discovered	this	in	1831.
Francesco	Zantedeschi	had	already	noticed	the	effect	in	1829,	and	Joseph	Henry
also	spotted	it	a	little	later.	But	Henry	delayed	publishing	his	discovery,	and
Faraday	took	the	idea	much	further	than	Zantedeschi	had	done.	Faraday’s	work
went	far	beyond	the	Royal	Institution’s	brief	to	facilitate	useful	mechanical
inventions,	by	creating	innovative	machines	that	exploited	frontier	physics.	This
led,	fairly	directly,	to	electric	power,	lighting,	and	a	thousand	other	gadgets.
When	others	took	up	the	baton,	the	whole	panoply	of	modern	electrical	and
electronic	equipment	burst	upon	the	scene,	starting	with	radio,	moving	on	to
television,	radar,	and	long-distance	communications.	It	was	Faraday,	more	than
any	other	single	individual,	who	created	the	modern	technological	world,	with
the	help	of	vital	new	ideas	from	hundreds	of	gifted	engineers,	scientists,	and
businessmen.

Being	working	class	and	lacking	the	normal	education	of	a	gentleman,
Faraday	taught	himself	science	but	not	mathematics.	He	developed	his	own
theories	to	explain	and	guide	his	experiments,	but	they	rested	on	mechanical



analogies	and	conceptual	machines,	not	on	formulas	and	equations.	His	work
took	its	deserved	place	in	basic	physics	through	the	intervention	of	one	of
Scotland’s	greatest	scientific	intellects,	James	Clerk	Maxwell.

Maxwell	was	born	the	same	year	that	Faraday	announced	the	discovery	of
electromagnetic	induction.	One	application,	the	electromagnetic	telegraph,
quickly	followed,	thanks	to	Gauss	and	his	assistant	Wilhelm	Weber.	Gauss
wanted	to	use	wires	to	carry	electrical	signals	between	Göttingen	Observatory,
where	he	hung	out,	to	the	Institute	of	Physics	a	kilometre	away,	where	Weber
worked.	Presciently,	Gauss	simplified	the	previous	technique	for	distinguishing
letters	of	the	alphabet	–	one	wire	per	letter	–	by	introducing	a	binary	code	using
positive	and	negative	current,	see	Chapter	15.	By	1839	the	Great	Western
Railway	company	was	sending	messages	by	telegraph	from	Paddington	to	West
Drayton,	a	distance	of	21	kilometres.	In	the	same	year	Samuel	Morse
independently	invented	his	own	electric	telegraph	in	the	USA,	employing	Morse
code	(invented	by	his	assistant	Alfred	Vail)	and	sending	its	first	message	in
1838.

In	1876,	three	years	before	Maxwell	died,	Alexander	Graham	Bell	took	out
the	first	patent	on	a	new	gadget,	the	acoustic	telegraph.	It	was	a	device	that
turned	sound,	especially	speech,	into	electrical	impulses,	and	transmitted	them
along	a	wire	to	a	receiver,	which	turned	them	back	into	sound.	We	now	know	it
as	the	telephone.	He	wasn’t	the	first	person	to	conceive	of	such	a	thing,	or	even
to	build	one,	but	he	held	the	master	patent.	Thomas	Edison	improved	the	design
with	his	carbon	microphone	of	1878.	A	year	later,	Edison	developed	the	carbon
filament	electric	light	bulb,	and	cemented	himself	in	the	popular	mind	as	the
inventor	of	electric	lighting.	In	point	of	fact,	he	was	preceded	by	at	least	23
inventors,	the	best	known	being	Joseph	Swan,	who	had	patented	his	version	in
1878.	In	1880,	one	year	after	Maxwell’s	death,	the	city	of	Wabash,	Illinois
became	the	first	to	use	electric	lighting	for	its	streets.

These	revolutions	in	communication	and	lighting	owed	a	lot	to	Faraday;
electrical	power	generation	also	owed	a	lot	to	Maxwell.	But	Maxwell’s	most	far-
reaching	legacy	was	to	make	the	telephone	seem	like	a	child’s	toy.	And	it
stemmed,	directly	and	inevitably,	from	his	equations	for	electromagnetism.

Maxwell	was	born	into	a	talented	but	eccentric	Edinburgh	family,	which
included	lawyers,	judges,	musicians,	politicians,	poets,	mining	speculators,	and
businessmen.	As	a	teenager	he	began	to	succumb	to	the	charms	of	mathematics,
winning	a	school	competition	with	an	essay	on	how	to	construct	oval	curves



using	pins	and	thread.	At	16	he	went	to	Edinburgh	University,	where	he	studied
mathematics	and	experimented	in	chemistry,	magnetism,	and	optics.	He
published	papers	in	pure	and	applied	mathematics	in	the	Royal	Society	of
Edinburgh’s	journal.	In	1850	his	mathematical	career	took	a	more	serious	turn
and	he	moved	to	Cambridge	University,	where	he	was	privately	coached	for	the
mathematical	tripos	examination	by	William	Hopkins.	The	tripos	in	those	days
consisted	of	solving	complicated	problems,	often	involving	clever	tricks	and
extensive	calculations,	against	the	clock.	Later	Godfrey	Harold	Hardy,	one	of
England’s	best	mathematicians	and	a	Cambridge	professor,	would	have	strong
views	about	how	to	do	creative	mathematics,	and	cramming	for	a	tricky
examination	wasn’t	it.	In	1926	he	remarked	that	his	aim	was	‘not…	to	reform
the	tripos,	but	to	destroy	it’.	But	Maxwell	crammed,	and	thrived,	in	the
competitive	atmosphere,	probably	because	he	had	that	sort	of	mind.

He	also	continued	his	weird	experiments,	among	other	things	trying	to	work
out	how	a	cat	always	lands	on	its	feet,	even	when	it	is	held	upside	down	only	a
few	centimetres	above	a	bed.	The	difficulty	is	that	this	appears	to	violate
Newtonian	mechanics;	the	cat	has	to	rotate	through	180	degrees,	but	has	nothing
to	push	against.	The	precise	mechanism	eluded	him,	and	was	not	worked	out
until	the	French	doctor	Jules	Marey	made	a	series	of	photographs	of	a	falling	cat
in	1894.	The	secret	is	that	the	cat	is	not	rigid:	it	twists	its	front	and	back	in
opposite	directions	and	back	again,	while	extending	and	retracting	its	paws	to
stop	these	motions	cancelling	out.1

Maxwell	got	his	mathematics	degree,	and	continued	as	a	postgraduate	at
Trinity	College.	There	he	read	Faraday’s	Experimental	Researches	and	worked
on	electricity	and	magnetism.	He	took	up	a	chair	of	Natural	Philosophy	in
Aberdeen,	investigating	Saturn’s	rings	and	the	dynamics	of	the	molecules	in
gases.	In	1860	he	moved	to	King’s	College	London,	and	here	he	could
sometimes	meet	with	Faraday.	Now	Maxwell	embarked	on	his	most	influential
quest:	to	formulate	a	mathematical	basis	for	Faraday’s	experiments	and	theories.

At	the	time,	most	physicists	working	on	electricity	and	magnetism	were	looking
for	analogies	with	gravity.	It	seemed	sensible:	opposite	electrical	charges	attract
each	other	with	a	force	which,	like	gravity,	is	proportional	to	the	inverse	square
of	the	distance	separating	them.	Like	charges	repel	each	other	with	a	similarly
varying	force,	and	the	same	goes	for	magnetism,	where	charges	are	replaced	by
magnetic	poles.	The	standard	way	of	thinking	was	that	gravity	was	a	force
whereby	one	body	mysteriously	acted	on	another	distant	body,	without	anything
passing	between	the	two;	electricity	and	magnetism	were	assumed	to	act	in	the



same	manner.	Faraday	had	a	different	idea:	they	are	both	‘fields’,	phenomena
that	pervade	space	and	can	be	detected	by	the	forces	they	produce.

What	is	a	field?	Maxwell	could	make	little	progress	until	he	could	describe
the	concept	mathematically.	But	Faraday,	lacking	mathematical	training,	had
posed	his	theories	in	terms	of	geometric	structures,	such	as	‘lines	of	force’	along
which	the	fields	pulled	and	pushed.	Maxwell’s	first	great	breakthrough	was	to
reformulate	these	ideas	by	analogy	with	the	mathematics	of	fluid	flow,	where	the
field	in	effect	is	the	fluid.	Lines	of	force	were	then	analogous	to	the	paths
followed	by	the	molecules	of	the	fluid;	the	strength	of	the	electric	or	magnetic
field	was	analogous	to	the	velocity	of	the	fluid.	Informally,	a	field	was	an
invisible	fluid;	mathematically,	it	behaved	exactly	like	that,	whatever	it	really
was.	Maxwell	borrowed	ideas	from	the	mathematics	of	fluids	and	modified	them
to	describe	magnetism.	His	model	accounted	for	the	main	properties	observed	in
electricity.

Not	content	with	this	initial	attempt,	he	went	on	to	include	not	just
magnetism,	but	its	relation	to	electricity.	As	the	electrical	fluid	flowed,	it
affected	the	magnetic	one,	and	vice	versa.	For	magnetic	fields	Maxwell	used	the
mental	image	of	tiny	vortices	spinning	in	space.	Electric	fields	were	similarly
composed	of	tiny	charged	spheres.	Following	this	analogy	and	the	resulting
mathematics,	Maxwell	began	to	understand	how	a	change	in	the	electric	force
could	create	a	magnetic	field.	As	the	spheres	of	electricity	move,	they	cause	the
magnetic	vortices	to	spin,	like	a	football	fan	passing	through	a	turnstile.	The	fan
moves	without	spinning;	the	turnstile	spins	without	moving.

Maxwell	was	slightly	dissatisfied	with	this	analogy,	saying	‘I	do	not	bring	it
forward…	as	a	mode	of	connection	existing	in	nature…	It	is,	however…
mechanically	conceivable	and	easily	investigated,	and	it	serves	to	bring	out	the
actual	mechanical	connections	between	the	known	electromagnetic	phenomena.’
To	show	what	he	meant,	he	used	the	model	to	explain	why	parallel	wires
carrying	opposite	electrical	currents	repel	each	other,	and	he	also	explained
Faraday’s	crucial	discovery	of	electromagnetic	induction.

The	next	step	was	to	retain	the	mathematics	while	getting	rid	of	the
mechanical	gadgetry	that	propelled	the	analogy.	This	amounted	to	writing	down
equations	for	the	basic	interactions	between	the	electrical	and	magnetic	fields,
derived	from	the	mechanical	model,	but	divorced	from	this	origin.	Maxwell
achieved	this	goal	in	1864	in	his	famous	paper	‘A	dynamical	theory	of	the
electromagnetic	field’.

We	now	interpret	his	equations	using	vectors,	which	are	quantities	that



possess	not	just	a	size,	but	a	direction.	The	most	familiar	is	velocity:	the	size	is
the	speed,	how	fast	the	object	is	moving;	the	direction	is	the	one	along	which	it
moves.	The	direction	really	does	matter:	a	body	moving	vertically	upwards	at	10
kps	behaves	very	differently	from	one	moving	vertically	downwards	at	10	kps.
Mathematically,	a	vector	is	represented	by	its	three	components:	its	effect	along
three	axes	at	right	angles	to	each	other,	such	as	north/south,	east/west,	and
up/down.	The	bare	bones	are	thus	that	a	vector	is	a	triple	(x,	y,	z)	composed	of
three	numbers,	Figure	44.	The	velocity	of	a	fluid	at	a	given	point,	for	instance,	is
a	vector.	In	contrast,	the	pressure	at	a	given	point	is	a	single	number:	the	fancy
term	used	to	distinguish	this	from	a	vector	is	‘scalar’.

Fig	44	A	three-dimensional	vector.

In	these	terms,	what	is	the	electric	field?	From	Faraday’s	perspective	it	is
determined	by	lines	of	electrical	force.	In	Maxwell’s	analogy,	these	are	flow-
lines	of	the	electrical	fluid.	A	flow-line	tells	us	in	which	direction	the	fluid	is
flowing,	and	as	a	molecule	moves	along	the	flow-line,	we	can	also	observe	its
speed.	For	each	point	in	space,	the	flow-line	passing	through	that	point	therefore
determines	a	vector,	which	describes	the	speed	and	direction	of	the	electric	fluid,
that	is,	the	strength	and	direction	of	the	electric	field	at	that	point.	Conversely,	if
we	know	these	speeds	and	directions,	for	every	point	in	space,	we	can	deduce
what	the	flow-lines	look	like,	so	in	principle	we	know	the	electric	field.

In	short:	the	electric	field	is	a	system	of	vectors,	one	for	each	point	in	space.
Each	vector	prescribes	the	strength	and	direction	of	the	electrical	force	(exerted
on	a	tiny	charged	test	particle)	at	that	point.	Mathematicians	call	such	a	quantity
a	vector	field:	it	is	a	function	that	assigns	to	each	point	in	space	the
corresponding	vector.	Similarly,	the	magnetic	field	is	determined	by	the
magnetic	lines	of	force;	it	is	the	vector	field	corresponding	to	the	forces	that
would	be	exerted	on	a	tiny	magnetic	test	particle.

Having	sorted	out	what	electric	and	magnetic	fields	were,	Maxwell	could



write	down	equations	describing	what	they	did.	We	now	express	these	equations
using	two	vector	operators,	known	as	divergence	and	curl.	Maxwell	used
specific	formulas	involving	the	three	components	of	the	electric	and	magnetic
fields.	In	the	special	case	in	which	there	are	no	conducting	wires	or	metal	plates,
no	magnets,	and	everything	happens	in	a	vacuum,	the	equations	take	a	slightly
simpler	form,	and	I	will	restrict	the	discussion	to	this	case.

Two	of	the	equations	tell	us	that	the	electric	and	magnetic	fluids	are
incompressible	–	that	is,	electricity	and	magnetism	cannot	just	leak	away,	they
have	to	go	somewhere.	This	translates	as	‘the	divergence	is	zero’,	leading	to	the
equations

∇.	E	=	0						∇.	H	=	0

where	the	upside-down	triangle	and	the	dot	are	the	notation	for	the	divergence.
Two	more	equations	tell	us	that	when	a	region	of	electric	field	spins	in	a	small
circle,	it	creates	a	magnetic	field	at	right	angles	to	the	plane	of	that	circle,	and
similarly	a	spinning	region	of	magnetic	field	creates	an	electric	field	at	right
angles	to	the	plane	of	that	circle.	There	is	a	curious	twist:	the	electric	and
magnetic	fields	point	in	opposite	directions	for	a	given	direction	of	spin.	The
equations	are

where	now	the	upside-down	triangle	and	the	cross	are	the	notation	for	the	curl.
The	symbol	t	stands	for	time,	and	∂/∂t	is	the	rate	of	change	with	respect	to	time.
Notice	that	the	first	equation	has	a	minus	sign,	but	the	second	does	not:	this
represents	the	opposite	orientations	that	I	mentioned.

What	is	c?	It	is	a	constant,	the	ratio	of	electromagnetic	to	electrostatic	units.
Experimentally	this	ratio	is	just	under	300,000,	in	units	of	kilometres	divided	by
seconds.	Maxwell	immediately	recognised	this	number:	it	is	the	speed	of	light	in
a	vacuum.	Why	did	that	quantity	appear?	He	decided	to	find	out.	One	clue,
dating	back	to	Newton,	and	developed	by	others,	was	the	discovery	that	light
was	some	kind	of	wave.	But	no	one	knew	what	the	wave	consisted	of.

A	simple	calculation	provided	the	answer.	Once	you	know	the	equations	for
electromagnetism,	you	can	solve	them	to	predict	how	the	electric	and	magnetic
fields	behave	in	different	circumstances.	You	can	also	derive	general
mathematical	consequences.	For	instance,	the	second	pair	of	equations	relates	E



to	H;	any	mathematician	will	immediately	try	to	derive	equations	that	contain
only	E	and	only	H,	because	that	lets	us	concentrate	on	each	field	separately.
Considering	its	epic	consequences,	this	task	turns	out	to	be	absurdly	simple	–	if
you	have	some	familiarity	with	vector	calculus.	I’ve	put	the	detailed	working	in
the	Notes,2	but	here’s	a	quick	summary.	Following	our	noses,	we	start	with	the
third	equation,	which	relates	the	curl	of	E	to	the	time-derivative	of	H.	We	don’t
have	any	other	equations	involving	the	time-derivative	of	H,	but	we	do	have	one
that	involves	the	curl	of	H,	namely,	the	fourth	equation.	This	suggests	that	we
should	take	the	third	equation	and	form	the	curl	of	both	sides.	Then	we	apply	the
fourth	equation,	simplify,	and	emerge	with

which	is	the	wave	equation!
The	same	trick	applied	to	the	curl	of	H	produces	the	same	equation	with	H	in

place	of	E.	(The	minus	sign	is	applied	twice,	so	it	disappears.)	So	both	the
electric	and	magnetic	fields,	in	a	vacuum,	obey	the	wave	equation.	Since	the
same	constant	c	occurs	in	each	wave	equation,	they	both	travel	at	the	same
speed,	namely	c.	So	this	little	calculation	predicts	that	both	the	electric	field	and
the	magnetic	field	can	simultaneously	support	a	wave	–	making	it	an
electromagnetic	wave,	in	which	both	fields	vary	in	concert	with	each	other.	And
the	speed	of	that	wave	is	…	the	speed	of	light.

It’s	another	of	those	trick	questions.	What	travels	at	the	speed	of	light?	This
time	the	answer	is	what	you’d	expect:	light.	But	there	is	a	momentous
implication:	light	is	an	electromagnetic	wave.

This	was	stupendous	news.	There	was	no	reason,	prior	to	Maxwell’s
derivation	of	his	equations,	to	imagine	such	a	fundamental	link	between	light,
electricity,	and	magnetism.	But	there	was	more.	Light	comes	in	many	different
colours,	and	once	you	know	that	light	is	a	wave,	you	can	work	out	that	these
correspond	to	waves	with	different	wavelengths	–	distance	betweens	successive
peaks.	The	wave	equation	imposes	no	conditions	on	the	wavelength,	so	it	can	be
anything.	The	wavelengths	of	visible	light	are	restricted	to	a	small	range,
because	of	the	chemistry	of	the	eye’s	light-detecting	pigments.	Physicists
already	knew	of	‘invisible	light’,	ultraviolet	and	infrared.	Those,	of	course,	had
wavelengths	just	outside	the	visible	range.	Now	Maxwell’s	equations	led	to	a
dramatic	prediction:	electromagnetic	waves	with	other	wavelengths	should	also
exist.	Conceivably,	any	wavelength	–	long	or	short	–	could	occur,	Figure	45.



Fig	45	The	electromagnetic	spectrum.

No	one	had	expected	this,	but	as	soon	as	theory	said	it	ought	to	happen,
experimentalists	could	go	and	look	for	it.	One	of	them	was	a	German,	Heinrich
Hertz.	In	1886	he	constructed	a	device	that	could	generate	radio	waves	and
another	that	could	receive	them.	The	transmitter	was	little	more	than	a	machine
that	could	produce	a	high-voltage	spark;	theory	indicated	that	such	a	spark
would	emit	radio	waves.	The	receiver	was	a	circular	loop	of	copper	wire,	whose
size	was	chosen	to	resonate	with	the	incoming	waves.	A	small	gap	in	the	loop,	a
few	hundredths	of	a	millimetre	across,	would	reveal	those	waves	by	producing
tiny	sparks.	In	1887	Hertz	did	the	experiment,	and	it	was	a	success.	He	went	on
to	investigate	many	different	features	of	radio	waves.	He	also	measured	their
speed,	getting	an	answer	close	to	the	speed	of	light,	which	confirmed	Maxwell’s
prediction	and	confirmed	that	his	apparatus	really	was	detecting	electromagnetic
waves.

Hertz	knew	that	his	work	was	important	as	physics,	and	he	published	it	in
Electric	Waves:	being	researches	on	the	propagation	of	electric	action	with
finite	velocity	through	space.	But	it	never	occurred	to	him	that	the	idea	might
have	practical	uses.	When	asked,	he	replied	‘It’s	of	no	use	whatsoever	…	just	an
experiment	that	proves	Maestro	Maxwell	was	right	–	we	just	have	these
mysterious	electromagnetic	waves	that	we	cannot	see	with	the	naked	eye.	But
they	are	there.’	Pressed	for	his	view	of	the	implications,	he	said	‘Nothing,	I
guess.’

Was	it	a	failure	of	imagination,	or	just	a	lack	of	interest?	It’s	hard	to	tell.	But
Hertz’s	‘useless’	experiment,	confirming	Maxwell’s	prediction	of
electromagnetic	radiation,	would	quickly	lead	to	an	invention	that	made	the



telephone	look	like	a	children’s	toy.
Radio.

Radio	makes	use	of	an	especially	intriguing	range	of	the	spectrum:	waves	with
wavelengths	much	longer	than	light.	Such	waves	would	be	likely	to	retain	their
structure	over	long	distances.	The	key	idea,	the	one	that	Hertz	missed,	is	simple:
if	you	could	somehow	impress	a	signal	on	a	wave	of	that	kind,	you	could	talk	to
the	world.

Other	physicists,	engineers,	and	entrepreneurs	were	more	imaginative,	and
quickly	spotted	radio’s	potential.	To	realise	that	potential,	however,	they	had	to
solve	a	number	of	technical	problems.	They	needed	a	transmitter	that	could
produce	a	sufficiently	powerful	signal,	and	something	to	receive	it.	Hertz’s
apparatus	was	restricted	to	a	distance	of	a	few	feet;	you	can	understand	why	he
didn’t	suggest	communication	as	a	possible	application.	Another	problem	was
how	to	impose	a	signal.	A	third	was	how	far	the	signal	could	be	sent,	which
might	well	be	limited	by	the	curvature	of	the	Earth.	If	a	straight	line	between
transmitter	and	receiver	hits	the	ground,	this	would	presumably	block	the	signal.
Later	it	turned	out	that	nature	has	been	kind	to	us,	and	the	Earth’s	ionosphere
reflects	radio	waves	in	a	wide	range	of	wavelengths,	but	before	this	was
discovered	there	were	obvious	ways	round	the	potential	problem	anyway.	You
could	build	tall	towers	and	put	the	transmitters	and	receivers	on	those.	By
relaying	signals	from	one	tower	to	another,	you	could	send	messages	round	the
globe,	very	fast.

There	are	two	relatively	obvious	ways	to	impress	a	signal	on	a	radio	wave.
You	can	make	the	amplitude	vary	or	you	can	make	the	frequency	vary.	These
methods	are	called	amplitude-modulation	and	frequency-modulation:	AM	and
FM.	Both	were	used	and	both	still	exist.	That	was	one	problem	solved.	By	1893
the	Serbian	engineer	Nikola	Tesla	had	invented	and	built	all	of	the	main	devices
needed	for	radio	transmission,	and	he	had	demonstrated	his	methods	to	the
public.	In	1894	Oliver	Lodge	and	Alexander	Muirhead	sent	a	radio	signal	from
the	Clarendon	laboratory	in	Oxford	to	a	nearby	lecture	theatre.	A	year	later	the
Italian	inventor	Guglielmo	Marconi	transmitted	signals	over	a	distance	of	1.5
kilometres	using	new	apparatus	he	had	invented.	The	Italian	government
declined	to	finance	further	work,	so	Marconi	moved	to	England.	With	the
support	of	the	British	Post	Office	he	soon	improved	the	range	to	16	kilometres.
Further	experiments	led	to	Marconi’s	law:	the	distance	over	which	signals	can	be
sent	is	roughly	proportional	to	the	square	of	the	height	of	the	transmitting
antenna.	Make	the	tower	twice	as	tall	and	the	signal	goes	four	times	as	far.	This,



too,	was	good	news:	it	suggested	that	long-range	transmission	should	be
practical.	Marconi	set	up	a	transmitting	station	on	the	Isle	of	Wight	in	the	UK	in
1897,	and	opened	a	factory	the	next	year,	making	what	he	called	‘wirelesses’.
We	still	called	them	that	in	1952,	when	I	listened	to	the	Goon	Show	and	Dan
Dare	on	the	wireless	in	my	bedroom,	but	even	then	we	also	referred	to	the	device
as	‘the	radio’.	The	word	‘wireless’	has	of	course	come	back	into	vogue,	but	now
it	is	the	links	between	your	computer	and	its	keyboard,	mouse,	modem,	and
Internet	router	that	are	wireless,	rather	than	the	link	from	your	receiver	to	a
distant	transmitter.	It’s	still	done	by	radio.

Initially	Marconi	owned	the	main	patents	to	radio,	but	he	lost	them	to	Tesla	in
1943	in	a	court	battle.	Technological	advances	quickly	made	those	patents
obsolete.	From	1906	to	the	1950s,	the	vital	electronic	component	of	a	radio	was
the	vacuum	tube,	like	a	smallish	light	bulb,	so	radios	had	to	be	big	and	bulky.
The	transistor,	a	much	smaller	and	more	robust	device,	was	invented	in	1947	at
Bell	Laboratories	by	an	engineering	team	that	included	William	Shockley,
Walter	Brattain,	and	John	Bardeen	(see	Chapter	14).	By	1954	transistor	radios
were	on	the	market,	but	radio	was	already	losing	its	primacy	as	an	entertainment
medium.

By	1953,	I’d	already	seen	the	future.	It	was	the	coronation	of	Queen	Elizabeth
II,	and	my	aunt	in	Tonbridge	had	…	a	television	set!	So	we	piled	into	my
father’s	rickety	car	and	drove	40	miles	to	watch	the	event.	I	was	more	impressed
by	Bill	and	Ben	the	Flowerpot	Men	than	by	the	coronation,	to	be	honest,	but
from	that	moment	radio	was	no	longer	the	epitome	of	modern	household
entertainment.	Soon	we,	too,	possessed	a	television	set.	Anyone	who	has	grown
up	with	48-inch	flatscreen	colour	TVs	with	high	definition	and	a	thousand
channels	will	be	appalled	to	hear	that	in	those	days	the	picture	was	black-and-
white,	about	12	inches	across,	and	(in	the	UK)	there	was	exactly	one	channel,
the	BBC.	When	we	watched	‘the	television’	it	really	meant	the	television.

Entertainment	was	just	one	application	of	radio	waves.	They	were	also	vital	to
the	military,	for	communications	and	other	purposes.	The	invention	of	radar
(radio	detection	and	ranging)	may	well	have	won	World	War	II	for	the	Allies.
This	top-secret	device	made	it	possible	to	detect	aircraft,	especially	enemy
aircraft,	by	bouncing	radio	signals	off	them	and	observing	the	reflected	waves.
The	urban	myth	that	carrots	are	good	for	your	eyesight	originated	in	wartime
disinformation,	intended	to	stop	the	Nazis	wondering	why	the	British	were
getting	so	good	at	spotting	raiding	bombers.	Radar	has	peacetime	uses	as	well.	It
is	how	air	traffic	controllers	keep	tabs	on	where	all	the	planes	are,	to	prevent



collisions;	it	guides	passenger	jets	to	the	runway	in	fog;	it	warns	pilots	of
imminent	turbulence.	Archaeologists	use	ground-penetrating	radar	to	locate
likely	sites	for	the	remains	of	tombs	and	ancient	structures.

X-rays,	first	studied	systematically	by	Wilhelm	Röntgen	in	1875,	have	much
shorter	wavelengths	than	light.	This	makes	them	more	energetic,	so	they	can
pass	through	opaque	objects,	notably	the	human	body.	Doctors	could	use	X-rays
to	detect	broken	bones	and	other	physiological	problems,	and	still	do,	although
modern	methods	are	more	sophisticated	and	subject	the	patient	to	far	less
damaging	radiation.	X-ray	scanners	can	now	create	three-dimensional	images	of
a	human	body,	or	some	part	of	it,	in	a	computer.	Other	kinds	of	scanner	can	do
the	same	thing	using	different	physics.

Microwaves	are	efficient	ways	to	send	telephone	signals,	and	they	also	turn
up	in	the	kitchen	in	microwave	ovens,	quick	ways	to	heat	food.	One	of	the	latest
applications	to	emerge	is	in	airport	security.	Terahertz	radiation,	otherwise
known	as	T-waves,	can	penetrate	clothing	and	even	body	cavities.	Customs
officials	can	use	them	to	spot	drug	smugglers	and	terrorists.	Their	use	is	a	little
controversial,	since	they	amount	to	an	electronic	strip-search,	but	most	of	us
seem	to	think	that’s	a	small	price	to	pay	if	it	stops	a	plane	being	blown	up	or
cocaine	hitting	the	streets.	T-waves	are	also	useful	to	art	historians,	because	they
can	reveal	murals	covered	in	layers	of	plaster.	Manufacturers	and	commercial
carriers	can	use	T-waves	to	inspect	products	without	taking	them	out	of	their
boxes.

The	electromagnetic	spectrum	is	so	versatile,	and	so	effective,	that	its
influence	is	now	felt	in	virtually	all	spheres	of	human	activity.	It	makes	things
possible	that	to	any	previous	generation	would	appear	miraculous.	It	took	a	vast
number	of	people,	from	every	profession,	to	turn	the	possibilities	inherent	in	the
mathematical	equations	into	real	gadgets	and	commercial	systems.	But	none	of
this	was	possible	until	someone	realised	that	electricity	and	magnetism	can	join
forces	to	create	a	wave.	The	whole	panoply	of	modern	communications,	from
radio	and	television	to	radar	and	microwave	links	for	mobile	phones,	was	then
inevitable.	And	it	all	stemmed	from	four	equations	and	a	couple	of	lines	of	basic
vector	calculus.

Maxwell’s	equations	didn’t	just	change	the	world.	They	opened	up	a	new
one.



12	Law	and	disorder

Second	Law	of	Thermodynamics

What	does	it	say?

The	amount	of	disorder	in	a	thermodynamic	system	always	increases.

Why	is	that	important?

It	places	limits	on	how	much	useful	work	can	be	extracted	from	heat.

What	did	it	lead	to?

Better	steam	engines,	estimates	of	the	efficiency	of	renewable	energy,	the	‘heat
death	of	the	universe’	scenario,	proof	that	matter	is	made	of	atoms,	and
paradoxical	connections	with	the	arrow	of	time.



	

In	May	1959	the	physicist	and	novelist	C.P.	Snow	delivered	a	lecture	with	the
title	The	Two	Cultures,	which	provoked	widespread	controversy.	The	response
of	the	prominent	literary	critic	F.R.	Leavis	was	typical	of	the	other	side	of	the
argument;	he	said	bluntly	that	there	was	only	one	culture:	his.	Snow	suggested
that	the	sciences	and	the	humanities	had	lost	touch	with	each	other,	and	argued
that	this	was	making	it	very	difficult	to	solve	the	world’s	problems.	We	see	the
same	today	with	climate	change	denial	and	attacks	on	evolution.	The	motivation
may	be	different,	but	cultural	barriers	help	such	nonsense	to	thrive	–	though	it	is
politics	that	drives	it.

Snow	was	particularly	unhappy	about	what	he	saw	as	declining	standards	of
education,	saying:

A	good	many	times	I	have	been	present	at	gatherings	of	people	who,
by	the	standards	of	the	traditional	culture,	are	thought	highly
educated	and	who	have	with	considerable	gusto	been	expressing
their	incredulity	at	the	illiteracy	of	scientists.	Once	or	twice	I	have
been	provoked	and	have	asked	the	company	how	many	of	them
could	describe	the	Second	Law	of	Thermodynamics,	the	law	of
entropy.	The	response	was	cold:	it	was	also	negative.	Yet	I	was
asking	something	which	is	about	the	scientific	equivalent	of:	‘Have
you	read	a	work	of	Shakespeare’s?’

Perhaps	he	sensed	he	was	asking	too	much	–	many	qualified	scientists	can’t	state
the	second	law	of	thermodynamics.	So	he	later	added:

I	now	believe	that	if	I	had	asked	an	even	simpler	question	–	such	as,
What	do	you	mean	by	mass,	or	acceleration,	which	is	the	scientific
equivalent	of	saying,	‘Can	you	read?’	–	not	more	than	one	in	ten	of
the	highly	educated	would	have	felt	that	I	was	speaking	the	same
language.	So	the	great	edifice	of	modern	physics	goes	up,	and	the
majority	of	the	cleverest	people	in	the	western	world	have	about	as
much	insight	into	it	as	their	Neolithic	ancestors	would	have	had.

Taking	Snow	literally,	my	aim	in	this	chapter	is	to	take	us	out	of	the	Neolithic
age.	The	word	‘thermodynamics’	contains	a	clue:	it	appears	to	mean	the
dynamics	of	heat.	Can	heat	be	dynamic?	Yes:	heat	can	flow.	It	can	move	from



one	location	to	another,	from	one	object	to	another.	Go	outside	on	a	winter’s	day
and	you	soon	feel	cold.	Fourier	had	written	down	the	first	serious	model	of	heat
flow,	Chapter	9	and	done	some	beautiful	mathematics.	But	the	main	reason
scientists	were	becoming	interested	in	heat	flow	was	a	newfangled	and	highly
profitable	item	of	technology:	the	steam	engine.

There	is	an	oft-repeated	story	of	James	Watt	as	a	boy,	sitting	in	his	mother’s
kitchen	watching	boiling	steam	lift	the	lid	off	a	kettle,	and	his	sudden	flash	of
inspiration:	steam	can	perform	work.	So,	when	he	grew	up,	he	invented	the
steam	engine.	It’s	inspirational	stuff,	but	like	many	such	tales	this	one	is	just	hot
air.	Watt	didn’t	invent	the	steam	engine,	and	he	didn’t	learn	about	the	power	of
steam	until	he	was	an	adult.	The	story’s	conclusion	about	the	power	of	steam	is
true,	but	even	in	Watt’s	day	it	was	old	hat.

Around	50	BC	the	Roman	architect	and	engineer	Vitruvius	described	a
machine	called	an	aeolipile	in	his	De	Architectura	(‘On	Architecture’),	and	the
Greek	mathematician	and	engineer	Hero	of	Alexandria	built	one	a	century	later.
It	was	a	hollow	sphere	with	some	water	inside,	and	two	tubes	poked	out,	bent	at
an	angle	as	in	Figure	46.	Heat	the	sphere	and	the	water	turns	to	steam,	escapes
through	the	ends	of	the	tubes,	and	the	reaction	makes	the	sphere	spin.	It	was	the
first	steam	engine,	and	it	proved	that	steam	could	do	work,	but	Hero	did	nothing
with	it	beyond	entertaining	people.	He	did	make	a	similar	machine	using	hot	air
in	an	enclosed	chamber	to	pull	a	rope	that	opened	the	doors	of	a	temple.	This
machine	had	a	practical	application,	producing	a	religious	miracle,	but	it	wasn’t
a	steam	engine.



Fig	46	Hero’s	aeolipile.

Watt	learned	that	steam	could	be	a	source	of	power	in	1762	when	he	was	26
years	old.	He	didn’t	discover	it	watching	a	kettle:	his	friend	John	Robison,	a
professor	of	natural	philosophy	at	the	University	of	Edinburgh,	told	him	about	it.
But	practical	steam	power	was	much	older.	Its	discovery	is	often	credited	to	the
Italian	engineer	and	architect	Giovanni	Branca,	whose	Le	Machine	(‘Machine’)
of	1629	contained	63	woodcuts	of	mechanical	gadgets.	One	shows	a
paddlewheel	that	would	spin	on	its	axle	when	steam	from	a	pipe	collided	with	its
vanes.	Branca	speculated	that	this	machine	might	be	useful	for	grinding	flour,
lifting	water,	and	cutting	up	wood,	but	it	was	probably	never	built.	It	was	more
of	a	thought	experiment,	a	mechanical	pipedream	like	Leonardo	da	Vinci’s
flying	machine.

In	any	case,	Branca	was	anticipated	by	Taqi	al-Din	Muhammad	ibn	Ma’ruf
al-Shami	al-Asadi,	who	lived	around	1550	in	the	Ottoman	Empire	and	was
widely	held	to	be	the	greatest	scientist	of	his	age.	His	achievements	are
impressive.	He	worked	in	everything	from	astrology	to	zoology,	including	clock-
making,	medicine,	philosophy,	and	theology,	and	he	wrote	over	90	books.	In	his
1551	Al-turuq	al-samiyya	fi	al-alat	al-ruhaniyya	(‘The	Sublime	Methods	of
Spiritual	Machines’),	al-Din	described	a	primitive	steam	turbine,	saying	that	it
could	be	used	to	turn	roasting	meat	on	a	spit.

The	first	truly	practical	steam	engine	was	a	water	pump	invented	by	Thomas
Savery	in	1698.	The	first	to	make	commercial	profits,	built	by	Thomas
Newcomen	in	1712,	triggered	the	Industrial	Revolution.	But	Newcomen’s
engine	was	very	inefficient.	Watt’s	contribution	was	to	introduce	a	separate
condenser	for	the	steam,	reducing	heat	loss.	Developed	using	money	provided
by	the	entrepreneur	Matthew	Bolton,	this	new	type	of	engine	used	only	a	quarter
as	much	coal,	leading	to	huge	savings.	Boulton	and	Watt’s	machine	went	into
production	in	1775,	more	than	220	years	after	al-Din’s	book.	By	1776,	three
were	up	and	running:	one	in	a	coal	mine	at	Tipton,	one	in	a	Shropshire
ironworks,	and	one	in	London.

Steam	engines	performed	a	variety	of	industrial	tasks,	but	by	far	the
commonest	was	pumping	water	from	mines.	It	cost	a	lot	of	money	to	develop	a
mine,	but	as	the	upper	layers	became	worked	out	and	operators	were	forced	to
dig	deeper	into	the	ground,	they	hit	the	water	table.	It	was	worth	spending	quite
a	lot	of	money	to	pump	the	water	out,	since	the	alternative	was	to	close	the	mine
and	start	again	somewhere	else	–	and	that	might	not	even	be	feasible.	But	no	one
wanted	to	pay	more	than	they	had	to,	so	a	manufacturer	who	could	design	and



build	a	more	efficient	steam	engine	would	corner	the	market.	So	the	basic
question	of	how	efficient	a	steam	engine	could	be	cried	out	for	attention.	Its
answer	did	more	than	just	describe	the	limits	to	steam	engines:	it	created	a	new
branch	of	physics,	whose	applications	were	almost	boundless.	The	new	physics
shed	light	on	everything	from	gases	to	the	structure	of	the	entire	universe;	it
applied	not	just	to	the	dead	matter	of	physics	and	chemistry,	but	perhaps	also	to
the	complex	processes	of	life	itself.	It	was	called	thermodynamics:	the	motion	of
heat.	And,	just	as	the	law	of	conservation	of	energy	in	mechanics	ruled	out
mechanical	perpetual	motion	machines,	the	laws	of	thermodynamics	ruled	out
similar	machines	using	heat.

One	of	those	laws,	the	first	law	of	thermodynamics,	revealed	a	new	form	of
energy	associated	with	heat,	and	extended	the	law	of	conservation	of	energy
(Chapter	3)	into	the	new	realm	of	heat	engines.	Another,	without	any	previous
precedent,	showed	that	some	potential	ways	to	exchange	heat,	which	did	not
conflict	with	conservation	of	energy,	were	nevertheless	impossible	because	they
would	have	to	create	order	from	disorder.	This	was	the	second	law	of
thermodynamics.

Thermodynamics	is	the	mathematical	physics	of	gases.	It	explains	how	large-
scale	features	like	temperature	and	pressure	arise	from	the	way	the	gas
molecules	interact.	The	subject	began	with	a	series	of	laws	of	nature	relating
temperature,	pressure,	and	volume.	This	version	is	called	classical
thermodynamics,	and	did	not	involve	molecules	–	at	that	time	few	scientists
believed	in	them.	Later,	the	gas	laws	were	underpinned	by	a	further	layer	of
explanation,	based	on	a	simple	mathematical	model	explicitly	involving
molecules.	The	gas	molecules	were	thought	of	as	tiny	spheres	that	bounced	off
each	other	like	perfectly	elastic	billiard	balls,	with	no	energy	being	lost	in	the
collision.	Although	molecules	are	not	spherical,	this	model	proved	to	be
remarkably	effective.	It	is	called	the	kinetic	theory	of	gases,	and	it	led	to
experimental	proof	that	molecules	exist.

The	early	gas	laws	emerged	in	fits	and	starts	over	a	period	of	nearly	fifty
years,	and	are	mainly	attributed	to	the	Irish	physicist	and	chemist	Robert	Boyle,
the	French	mathematician	and	balloon	pioneer	Jacques	Alexandre	César	Charles,
and	the	French	physicist	and	chemist	Joseph	Louis	Gay-Lussac.	However,	many
of	the	discoveries	were	made	by	others.	In	1834,	the	French	engineer	and
physicist	Émile	Clapeyron	combined	all	of	these	laws	into	one,	the	ideal	gas	law,
which	we	now	write	as



pV	=	RT

Here	p	is	pressure,	V	is	volume,	T	is	the	temperature,	and	R	is	a	constant.	The
equation	states	that	pressure	times	volume	is	proportional	to	temperature.	It	took
a	lot	of	work	with	many	different	gases	to	confirm	each	separate	law,	and
Clapeyron’s	overall	synthesis,	experimentally.	The	word	‘ideal’	appears	because
real	gases	do	not	obey	the	law	in	all	circumstances,	especially	at	high	pressures
where	interatomic	forces	come	into	play.	But	the	ideal	version	was	good	enough
for	designing	steam	engines.

Thermodynamics	is	encapsulated	in	a	number	of	more	general	laws,	not
reliant	on	the	precise	form	of	the	gas	law.	However,	it	does	require	there	to	be
some	such	law,	because	temperature,	pressure,	and	volume	are	not	independent.
There	has	to	be	some	relation	between	them,	but	it	doesn’t	greatly	matter	what.

The	first	law	of	thermodynamics	stems	from	the	mechanical	law	of
conservation	of	energy.	In	Chapter	3	we	saw	that	there	are	two	distinct	kinds	of
energy	in	classical	mechanics:	kinetic	energy,	determined	by	mass	and	speed,
and	potential	energy,	determined	by	the	effect	of	forces	such	as	gravity.	Neither
of	these	types	of	energy	is	conserved	on	its	own.	If	you	drop	a	ball,	it	speeds	up,
thereby	gaining	kinetic	energy.	It	also	falls,	losing	potential	energy.	Newton’s
second	law	of	motion	implies	that	these	two	changes	cancel	each	other	out
exactly,	so	the	total	energy	does	not	change	during	the	motion.

However,	this	is	not	the	full	story.	If	you	put	a	book	on	a	table	and	give	it	a
push,	its	potential	energy	doesn’t	change	provided	the	table	is	horizontal.	But	its
speed	does	change:	after	an	initial	increase	produced	by	the	force	with	which
you	pushed	it,	the	book	quickly	slows	down	and	comes	to	rest.	So	its	kinetic
energy	starts	at	a	nonzero	initial	value	just	after	the	push,	and	then	drops	to	zero.
The	total	energy	therefore	also	decreases,	so	energy	is	not	conserved.	Where	has
it	gone?	Why	did	the	book	stop?	According	to	Newton’s	first	law,	the	book
should	continue	to	move,	unless	some	force	opposes	it.	That	force	is	friction
between	the	book	and	the	table.	But	what	is	friction?

Friction	occurs	when	rough	surfaces	rub	together.	The	rough	surface	of	the
book	has	bits	that	stick	out	slightly.	These	come	into	contact	with	parts	of	the
table	that	also	stick	out	slightly.	The	book	pushes	against	the	table,	and	the	table,
obeying	Newton’s	third	law,	resists.	This	creates	a	force	that	opposes	the	motion
of	the	book,	so	it	slows	down	and	loses	energy.	So	where	does	the	energy	go?
Perhaps	conservation	simply	does	not	apply.	Alternatively,	the	energy	is	still
lurking	somewhere,	unnoticed.	And	that’s	what	the	first	law	of	thermodynamics



tells	us:	the	missing	energy	appears	as	heat.	Both	book	and	table	heat	up	slightly.
Humans	have	known	that	friction	creates	heat	even	since	some	bright	spark
discovered	how	to	rub	two	sticks	together	and	start	a	fire.	If	you	slide	down	a
rope	too	fast,	your	hands	get	rope	burns	from	the	friction.	There	were	plenty	of
clues.	The	first	law	of	thermodynamics	states	that	heat	is	a	form	of	energy,	and
energy	–	thus	extended	–	is	conserved	in	thermodynamic	processes.

The	first	law	of	thermodynamics	places	limits	on	what	you	can	do	with	a	heat
engine.	The	amount	of	kinetic	energy	that	you	can	get	out,	in	the	form	of	motion,
cannot	be	more	than	the	amount	of	energy	you	put	in	as	heat.	But	it	turned	out
that	there	is	a	further	restriction	on	how	efficiently	a	heat	engine	can	convert
heat	energy	into	kinetic	energy;	not	just	the	practical	point	that	some	of	the
energy	always	gets	lost,	but	a	theoretical	limit	that	prevents	all	of	the	heat	energy
being	converted	to	motion.	Only	some	of	it,	the	‘free’	energy,	can	be	so
converted.	The	second	law	of	thermodynamics	turned	this	idea	into	a	general
principle,	but	it	will	take	a	while	before	we	get	to	that.	The	limitation	was
discovered	by	Nicolas	Léonard	Sadi	Carnot	in	1824,	in	a	simple	model	of	how	a
steam	engine	works:	the	Carnot	cycle.

To	understand	the	Carnot	cycle	it	is	important	to	distinguish	between	heat	and
temperature.	In	everyday	life,	we	say	that	something	is	hot	if	its	temperature	is
high,	and	so	confuse	the	two	concepts.	In	classical	thermodynamics,	neither
concept	is	straightforward.	Temperature	is	a	property	of	a	fluid,	but	heat	makes
sense	only	as	a	measure	of	the	transfer	of	energy	between	fluids,	and	is	not	an
intrinsic	property	of	the	state	(that	is,	the	temperature,	pressure,	and	volume)	of
the	fluid.	In	the	kinetic	theory,	the	temperature	of	a	fluid	is	the	average	kinetic
energy	of	its	molecules,	and	the	amount	of	heat	transferred	between	fluids	is	the
change	in	the	total	kinetic	energy	of	their	molecules.	In	a	sense	heat	is	a	bit	like
potential	energy,	which	is	defined	relative	to	an	arbitrary	reference	height;	this
introduces	an	arbitrary	constant,	so	‘the’	potential	energy	of	a	body	is	not
uniquely	defined.	But	when	the	body	changes	height,	the	difference	in	potential
energies	is	the	same	whatever	reference	height	is	used,	because	the	constant
cancels	out.	In	short,	heat	measures	changes,	but	temperature	measures	states.
The	two	are	linked:	heat	transfer	is	possible	only	when	the	fluids	concerned	have
different	temperatures,	and	then	it	is	transferred	from	the	hotter	one	to	the	cooler
one.	This	is	often	called	the	Zeroth	law	of	thermodynamics	because	logically	it
precedes	the	first	law,	but	historically	it	was	recognised	later.

Temperature	can	be	measured	using	a	thermometer,	which	exploits	the
expansion	of	a	fluid,	such	as	mercury,	caused	by	increased	temperature.	Heat



can	be	measured	by	using	its	relation	to	temperature.	In	a	standard	test	fluid,
such	as	water,	every	1-degree	rise	in	temperature	of	1	gram	of	fluid	corresponds
to	a	fixed	increase	in	the	heat	content.	This	amount	is	called	the	specific	heat	of
the	fluid,	which	in	water	is	1	calorie	per	gram	per	degree	Celsius.	Note	that	heat
increase	is	a	change,	not	a	state,	as	required	by	the	definition	of	heat.

We	can	visualise	the	Carnot	cycle	by	thinking	of	a	chamber	containing	gas,
with	a	movable	piston	at	one	end.	The	cycle	has	four	steps:

1	Heat	the	gas	so	rapidly	that	its	temperature	doesn’t	change.	It	expands,
performing	work	on	the	piston.

2	Allow	the	gas	to	expand	further,	reducing	the	pressure.	The	gas	cools.

3	Compress	the	gas	so	rapidly	that	its	temperature	doesn’t	change.	The	piston
now	performs	work	on	the	gas.

4	Allow	the	gas	to	expand	further,	increasing	the	pressure.	The	gas	returns	to
its	original	temperature.

In	a	Carnot	cycle,	the	heat	introduced	in	the	first	step	transfers	kinetic	energy
to	the	piston,	allowing	the	piston	to	do	work.	The	quantity	of	energy	transferred
can	be	calculated	in	terms	of	the	amount	of	heat	introduced	and	the	temperature
difference	between	the	gas	and	its	surroundings.	Carnot’s	theorem	proves	that	in
principle	a	Carnot	cycle	is	the	most	efficient	way	to	convert	heat	into	work.	This
places	a	stringent	limit	on	the	efficiency	of	any	heat	engine,	and	in	particular	on
a	steam	engine.

In	a	diagram	showing	the	pressure	and	volume	of	the	gas,	a	Carnot	cycle
looks	like	Figure	47	(left).	The	German	physicist	and	mathematician	Rudolf
Clausius	discovered	a	simpler	way	to	visualise	the	cycle,	Figure	47	(right).	Now
the	two	axes	are	temperature	and	a	new	and	fundamental	quantity	called	entropy.
In	these	coordinates,	the	cycle	becomes	a	rectangle,	and	the	amount	of	work
performed	is	just	the	area	of	the	rectangle.



Fig	47	Carnot	cycle.	Left:	In	terms	of	pressure	and	volume.	Right:	In	terms	of
temperature	and	entropy.

Entropy	is	like	heat:	it	is	defined	in	terms	of	a	change	of	state,	not	a	state	as
such.	Suppose	that	a	fluid	in	some	initial	state	changes	to	a	new	state.	Then	the
difference	in	entropy	between	the	two	states	is	the	total	change	in	the	quantity
‘heat	divided	by	temperature’.	In	symbols,	for	a	small	step	along	the	path
between	the	two	states,	entropy	S	is	related	to	heat	q	and	temperature	T	by	the
differential	equation	dS	=	dq/T.	The	change	in	entropy	is	the	change	in	heat	per
unit	temperature.	A	large	change	of	state	can	be	represented	as	a	series	of	small
ones,	so	we	add	up	all	these	small	changes	in	entropy	to	get	the	overall	change
of	entropy.	Calculus	tells	us	that	the	way	to	do	this	is	to	use	an	integral.1

Having	defined	entropy,	the	second	law	of	thermodynamics	is	very	simple.	It
states	that	in	any	physically	feasible	thermodynamic	process,	the	entropy	of	an
isolated	system	must	always	increase.2	In	symbols,	dS≥	0.	For	example,	suppose
we	divide	a	room	with	a	movable	partition,	put	oxygen	on	one	side	of	the
partition	and	nitrogen	on	the	other.	Each	gas	has	a	particular	entropy,	relative	to
some	initial	reference	state.	Now	remove	the	partition,	allowing	the	gases	to
mix.	The	combined	system	also	has	a	particular	entropy,	relative	to	the	same
initial	reference	states.	And	the	entropy	of	the	combined	system	is	always
greater	than	the	sum	of	the	entropies	of	the	two	separate	gases.

Classical	thermodynamics	is	phenomenological:	it	describes	what	you	can
measure,	but	it’s	not	based	on	any	coherent	theory	of	the	processes	involved.
That	step	came	next	with	the	kinetic	theory	of	gases,	pioneered	by	Daniel
Bernoulli	in	1738.	This	theory	provides	a	physical	explanation	of	pressure,
temperature,	the	gas	laws,	and	that	mysterious	quantity	entropy.	The	basic	idea	–
highly	controversial	at	the	time	–	is	that	a	gas	consists	of	a	large	number	of
identical	molecules,	which	bounce	around	in	space	and	occasionally	collide	with
each	other.	Being	a	gas	means	that	the	molecules	are	not	too	tightly	packed,	so
any	given	molecule	spends	a	lot	of	its	time	travelling	through	the	vacuum	of
space	at	a	constant	speed	in	a	straight	line.	(I	say	‘vacuum’	even	though	we’re
discussing	a	gas,	because	that’s	what	the	space	between	molecules	consists	of.)
Since	molecules,	though	tiny,	have	nonzero	size,	occasionally	two	of	them	will
collide.	Kinetic	theory	makes	the	simplifying	assumption	that	they	bounce	like
two	colliding	billiard	balls,	and	that	these	balls	are	perfectly	elastic,	so	no	energy
is	lost	in	the	collision.	Among	other	things,	this	implies	that	the	molecules	keep
bouncing	forever.



When	Bernoulli	first	suggested	the	model,	the	law	of	conservation	of	energy
was	not	established	and	perfect	elasticity	seemed	unlikely.	The	theory	gradually
won	support	from	a	small	number	of	scientists,	who	developed	their	own
versions	and	added	various	new	ideas,	but	their	work	was	almost	universally
ignored.	The	German	chemist	and	physicist	August	Krönig	wrote	a	book	on	the
topic	in	1856,	simplifying	the	physics	by	not	allowing	the	molecules	to	rotate.
Clausius	removed	this	simplification	a	year	later.	He	claimed	he	had	arrived	at
his	results	independently,	and	is	now	ranked	as	one	of	the	first	significant
founders	of	kinetic	theory.	He	proposed	one	of	the	key	concepts	of	the	theory,
the	mean	free	path	of	a	molecule:	how	far	it	travels,	on	average,	between
successive	collisions.

Both	König	and	Clausius	deduced	the	ideal	gas	law	from	kinetic	theory.	The
three	key	variables	are	volume,	pressure,	and	temperature.	Volume	is	determined
by	the	vessel	that	contains	the	gas,	it	sets	‘boundary	conditions’	that	affect	how
the	gas	behaves,	but	is	not	a	feature	of	the	gas	as	such.	Pressure	is	the	average
force	(per	square	unit	of	area)	exerted	by	the	molecules	of	the	gas	when	they
collide	with	the	walls	of	the	vessel.	This	depends	on	how	many	molecules	are
inside	the	vessel,	and	how	fast	they	are	moving.	(They	don’t	all	move	at	the
same	speed.)	Most	interesting	is	temperature.	This	also	depends	on	how	fast	the
gas	molecules	are	moving,	and	it	is	proportional	to	the	average	kinetic	energy	of
the	molecules.	Deducing	Boyle’s	law,	the	special	case	of	the	ideal	gas	law	for
constant	temperature,	is	especially	straightforward.	At	a	fixed	temperature,	the
distribution	of	velocities	doesn’t	change,	so	pressure	is	determined	by	how	many
molecules	hit	the	wall.	If	you	reduce	the	volume,	the	number	of	molecules	per
cubic	unit	of	space	goes	up,	and	the	chance	of	any	molecule	hitting	the	wall	goes
up	as	well.	Smaller	volume	means	denser	gas	means	more	molecules	hitting	the
wall,	and	this	argument	can	be	made	quantitative.	Similar	but	more	complicated
arguments	produce	the	ideal	gas	law	in	all	its	glory	as	long	as	the	molecules
aren’t	squashed	too	tightly	together.	So	now	there	was	a	deeper	theoretical	basis
for	Boyle’s	law,	based	on	the	theory	of	molecules.

Maxwell	was	inspired	by	Clausius’s	work,	and	in	1859	he	placed	kinetic
theory	on	mathematical	foundations	by	writing	down	a	formula	for	the
probability	that	a	molecule	will	travel	with	a	given	speed.	It	is	based	on	the
normal	distribution	or	bell	curve	(Chapter	7).	Maxwell’s	formula	seems	to	have
been	the	first	instance	of	a	physical	law	based	on	probabilities.	He	was	followed
by	the	Austrian	physicist	Ludwig	Boltzmann,	who	developed	the	same	formula,
now	called	the	Maxwell–Boltzmann	distribution.	Boltzmann	reinterpreted
thermodynamics	in	terms	of	the	kinetic	theory	of	gases,	founding	what	is	now



called	statistical	mechanics.	In	particular,	he	came	up	with	a	new	interpretation
of	entropy,	relating	the	thermodynamic	concept	to	a	statistical	feature	of	the
molecules	in	the	gas.

The	traditional	thermodynamic	quantities,	such	as	temperature,	pressure,	heat,
and	entropy,	all	refer	to	large-scale	average	properties	of	the	gas.	However,	the
fine	structure	consists	of	lots	of	molecules	whizzing	around	and	bumping	into
each	other.	The	same	large-scale	state	can	arise	from	innumerable	different
small-scale	states,	because	minor	differences	on	the	small	scale	average	out.
Boltzmann	therefore	distinguished	macrostates	and	microstates	of	the	system:
large-scale	averages	and	the	actual	states	of	the	molecules.	Using	this,	he
showed	that	entropy,	a	macrostate,	can	be	interpreted	as	a	statistical	feature	of
microstates.	He	expressed	this	in	the	equation

S	=	k	log	W

Here	S	is	the	entropy	of	the	system,	W	is	the	number	of	distinct	microstates	that
can	give	rise	to	the	overall	macrostate,	and	k	is	a	constant.	It	is	now	called
Boltzmann’s	constant,	and	its	value	is	1.38	×	10−23	joules	per	degree	kelvin.

It	is	this	formula	that	motivates	the	interpretation	of	entropy	as	disorder.	The
idea	is	that	fewer	microstates	correspond	to	an	ordered	macrostate	than	to	a
disordered	one,	and	we	can	understand	why	by	thinking	about	a	pack	of	cards.
For	simplicity,	suppose	that	we	have	just	six	cards,	marked	2,	3,	4,	J,	Q,	K.	Put
them	in	two	separate	piles,	with	the	low-value	cards	in	one	pile	and	the	court
cards	in	the	other.	This	is	an	ordered	arrangement.	In	fact,	it	retains	traces	of
order	if	you	shuffle	each	pile,	but	keep	the	piles	separate,	because	however	you
do	this,	the	low-value	cards	are	all	in	one	pile	and	the	court	cards	are	in	the
other.	However,	if	you	shuffle	both	piles	together,	the	two	types	of	card	can
become	mixed,	with	arrangements	like	4QK2J3.	Intuitively,	these	mixed-up
arrangements	are	more	disordered.

Let’s	see	how	this	relates	to	Boltzmann’s	formula.	There	are	36	ways	to
arrange	the	cards	in	their	two	piles:	six	for	each	pile.	But	there	are	720	ways	(6!
=	1	×	2	×	3	×	4	×	5	×	6)	to	arrange	all	six	cards	in	order.	The	type	of	ordering	of
the	cards	that	we	allow	–	two	piles	or	one	–	is	analogous	to	the	macrostate	of	a
thermodynamic	system.	The	exact	order	is	the	microstate.	The	more	ordered
macrostate	has	36	microstates,	the	less	ordered	one	has	720.	So	the	more
microstates	there	are,	the	less	ordered	the	corresponding	macrostate	becomes.
Since	logarithms	get	bigger	when	the	numbers	do,	the	greater	the	logarithm	of
the	number	of	microstates,	the	more	disordered	the	macrostate	becomes.	Here



log	36	=	3.58					log	720	=	6.58

These	are	effectively	the	entropies	of	the	two	macrostates.	Boltzmann’s	constant
just	scales	the	values	to	fit	the	thermodynamic	formalism	when	we’re	dealing
with	gases.

The	two	piles	of	cards	are	like	two	non-interacting	thermodynamic	states,
such	as	a	box	with	a	partition	separating	two	gases.	Their	individual	entropies
are	each	log	6,	so	the	total	entropy	is	2	log	6,	which	equals	log	36.	So	the
logarithm	makes	entropy	additive	for	non-interacting	systems:	to	get	the	entropy
of	the	combined	(but	not	yet	interacting)	system,	add	the	separate	entropies.	If
we	now	let	the	systems	interact	(remove	the	partition)	the	entropy	increases	to
log	720.

The	more	cards	there	are,	the	more	pronounced	this	effect	becomes.	Split	a
standard	pack	of	52	playing	cards	into	two	piles,	with	all	the	red	cards	in	one
pile	and	all	the	black	cards	in	the	other.	This	arrangement	can	occur	in	(26!)2
ways,	which	is	about	1.62	×	1053.	Shuffling	both	piles	together	we	get	52!
microstates,	roughly	8.07	×	1067.	The	logarithms	are	122.52	and	156.36
respectively,	and	again	the	second	is	larger.

Boltzmann’s	ideas	were	not	received	with	great	acclaim.	At	a	technical	level,
thermodynamics	was	beset	with	difficult	conceptual	issues.	One	was	the	precise
meaning	of	‘microstate’.	The	position	and	velocity	of	a	molecule	are	continuous
variables,	able	to	take	on	infinitely	many	values,	but	Boltzmann	needed	a	finite
number	of	microstates	in	order	to	count	how	many	there	were	and	then	take	the
logarithm.	So	these	variables	had	to	be	‘coarse-grained’	in	some	manner,	by
splitting	the	continuum	of	possible	values	into	finitely	many	very	small	intervals.
Another	issue,	more	philosophical	in	nature,	was	the	arrow	of	time	–	an	apparent
conflict	between	the	time-reversible	dynamics	of	microstates	and	the	one-way
time	of	macrostates,	determined	by	entropy	increase.	The	two	issues	are	related,
as	we	will	shortly	see.

The	biggest	obstacle	to	the	theory’s	acceptance,	however,	was	the	idea	that
matter	is	made	from	extremely	tiny	particles,	atoms.	This	concept,	and	the	word
atom,	which	means	‘indivisible’,	goes	back	to	ancient	Greece,	but	even	around
1900	the	majority	of	physicists	did	not	believe	that	matter	is	made	from	atoms.
So	they	didn’t	believe	in	molecules,	either,	and	a	theory	of	gases	based	on	them
was	obviously	nonsense.	Maxwell,	Boltzmann,	and	other	pioneers	of	kinetic
theory	were	convinced	that	molecules	and	atoms	were	real,	but	to	the	skeptics,
atomic	theory	was	just	a	convenient	way	to	picture	matter.	No	atoms	had	ever



been	observed,	so	there	was	no	scientific	evidence	that	they	existed.	Molecules,
specific	combinations	of	atoms,	were	similarly	controversial.	Yes,	atomic	theory
fitted	all	sorts	of	experimental	data	in	chemistry,	but	that	was	not	proof	that
atoms	existed.

One	of	the	things	that	finally	convinced	most	objectors	was	the	use	of	kinetic
theory	to	make	predictions	about	Brownian	motion.	This	effect	was	discovered
by	a	Scottish	botanist,	Robert	Brown.3	He	pioneered	the	use	of	the	microscope,
discovering,	among	other	things,	the	existence	of	the	nucleus	of	a	cell,	now
known	to	be	the	repository	of	its	genetic	information.	In	1827	Brown	was
looking	through	his	microscope	at	pollen	grains	in	a	fluid,	and	he	spotted	even
tinier	particles	that	had	been	ejected	by	the	pollen.	These	tiny	particles	jiggled
around	in	a	random	manner,	and	at	first	Brown	wondered	if	they	were	some
diminutive	form	of	life.	However,	his	experiments	showed	the	same	effect	in
particles	derived	from	non-living	matter,	so	whatever	caused	the	jiggling,	it
didn’t	have	to	be	alive.	At	the	time,	no	one	knew	what	caused	this	effect.	We
now	know	that	the	particles	ejected	by	the	pollen	were	organelles,	tiny
subsystems	of	the	cell	with	specific	functions;	in	this	case,	to	manufacture	starch
and	fats.	And	we	interpret	their	random	jiggles	as	evidence	for	the	theory	that
matter	is	made	from	atoms.

The	link	to	atoms	comes	from	mathematical	models	of	Brownian	motion,
which	first	turned	up	in	statistical	work	of	the	Danish	astronomer	and	actuary
Thorvald	Thiele	in	1880.	The	big	advance	was	made	by	Einstein	in	1905	and	the
Polish	scientist	Marian	Smoluchowski	in	1906.	They	independently	proposed	a
physical	explanation	of	Brownian	motion:	atoms	of	the	fluid	in	which	the
particles	were	floating	were	randomly	bumping	into	the	particles	and	giving
them	tiny	kicks.	On	this	basis,	Einstein	used	a	mathematical	model	to	make
quantitative	predictions	about	the	statistics	of	the	motion,	which	were	confirmed
by	Jean	Baptiste	Perrin	in	1908–9.

Boltzmann	committed	suicide	in	1906	–	just	when	the	scientific	world	was
starting	to	appreciate	that	the	basis	of	his	theory	was	real.

In	Boltzmann’s	formulation	of	thermodynamics,	molecules	in	a	gas	are
analogous	to	cards	in	a	pack,	and	the	natural	dynamics	of	the	molecules	is
analogous	to	shuffling.	Suppose	that	at	some	moment	all	the	oxygen	molecules
in	a	room	are	concentrated	at	one	end,	and	all	the	nitrogen	molecules	are	at	the
other.	This	is	an	ordered	thermodynamic	state,	like	two	separate	piles	of	cards.
After	a	very	short	period,	however,	random	collisions	will	mix	all	the	molecules
together,	more	or	less	uniformly	throughout	the	room,	like	shuffling	the	cards.



We’ve	just	seen	that	this	process	typically	causes	entropy	to	increase.	This	is	the
orthodox	picture	of	the	relentless	increase	of	entropy,	and	it	is	the	standard
interpretation	of	the	second	law:	‘the	amount	of	disorder	in	the	universe	steadily
increases’.	I’m	pretty	sure	that	this	characterisation	of	the	second	law	would
have	satisfied	Snow	if	anyone	had	offered	it.	In	this	form,	one	dramatic
consequence	of	the	second	law	is	the	scenario	of	the	‘heat	death	of	the	universe’,
in	which	the	entire	universe	will	eventually	become	a	lukewarm	gas	with	no
interesting	structure	whatsoever.

Entropy,	and	the	mathematical	formalism	that	goes	with	it,	provides	an
excellent	model	for	many	things.	It	explains	why	heat	engines	can	only	reach	a
particular	level	of	efficiency,	which	prevents	engineers	wasting	valuable	time
and	money	looking	for	a	mare’s	nest.	That’s	not	just	true	of	Victorian	steam
engines,	it	applies	to	modern	car	engines	as	well.	Engine	design	is	one	of	the
practical	areas	that	has	benefited	from	knowing	the	laws	of	thermodynamics.
Refrigerators	are	another.	They	use	chemical	reactions	to	transfer	heat	out	of	the
food	in	the	fridge.	It	has	to	go	somewhere:	you	can	often	feel	the	heat	rising
from	the	outside	of	the	fridge’s	motor	housing.	The	same	goes	for	air-
conditioning.	Power	generation	is	another	application.	In	a	coal,	gas,	or	nuclear
power	station,	what	it	initially	generated	is	heat.	The	heat	creates	steam,	which
drives	a	turbine.	The	turbine,	following	principles	that	go	back	to	Faraday,	turns
motion	into	electricity.

The	second	law	of	thermodynamics	also	governs	the	amount	of	energy	we
can	hope	to	extract	from	renewable	resources,	such	as	wind	and	waves.	Climate
change	has	added	new	urgency	to	this	question,	because	renewable	energy
sources	produce	less	carbon	dioxide	than	conventional	ones.	Even	nuclear	power
has	a	big	carbon	footprint,	because	the	fuel	has	to	be	made,	transported,	and
stored	when	it	is	no	longer	useful	but	still	radioactive.	As	I	write	there	is	a
simmering	debate	about	the	maximum	amount	of	energy	that	we	can	extract
from	the	ocean	and	the	atmosphere	without	causing	the	kinds	of	change	that	we
are	hoping	to	avoid.	It	is	based	on	thermodynamic	estimates	of	the	amount	of
free	energy	in	those	natural	systems.	This	is	an	important	issue:	if	renewables	in
principle	cannot	supply	the	energy	we	need,	then	we	have	to	look	elsewhere.
Solar	panels,	which	extract	energy	directly	from	sunlight,	are	not	directly
affected	by	the	thermodynamic	limits,	but	even	those	involve	manufacturing
processes	and	so	on.	At	the	moment,	the	case	that	such	limits	are	a	serious
obstacle	relies	on	some	sweeping	simplifications,	and	even	if	they	are	correct,
the	calculations	do	not	rule	out	renewables	as	a	source	for	most	of	the	world’s
power.	But	it’s	worth	remembering	that	similarly	broad	calculations	about



carbon	dioxide	production,	performed	in	the	1950s,	have	proved	surprisingly
accurate	as	a	predictor	of	global	warming.

The	second	law	works	brilliantly	in	its	original	context,	the	behaviour	of
gases,	but	it	seems	to	conflict	with	the	rich	complexities	of	our	planet,	in
particular,	life.	It	seems	to	rule	out	the	complexity	and	organisation	exhibited	by
living	systems.	So	the	second	law	is	sometimes	invoked	to	attack	Darwinian
evolution.	However,	the	physics	of	steam	engines	is	not	particularly	appropriate
to	the	study	of	life.	In	the	kinetic	theory	of	gases,	the	forces	that	act	between	the
molecules	are	short-range	(active	only	when	the	molecules	collide)	and	repulsive
(they	bounce).	But	most	of	the	forces	of	nature	aren’t	like	that.	For	example,
gravity	acts	at	enormous	distances,	and	it	is	attractive.	The	expansion	of	the
universe	away	from	the	Big	Bang	has	not	smeared	matter	out	into	a	uniform	gas.
Instead,	the	matter	has	formed	into	clumps	–	planets,	stars,	galaxies,
supergalactic	clusters…	The	forces	that	hold	molecules	together	are	also
attractive	–	except	at	very	short	distances	where	they	become	repulsive,	which
stops	the	molecule	collapsing	–	but	their	effective	range	is	fairly	short.	For
systems	such	as	these,	the	thermodynamic	model	of	independent	subsystems
whose	interactions	switch	on	but	not	off	is	simply	irrelevant.	The	features	of
thermodynamics	either	don’t	apply,	or	are	so	long-term	that	they	don’t	model
anything	interesting.

The	laws	of	thermodynamics,	then,	underlie	many	things	that	we	take	for
granted.	And	the	interpretation	of	entropy	as	‘disorder’	helps	us	to	understand
those	laws	and	gain	an	intuitive	feeling	for	their	physical	basis.	However,	there
are	occasions	when	interpreting	entropy	as	disorder	seems	to	lead	to	paradoxes.
This	is	a	more	philosophical	realm	of	discourse	–	and	it’s	fascinating.

One	of	the	deep	mysteries	of	physics	is	time’s	arrow.	Time	seems	to	flow	in
one	particular	direction.	However,	it	seems	logically	and	mathematically
possible	for	time	to	flow	backwards	instead	–	a	possibility	exploited	by	books
such	as	Martin	Amis’s	Time’s	Arrow,	the	much	earlier	novel	Counter-Clock
World	by	Philip	K.	Dick,	and	the	BBC	television	series	Red	Dwarf,	whose
protagonists	memorably	drank	beer	and	engaged	in	a	bar	brawl	in	reverse	time.
So	why	can’t	time	flow	the	other	way?	At	first	sight,	thermodynamics	offers	a
simple	explanation	for	the	arrow	of	time:	it	is	the	direction	of	entropy	increase.
Thermodynamic	processes	are	irreversible:	oxygen	and	nitrogen	will
spontaneously	mix,	but	not	spontaneously	unmix.

There	is	a	puzzle	here,	however,	because	any	classical	mechanical	system,
such	as	the	molecules	in	a	room,	is	time-reversible.	If	you	keep	shuffling	a	pack



of	cards	at	random,	then	eventually	it	will	get	back	to	its	original	order.	In	the
mathematical	equations,	if	at	some	instant	the	velocities	of	all	particles	are
simultaneously	reversed,	then	the	system	will	retrace	its	steps,	back-to-front	in
time.	The	entire	universe	can	bounce,	obeying	the	same	equations	in	both
directions.	So	why	do	we	never	see	an	egg	unscrambling?

The	usual	thermodynamic	answer	is:	a	scrambled	egg	is	more	disordered	than
an	unscrambled	one,	entropy	increases,	and	that’s	the	way	time	flows.	But
there’s	a	subtler	reason	why	eggs	don’t	unscramble:	the	universe	is	very,	very
unlikely	to	bounce	in	the	required	manner.	The	probability	of	that	happening	is
ridiculously	small.	So	the	discrepancy	between	entropy	increase	and	time–
reversibility	comes	from	the	initial	conditions,	not	the	equations.	The	equations
for	moving	molecules	are	time-reversible,	but	the	initial	conditions	are	not.
When	we	reverse	time,	we	must	use	‘initial’	conditions	given	by	the	final	state
of	the	forward-time	motion.

The	most	important	distinction	here	is	between	symmetry	of	equations	and
symmetry	of	their	solutions.	The	equations	for	bouncing	molecules	have	time-
reversal	symmetry,	but	individual	solutions	can	have	a	definite	arrow	of	time.
The	most	you	can	deduce	about	a	solution,	from	time-reversibility	of	the
equation,	is	that	there	must	also	exist	another	solution	that	is	the	time-reversal	of
the	first.	If	Alice	throws	a	ball	to	Bob,	the	time-reversed	solution	has	Bob
throwing	a	ball	to	Alice.	Similarly,	since	the	equations	of	mechanics	allow	a
vase	to	fall	to	the	ground	and	smash	into	a	thousand	pieces,	they	must	also	allow
a	solution	in	which	a	thousand	shards	of	glass	mysteriously	move	together,
assemble	themselves	into	an	intact	vase,	and	leap	into	the	air.

There’s	clearly	something	funny	going	on	here,	and	it	repays	investigation.
We	don’t	have	a	problem	with	Bob	and	Alice	tossing	a	ball	either	way.	We	see
such	things	every	day.	But	we	don’t	see	a	smashed	vase	putting	itself	back
together.	We	don’t	see	an	egg	unscrambling.

Suppose	we	smash	a	vase	and	film	the	result.	We	start	with	a	simple,	ordered
state	–	an	intact	vase.	It	falls	to	the	floor,	where	the	impact	breaks	it	into	pieces
and	propels	those	pieces	all	over	the	floor.	They	slow	down	and	come	to	a	halt.
It	all	looks	entirely	normal.	Now	play	the	movie	backwards.	Bits	of	glass,	which
just	happen	to	be	the	right	shape	to	fit	together,	are	lying	on	the	floor.
Spontaneously,	they	start	to	move.	They	move	at	just	the	right	speed,	and	in	just
the	right	direction,	to	meet.	They	assemble	into	a	vase,	which	heads	skywards.
That	doesn’t	seem	right.

In	fact,	as	described,	it’s	not	right.	Several	laws	of	mechanics	appear	to	be



violated,	among	them	conservation	of	momentum	and	conservation	of	energy.
Stationary	masses	can’t	suddenly	move.	A	vase	can’t	gain	energy	from	nowhere
and	leap	into	the	air.

Ah,	yes…	but	that’s	because	we’re	not	looking	carefully	enough.	The	vase
didn’t	leap	into	the	air	of	its	own	accord.	The	floor	started	to	vibrate,	and	the
vibrations	came	together	to	give	the	vase	a	sharp	kick	into	the	air.	The	bits	of
glass	were	similarly	impelled	to	move	by	incoming	waves	of	vibration	of	the
floor.	If	we	trace	those	vibrations	back,	they	spread	out,	and	seem	to	die	down.
Eventually	friction	dissipates	all	movement…	Oh,	yes,	friction.	What	happens	to
kinetic	energy	when	there’s	friction?	It	turns	into	heat.	So	we’ve	missed	some
details	of	the	time-reversed	scenario.	Momentum	and	energy	do	balance,	but	the
missing	amounts	come	from	the	floor	losing	heat.

In	principle,	we	could	set	up	a	forward-time	system	to	mimic	the	time-
reversed	vase.	We	just	have	to	arrange	for	molecules	in	the	floor	to	collide	in
just	the	right	way	to	release	some	of	their	heat	as	motion	of	the	floor,	kick	the
pieces	of	glass	in	just	the	right	way,	then	hurl	the	vase	into	the	air.	The	point	is
not	that	this	is	impossible	in	principle:	if	it	were,	time-reversibility	would	fail.
But	it’s	impossible	in	practice,	because	there	is	no	way	to	control	that	many
molecules	that	precisely.

This,	too,	is	an	issue	about	boundary	conditions	–	in	this	case,	initial
conditions.	The	initial	conditions	for	the	vase-smashing	experiment	are	easy	to
implement,	and	the	apparatus	is	easy	to	acquire.	It’s	all	very	robust,	too:	use
another	vase,	drop	it	from	a	different	height…	much	the	same	will	happen.	The
vase-assembling	experiment,	in	contrast,	requires	extraordinarily	precise	control
of	gazillions	of	individual	molecules	and	exquisitely	carefully	made	pieces	of
glass.	Without	all	that	control	equipment	disturbing	a	single	molecule.	That’s
why	we	can’t	actually	do	it.

However,	notice	how	we’re	thinking	here:	we’re	focusing	on	initial
conditions.	That	sets	up	an	arrow	of	time:	the	rest	of	the	action	comes	later	than
the	start.	If	we	looked	at	the	vase-smashing	experiment’s	final	conditions,	right
down	to	the	molecular	level,	they	would	be	so	complex	that	no	one	in	their	right
mind	would	even	consider	trying	to	replicate	them.

The	mathematics	of	entropy	fudges	out	these	very	small	scale	considerations.
It	allows	vibrations	to	die	away	but	not	to	increase.	It	allows	friction	to	turn	into
heat	but	not	heat	to	turn	into	friction.	The	discrepancy	between	the	second	law	of
thermodynamics	and	microscopic	reversibility	arises	from	coarse-graining,	the
modelling	assumptions	made	when	passing	from	a	detailed	molecular



description	to	a	statistical	one.	These	assumptions	implicitly	specify	an	arrow	of
time:	large-scale	disturbances	are	allowed	to	die	down	below	the	perceptible
level	as	time	passes,	but	small-scale	disturbances	are	not	allowed	to	follow	the
time-reversed	scenario.	Once	the	dynamics	passes	through	this	temporal
trapdoor,	it’s	not	allowed	to	come	back.

If	entropy	always	increases,	how	did	the	chicken	ever	create	the	ordered	egg	to
begin	with?	A	common	explanation,	advanced	by	the	Austrian	physicist	Erwin
Schrödinger	in	1944	in	a	brief	and	charming	book	What	is	Life?,	is	that	living
systems	somehow	borrow	order	from	their	environment,	and	pay	it	back	by
making	the	environment	even	more	disordered	than	it	would	otherwise	have
been.	This	extra	order	corresponds	to	‘negative	entropy’,	which	the	chicken	can
use	to	make	an	egg	without	violating	the	second	law.	In	Chapter	15	we	will	see
that	negative	entropy	can,	in	appropriate	circumstances,	be	thought	of	as
information,	and	it	is	often	claimed	that	the	chicken	accesses	information	–
provided	by	its	DNA,	for	example	–	to	obtain	the	necessary	negative	entropy.
However,	the	identification	of	information	with	negative	entropy	makes	sense
only	in	very	specific	contexts,	and	the	activities	of	living	creatures	are	not	one	of
them.	Organisms	create	order	through	the	processes	that	they	carry	out,	but	those
processes	are	not	thermodynamic.	Chickens	don’t	access	some	storehouse	of
order	to	make	the	thermodynamic	books	balance:	they	use	processes	for	which	a
thermodynamic	model	is	inappropriate,	and	throw	the	books	away	because	they
don’t	apply.

The	scenario	in	which	an	egg	is	created	by	borrowing	entropy	would	be
appropriate	if	the	process	that	the	chicken	used	were	the	time-reversal	of	an	egg
breaking	up	into	its	constituent	molecules.	At	first	sight	this	is	vaguely	plausible,
because	the	molecules	that	eventually	form	the	egg	are	scattered	throughout	the
environment;	they	come	together	in	the	chicken,	where	biochemical	processes
put	them	together	in	an	ordered	manner	to	form	the	egg.	However,	there	is	a
difference	in	the	initial	conditions.	If	you	went	round	beforehand	labelling
molecules	in	the	chicken’s	environment,	to	say	‘this	one	will	end	up	in	the	egg	at
such	and	such	a	location’,	you	would	in	effect	be	creating	initial	conditions	as
complex	and	unlikely	as	those	for	unscrambling	an	egg.	But	that’s	not	how	the
chicken	operates.	Some	molecules	happen	to	end	up	in	the	egg	and	are
conceptually	labelled	as	part	of	it	after	the	process	is	complete.	Other	molecules
could	have	done	the	same	job	–	one	molecule	of	calcium	carbonate	is	just	as
good	for	making	a	shell	as	any	other.	So	the	chicken	is	not	creating	order	from
disorder.	The	order	is	assigned	to	the	end	result	of	the	egg-making	process	–	like



shuffling	a	pack	of	cards	into	a	random	order	and	then	numbering	them	1,	2,	3,
and	so	on	with	a	felt-tipped	pen.	Amazing	–	they’re	in	numerical	order!

To	be	sure,	the	egg	looks	more	ordered	than	its	ingredients,	even	if	we	take
account	of	this	difference	in	initial	conditions.	But	that’s	because	the	process
that	makes	an	egg	is	not	thermodynamic.	Many	physical	processes	do,	in	effect,
unscramble	eggs.	An	example	is	the	way	minerals	dissolved	in	water	can	create
stalactites	and	stalagmites	in	caves.	If	we	specified	the	exact	form	of	stalactite
we	wanted,	ahead	of	time,	we’d	be	in	the	same	position	as	someone	trying	to
unsmash	a	vase.	But	if	we’re	willing	to	settle	for	any	old	stalactite,	we	get	one:
order	from	disorder.	Those	two	terms	are	often	used	in	a	sloppy	way.	What
matters	are	what	kind	of	order	and	what	kind	of	disorder.	That	said,	I	still	don’t
expect	to	see	an	egg	unscrambling.	There	is	no	feasible	way	to	set	up	the
necessary	initial	conditions.	The	best	we	can	do	is	turn	the	scrambled	egg	into
chickenfeed	and	wait	for	the	bird	to	lay	a	new	one.

In	fact,	there	is	a	reason	why	we	wouldn’t	see	an	egg	unscrambling,	even	if
the	world	did	run	backwards.	Because	we	and	our	memories	are	part	of	the
system	that	is	being	reversed,	we	wouldn’t	be	sure	which	way	time	was	‘really’
running.	Our	sense	of	the	flow	of	time	is	produced	by	memories,	physico-
chemical	patterns	in	the	brain.	In	conventional	language,	the	brain	stores	records
of	the	past	but	not	of	the	future.	Imagine	making	a	series	of	snapshots	of	the
brain	watching	an	egg	being	scrambled,	along	with	its	memories	of	the	process.
At	one	stage	the	brain	remembers	a	cold,	unscrambled	egg,	and	some	of	its
history	when	taken	from	the	fridge	and	put	into	the	saucepan.	At	another	stage	it
remembers	having	whisked	the	egg	with	a	fork,	and	having	moved	it	from	the
fridge	to	the	saucepan.

If	we	now	run	the	entire	universe	in	reverse,	we	reverse	the	order	in	which
those	memories	occur,	in	‘real’	time.	But	we	don’t	reverse	the	ordering	of	a
given	memory	in	the	brain.	At	the	start	(in	reversed	time)	of	the	process	that
unscrambles	the	egg,	the	brain	does	not	remember	the	‘past’	of	that	egg	–	how	it
emerged	from	a	mouth	on	to	a	spoon,	was	unwhisked,	gradually	building	up	a
complete	egg	…	Instead,	the	record	in	the	brain	at	that	moment	is	one	in	which	it
remembers	having	cracked	open	an	egg,	along	with	the	process	of	moving	it
from	the	fridge	to	the	saucepan	and	scrambling	it.	But	this	memory	is	exactly	the
same	as	one	of	the	records	in	the	forward-time	scenario.	The	same	goes	for	all
the	other	memory	snapshots.	Our	perception	of	the	world	depends	on	what	we
observe	now,	and	what	memories	our	brain	holds,	now.	In	a	time-reversed
universe,	we	would	in	effect	remember	the	future,	not	the	past.



The	paradoxes	of	time-reversibility	and	entropy	are	not	problems	about	the
real	world.	They	are	problems	about	the	assumptions	we	make	when	we	try	to
model	it.



13	One	thing	is	absolute

Relativity

What	does	it	say?

Matter	contains	energy	equal	to	its	mass	multiplied	by	the	square	of	the	speed	of
light.

Why	is	that	important?

The	speed	of	light	is	huge	and	its	square	is	absolutely	humongous.	One	kilogram
of	matter	would	release	about	40%	of	the	energy	in	the	largest	nuclear	weapon
ever	exploded.	It’s	part	of	a	package	of	equations	that	changed	our	view	of
space,	time,	matter,	and	gravity.

What	did	it	lead	to?

Radical	new	physics,	definitely.	Nuclear	weapons…	well,	just	maybe	–	though
not	as	directly	or	conclusively	as	the	urban	myths	claim.	Black	holes,	the	Big
Bang,	GPS	and	satnav.



	

Just	as	Albert	Einstein,	with	his	startled	mop	hairdo,	is	the	archetypal	scientist	in
popular	culture,	so	his	equation	E	=	mc2	is	the	archetypal	equation.	It	is	widely
believed	that	the	equation	led	to	the	invention	of	nuclear	weapons,	that	it	comes
from	Einstein’s	theory	of	relativity,	and	that	this	theory	(obviously)	has
something	to	do	with	various	things	being	relative.	In	fact,	many	social
relativists	happily	chant	‘everything	is	relative’,	and	think	it	has	something	to	do
with	Einstein.

It	doesn’t.	Einstein	named	his	theory	‘relativity’	because	it	was	a
modification	of	the	rules	for	relative	motion	that	had	traditionally	been	used	in
Newtonian	mechanics,	where	motion	is	relative,	depending	in	a	very	simple	and
intuitive	way	on	the	frame	of	reference	in	which	it	is	observed.	Einstein	had	to
tweak	Newtonian	relativity	to	make	sense	of	a	baffling	experimental	discovery:
that	one	particular	physical	phenomenon	is	not	relative	at	all,	but	absolute.	From
this	he	derived	a	new	kind	of	physics	in	which	objects	shrink	when	they	move
very	fast,	time	slows	to	a	crawl,	and	mass	increases	without	limit.	An	extension
incorporating	gravity	has	given	us	the	best	understanding	we	yet	have	of	the
origins	of	the	universe	and	the	structure	of	the	cosmos.	It	is	based	on	the	idea
that	space	and	time	can	be	curved.

Relativity	is	real.	The	Global	Positioning	System	(GPS,	used	among	other
things	for	car	satnav)	works	only	when	corrections	are	made	for	relativistic
effects.	The	same	goes	for	particle	accelerators	such	as	the	Large	Hadron
Collider,	currently	searching	for	the	Higgs	boson,	thought	to	be	the	origin	of
mass.	Modern	communications	have	become	so	fast	that	market	traders	are
beginning	to	run	up	against	a	relativistic	limitation:	the	speed	of	light.	This	is	the
fastest	that	any	message,	such	as	an	Internet	instruction	to	buy	or	sell	stock,	can
travel.	Some	see	this	as	an	opportunity	to	cut	a	deal	nanoseconds	earlier	than	the
competition,	but	so	far,	relativistic	effects	haven’t	had	a	serious	effect	on
international	finance.	However,	people	have	already	worked	out	the	best
locations	for	new	stock	markets	or	dealerships.	It’s	only	a	matter	of	time.

At	any	rate,	not	only	is	relativity	not	relative:	even	the	iconic	equation	is	not
what	it	seems.	When	Einstein	first	derived	the	physical	idea	that	it	represents,	he
didn’t	write	it	in	the	familiar	way.	It	is	not	a	mathematical	consequence	of
relativity,	though	it	becomes	one	if	various	physical	assumptions	and	definitions
are	accepted.	It	is	perhaps	typical	of	human	culture	that	our	most	iconic	equation
is	not,	and	was	not,	what	it	seems	to	be,	and	neither	is	the	theory	that	gave	birth



to	it.	Even	the	connection	with	nuclear	weapons	is	not	clear-cut,	and	its
historical	influence	on	the	first	atomic	bomb	was	small	compared	with	Einstein’s
political	clout	as	the	iconic	scientist.

‘Relativity’	covers	two	distinct	but	related	theories:	special	relativity	and	general
relativity.	I’ll	use	Einstein’s	celebrated	equation	as	an	excuse	to	talk	about	both.
Special	relativity	is	about	space,	time,	and	matter	in	the	absence	of	gravity;
general	relativity	takes	gravity	into	account	as	well.	The	two	theories	are	part	of
one	big	picture,	but	it	took	Einstein	ten	years	of	intensive	effort	to	discover	how
to	modify	special	relativity	to	incorporate	gravity.	Both	theories	were	inspired	by
difficulties	in	reconciling	Newtonian	physics	with	observations,	but	the	iconic
formula	arose	in	special	relativity.

Physics	seemed	fairly	straightforward	and	intuitive	in	Newton’s	day.	Space
was	space,	time	was	time,	and	never	the	twain	should	meet.	The	geometry	of
space	was	that	of	Euclid.	Time	was	independent	of	space,	the	same	for	all
observers	–	provided	they	had	synchronised	their	clocks.	The	mass	and	size	of	a
body	did	not	change	when	it	moved,	and	time	always	passed	at	the	same	rate
everywhere.	But	when	Einstein	had	finished	reformulating	physics,	all	of	these
statements	–	so	intuitive	that	it	is	very	difficult	to	imagine	how	any	of	them
could	fail	to	represent	reality	–	turned	out	to	be	wrong.

They	were	not	totally	wrong,	of	course.	If	they	had	been	nonsense,	then
Newton’s	work	would	never	have	got	off	the	ground.	The	Newtonian	picture	of
the	physical	universe	is	an	approximation,	not	an	exact	description.	The
approximation	is	extremely	accurate	provided	everything	involved	is	moving
slowly	enough,	and	in	most	everyday	circumstances	that	is	the	case.	Even	a	jet
fighter,	travelling	at	twice	the	speed	of	sound,	is	moving	slowly	for	this	purpose.
But	one	thing	that	does	play	a	role	in	everyday	life	moves	very	fast	indeed,	and
sets	the	yardstick	for	all	other	speeds:	light.	Newton	and	his	successors	had
demonstrated	that	light	was	a	wave,	and	Maxwell’s	equations	confirmed	this.
But	the	wave	nature	of	light	raised	a	new	issue.	Ocean	waves	are	waves	in	water,
sound	waves	are	waves	in	air,	earthquakes	are	waves	in	the	Earth.	So	light	waves
are	waves	in…	what?

Mathematically	they	are	waves	in	the	electromagnetic	field,	which	is	assumed
to	pervade	the	whole	of	space.	When	the	electromagnetic	field	is	excited	–
persuaded	to	support	electricity	and	magnetism	–	we	observe	a	wave.	But	what
happens	when	it’s	not	excited?	Without	waves,	an	ocean	would	still	be	an	ocean,
air	would	still	be	air,	and	the	Earth	would	still	be	the	Earth.	Analogously,	the
electromagnetic	field	would	still	be…	the	electromagnetic	field.	But	you	can’t



observe	the	electromagnetic	field	if	there’s	no	electricity	or	magnetism	going	on.
If	you	can’t	observe	it,	what	is	it?	Does	it	exist	at	all?

All	waves	known	to	physics,	except	the	electromagnetic	field,	are	waves	in
something	tangible.	All	three	types	of	wave	–	water,	air,	earthquake	–	are	waves
of	movement.	The	medium	moves	up	and	down	or	from	side	to	side,	but	usually
it	doesn’t	travel	with	the	wave.	(Tie	a	long	rope	to	a	wall	and	shake	one	end:	a
wave	travels	along	the	rope.	But	the	rope	doesn’t	travel	along	the	rope.)	There
are	exceptions:	when	air	travels	along	with	the	wave	we	call	it	‘wind’,	and	ocean
waves	move	water	up	a	beach	when	they	hit	one.	But	even	though	we	describe	a
tsunami	as	a	moving	wall	of	water,	it	doesn’t	roll	across	the	top	of	the	ocean	like
a	football	rolling	along	the	pitch.	Mostly,	the	water	in	any	given	location	goes	up
and	down.	It	is	the	location	of	the	‘up’	that	moves.	Until	the	water	gets	close	to
shore;	then	you	get	something	much	more	like	a	moving	wall.

Light,	and	electromagnetic	waves	in	general,	didn’t	seem	to	be	waves	in
anything	tangible.	In	Maxwell’s	day,	and	for	fifty	years	or	more	afterwards,	that
was	disturbing.	Newton’s	law	of	gravity	had	long	been	criticised	because	it
implies	that	gravity	somehow	‘acts	at	a	distance’,	as	miraculous	in	philosophical
principle	as	kicking	a	ball	into	the	goal	when	you’re	sitting	in	the	stands.	Saying
that	it	is	transmitted	by	‘the	gravitational	field’	doesn’t	really	explain	what’s
happening.	The	same	goes	for	electromagnetism.	So	physicists	came	round	to
the	idea	that	there	was	some	medium	–	no	one	knew	what,	they	called	it	the
‘luminiferous	aether’	or	just	plain	‘ether’	–	that	supported	electromagnetic
waves.	Vibrations	travel	faster	the	more	rigid	the	medium,	and	light	was	very
fast	indeed,	so	the	ether	had	to	be	extremely	rigid.	Yet	planets	could	move
through	it	without	resistance.	To	have	avoided	easy	detection,	the	ether	must
have	no	mass,	no	viscosity,	be	incompressible,	and	be	totally	transparent	to	all
forms	of	radiation.

It	was	a	daunting	combination	of	attributes,	but	almost	all	physicists	assumed
the	ether	existed,	because	light	clearly	did	what	light	did.	Something	had	to	carry
the	wave.	Moreover,	the	ether’s	existence	could	in	principle	be	detected,	because
another	feature	of	light	suggested	a	way	to	observe	it.	In	a	vacuum,	light	moves
with	a	fixed	speed	c.	Newtonian	mechanics	had	taught	every	physicist	to	ask:
speed	relative	to	what?	If	you	measure	a	velocity	in	two	different	frames	of
reference,	one	moving	with	respect	to	the	other,	you	get	different	answers.	The
constancy	of	the	speed	of	light	suggested	an	obvious	reply:	relative	to	the	ether.
But	this	was	a	little	facile,	because	two	frames	of	reference	that	are	moving	with
respect	to	each	other	can’t	both	be	at	rest	relative	to	the	ether.



As	the	Earth	ploughs	its	way	through	the	ether,	miraculously	unresisted,	it
goes	round	and	round	the	Sun.	At	opposite	points	on	its	orbit	it	is	moving	in
opposite	directions.	So	by	Newtonian	mechanics,	the	speed	of	light	should	vary
between	two	extremes:	c	plus	a	contribution	from	the	Earth’s	motion	relative	to
the	ether,	and	c	minus	the	same	contribution.	Measure	the	speed,	measure	it	six
months	later,	find	the	difference:	if	there	is	one,	you	have	proof	that	the	ether
exists.	In	the	late	1800s	many	experiments	along	these	lines	were	carried	out,	but
the	results	were	inconclusive.	Either	there	was	no	difference,	or	there	was	one
but	the	experimental	method	wasn’t	accurate	enough.	Worse,	the	Earth	might	be
dragging	the	ether	along	with	it.	This	would	simultaneously	explain	why	the
Earth	can	move	through	such	a	rigid	medium	without	resistance,	and	imply	that
you	ought	not	to	see	any	difference	in	the	speed	of	light	anyway.	The	Earth’s
motion	relative	to	the	ether	would	always	be	zero.

In	1887	Albert	Michelson	and	Edward	Morley	carried	out	one	of	the	most
famous	physics	experiments	of	all	time.	Their	apparatus	was	designed	to	detect
extremely	small	variations	in	the	speed	of	light	in	two	directions,	at	right	angles
to	each	other.	However	the	Earth	was	moving	relative	to	the	ether,	it	couldn’t	be
moving	with	the	same	relative	speed	in	two	different	directions…	unless	it
happened	by	coincidence	to	be	moving	along	the	line	bisecting	those	directions,
in	which	case	you	just	rotated	the	apparatus	a	little	and	tried	again.

The	apparatus,	Figure	48,	was	small	enough	to	fit	on	a	laboratory	desk.	It
used	a	half-silvered	mirror	to	split	a	beam	of	light	into	two	parts,	one	passing
through	the	mirror	and	the	other	being	reflected	at	right	angles.	Each	separate
beam	was	reflected	back	along	its	path,	and	the	two	beams	combined	again,	to
hit	a	detector.	The	apparatus	was	adjusted	to	make	the	paths	the	same	length.
The	original	beam	was	set	up	to	be	coherent,	meaning	that	its	waves	were	in
synchrony	with	each	other	–	all	having	the	same	phase,	peaks	coinciding	with
peaks.	Any	difference	between	the	speed	of	light	in	the	directions	followed	by
the	two	beams	would	cause	their	phases	to	shift	relative	to	each	other,	so	their
peaks	would	be	in	different	places.	This	would	cause	interference	between	the
two	waves,	resulting	in	a	striped	pattern	of	‘diffraction	fringes’.	Motion	of	the
Earth	relative	to	the	ether	would	cause	the	fringes	to	move.	The	effect	would	be
tiny:	given	what	was	known	about	the	Earth’s	motion	relative	to	the	Sun,	the
diffraction	fringes	would	shift	by	about	4%	of	the	width	of	one	fringe.	By	using
multiple	reflections,	this	could	be	increased	to	40%,	big	enough	to	be	detected.
To	avoid	the	possible	coincidence	of	the	Earth	moving	exactly	along	the	bisector
of	the	two	beams,	Michelson	and	Morley	floated	the	apparatus	on	a	bath	of
mercury,	so	that	it	could	be	spun	round	easily	and	rapidly.	It	should	then	be



possible	to	watch	the	fringes	shifting	with	equal	rapidity.

Fig	48	The	Michelson–Morley	experiment.

It	was	a	careful,	accurate	experiment.	Its	result	was	entirely	negative.	The
fringes	did	not	move	by	40%	of	their	width.	As	far	as	anyone	could	tell	with
certainty,	they	didn’t	move	at	all.	Later	experiments,	capable	of	detecting	a	shift
0.07%	as	wide	as	a	fringe,	also	gave	a	negative	result.	The	ether	did	not	exist.

This	result	didn’t	just	dispose	of	the	ether:	it	threatened	to	dispose	of
Maxwell’s	theory	of	electromagnetism,	too.	It	implied	that	light	does	not	behave
in	a	Newtonian	manner,	relative	to	moving	frames	of	reference.	This	problem
can	be	traced	right	back	to	the	mathematical	properties	of	Maxwell’s	equations
and	how	they	transform	relative	to	a	moving	frame.	The	Irish	physicist	and
chemist	George	FitzGerald	and	the	Dutch	physicist	Hendrik	Lorenz
independently	suggested	(in	1892	and	1895	respectively)	an	audacious	way	to
get	round	the	problem.	If	a	moving	body	contracts	slightly	in	its	direction	of
motion,	by	just	the	right	amount,	then	the	change	in	phase	that	the	Michelson–
Morley	experiment	was	hoping	to	detect	would	be	exactly	cancelled	out	by	the
change	in	the	length	of	the	path	that	the	light	was	following.	Lorenz	showed	that
this	‘Lorenz–FitzGerald	contraction’	sorted	out	the	mathematical	difficulties
with	the	Maxwell	equations	as	well.	The	joint	discovery	showed	that	the	results
of	experiments	on	electromagnetism,	including	light,	do	not	depend	on	the
relative	motion	of	the	reference	frame.	Poincaré,	who	had	also	been	working



along	similar	lines,	added	his	persuasive	intellectual	weight	to	the	idea.

The	stage	was	now	set	for	Einstein.	In	1905	he	developed	and	extended	previous
speculations	about	a	new	theory	of	relative	motion	in	a	paper	‘On	the
electrodynamics	of	moving	bodies’.	His	work	went	beyond	that	of	his
predecessors	in	two	ways.	He	showed	that	the	necessary	change	to	the
mathematical	formulation	of	relative	motion	was	more	than	just	a	trick	to	sort
out	electromagnetism.	It	was	required	for	all	physical	laws.	It	followed	that	the
new	mathematics	must	be	a	genuine	description	of	reality,	with	the	same
philosophical	status	that	had	been	accorded	to	the	prevailing	Newtonian
description,	but	providing	a	better	agreement	with	experiments.	It	was	real
physics.

The	view	of	relative	motion	employed	by	Newton	went	back	even	further,	to
Galileo.	In	his	1632	Dialogo	sopra	i	due	massimi	sistemi	del	mondo	(‘Dialogue
Concerning	the	Two	Chief	World	Systems’)	Galileo	discussed	a	ship	travelling
at	constant	velocity	on	a	perfectly	smooth	sea,	arguing	that	no	experiment	in
mechanics	carried	out	below	decks	could	reveal	that	the	ship	was	moving.	This
is	Galileo’s	principle	of	relativity:	in	mechanics,	there	is	no	difference	between
observations	made	in	two	frames	that	are	moving	with	uniform	velocity	relative
to	each	other.	In	particular,	there	is	no	special	frame	of	reference	that	is	‘at	rest’.
Einstein’s	starting-point	was	the	same	principle,	but	with	an	extra	twist:	it	must
apply	not	just	to	mechanics,	but	to	all	physical	laws.	Among	them,	of	course,
being	Maxwell’s	equations	and	the	constancy	of	the	speed	of	light.

To	Einstein,	the	Michelson–Morley	experiment	was	a	small	piece	of	extra
evidence,	but	it	wasn’t	proof	of	the	pudding.	The	proof	that	his	new	theory	was
correct	lay	in	his	extended	principle	of	relativity,	and	what	it	implied	for	the
mathematical	structure	of	the	laws	of	physics.	If	you	accepted	the	principle,	all
else	followed.	This	is	why	the	theory	became	known	as	‘relativity’.	Not	because
‘everything	is	relative’,	but	because	you	have	to	take	into	account	the	manner	in
which	everything	is	relative.	And	it’s	not	what	you	expect.

This	version	of	Einstein’s	theory	is	known	as	special	relativity	because	it
applies	only	to	frames	of	reference	that	are	moving	uniformly	with	respect	to
each	other.	Among	its	consequences	are	the	Lorenz–FitzGerald	contraction,	now
interpreted	as	a	necessary	feature	of	space-time.	In	fact,	there	were	three	related
effects.	If	one	frame	of	reference	is	moving	uniformly	relative	to	another	one,
then	lengths	measured	in	that	frame	contract	along	the	direction	of	motion,
masses	increase,	and	time	runs	more	slowly.	These	three	effects	are	tied	together
by	the	basic	conservation	laws	of	energy	and	momentum;	once	you	accept	one



of	them,	the	others	are	logical	consequences.
The	technical	formulation	of	these	effects	is	a	formula	that	describes	how

measurements	in	one	frame	relate	to	those	in	the	other.	The	executive	summary
is:	if	a	body	could	move	close	to	the	speed	of	light,	then	its	length	would	become
very	small,	time	would	slow	to	a	crawl,	and	its	mass	would	become	very	large.
I’ll	just	give	a	flavour	of	the	mathematics:	the	physical	description	should	not	be
taken	too	literally	and	it	would	take	too	long	to	set	it	up	in	the	correct	language.
It	all	comes	from…	Pythagoras’s	theorem.	One	of	the	oldest	equations	in	science
leads	to	one	of	the	newest.

Suppose	that	a	spaceship	is	passing	overhead	with	velocity	v,	and	the	crew
performs	an	experiment.	They	send	a	pulse	of	light	from	the	floor	of	the	cabin	to
the	roof,	and	measure	the	time	taken	to	be	T.	Meanwhile	an	observer	on	the
ground	watches	the	experiment	through	a	telescope	(assume	the	spaceship	is
transparent),	measuring	the	time	to	be	t.

Fig	49	Left:	The	experiment	in	the	crew’s	frame	of	reference.	Right:	The	same
experiment	in	the	ground	observer’s	frame	of	reference.	Grey	shows	the	ship’s
position	as	seen	from	the	ground	when	the	light	beam	starts	its	journey;	black
shows	the	ship’s	position	when	the	light	completes	its	journey.

Figure	49	(left)	shows	the	geometry	of	the	experiment	from	the	crew’s	point
of	view.	To	them,	the	light	has	gone	straight	up.	Since	light	travels	at	speed	c,
the	distance	travelled	is	cT,	shown	by	the	dotted	arrow.	Figure	49	(right)	shows
the	geometry	of	the	experiment	from	the	ground	observer’s	point	of	view.	The
spaceship	has	moved	a	distance	vt,	so	the	light	has	travelled	diagonally.	Since
light	also	travels	at	speed	c	for	the	ground	observer,	the	diagonal	has	length	ct.
But	the	dotted	line	has	the	same	length	as	the	dotted	arrow	in	the	first	picture,
namely	cT.	By	Pythagoras’s	theorem,

(ct)2	=	(CT)2	+	(vt)2

We	solve	for	T,	getting



which	is	smaller	than	t.
To	derive	the	Lorenz–FitzGerald	contraction,	we	now	imagine	that	the

spaceship	travels	to	a	planet	distance	x	from	Earth	at	speed	v.	Then	the	elapsed
time	is	t	=	x/v.	But	the	previous	formula	shows	that	to	the	crew,	the	time	taken	is
T,	not	t.	For	them,	the	distance	X	must	satisfy	T	=	X/v.	Therefore

which	is	smaller	than	x.
The	derivation	of	the	mass	change	is	slightly	more	involved,	and	it	depends

on	a	particular	interpretation	of	mass,	‘rest	mass’,	so	I	won’t	give	details.	The
formula	is

which	is	larger	than	m.
These	equations	tell	us	that	there	is	something	very	special	about	the	speed	of

light	(and	indeed	about	light).	An	important	consequence	of	this	formalism	is
that	the	speed	of	light	is	an	impenetrable	barrier.	If	a	body	starts	out	slower	than
light,	it	cannot	be	accelerated	to	a	speed	greater	than	that	of	light.	In	September
2011	physicists	working	in	Italy	announced	that	subatomic	particles	called
neutrinos	appeared	to	be	travelling	faster	than	light.1	Their	observation	is
controversial,	but	if	it	is	confirmed,	it	will	lead	to	important	new	physics.

Pythagoras	turns	up	in	relativity	in	other	ways.	One	is	the	formulation	of
special	relativity	in	terms	of	the	geometry	of	space-time,	originally	introduced
by	Hermann	Minkowski.	Ordinary	Newtonian	space	can	be	captured
mathematically	by	making	its	points	correspond	to	three	coordinates	(x,	y,	z),
and	defining	the	distance	d	between	such	a	point	and	another	one	(X,	Y,	Z)	using
Pythagoras’s	theorem:

d2	=	(x	−	X)2	+	(y	−	Y)2	+	(z	−	Z)2

Now	take	the	square	root	to	get	d.	Minkowski	space-time	is	similar,	but	now
there	are	four	coordinates	(x,	y,	z,	t),	three	of	space	plus	one	of	time,	and	a	point
is	called	an	event	–	a	location	in	space,	observed	at	a	specified	time.	The



distance	formula	is	very	similar:

d2	=	(x	−	X)2	+	(y	−	Y)2	+	(z	−	Z)2	−	c2(t	−	T)2

The	factor	c2	is	just	a	consequence	of	the	units	used	to	measure	time,	but	the
minus	sign	in	front	of	it	is	crucial.	The	‘distance’	d	is	called	the	interval,	and	the
square	root	is	real	only	when	the	right-hand	side	of	the	equation	is	positive.	That
boils	down	to	the	spatial	distance	between	the	two	events	being	larger	than	the
temporal	difference	(in	correct	units:	light-years	and	years,	for	instance).	That	in
turn	means	that	in	principle	a	body	could	travel	from	the	first	point	in	space	at
the	first	time,	and	arrive	at	the	second	point	in	space	at	the	second	time,	without
going	faster	than	light.

In	other	words,	the	interval	is	real	if	and	only	if	it	is	physically	possible,	in
principle,	to	travel	between	the	two	events.	The	interval	is	zero	if	and	only	if
light	could	travel	between	them.	This	physically	accessible	region	is	called	the
light	cone	of	an	event,	and	it	comes	in	two	pieces:	the	past	and	the	future.	Figure
50	shows	the	geometry	when	space	is	reduced	to	one	dimension.

I’ve	now	shown	you	three	relativistic	equations,	and	sketched	how	they	arose,
but	none	of	them	is	Einstein’s	iconic	equation.	However,	we’re	now	ready	to
understand	how	he	derived	it,	once	we	appreciate	one	more	innovation	of	early
twentieth-century	physics.	As	we’ve	seen,	physicists	had	previously	performed
experiments	to	demonstrate	conclusively	that	light	is	a	wave,	and	Maxwell	had
shown	that	it	is	a	wave	of	electromagnetism.	However,	by	1905	it	was	becoming
clear	that	despite	the	weight	of	evidence	for	the	wave	nature	of	light,	there	are
circumstances	in	which	it	behaves	like	a	particle.	In	that	year	Einstein	used	this
idea	to	explain	some	features	of	the	photoelectric	effect,	in	which	light	that	hits	a
suitable	metal	generates	electricity.	He	argued	that	the	experiments	made	sense
only	if	light	comes	in	discrete	packages:	in	effect,	particles.	They	are	now	called
photons.



Fig	50	Minkowski	space-time,	with	space	shown	as	one-dimensional.

This	puzzling	discovery	was	one	of	the	key	steps	towards	quantum
mechanics,	and	I’ll	say	more	about	it	in	Chapter	14.	Curiously,	this
quintessentially	quantum-mechanical	idea	was	vital	to	Einstein’s	formulation	of
relativity.	To	derive	his	equation	relating	mass	to	energy,	Einstein	thought	about
what	happens	to	a	body	that	emits	a	pair	of	photons.	To	simplify	the	calculations
he	restricted	attention	to	one	dimension	of	space,	so	that	the	body	moved	along	a
straight	line.	This	simplification	does	not	affect	the	answer.	The	basic	idea	is	to
consider	the	system	in	two	different	frames	of	reference.2	One	moves	with	the
body,	so	that	the	body	appears	to	be	stationary	within	that	frame.	The	other
frame	moves	with	a	small,	nonzero	velocity	relative	to	the	body.	Let	me	call
these	the	stationary	and	moving	frames.	They	are	like	the	spaceship	(in	its	own
frame	of	reference	it	is	stationary)	and	my	ground	observer	(to	whom	it	appears
to	be	moving).

Einstein	assumed	that	the	two	photons	are	equally	energetic,	but	emitted	in
opposite	directions.	Their	velocities	are	equal	and	opposite,	so	the	velocity	of	the
body	(in	either	frame)	does	not	change	when	the	photons	are	emitted.	Then	he
calculated	the	energy	of	the	system	before	the	body	emits	the	pair	of	photons,
and	afterwards.	By	assuming	that	energy	must	be	conserved,	he	obtained	an
expression	that	relates	the	change	in	the	body’s	energy,	caused	by	emitting	the
photons,	to	the	change	in	its	(relativistic)	mass.	The	upshot	was:

(change	in	energy)	=	(change	in	mass)	×	c2

Making	the	reasonable	assumption	that	a	body	of	zero	mass	has	zero	energy,	it
then	followed	that



energy	=	mass	×	c2

This,	of	course,	is	the	famous	formula,	in	which	E	symbolises	energy	and	m
mass.

As	well	as	doing	the	calculations,	Einstein	had	to	interpret	their	meaning.	In
particular,	he	argued	that	in	a	frame	for	which	the	body	is	at	rest,	the	energy
given	by	the	formula	should	be	considered	to	be	its	‘internal’	energy,	which	it
possesses	because	it	is	made	from	subatomic	particles,	each	of	which	has	its	own
energy.	In	a	moving	frame,	there	is	also	a	contribution	from	kinetic	energy.
There	are	other	mathematical	subtleties	too,	such	as	the	use	of	a	small	velocity
and	approximations	to	the	exact	formulas.

Einstein	is	often	credited,	if	that’s	the	word,	with	the	realisation	that	an	atomic
bomb	would	release	stupendous	quantities	of	energy.	Certainly	Time	magazine
gave	that	impression	in	July	1946	when	it	put	his	face	on	the	cover	with	an
atomic	mushroom	cloud	in	the	background	bearing	his	iconic	equation.	The
connection	between	the	equation	and	a	huge	explosion	seems	clear:	the	equation
tells	us	that	the	energy	inherent	in	any	object	is	its	mass	multiplied	by	the	square
of	the	speed	of	light.	Since	the	speed	of	light	is	huge,	its	square	is	even	bigger,
which	equates	to	a	lot	of	energy	in	a	small	amount	of	matter.	The	energy	in	one
gram	of	matter	turns	out	to	be	90	terajoules,	equivalent	to	about	one	day’s	output
of	electricity	from	a	nuclear	power	station.

However,	it	didn’t	happen	like	that.	The	energy	released	in	an	atomic	bomb	is
only	a	tiny	fraction	of	the	relativistic	rest	mass,	and	physicists	were	already
aware,	on	experimental	grounds,	that	certain	nuclear	reactions	could	release	a	lot
of	energy.	The	main	technical	problem	was	to	hold	a	lump	of	suitable
radioactive	material	together	long	enough	to	get	a	chain	reaction,	in	which	the
decay	of	one	radioactive	atom	causes	it	to	emit	radiation	that	triggers	the	same
effect	in	other	atoms,	growing	exponentially.	Nevertheless,	Einstein’s	equation
quickly	became	established	in	the	public	mind	as	the	progenitor	of	the	atomic
bomb.	The	Smyth	report,	an	American	government	document	released	to	the
public	to	explain	the	atomic	bomb,	placed	the	equation	on	its	second	page.	I
suspect	that	what	happened	is	what	Jack	Cohen	and	I	have	called	‘lies	to
children’	–	simplified	stories	told	for	legitimate	purposes,	which	pave	the	way	to
more	accurate	enlightenment.3	This	is	how	education	works:	the	full	story	is
always	too	complicated	for	anyone	except	the	experts,	and	they	know	so	much
that	they	don’t	believe	most	of	it.

However,	Einstein’s	equation	can’t	just	be	dismissed	out	of	hand.	It	did	play	a



role	in	the	development	of	nuclear	weapons.	The	notion	of	nuclear	fission,	which
powers	the	atom	bomb,	arose	from	discussions	between	the	physicists	Lise
Meitner	and	Otto	Frisch	in	Nazi	Germany	in	1938.	They	were	trying	to
understand	the	forces	that	held	the	atom	together,	which	were	a	bit	like	the
surface	tension	of	a	drop	of	liquid.	They	were	out	walking,	discussing	physics,
and	they	applied	Einstein’s	equation	to	work	out	whether	fission	was	possible	on
energy	grounds.	Frisch	later	wrote:4

We	both	sat	down	on	a	tree	trunk	and	started	to	calculate	on	scraps
of	paper…	When	the	two	drops	separated	they	would	be	driven
apart	by	electrical	repulsion,	about	200	MeV	in	all.	Fortunately	Lise
Meitner	remembered	how	to	compute	the	masses	of	nuclei…	and
worked	out	that	the	two	nuclei	formed…	would	be	lighter	by	about
one-fifth	the	mass	of	a	proton…	according	to	Einstein’s	formula	E	=
mc2…	the	mass	was	just	equivalent	to	200	MeV.	It	all	fitted!

Although	E	=	mc2	was	not	directly	responsible	for	the	atom	bomb,	it	was	one	of
the	big	discoveries	in	physics	that	led	to	an	effective	theoretical	understanding	of
nuclear	reactions.	Einstein’s	most	important	role	regarding	the	atomic	bomb	was
political.	Urged	by	Leo	Szilard,	Einstein	wrote	to	President	Roosevelt,	warning
that	the	Nazis	might	be	developing	atomic	weapons	and	explaining	their
awesome	power.	His	reputation	and	influence	were	enormous,	and	the	president
heeded	the	warning.	The	Manhattan	Project,	Hiroshima	and	Nagasaki,	and	the
ensuing	Cold	War	were	just	some	of	the	consequences.

Einstein	wasn’t	satisfied	with	special	relativity.	It	provided	a	unified	theory	of
space,	time,	matter,	and	electromagnetism,	but	it	missed	out	one	vital	ingredient.

Gravity.
Einstein	believed	that	‘all	the	laws	of	physics’	must	satisfy	his	extended

version	of	Galileo’s	principle	of	relativity.	The	law	of	gravitation	surely	ought	to
be	among	them.	But	that	wasn’t	the	case	for	the	current	version	of	relativity.
Newton’s	inverse	square	law	did	not	transform	correctly	between	frames	of
reference.	So	Einstein	decided	he	had	to	change	Newton’s	law.	He’d	already
changed	virtually	everything	else	in	the	Newtonian	universe,	so	why	not?

It	took	him	ten	years.	His	starting-point	was	to	work	out	the	implications	of
the	principle	of	relativity	for	an	observer	moving	freely	under	the	influence	of
gravity	–	in	a	lift	that	is	dropping	freely,	for	example.	Eventually	he	homed	in	on
a	suitable	formulation.	In	this	he	was	aided	by	a	close	friend,	the	mathematician



Marcel	Grossmann,	who	pointed	him	towards	a	rapidly	growing	field	of
mathematics:	differential	geometry.	This	had	developed	from	Riemann’s
concept	of	a	manifold	and	his	characterisation	of	curvature,	discussed	in	Chapter
1.	There	I	mentioned	that	Riemann’s	metric	can	be	written	as	a	3	×	3	matrix,	and
that	technically	this	is	a	symmetric	tensor.	A	school	of	Italian	mathematicians,
notably	Tullio	Levi-Civita	and	Gregorio	Ricci-Curbastro,	took	up	Riemann’s
ideas	and	developed	them	into	tensor	calculus.

From	1912,	Einstein	was	convinced	that	the	key	to	a	relativistic	theory	of
gravity	required	him	to	reformulate	his	ideas	using	tensor	calculus,	but	in	a	4-
dimensional	space-time	rather	than	3-dimensional	space.	The	mathematicians
were	happily	following	Riemann	and	allowing	any	number	of	dimensions,	so
they	had	already	set	things	up	in	more	than	enough	generality.	To	cut	a	long
story	short,	he	eventually	derived	what	we	now	call	the	Einstein	field	equations,
which	he	wrote	as:

Here	R,	g,	and	T	are	tensors	–	quantities	that	define	physical	properties	and
transform	according	to	the	rules	of	differential	geometry	–	and	k	is	a	constant.
The	subscripts	μ	and	ν	run	over	the	four	coordinates	of	space-time,	so	each
tensor	is	a	4	×	4	table	of	16	numbers.	Both	are	symmetric,	meaning	that	they
don’t	change	when	μ	and	ν	are	swapped,	which	reduces	them	to	a	list	of	10
distinct	numbers.	So	really	the	formula	packages	together	10	equations,	which	is
why	we	often	refer	to	them	using	the	plural	–	compare	Maxwell’s	equations.	R	is
Riemann’s	metric:	it	defines	the	shape	of	space-time.	g	is	the	Ricci	curvature
tensor,	which	is	a	modification	of	Riemann’s	notion	of	curvature.	And	T	is	the
energy–momentum	tensor,	which	describes	how	these	two	fundamental
quantities	depend	on	the	space-time	event	concerned.	Einstein	presented	his
equations	to	the	Prussian	Academy	of	Science	in	1915.	He	called	his	new	work
the	general	theory	of	relativity.

We	can	interpret	Einstein’s	equations	geometrically,	and	when	we	do,	they
provide	a	new	approach	to	gravity.	The	basic	innovation	is	that	gravity	is	not
represented	as	a	force,	but	as	the	curvature	of	space-time.	In	the	absence	of
gravity,	space-time	reduces	to	Minkowski	space.	The	formula	for	the	interval
determines	the	corresponding	curvature	tensor.	Its	interpretation	is	‘not	curved’,
just	as	Pythagoras’s	theorem	applies	to	a	flat	plane	but	not	to	a	positively	or
negatively	curved	non-Euclidean	space.	Minkowski	space-time	is	flat.	But	when
gravity	occurs,	space-time	bends.



The	usual	way	to	picture	this	is	to	forget	time,	drop	the	dimensions	of	space
down	to	two,	and	get	something	like	Figure	51	(left).	The	flat	plane	of
Minkowski	space(-time)	is	distorted,	shown	here	by	an	actual	bend,	creating	a
depression.	Far	from	the	star,	matter	or	light	travels	in	a	straight	line	(dotted).
But	the	curvature	causes	the	path	to	bend.	In	fact,	it	looks	superficially	as	though
some	force	coming	from	the	star	attracts	the	matter	towards	it.	But	there	is	no
force,	just	warped	space-time.	However,	this	image	of	curvature	deforms	space
along	an	extra	dimension,	which	is	not	required	mathematically.	An	alternative
image	is	to	draw	a	grid	of	geodesics,	shortest	paths,	equally	spaced	according	to
the	curved	metric.	They	bunch	together	where	the	curvature	is	greater,	Figure	51
(right).

Fig	51	Left:	Warped	space	near	a	star,	and	how	it	bends	the	paths	of	passing
matter	or	light.	Right:	alternative	image	using	a	grid	of	geodesics,	which	bunch
together	in	regions	of	higher	curvature.

If	the	curvature	of	space-time	is	small,	that	is,	if	what	(in	the	old	picture)	we
think	of	as	gravitational	forces	are	not	too	large,	then	this	formulation	leads	to
Newton’s	law	of	gravity.	Comparing	the	two	theories,	Einstein’s	constant	k	turns
out	to	be	8πG/c4,	where	G	is	Newton’s	gravitational	constant.	This	links	the	new
theory	to	the	old	one,	and	proves	that	in	most	cases	the	new	one	will	agree	with
the	old.	The	interesting	new	physics	occurs	when	this	is	no	longer	true:	when
gravity	is	large.	When	Einstein	came	up	with	his	theory,	any	test	of	relativity	had
to	take	place	outside	the	laboratory,	on	a	grand	scale.	Which	meant	astronomy.

Einstein	therefore	went	looking	for	unexplained	peculiarities	in	the	motion	of	the
planets,	effects	that	didn’t	square	with	Newton.	He	found	one	that	might	be
suitable:	an	obscure	feature	of	the	orbit	of	Mercury,	the	planet	closest	to	the	Sun,
subjected	to	the	greatest	gravitational	forces	–	and	so,	if	Einstein	was	right,
inside	a	region	of	high	curvature.

Like	all	planets,	Mercury	follows	a	path	that	is	very	close	to	an	ellipse,	so
some	points	in	its	orbit	are	closer	to	the	Sun	than	others.	The	closest	of	all	is



called	its	perihelion	(‘near	Sun’	in	Greek).	The	exact	location	of	this	perihelion
had	been	observed	for	many	years,	and	there	was	something	funny	about	it.	The
perihelion	slowly	rotated	about	the	Sun,	an	effect	called	precession;	in	effect,	the
long	axis	of	the	orbital	ellipse	was	slowly	changing	direction.	That	was	all	right;
Newton’s	laws	predicted	it,	because	Mercury	is	not	the	only	planet	in	the	Solar
System	and	other	planets	were	slowly	changing	its	orbit.	The	problem	was	that
Newtonian	calculations	gave	the	wrong	rate	of	precession.	The	axis	was	rotating
too	quickly.

That	had	been	known	since	1840	when	François	Arago,	director	of	the	Paris
Observatory,	asked	Urbain	Le	Verrier	to	calculate	the	orbit	of	Mercury	using
Newton’s	laws	of	motion	and	gravitation.	But	when	the	results	were	tested	by
observing	the	exact	timing	of	a	transit	of	Mercury	–	a	passage	across	the	face	of
the	Sun,	as	viewed	from	Earth	–	they	were	wrong.	Le	Verrier	decided	to	try
again,	eliminating	potential	sources	of	error,	and	in	1859	he	published	his	new
results.	On	the	Newtonian	model,	the	rate	of	precession	was	accurate	to	about
0.7%.	The	difference	compared	with	observations	was	tiny:	38	seconds	of	arc
every	century	(later	revised	to	43	arc-seconds).	That’s	not	much,	less	than	one
ten	thousandth	of	a	degree	per	year,	but	it	was	enough	to	interest	Le	Verrier.	In
1846	he	had	made	his	reputation	by	analysing	irregularities	in	the	orbit	of
Uranus	and	predicting	the	existence,	and	location,	of	a	then	undiscovered	planet:
Neptune.	Now	he	was	hoping	to	repeat	the	feat.	He	interpreted	the	unexpected
perihelion	movement	as	evidence	that	some	unknown	world	was	perturbing
Mercury’s	orbit.	He	did	the	sums	and	predicted	the	existence	of	a	small	planet
with	an	orbit	closer	to	the	Sun	than	that	of	Mercury.	He	even	had	a	name	for	it:
Vulcan,	the	Roman	god	of	fire.

Observing	Vulcan,	if	it	existed,	would	be	difficult.	The	glare	of	the	Sun	was
an	obstacle,	so	the	best	bet	was	to	catch	Vulcan	in	transit,	where	it	would	be	a
tiny	dark	dot	against	the	bright	disc	of	the	Sun.	Shortly	after	Le	Verrier’s
prediction,	an	amateur	astronomer	named	Edmond	Lescarbault	informed	the
distinguished	astronomer	that	he	had	seen	just	that.	He	had	initially	assumed	that
the	dot	must	be	a	sunspot,	but	it	moved	at	the	wrong	speed.	In	1860	Le	Verrier
announced	the	discovery	of	Vulcan	to	the	Paris	Academy	of	Science,	and	the
government	awarded	Lescarbault	the	prestigious	Légion	d’Honneur.

Amid	the	clamour,	some	astronomers	remained	unimpressed.	One	was
Emmanuel	Liais,	who	had	been	studying	the	Sun	with	much	better	equipment
than	Lescarbault.	His	reputation	was	on	the	line:	he	had	been	observing	the	Sun
for	the	Brazilian	government,	and	it	would	have	been	disgraceful	to	have	missed
something	of	such	importance.	He	flatly	denied	that	a	transit	had	taken	place.



For	a	time,	everything	got	very	confused.	Amateurs	repeatedly	claimed	they	had
seen	Vulcan,	sometimes	years	before	Le	Verrier	announced	his	prediction.	In
1878	James	Watson,	a	professional,	and	Lewis	Swift,	an	amateur,	said	they	had
seen	a	planet	like	Vulcan	during	a	solar	eclipse.	Le	Verrier	had	died	a	year
earlier,	still	convinced	he	had	discovered	a	new	planet	near	the	Sun,	but	without
his	enthusiastic	new	calculations	of	orbits	and	predictions	of	transits	–	none	of
which	happened	–	interest	in	Vulcan	quickly	died	away.	Astronomers	became
skeptical.

In	1915,	Einstein	administered	the	coup	de	grâce.	He	reanalysed	the	motion
using	general	relativity,	without	assuming	any	new	planet,	and	a	simple	and
transparent	calculation	led	him	to	a	value	of	43	seconds	of	arc	for	the	precession
–	the	exact	figure	obtained	by	updating	Le	Verrier’s	original	calculations.	A
modern	Newtonian	calculation	predicts	a	precession	of	5560	arc	seconds	per
century,	but	observations	give	5600.	The	difference	is	40	seconds	of	arc,	so
about	3	arc-seconds	per	century	remains	unaccounted	for.	Einstein’s
announcement	did	two	things:	it	was	seen	as	a	vindication	of	relativity,	and	as
far	as	most	astronomers	were	concerned,	it	relegated	Vulcan	to	the	scrapheap.5

Another	famous	astronomical	verification	of	general	relativity	is	Einstein’s
prediction	that	the	Sun	bends	light.	Newtonian	gravitation	also	predicts	this,	but
general	relativity	predicts	an	amount	of	bending	that	is	twice	as	large.	The	total
solar	eclipse	of	1919	provided	an	opportunity	to	distinguish	the	two,	and	Sir
Arthur	Eddington	mounted	an	expedition,	eventually	announcing	that	Einstein
prevailed.	This	was	accepted	with	enthusiasm	at	the	time,	but	later	it	became
clear	that	the	data	were	poor,	and	the	result	was	questioned.	Further	independent
observations	from	1922	seemed	to	agree	with	the	relativistic	prediction,	as	did	a
later	reanalysis	of	Eddington’s	data.	By	the	1960s	it	became	possible	to	make	the
observations	for	radio-frequency	radiation,	and	only	then	was	it	certain	that	the
data	did	indeed	show	a	deviation	twice	that	predicted	by	Newton	and	equal	to
that	predicted	by	Einstein.

The	most	dramatic	predictions	from	general	relativity	arise	on	a	much	grander
scale:	black	holes,	which	are	born	when	a	massive	star	collapses	under	its	own
gravitation,	and	the	expanding	universe,	currently	explained	by	the	Big	Bang.

Solutions	to	Einstein’s	equations	are	space-time	geometries.	These	might
represent	the	universe	as	a	whole,	or	some	part	of	it,	assumed	to	be
gravitationally	isolated	so	that	the	rest	of	the	universe	has	no	important	effect.
This	is	analogous	to	early	Newtonian	assumptions	that	only	two	bodies	are
interacting,	for	example.	Since	Einstein’s	field	equations	involve	ten	variables,



explicit	solutions	in	terms	of	mathematical	formulas	are	rare.	Today	we	can
solve	the	equations	numerically,	but	that	was	a	pipedream	before	the	1960s
because	computers	either	didn’t	exist	or	were	too	limited	to	be	useful.	The
standard	way	to	simplify	equations	is	to	invoke	symmetry.	Suppose	that	the
initial	conditions	for	a	space-time	are	spherically	symmetric,	that	is,	all	physical
quantities	depend	only	on	the	distance	from	the	centre.	Then	the	number	of
variables	in	any	model	is	greatly	reduced.	In	1916	the	German	astrophysicist
Karl	Schwarzschild	made	this	assumption	for	Einstein’s	equations,	and	managed
to	solve	the	resulting	equations	with	an	exact	formula,	known	as	the
Schwarzschild	metric.	His	formula	had	a	curious	feature:	a	singularity.	The
solution	became	infinite	at	a	particular	distance	from	the	centre,	called	the
Schwarzschild	radius.	At	first	it	was	assumed	that	this	singularity	was	some	kind
of	mathematical	artefact,	and	its	physical	meaning	was	the	subject	of
considerable	dispute.	We	now	interpret	it	as	the	event	horizon	of	a	black	hole.

Imagine	a	star	so	massive	that	its	radiation	cannot	counter	its	gravitational
field.	The	star	will	begin	to	contract,	sucked	together	by	its	own	mass.	The
denser	it	gets,	the	stronger	this	effect	becomes,	so	the	contraction	happens	ever
faster.	The	star’s	escape	velocity,	the	speed	with	which	an	object	must	move	to
escape	the	gravitational	field,	also	increases.	The	Schwarzschild	metric	tells	us
that	at	some	stage,	the	escape	velocity	becomes	equal	to	that	of	light.	Now
nothing	can	escape,	because	nothing	can	travel	faster	than	light.	The	star	has
become	a	black	hole,	and	the	Schwarzschild	radius	tells	us	the	region	from
which	nothing	can	escape,	bounded	by	the	black	hole’s	event	horizon.

Black	hole	physics	is	complex,	and	there	isn’t	space	to	do	it	justice	here.
Suffice	it	to	say	that	most	cosmologists	are	now	satisfied	that	the	prediction	is
valid,	that	the	universe	contains	innumerable	black	holes,	and	indeed	that	at	least
one	lurks	at	the	heart	of	our	Galaxy.	Indeed,	of	most	galaxies.

In	1917	Einstein	applied	his	equations	to	the	entire	universe,	assuming
another	kind	of	symmetry:	homogeneity.	The	universe	should	look	the	same	(on
large	enough	scale)	at	all	points	in	space	and	time.	By	then	he	had	modified	the
equations	to	include	a	‘cosmological	constant’	Λ,	and	sorted	out	the	meaning	of
the	constant	κ.	The	equations	were	now	written	like	this:

The	solutions	had	a	surprising	implication:	the	universe	should	shrink	as	time
passes.	This	forced	Einstein	to	add	the	term	involving	the	cosmological	constant:



he	was	seeking	an	unchanging,	stable	universe,	and	by	adjusting	the	constant	to
the	right	value	he	could	stop	his	model	universe	contracting	to	a	point.	In	1922
Alexander	Friedmann	found	another	equation,	which	predicted	the	universe
should	expand	and	did	not	require	the	cosmological	constant.	It	also	predicted
the	rate	of	expansion.	Einstein	still	wasn’t	happy:	he	wanted	the	universe	to	be
stable	and	unchanging.

For	once	Einstein’s	imagination	failed	him.	In	1929	American	astronomers
Edwin	Hubble	and	Milton	Humason	found	evidence	that	the	universe	is
expanding.	Distant	galaxies	are	moving	away	from	us,	as	shown	by	shifts	in	the
frequency	of	the	light	they	emit	–	the	famous	Doppler	effect,	in	which	the	sound
of	a	speeding	ambulance	drops	as	it	passes	by,	because	the	sound	waves	are
affected	by	the	relative	speed	of	emitter	and	receiver.	Now	the	waves	are
electromagnetic	and	the	physics	is	relativistic,	but	there	is	still	a	Doppler	effect.
Not	only	do	distant	galaxies	move	away	from	us:	the	more	distant	they	are,	the
faster	they	recede.

Running	the	expansion	backwards	in	time,	it	turns	out	that	at	some	point	in
the	past,	the	entire	universe	was	essentially	just	a	point.	Before	that,	it	didn’t
exist	at	all.	At	that	primeval	point,	space	and	time	both	came	into	existence	in
the	famous	Big	Bang,	a	theory	proposed	by	French	mathematician	Georges
Lemaître	in	1927,	and	almost	universally	ignored.	When	radio	telescopes
observed	the	cosmological	microwave	background	radiation	in	1964,	at	a
temperature	that	fitted	the	Big	Bang	model,	cosmologists	decided	Lemaître	had
been	right	after	all.	Again,	the	topic	deserves	a	book	of	is	own,	and	many	have
been	written.	Suffice	it	to	say	that	our	current	most	widely	accepted	theory	of
cosmology	is	an	elaboration	of	the	Big	Bang	scenario.

Scientific	knowledge,	however,	is	always	provisional.	New	discoveries	can
change	it.	The	Big	Bang	has	been	the	accepted	cosmological	paradigm	for	the
last	30	years,	but	it	is	beginning	to	show	some	cracks.	Several	discoveries	either
cast	serious	doubt	on	the	theory,	or	require	new	physical	particles	and	forces	that
have	been	inferred	but	not	observed.	There	are	three	main	sources	of	difficulty.
I’ll	summarise	them	first,	and	then	discuss	each	in	more	detail.	The	first	is
galactic	rotation	curves,	which	suggest	that	most	of	the	matter	in	the	universe	is
missing.	The	current	proposal	is	that	this	is	a	sign	of	a	new	kind	of	matter,	dark
matter,	which	constitutes	about	90%	of	the	matter	in	the	universe,	and	is
different	from	any	matter	yet	observed	directly	on	Earth.	The	second	is	an
acceleration	in	the	expansion	of	the	universe,	which	requires	a	new	force,	dark
energy,	of	unknown	origin	but	modelled	using	Einstein’s	cosmological	constant.



The	third	is	a	collection	of	theoretical	issues	related	to	the	popular	theory	of
inflation,	which	explains	why	the	observable	universe	is	so	uniform.	The	theory
fits	observations,	but	its	internal	logic	is	looking	shaky.

Dark	matter	first.	In	1938	the	Doppler	effect	was	used	to	measure	the	speeds
of	galaxies	in	clusters,	and	the	results	were	inconsistent	with	Newtonian
gravitation.	Because	galaxies	are	separated	by	large	distances,	space-time	is
almost	flat	and	Newtonian	gravity	is	a	good	model.	Fritz	Zwicky	suggested	that
there	must	be	some	unobserved	matter	to	account	for	the	discrepancy,	and	it	was
named	dark	matter	because	it	could	not	be	seen	in	photographs.	In	1959,	using
the	Doppler	effect	to	measure	the	speed	of	rotation	of	stars	in	the	galaxy	M33,
Louise	Volders	discovered	that	the	observed	rotation	curve	–	a	plot	of	speed
against	distance	from	the	centre	–	was	also	inconsistent	with	Newtonian
gravitation,	which	again	is	a	good	model.	Instead	of	the	speed	falling	off	at
greater	distances,	it	remained	almost	constant,	Figure	52.	The	same	problem
arises	for	many	other	galaxies.

If	it	exists,	dark	matter	must	be	different	from	ordinary	‘baryonic’	matter,	the
particles	observed	in	experiments	on	Earth.	Its	existence	is	accepted	by	most
cosmologists,	who	argue	that	dark	matter	explains	several	different	anomalies	in
observations,	not	just	rotation	curves.	Candidate	particles	have	been	suggested,
such	as	WIMPs	(weakly	interacting	massive	particles),	but	so	far	these	particles
have	not	been	detected	in	experiments.	The	distribution	of	dark	matter	around
galaxies	has	been	plotted	by	assuming	dark	matter	exists	and	working	out	where
it	has	to	be	to	make	the	rotation	curves	flat.	It	generally	seems	to	form	two
globes	of	galactic	proportions,	one	above	the	plane	of	the	galaxy	and	the	other
below	it,	like	a	giant	dumb-bell.	This	is	a	bit	like	predicting	the	existence	of
Neptune	from	discrepancies	in	the	orbit	of	Uranus,	but	such	predictions	require
confirmation:	Neptune	had	to	be	found.



Fig	52	Galactic	rotation	curves	for	M33:	theory	and	observations.

Dark	energy	is	similarly	proposed	to	explain	the	results	of	the	1998	High-z
Supernova	Search	Team,	which	expected	to	find	evidence	that	the	expansion	of
the	universe	is	slowing	down	as	the	initial	impulse	from	the	Big	Bang	dies	away.
Instead,	the	observations	indicated	that	the	expansion	of	the	universe	is	speeding
up,	a	finding	confirmed	by	the	Supernova	Cosmology	Project	in	1999.	It	is	as
though	some	antigravity	force	pervades	space,	pushing	galaxies	apart	at	an	ever-
increasing	rate.	This	force	is	not	any	of	the	four	basic	forces	of	physics:	gravity,
electromagnetism,	strong	nuclear	force,	weak	nuclear	force.	It	was	named	dark
energy.	Again,	its	existence	seemed	to	solve	some	other	cosmological	problems.

Inflation	was	proposed	by	the	American	physicist	Alan	Guth	in	1980	to
explain	why	the	universe	is	extremely	uniform	in	its	physical	properties	on	very
large	scales.	Theory	showed	that	the	Big	Bang	ought	to	have	produced	a
universe	that	was	far	more	curved.	Guth	suggested	that	an	‘inflaton	field’	(that’s
right,	no	second	i:	it’s	thought	to	be	a	scalar	quantum	field	corresponding	to	a
hypothetical	particle,	the	inflaton)	caused	the	early	universe	to	expand	with
extreme	rapidity.	Between	10−36	and	10−32	seconds	after	the	Big	Bang,	the
volume	of	the	universe	grew	by	a	mindboggling	factor	of	1078.	The	inflaton	field
has	not	been	observed	(this	would	require	unfeasibly	high	energies)	but	inflation
explains	so	many	features	of	the	universe,	and	fits	observations	so	closely,	that
most	cosmologists	are	convinced	it	happened.	It’s	not	surprising	that	dark
matter,	dark	energy,	and	inflation	were	popular	among	cosmologists,	because
they	let	them	continue	to	use	their	favourite	physical	models,	and	the	results
agreed	with	observations.	But	things	are	starting	to	fall	apart.

The	distributions	of	dark	matter	don’t	provide	a	satisfactory	explanation	of
rotation	curves.	Enormous	amounts	of	dark	matter	are	needed	to	keep	the
rotation	curve	flat	out	to	the	large	distances	observed.	The	dark	matter	has	to
have	unrealistically	large	angular	momentum,	which	is	inconsistent	with	the
usual	theories	of	galaxy	formation.	The	same	rather	special	initial	distribution	of
dark	matter	is	required	in	every	galaxy,	which	seems	unlikely.	The	dumb-bell
shape	is	unstable	because	it	places	the	additional	mass	on	the	outside	of	the
galaxy.

Dark	energy	fares	better,	and	it	is	thought	to	be	some	kind	of	quantum-
mechanical	vacuum	energy,	arising	from	fluctuations	in	the	vacuum.	However,
current	calculations	of	the	size	of	the	vacuum	energy	are	too	big	by	a	factor	of
10122,	which	is	bad	news	even	by	the	standards	of	cosmology.6



The	main	problems	affecting	inflation	are	not	observations	–	it	fits	those
amazingly	well	–	but	its	logical	foundations.	Most	inflationary	scenarios	would
lead	to	a	universe	that	differs	considerably	from	ours;	what	counts	is	the	initial
conditions	at	the	time	of	the	Big	Bang.	In	order	to	match	observations,	inflation
requires	the	early	state	of	the	universe	to	be	very	special.	However,	there	are	also
very	special	initial	conditions	that	produce	a	universe	just	like	ours	without
invoking	inflation.	Although	both	sets	of	conditions	are	extremely	rare,
calculations	performed	by	Roger	Penrose7	show	that	the	initial	conditions	that	do
not	require	inflation	outnumber	those	that	produce	inflation	by	a	factor	of	one
googolplex	–	ten	to	the	power	ten	to	the	power	100.	So	explaining	the	current
state	of	the	universe	without	inflation	would	be	much	more	convincing	than
explaining	it	with	inflation.

Penrose’s	calculation	relies	on	thermodynamics,	which	might	not	be	an
appropriate	model,	but	an	alternative	approach,	carried	out	by	Gary	Gibbons	and
Neil	Turok,	leads	to	the	same	conclusion.	This	is	to	‘unwind’	the	universe	back
to	its	initial	state.	It	turns	out	that	almost	all	of	the	potential	initial	states	do	not
involve	a	period	of	inflation,	and	those	that	do	require	it	are	an	exceedingly
small	proportion.	But	the	biggest	problem	of	all	is	that	when	inflation	is	wedded
to	quantum	mechanics,	it	predicts	that	quantum	fluctuations	will	occasionally
trigger	inflation	in	a	small	region	of	an	apparently	settled	universe.	Although
such	fluctuations	are	rare,	inflation	is	so	rapid	and	so	gigantic	that	the	net	result
is	tiny	islands	of	normal	space-time	surrounded	by	ever-growing	regions	of
runaway	inflation.	In	those	regions,	the	fundamental	constants	of	physics	can	be
different	from	their	values	in	our	universe.	In	effect,	anything	is	possible.	Can	a
theory	that	predicts	anything	be	testable	scientifically?

There	are	alternatives,	and	it	is	starting	to	look	as	though	they	need	to	be	taken
seriously.	Dark	matter	might	not	be	another	Neptune,	but	another	Vulcan	–	an
attempt	to	explain	a	gravitational	anomaly	by	invoking	new	matter,	when	what
really	needs	changing	is	the	law	of	gravitation.

The	main	well-developed	proposal	is	MOND,	modified	Newtonian	dynamics,
proposed	by	Israeli	physicist	Mordehai	Milgrom	in	1983.	This	modifies	not	the
law	of	gravity,	in	fact,	but	Newton’s	second	law	of	motion.	It	assumes	that
acceleration	is	not	proportional	to	force	when	the	acceleration	is	very	small.
There	is	a	tendency	among	cosmologists	to	assume	that	the	only	viable
alternative	theories	are	dark	matter	or	MOND	–	so	if	MOND	disagrees	with
observations,	that	leaves	only	dark	matter.	However,	there	are	many	potential
ways	to	modify	the	law	of	gravity,	and	we	are	unlikely	to	find	the	right	one



straight	away.	The	demise	of	MOND	has	been	proclaimed	several	times,	but	on
further	investigation	no	decisive	flaw	has	yet	been	found.	The	main	problem
with	MOND,	to	my	mind,	is	that	it	puts	into	its	equations	what	it	hopes	to	get
out;	it’s	like	Einstein	modifying	Newton’s	law	to	change	the	formula	near	a
large	mass.	Instead,	he	found	a	radically	new	way	to	think	of	gravity,	the
curvature	of	space-time.

Even	if	we	retain	general	relativity	and	its	Newtonian	approximation,	there
may	be	no	need	for	dark	energy.	In	2009,	using	the	mathematics	of	shock	waves,
American	mathematicians	Joel	Smoller	and	Blake	Temple	showed	that	there	are
solutions	of	Einstein’s	field	equations	in	which	the	metric	expands	at	an
accelerating	rate.8	These	solutions	show	that	small	changes	to	the	Standard
Model	could	account	for	the	observed	acceleration	of	galaxies	without	invoking
dark	energy.

General	relativity	models	of	the	universe	assume	that	it	forms	a	manifold;	that
is,	on	very	large	scales	the	structure	smoothes	out.	However,	the	observed
distribution	of	matter	in	the	universe	is	clumpy	on	very	big	scales,	such	as	the
Sloan	Great	Wall,	a	filament	composed	of	galaxies	1.37	billion	light	years	long,
Figure	53.	Cosmologists	believe	that	on	even	larger	scales	the	smoothness	will
become	apparent	–	but	to	date,	every	time	the	range	of	observations	has	been
extended,	the	clumpiness	has	persisted.

Fig	53	The	clumpiness	of	the	universe.

Robert	MacKay	and	Colin	Rourke,	two	British	mathematicians,	have	argued
that	a	clumpy	universe	in	which	there	are	many	local	sources	of	large	curvature
could	explain	all	of	the	cosmological	puzzles.9	Such	a	structure	is	closer	to	what
is	observed	than	some	large-scale	smoothing,	and	is	consistent	with	the	general
principle	that	the	universe	ought	to	be	much	the	same	everywhere.	In	such	a



universe	there	need	be	no	Big	Bang;	in	fact,	the	whole	thing	could	be	in	a	steady
state,	and	be	far,	far	older	than	the	current	figure	of	13.8	billion	years.	Individual
galaxies	would	go	through	a	life	cycle,	surviving	relatively	unchanged	for
around	1016	years.	They	would	have	a	very	massive	central	black	hole.	Galactic
rotation	curves	would	be	flat	because	of	inertial	drag,	a	consequence	of	general
relativity	in	which	a	rotating	massive	body	drags	space-time	round	with	it	in	its
vicinity.	The	red	shift	observed	in	quasars	would	be	caused	by	a	large
gravitational	field,	not	by	the	Doppler	effect,	and	would	not	be	indicative	of	an
expanding	universe	–	this	theory	has	long	been	advanced	by	American
astronomer	Halton	Arp,	and	never	satisfactorily	disproved.	The	alternative
model	even	indicates	a	temperature	of	5°K	for	the	cosmological	microwave
background,	the	main	evidence	(aside	from	red	shift	interpreted	as	expansion)
for	the	Big	Bang.

MacKay	and	Rourke	say	that	their	proposal	‘overturns	virtually	every	tenet	of
current	cosmology.	It	does	not,	however,	contradict	any	observational	evidence.’
It	may	well	be	wrong,	but	the	fascinating	point	is	that	you	can	retain	Einstein’s
field	equations	unchanged,	dispense	with	dark	matter,	dark	energy,	and	inflation,
and	still	get	behaviour	reasonably	like	all	of	those	puzzling	observations.	So
whatever	the	theory’s	fate,	it	suggests	that	cosmologists	should	consider	more
imaginative	mathematical	models	before	resorting	to	new	and	otherwise
unsupported	physics.	Dark	matter,	dark	energy,	inflation,	each	requiring
radically	new	physics	that	no	one	has	observed…	In	science,	even	one	deus	ex
machina	raises	eyebrows.	Three	would	be	considered	intolerable	in	anything
other	than	cosmology.	To	be	fair,	it’s	difficult	to	experiment	on	the	entire
universe,	so	speculatively	fitting	theories	to	observations	is	about	all	that	can	be
done.	But	imagine	what	would	happen	if	a	biologist	explained	life	by	some
unobservable	‘life	field’,	let	alone	suggesting	that	a	new	kind	of	‘vital	matter’
and	a	new	kind	of	‘vital	energy’	were	also	necessary	–	while	providing	no
evidence	that	any	of	them	existed.

Leaving	aside	the	perplexing	realm	of	cosmology,	there	are	now	more	homely
ways	to	verify	relativity,	both	special	and	general,	on	a	human	scale.	Special
relativity	can	be	tested	in	the	laboratory,	and	modern	measuring	techniques
provide	exquisite	accuracy.	Particle	accelerators	such	as	the	Large	Hadron
Collider	simply	would	not	work	unless	the	designers	took	special	relativity	into
account,	because	the	particles	that	whirl	round	these	machines	do	so	at	speeds
very	close	indeed	to	that	of	light.	Most	tests	of	general	relativity	are	still
astronomical,	ranging	from	gravitational	lensing	to	pulsar	dynamics,	and	the



level	of	accuracy	is	high.	A	recent	NASA	experiment	in	low-Earth	orbit,	using
high-precision	gyroscopes,	confirmed	the	occurrence	of	inertial	frame-dragging,
but	failed	to	reach	the	intended	precision	because	of	unexpected	electrostatic
effects.	By	the	time	the	data	were	corrected	for	this	problem,	other	experiments
had	already	achieved	the	same	results.

However,	one	instance	of	relativistic	dynamics,	both	special	and	general,	is
closer	to	home:	car	satellite	navigation.	The	satnav	systems	used	by	motorists
calculate	the	car’s	position	using	signals	from	a	network	of	24	orbiting	satellites,
the	Global	Positioning	System.	GPS	is	astonishingly	accurate,	and	it	works
because	modern	electronics	can	reliably	handle	and	measure	very	tiny	instants	of
time.	It	is	based	on	very	precise	timing	signals,	pulses	emitted	by	the	satellites
and	picked	up	on	the	ground.	Comparing	the	signals	from	several	satellites
triangulates	the	location	of	the	receiver	to	within	a	few	metres.	This	level	of
accuracy	requires	knowing	the	timing	to	within	about	25	nanoseconds	(billionths
of	a	second).	Newtonian	dynamics	doesn’t	give	correct	locations,	because	two
effects	that	are	not	accounted	for	in	Newton’s	equations	alter	the	flow	of	time:
the	satellite’s	motion	and	Earth’s	gravitational	field.

Special	relativity	deals	with	the	motion,	and	it	predicts	that	the	atomic	clocks
on	the	satellites	should	lose	7	microseconds	(millionths	of	a	second)	per	day
compared	with	clocks	on	the	ground,	thanks	to	relativistic	time	dilation.	General
relativity	predicts	a	gain	of	45	microseconds	per	day	caused	by	the	Earth’s
gravity.	The	net	result	is	that	the	clocks	on	the	satellites	gain	38	microseconds
per	day	for	relativistic	reasons.	Small	as	this	may	seem,	its	effect	on	GPS	signals
is	by	no	means	negligible.	An	error	of	38	microseconds	is	38,000	nanoseconds,
about	1500	times	the	error	that	GPS	can	tolerate.	If	the	software	calculated	your
car’s	location	using	Newtonian	dynamics,	your	satnav	would	quickly	become
useless,	because	the	error	would	grow	at	a	rate	of	10	kilometres	per	day.	Ten
minutes	from	now	Newtonian	GPS	would	place	you	on	the	wrong	street;	by
tomorrow	it	would	place	you	in	the	wrong	town.	Within	a	week	you’d	be	in	the
wrong	county;	within	a	month,	the	wrong	country.	Within	a	year,	you’d	be	on
the	wrong	planet.	If	you	disbelieve	relativity,	but	use	satnav	to	plan	your
journeys,	you	have	some	explaining	to	do.



14	Quantum	weirdness

Schrödinger’s	Equation

What	does	it	say?

The	equation	models	matter	not	as	a	particle,	but	as	a	wave,	and	describes	how
such	a	wave	propagates.

Why	is	that	important?

Schrödinger’s	equation	is	fundamental	to	quantum	mechanics,	which	together
with	general	relativity	constitute	today’s	most	effective	theories	of	the	physical
universe.

What	did	it	lead	to?

A	radical	revision	of	the	physics	of	the	world	at	very	small	scales,	in	which
every	object	has	a	‘wave	function’	that	describes	a	probability	cloud	of	possible
states.	At	this	level	the	world	is	inherently	uncertain.	Attempts	to	relate	the
microscopic	quantum	world	to	our	macroscopic	classical	world	led	to
philosophical	issues	that	still	reverberate.	But	experimentally,	quantum	theory
works	beautifully,	and	today’s	computer	chips	and	lasers	wouldn’t	work	without
it.



	

In	1900	the	great	physicist	Lord	Kelvin	declared	that	the	then	current	theory	of
heat	and	light,	considered	to	be	an	almost	complete	description	of	nature,	was
‘obscured	by	two	clouds.	The	first	involves	the	question:	How	could	the	Earth
move	through	an	elastic	solid,	such	as	is	essentially	the	luminiferous	ether?	The
second	is	the	Maxwell–Boltzmann	doctrine	regarding	the	partition	of	energy.’
Kelvin’s	nose	for	an	important	problem	was	spot	on.	In	Chapter	13	we	saw	how
the	first	question	led	to,	and	was	resolved	by,	relativity.	Now	we	will	see	how
the	second	led	to	the	other	great	pillar	of	present-day	physics,	quantum	theory.

The	quantum	world	is	notoriously	weird.	Many	physicists	feel	that	if	you
don’t	appreciate	just	how	weird	it	is,	you	don’t	appreciate	it	at	all.	There	is	a	lot
to	be	said	for	that	opinion,	because	the	quantum	world	is	so	different	from	our
comfortable	human-scale	one	that	even	the	simplest	concepts	change	out	of	all
recognition.	It	is,	for	example,	a	world	in	which	light	is	both	a	particle	and	a
wave.	It	is	a	world	where	a	cat	in	a	box	can	be	both	alive	and	dead	at	the	same
time	…	until	you	open	the	box,	that	is,	when	suddenly	the	unfortunate	animal’s
wave	function	‘collapses’	to	one	state	or	the	other.	In	the	quantum	multiverse,
there	exists	one	copy	of	our	universe	in	which	Hitler	lost	World	War	II,	and
another	in	which	he	won	it.	We	just	happen	to	live	in	–	that	is,	exist	as	quantum
wave	functions	in	–	the	first	one.	Other	versions	of	us,	just	as	real	but
inaccessible	to	our	senses,	live	in	the	other	one.

Quantum	mechanics	is	definitely	weird.	Whether	it	is	quite	that	weird,
though,	is	another	matter	altogether.

It	all	began	with	light	bulbs.	This	was	appropriate,	because	those	were	one	of	the
most	spectacular	applications	to	emerge	from	the	burgeoning	subjects	of
electricity	and	magnetism,	which	Maxwell	so	brilliantly	unified.	In	1894	a
German	physicist	named	Max	Planck	was	hired	by	an	electrical	company	to
design	the	most	efficient	light	bulb	possible,	one	giving	the	most	light	while
consuming	the	least	electrical	energy.	He	saw	that	the	key	to	this	question	was	a
fundamental	issue	in	physics,	raised	in	1859	by	another	German	physicist,
Gustav	Kirchhoff.	It	concerned	a	theoretical	construct	known	as	a	black	body,
which	absorbs	all	electromagnetic	radiation	that	falls	on	it.	The	big	question
was:	how	does	such	a	body	emit	radiation?	It	can’t	store	it	all;	some	has	to	come
back	out	again.	In	particular,	how	does	the	intensity	of	the	emitted	radiation
depend	on	its	frequency	and	the	body’s	temperature?



There	was	already	an	answer	from	thermodynamics,	in	which	a	black	body
can	be	modelled	as	a	box	whose	walls	are	perfect	mirrors.	Electromagnetic
radiation	bounces	to	and	fro,	reflected	by	the	mirrors.	How	is	the	energy	in	the
box	distributed	among	the	various	frequencies	when	the	system	has	settled	to	an
equilibrium	state?	In	1876	Boltzmann	proved	the	‘equipartition	theorem’:	the
energy	is	apportioned	equally	to	each	independent	component	of	the	motion.
These	components	are	just	like	the	basic	waves	in	a	violin	string:	normal	modes.

There	was	only	one	problem	with	this	answer:	it	couldn’t	possibly	be	correct.
It	implied	that	the	total	power	radiated	over	all	frequencies	must	be	infinite.	This
paradoxical	conclusion	became	known	as	the	ultraviolet	catastrophe:	ultraviolet
because	that	was	the	beginning	of	the	high-frequency	range,	and	catastrophe
because	it	was.	No	real	body	can	emit	an	infinite	amount	of	power.

Although	Planck	was	aware	of	this	problem,	it	didn’t	bother	him,	because	he
didn’t	believe	the	equipartition	theorem	anyway.	Ironically,	his	work	resolved
the	paradox	and	did	away	with	the	ultraviolet	catastrophe,	but	he	noticed	this
only	later.	He	used	experimental	observations	of	how	energy	depended	on
frequency,	and	fitted	a	mathematical	formula	to	the	data.	His	formula,	derived
early	in	1900,	did	not	initially	have	any	physical	basis.	It	was	just	a	formula	that
worked.	But	later	the	same	year	he	tried	to	reconcile	his	formula	with	the
classical	thermodynamic	one,	and	decided	that	the	energy	levels	of	the	black
body’s	vibrational	modes	could	not	form	a	continuum,	as	thermodynamics
assumed.	Instead,	these	levels	had	to	be	discrete	–	separated	by	tiny	gaps.	In	fact,
for	any	given	frequency,	the	energy	had	to	be	an	integer	multiple	of	that
frequency,	multiplied	by	a	very	tiny	constant.	We	now	call	this	number	Planck’s
constant	and	denote	it	by	h.	Its	value,	in	units	of	joule	seconds,	is
6.62606957(29)	×	10−34,	where	the	figures	in	brackets	may	be	inaccurate.	This
value	is	deduced	from	theoretical	relationships	between	Planck’s	constant	and
other	quantities	that	are	easier	to	measure.	The	first	such	measurement	was	made
by	Robert	Millikan	using	the	photoelectric	effect,	described	below.	The	tiny
packets	of	energy	are	now	called	quanta	(plural	of	quantum),	from	the	Latin
quantus,	‘how	much.’

Planck’s	constant	may	be	tiny,	but	if	the	set	of	energy	levels	for	a	given
frequency	is	discrete,	the	total	energy	turns	out	to	be	finite.	So	the	ultraviolet
catastrophe	was	a	sign	that	a	continuum	model	failed	to	reflect	nature.	And	that
implied	that	nature,	on	very	small	scales,	must	be	discrete.	Initially	this	didn’t
occur	to	Planck:	he	thought	of	his	discrete	energy	levels	as	a	mathematical	trick
to	get	a	sensible	formula.	In	fact,	Boltzmann	had	entertained	a	similar	idea	in
1877,	but	didn’t	get	anywhere	with	it.	Everything	changed	when	Einstein



brought	his	fertile	imagination	to	bear,	and	physics	entered	a	new	realm.	In
1905,	the	same	year	as	his	work	on	special	relativity,	he	investigated	the
photoelectric	effect,	in	which	light	hitting	a	suitable	metal	causes	it	to	emit
electrons.	Three	years	earlier	Philipp	Lenard	had	noticed	that	when	the	light	has
a	higher	frequency,	the	electrons	have	higher	energies.	But	the	wave	theory	of
light,	amply	confirmed	by	Maxwell,	implies	that	the	energy	of	the	electrons
should	depend	on	the	intensity	of	the	light,	not	on	its	frequency.	Einstein	realised
that	Planck’s	quanta	would	explain	the	discrepancy.	He	suggested	that	light,
rather	than	being	a	wave,	was	composed	of	tiny	particles,	now	called	photons.
The	energy	in	a	single	photon,	of	a	given	frequency,	should	be	the	frequency
times	Planck’s	constant	–	just	like	one	of	Planck’s	quanta.	A	photon	was	a
quantum	of	light.

There’s	an	obvious	problem	with	Einstein’s	theory	of	the	photoelectric	effect:	it
assumes	light	is	a	particle.	But	there	was	abundant	evidence	that	light	was	a
wave.	On	the	other	hand,	the	photoelectric	effect	was	incompatible	with	light
being	a	wave.	So	was	light	a	wave,	or	a	particle?

Yes.
It	was	–	or	had	aspects	that	manifested	themselves	as	–	either.	In	some

experiments,	light	seemed	to	behave	like	a	wave.	In	others,	it	behaved	like	a
particle.	As	physicists	came	to	grips	with	very	small	scales	of	the	universe,	they
decided	that	light	wasn’t	the	only	thing	to	have	this	strange	dual	nature,
sometimes	particle,	sometimes	wave.	All	matter	did.	They	called	it	wave–
particle	duality.	The	first	person	to	grasp	this	dual	nature	of	matter	was	Louis-
Victor	de	Broglie,	in	1924.	He	rephrased	Planck’s	law	in	terms	not	of	energy,
but	of	momentum,	and	suggested	that	the	momentum	of	the	particle	aspect	and
the	frequency	of	the	wave	aspect	should	be	related:	multiply	them	together	and
you	get	Planck’s	constant.	Three	years	later	he	was	proved	right,	at	least	for
electrons.	One	the	one	hand,	electrons	are	particles,	and	can	be	observed
behaving	that	way.	On	the	other	hand,	they	diffract	like	waves.	In	1988	atoms	of
sodium	were	also	spotted	behaving	like	a	wave.

Matter	was	neither	particle	nor	wave,	but	a	bit	of	both	–	a	wavicle.
Several	more	or	less	intuitive	images	of	this	dual	nature	of	matter	were

devised.	In	one,	a	particle	is	a	localised	clump	of	waves,	known	as	a	wave
packet,	Figure	54.	The	packet	as	a	whole	can	behave	like	a	particle,	but	some
experiments	can	probe	its	internal	wavelike	structure.	Attention	shifted	from
providing	images	for	wavicles	to	sorting	out	how	they	behaved.	The	quest



quickly	attained	its	goal,	and	the	central	equation	of	quantum	theory	emerged.

Fig	54	Wave	packet.

The	equation	bears	the	name	of	Erwin	Schrödinger.	In	1927,	building	on	the
work	of	several	other	physicists,	notably	Werner	Heisenberg,	he	wrote	down	a
differential	equation	for	any	quantum	wave	function.	It	looked	like	this:

Here	Ψ	(Greek	capital	psi)	is	the	form	of	the	wave,	t	is	time	(so	∂/∂t	applied	to	Ψ
gives	its	rate	of	change	with	respect	to	time),	Ĥ	is	an	expression	called	the
Hamiltonian	operator,	and	ħ	is	h/2π,	where	h	is	Planck’s	constant.	And	i?	That
was	the	weirdest	feature	of	all.	It’s	the	square	root	of	minus	one	(Chapter	5).
Schrödinger’s	equation	applies	to	waves	defined	over	the	complex	numbers,	not
just	the	real	numbers	as	in	the	familiar	wave	equation.

Waves	in	what?	The	classical	wave	equation	(Chapter	8)	defines	waves	in
space,	and	its	solution	is	a	numerical	function	of	space	and	time.	The	same	goes
for	Schrödinger’s	equation,	but	now	the	wave	function	Ψ	takes	complex	values,
not	just	real	ones.	It’s	a	bit	like	an	ocean	wave	whose	height	is	2	+	3i.	The
appearance	of	i	is	in	many	ways	the	most	mysterious	and	profound	feature	of
quantum	mechanics.	Previously	i	had	turned	up	in	solutions	of	equations,	and	in
methods	for	finding	those	solutions,	but	here	it	was	part	of	the	equation,	an
explicit	feature	of	the	physical	law.

One	way	to	interpret	this	is	that	quantum	waves	are	linked	pairs	of	real
waves,	as	if	my	complex	ocean	wave	were	really	two	waves,	one	of	height	2	and
the	other	of	height	3,	with	the	two	directions	of	height	at	right	angles	to	each
other.	But	it’s	not	quite	that	straightforward,	because	the	two	waves	don’t	have	a
fixed	shape.	As	time	passes,	they	cycle	through	a	whole	series	of	shapes,	and
each	is	mysteriously	linked	to	the	other.	It’s	a	bit	like	the	electric	and	magnetic



components	of	a	light	wave,	but	now	electricity	can	and	does	‘rotate’	into
magnetism,	and	conversely.	The	two	waves	are	two	facets	of	a	single	shape,
which	spins	steadily	around	the	unit	circle	in	the	complex	plane.	Both	the	real
and	the	imaginary	parts	of	this	rotating	shape	change	in	a	very	specific	way:	they
are	combined	in	sinusoidally	varying	amounts.	Mathematically	this	leads	to	the
idea	that	a	quantum	wave	function	has	a	special	kind	of	phase.	The	physical
interpretation	of	that	phase	is	similar	to,	but	different	from,	the	role	of	phase	in
the	classical	wave	equation.

Remember	how	Fourier’s	trick	solves	both	the	heat	equation	and	the	wave
equation?	Some	special	solutions,	Fourier’s	sines	and	cosines,	have	especially
pleasant	mathematical	properties.	All	other	solutions,	however	complicated,	are
superpositions	of	these	normal	modes.	We	can	solve	Schrödinger’s	equation
using	a	similar	idea,	but	now	the	basic	patterns	are	more	complicated	than	sines
and	cosines.	They	are	called	eigenfunctions,	and	they	can	be	distinguished	from
all	other	solutions.	Instead	of	being	some	general	function	of	both	space	and
time,	an	eigenfunction	is	a	function	defined	only	on	space,	multiplied	by	one
depending	only	on	time.	The	space	and	time	variables,	in	the	jargon,	are
separable.	The	eigenfunctions	depend	on	the	Hamiltonian	operator,	which	is	a
mathematical	description	of	the	physical	system	concerned.	Different	systems	–
an	electron	in	a	potential	well,	a	pair	of	colliding	photons,	whatever	–	have
different	Hamiltonian	operators,	hence	different	eigenfunctions.

For	simplicity,	consider	a	standing	wave	for	the	classical	wave	equation	–	a
vibrating	violin	string,	whose	ends	are	pinned	down.	At	all	instants	of	time,	the
shape	of	the	string	is	almost	the	same,	but	the	amplitude	is	modulated:	multiplied
by	a	factor	that	varies	sinusoidally	with	time,	as	in	Figure	35	(page	138).	The
complex	phase	of	a	quantum	wave	function	is	similar,	but	harder	to	visualise.
For	any	individual	eigenfunction,	the	effect	of	the	quantum	phase	is	just	a	shift
of	the	time	coordinate.	For	a	superposition	of	several	eigenfunctions,	you	split
the	wave	function	into	these	components,	factor	each	into	a	purely	spatial	part
times	a	purely	temporal	one,	spin	the	temporal	part	round	the	unit	circle	in	the
complex	plane	at	the	appropriate	speed,	and	add	the	pieces	back	together.	Each
separate	eigenfunction	has	a	complex	amplitude,	and	this	modulates	at	its	own
particular	frequency.

It	may	sound	complicated,	but	it	would	be	completely	baffling	if	you	didn’t
split	the	wave	function	into	eigenfunctions.	At	least	then	you’ve	got	a	chance.

Despite	these	complexities,	quantum	mechanics	would	be	just	a	fancy	version	of
the	classical	wave	equation,	resulting	in	two	waves	rather	than	one,	were	it	not



for	a	puzzling	twist.	You	can	observe	classical	waves,	and	see	what	shape	they
are,	even	if	they	are	superpositions	of	several	Fourier	modes.	But	in	quantum
mechanics,	you	can	never	observe	the	entire	wave	function.	All	you	can	observe
on	any	given	occasion	is	a	single	component	eigenfunction.	Roughly	speaking,	if
you	attempt	to	measure	two	of	these	components	at	the	same	time,	the
measurement	process	on	one	of	them	disturbs	the	other	one.

This	immediately	raises	a	difficult	philosophical	issue.	If	you	can’t	observe
the	entire	wave	function,	does	it	actually	exist?	Is	it	a	genuine	physical	object,	or
just	a	convenient	mathematical	fiction?	Is	an	unobservable	quantity	scientifically
meaningful?	It	is	here	that	Schrödinger’s	celebrated	feline	enters	the	story.	It
arises	because	of	a	standard	way	to	interpret	what	a	quantum	measurement	is,
called	the	Copenhagen	interpretation.1

Imagine	a	quantum	system	in	some	superposed	state:	say,	an	electron	whose
state	is	a	mixture	of	spin-up	and	spin-down,	which	are	pure	states	defined	by
eigenfunctions.	(It	doesn’t	matter	what	spin-up	and	spin-down	mean.)	When	you
observe	the	state,	however,	you	either	get	spin-up,	or	you	get	spin-down.	You
can’t	observe	a	superposition.	Moreover,	once	you’ve	observed	one	of	these	–
say	spin-up	–	that	becomes	the	actual	state	of	the	electron.	Somehow	your
measurement	seems	to	have	forced	the	superposition	to	change	into	a	specific
component	eigenfunction.	This	Copenhagen	interpretation	takes	this	statement
literally:	your	measurement	process	has	collapsed	the	original	wave	function
into	a	single	pure	eigenfunction.

If	you	observe	a	lot	of	electrons,	sometimes	you	get	spin-up,	sometimes	spin-
down.	You	can	infer	the	probability	that	the	electron	is	in	one	of	those	states.	So
the	wave	function	itself	can	be	interpreted	as	a	kind	of	probability	cloud.	It
doesn’t	show	the	actual	state	of	the	electron:	it	shows	how	probable	it	is	that
when	you	measure	it,	you	get	a	particular	result.	But	that	makes	it	a	statistical
pattern,	not	a	real	thing.	It	no	more	proves	the	wave	function	is	real	than
Quetelet’s	measurements	of	human	height	prove	that	a	developing	embryo
possesses	some	sort	of	bell	curve.

The	Copenhagen	interpretation	is	straightforward,	reflects	what	happens	in
experiments,	and	makes	no	detailed	assumptions	about	what	happens	when	you
observe	a	quantum	system.	For	these	reasons,	most	working	physicists	are	very
happy	to	use	it.	But	some	were	not,	in	the	early	days	when	they	theory	was	still
being	thrashed	out,	and	some	still	are	not.	And	one	of	the	dissenters	was
Schrödinger	himself.



In	1935,	Schrödinger	was	worrying	about	the	Copenhagen	interpretation.	He
could	see	that	it	worked,	on	a	pragmatic	level,	for	quantum	systems	like
electrons	and	photons.	But	the	world	around	him,	even	though	deep	down	inside
it	was	just	a	seething	mass	of	quantum	particles,	seemed	different.	Seeking	a
way	to	make	the	difference	as	glaring	as	he	could,	Schrödinger	came	up	with	a
thought	experiment	in	which	a	quantum	particle	had	a	dramatic	and	obvious
effect	on	a	cat.

Imagine	a	box,	which	when	shut	is	impervious	to	all	quantum	interactions.
Inside	it,	place	an	atom	of	radioactive	matter,	a	radiation	detector,	a	flask	of
poison,	and	a	live	cat.	Now	shut	the	box,	and	wait.	At	some	point	the	radioactive
atom	will	decay,	and	emit	a	particle	of	radiation.	The	detector	will	spot	it,	and	is
rigged	so	that	when	it	does	so,	it	causes	the	flask	to	break	and	release	the	poison
inside.	This	kills	the	cat.

In	quantum	mechanics,	the	decay	of	a	radioactive	atom	is	a	random	event.
From	outside,	no	observer	can	tell	whether	the	atom	has	decayed	or	not.	If	it	has,
the	cat	is	dead;	if	not,	it’s	alive.	According	to	the	Copenhagen	interpretation,
until	someone	observes	the	atom,	it	is	in	a	superposition	of	two	quantum	states:
decayed	and	not	decayed.	The	same	goes	for	the	states	of	the	detector,	the	flask,
and	the	cat.	So	the	cat	is	in	a	superposition	of	two	states:	dead	and	alive.

Since	the	box	is	impervious	to	all	quantum	interactions,	the	only	way	to	find
out	whether	the	atom	has	decayed	and	killed	the	cat	is	to	open	the	box.	The
Copenhagen	interpretation	tells	us	that	the	instant	we	do	this,	the	wave	functions
collapse	and	the	cat	suddenly	switches	to	a	pure	state:	either	dead,	or	alive.
However,	the	inside	of	the	box	is	no	different	from	the	external	world,	where	we
never	observe	a	cat	that	is	in	a	superposed	alive/dead	state.	So	before	we	open
the	box	and	observe	its	contents,	there	must	either	be	a	dead	cat	inside,	or	a	live
one.

Schrödinger	intended	this	thought	experiment	as	a	criticism	of	the
Copenhagen	interpretation.	Microscopic	quantum	systems	obey	the
superposition	principle	and	can	exist	in	mixed	states;	macroscopic	ones	can’t.	By
linking	a	microscopic	system,	the	atom,	to	a	macroscopic	one,	the	cat,
Schrödinger	was	pointing	out	what	he	believed	to	be	a	flaw	in	the	Copenhagen
interpretation:	it	gave	nonsense	when	applied	to	a	cat.	He	must	have	been
startled	when	the	majority	of	physicists	responded,	in	effect:	‘Yes,	Erwin,	you’re
absolutely	right:	until	someone	opens	the	box,	the	cat	really	is	simultaneously
dead	and	alive.’	Especially	when	it	dawned	on	him	that	he	couldn’t	find	out	who
was	right,	even	if	he	opened	the	box.	He	would	observe	either	a	live	cat	or	a



dead	one.	He	might	infer	that	the	cat	had	been	in	that	state	before	he	opened	the
box,	but	he	couldn’t	be	sure.	The	observable	result	was	consistent	with	the
Copenhagen	interpretation.

Very	well:	add	a	film	camera	to	the	contents	of	the	box,	and	film	what
actually	happens.	That	will	decide	the	matter.	‘Ah,	no,’	the	physicists	replied.
‘You	can	only	see	what	the	camera	has	filmed	after	you	open	the	box.	Before
that,	the	film	is	in	a	superposed	state:	containing	a	movie	of	a	live	cat,	and
containing	a	movie	of	a	dead	one.’

The	Copenhagen	interpretation	freed	up	physicists	to	do	their	calculations	and
sort	out	what	quantum	mechanics	predicted,	without	facing	up	to	the	difficult,	if
not	impossible,	issue	of	how	the	classical	world	emerged	from	a	quantum
substrate	–	how	a	macroscopic	device,	unimaginably	complex	on	a	quantum
scale,	somehow	made	a	measurement	of	a	quantum	state.	Since	the	Copenhagen
interpretation	did	the	job,	they	weren’t	really	interested	in	philosophical
questions.	So	generations	of	physicists	were	taught	that	Schrödinger	had
invented	his	cat	to	show	that	quantum	superposition	extended	into	the
macroscopic	world	too:	the	exact	opposite	of	what	Schrödinger	had	been	trying
to	tell	them.

It’s	not	really	a	great	surprise	that	matter	behaves	strangely	on	the	level	of
electrons	and	atoms.	We	may	initially	rebel	at	the	thought,	out	of	unfamiliarity,
but	if	an	electron	is	really	a	tiny	clump	of	waves	rather	than	a	tiny	clump	of	stuff,
we	can	learn	to	live	with	it.	If	that	means	that	the	state	of	the	electron	is	itself	a
bit	weird,	spinning	not	just	about	an	up	axis	or	a	down	axis	but	a	bit	of	both,	we
can	live	with	that	too.	And	if	the	limitations	of	our	measuring	devices	imply	that
we	can	never	catch	the	electron	doing	that	kind	of	thing	–	that	any	measurement
we	make	necessarily	settles	for	some	pure	state,	up	or	down	–	then	that’s	how	it
is.	If	the	same	applies	to	a	radioactive	atom,	and	the	states	are	‘decayed’	or	‘not
decayed’,	because	its	component	particles	have	states	as	elusive	as	those	of	the
electron,	we	can	even	accept	that	the	atom	itself,	in	its	entirety,	may	be	in	a
superposition	of	those	states	until	we	make	a	measurement.	But	a	cat	is	a	cat,
and	it	seems	to	be	a	very	big	stretch	of	the	imagination	to	imagine	that	the
animal	can	be	both	alive	and	dead	at	the	same	time,	only	to	miraculously
collapse	into	one	or	the	other	when	we	open	the	box	that	contains	it.	If	quantum
reality	requires	a	superposed	alive/dead	cat,	why	is	it	so	shy	that	it	won’t	let	us
observe	such	a	state?

There	are	sound	reasons	in	the	formalism	of	quantum	theory	that	(until	very
recently)	require	any	measurement,	any	‘observable’,	to	be	an	eigenfunction.



There	are	even	sounder	reasons	why	the	state	of	a	quantum	system	should	be	a
wave,	obeying	Schrödinger’s	equation.	How	can	you	get	from	one	to	the	other?
The	Copenhagen	interpretation	declares	that	somehow	(don’t	ask	how)	the
measurement	process	collapses	the	complex,	superposed	wave	function	down	to
a	single	component	eigenfunction.	Having	been	provided	with	this	form	of
words,	your	task	as	a	physicist	is	to	get	on	with	making	measurements	and
calculating	eigenfunctions	and	so	on,	and	stop	asking	awkward	questions.	It
works	amazingly	well,	if	you	measure	success	by	getting	answers	that	agree	with
experiment.	And	everything	would	have	been	fine	if	Schrödinger’s	equation
permitted	the	wave	function	to	behave	in	this	manner,	but	it	doesn’t.	In	The
Hidden	Reality	Brian	Greene	puts	it	this	way:	‘Even	polite	prodding	reveals	an
uncomfortable	feature	…	The	instantaneous	collapse	of	a	wave	…	can’t	possible
emerge	from	Schrödinger’s	math.’	Instead,	the	Copenhagen	interpretation	was	a
pragmatic	bolt-on	to	the	theory,	a	way	to	handle	measurements	without
understanding	or	facing	up	to	what	they	really	were.

This	is	all	very	well,	but	it’s	not	what	Schrödinger	was	trying	to	point	out.	He
introduced	a	cat,	rather	than	an	electron	or	an	atom,	because	it	put	what	he
considered	to	be	the	main	issue	in	sharp	relief.	A	cat	belongs	to	the	macroscopic
world	in	which	we	live,	in	which	matter	does	not	behave	the	way	quantum
mechanics	demands.	We	do	not	see	superposed	cats.2	Schrödinger	was	asking
why	our	familiar	‘classical’	universe	fails	to	resemble	the	underlying	quantum
reality.	If	everything	from	which	the	world	is	built	can	exist	in	superposed	states,
why	does	the	universe	look	classical?	Many	physicists	have	performed
wonderful	experiments	showing	that	electrons	and	atoms	really	do	behave	the
way	quantum	and	Copenhagen	say	they	should.	But	this	misses	the	point:	you
have	to	do	it	with	a	cat.	Theorists	wondered	whether	the	cat	could	observe	its
own	state,	or	whether	someone	else	could	secretly	open	the	box	and	write	down
what	was	inside.	They	concluded,	following	the	same	logic	as	Schrödinger,	that
if	the	cat	observed	its	state	then	the	box	contained	a	superposition	of	a	dead	cat
that	had	committed	suicide	by	observing	itself,	and	a	live	cat	that	had	observed
itself	to	be	alive,	until	the	legitimate	observer	(a	physicist)	opened	the	box.	Then
the	whole	shebang	collapsed	to	one	or	the	other.	Similarly	the	friend	became	a
superposition	of	two	friends:	one	of	whom	had	seen	a	dead	cat	while	the	other
had	seen	a	live	one,	until	a	physicist	opened	the	box,	causing	the	friend’s	state	to
collapse.	You	could	proceed	in	this	way	until	the	state	of	the	entire	universe	was
a	superposition	of	a	universe	with	a	dead	cat	and	a	universe	with	a	live	one,	and
then	the	state	of	the	universe	collapsed	when	a	physicist	opened	the	box.



It	was	all	a	bit	embarrassing.	Physicists	could	get	on	with	their	work	without
sorting	it	out,	they	could	even	deny	there	was	anything	to	be	sorted	out,	but
something	was	missing.	For	example,	what	happens	to	us	if	an	alien	physicist	on
the	planet	Apellobetnees	III	opens	a	box?	Do	we	suddenly	discover	we	actually
blew	ourselves	up	in	a	nuclear	war	when	the	Cuban	missile	crisis	of	1962
escalated,	and	have	been	living	on	borrowed	time	ever	since?

The	measurement	process	is	not	the	neat,	tidy	mathematical	operation	that	the
Copenhagen	interpretation	assumes.	When	asked	to	describe	how	the	apparatus
comes	to	its	decision,	the	Copenhagen	interpretation	replies	‘it	just	does’.	The
image	of	the	wave	function	collapsing	to	a	single	eigenfunction	describes	the
input	and	the	output	of	the	measurement	process,	but	not	how	to	get	from	one	to
the	other.	But	when	you	make	a	real	measurement	you	don’t	just	wave	a	magic
wand	and	cause	the	wave	function	to	disobey	Schrödinger’s	equation	and
collapse.	Instead,	you	do	something	so	enormously	complicated,	from	a	quantum
viewpoint,	that	it	is	obviously	hopeless	to	model	it	realistically.	To	measure	an
electron’s	spin,	for	example,	you	make	it	interact	with	a	suitable	piece	of
apparatus,	which	has	a	pointer	that	either	moves	to	the	‘up’	position	or	the
‘down’	one.	Or	a	numerical	display,	or	a	signal	sent	to	a	computer	…	This
device	yields	one	state,	and	one	state	only.	You	don’t	see	the	pointer	in	a
superposition	of	up	and	down.

We	are	used	to	this,	because	that’s	how	the	classical	world	works.	But
underneath	it’s	supposed	to	be	a	quantum	world.	Replace	the	cat	with	the	spin
apparatus,	and	it	should	indeed	exist	in	a	superposed	state.	The	apparatus,
viewed	as	a	quantum	system,	is	extraordinarily	complicated.	It	contains
gazillions	of	particles	–	between	1025	and	1030,	at	a	rough	estimate.	The
measurement	emerges	somehow	from	the	interaction	of	that	single	electron	with
these	gazillion	particles.	Admiration	for	the	expertise	of	the	company	that
manufactures	the	instrument	must	be	boundless;	to	extract	anything	sensible
from	something	so	messy	is	almost	beyond	belief.	It’s	like	trying	to	work	out
someone’s	shoe	size	by	making	them	pass	through	a	city.	But	if	you’re	clever
(arrange	for	them	to	encounter	a	shoe	shop)	you	can	get	a	sensible	result,	and	a
clever	instrument	designer	can	produce	meaningful	measurements	of	electron
spin.	But	there’s	no	realistic	prospect	of	modelling	in	detail	how	such	a	device
works	as	a	bona	fide	quantum	system.	There’s	too	much	detail,	the	biggest
computer	in	the	world	would	flounder.	That	makes	it	difficult	to	analyse	a	real
measurement	process	using	Schrödinger’s	equation.

Even	so,	we	do	have	some	understanding	of	how	our	classical	world	emerges
from	an	underlying	quantum	one.	Let’s	start	with	a	simple	version,	a	ray	of	light



hitting	a	mirror.	The	classical	answer,	Snell’s	law,	states	that	the	reflected	ray
bounces	off	at	the	same	angle	as	the	one	that	hit.	In	his	book	QED	on	quantum
electrodynamics,	the	physicist	Richard	Feynman	explained	that	this	is	not	what
happens	in	the	quantum	world.	The	ray	is	really	a	stream	of	photons,	and	each
photon	can	bounce	all	over	the	place.	However,	if	you	superpose	all	the	possible
things	the	photon	could	do,	then	you	get	Snell’s	law.	The	overwhelming
proportion	of	photons	bounce	back	at	angles	very	close	to	the	one	at	which	they
hit.	Feynman	even	managed	to	show	why	without	using	any	complicated
mathematics,	but	behind	this	calculation	is	a	general	mathematical	idea:	the
principle	of	stationary	phase.	If	you	superpose	all	quantum	states	for	an	optical
system,	you	get	the	classical	outcome	in	which	light	rays	follow	the	shortest
path,	measured	by	time	taken.	You	can	even	add	bells	and	whistles	to	decorate
the	ray	paths	with	classical	wave-optical	diffraction	fringes.

This	example	shows,	very	explicitly,	that	the	superposition	of	all	possible
worlds	–	in	this	optical	framework	–	yields	the	classical	world.	The	most
important	feature	is	not	so	much	the	detailed	geometry	of	the	light	ray,	but	the
fact	that	it	yields	only	one	world	at	the	classical	level.	Down	in	the	quantum
details	of	individual	photons,	you	can	observe	all	the	paraphernalia	of
superposition,	eigenfunctions,	and	so	on.	But	up	at	the	human	scale,	all	that
cancels	out	–	well,	adds	together	–	to	produce	a	clean,	classical	world.

The	other	part	of	the	explanation	is	called	decoherence.	We’ve	seen	that
quantum	waves	have	a	phase	as	well	as	an	amplitude.	It’s	a	very	funny	phase,	a
complex	number,	but	it’s	a	phase	nonetheless.	The	phase	is	absolutely	crucial	to
any	superposition.	If	you	take	two	superposed	states,	change	the	phase	of	one,
and	add	them	back	together,	what	you	get	is	nothing	like	the	original.	If	you	do
the	same	with	a	lot	of	components,	the	reassembled	wave	can	be	almost
anything.	Loss	of	phase	information	wrecks	any	Schrödinger’s	cat-like
superposition.	You	don’t	just	lose	track	of	whether	it’s	alive	or	dead:	you	can’t
tell	it	was	a	cat.	When	quantum	waves	cease	to	have	nice	phase	relations,	they
decohere	–	they	start	to	behave	more	like	classical	physics,	and	superpositions
lose	any	meaning.	What	causes	them	to	decohere	is	interactions	with
surrounding	particles.	This	is	presumably	how	apparatus	can	measure	electron
spin	and	get	a	specific,	unique	result.

Both	of	these	approaches	lead	to	the	same	conclusion:	classical	physics	is
what	you	observe	if	you	take	a	human-scale	view	of	a	very	complicated	quantum
system	with	gazillions	of	particles.	Special	experimental	methods,	special
devices,	might	preserve	some	of	the	quantum	effects,	making	them	poke	up	into
our	comfortable	classical	existence,	but	generic	quantum	systems	quickly	cease



to	appear	quantum	as	we	move	to	larger	scales	of	behaviour.

That’s	one	way	to	resolve	the	fate	of	the	poor	cat.	Only	if	the	box	is	totally
impervious	to	quantum	decoherence	can	the	experiment	produce	the	superposed
cat,	and	no	such	box	exists.	What	would	you	make	it	from?

But	there’s	another	way,	one	that	goes	to	the	opposite	extreme.	Earlier	I	said
that	‘You	could	proceed	in	this	way	until	the	state	of	the	entire	universe	was	a
superposition.’	In	1957	Hugh	Everett	Jr.	pointed	out	that	in	a	sense,	you	have	to.
The	only	way	to	provide	an	accurate	quantum	model	of	a	system	is	to	consider
its	wave	function.	Everyone	was	happy	to	do	so	when	the	system	was	an
electron,	or	an	atom,	or	(more	controversially)	a	cat.	Everett	took	the	system	to
be	the	entire	universe.

He	argued	that	you	had	no	choice	if	that’s	what	you	wanted	to	model.
Nothing	less	than	the	universe	can	be	truly	isolated.	Everything	interacts	with
everything	else.	And	he	discovered	that	if	you	took	that	step,	then	the	problem	of
the	cat,	and	the	paradoxical	relation	between	quantum	and	classical	reality,	is
easily	resolved.	The	quantum	wave	function	of	the	universe	is	not	a	pure
eigenmode,	but	a	superposition	of	all	possible	eigenmodes.	Although	we	can’t
calculate	such	things	(we	can’t	for	a	cat,	and	a	universe	is	a	tad	more
complicated)	we	can	reason	about	them.	In	effect,	we	are	representing	the
universe,	quantum-mechanically,	as	a	combination	of	all	the	possible	things	that
a	universe	can	do.

The	upshot	was	that	the	wave	function	of	the	cat	does	not	have	to	collapse	to
give	a	single	classical	observation.	It	can	remain	completely	unchanged,	with	no
violation	of	Schrödinger’s	equation.	Instead,	there	are	two	coexisting	universes.
In	one,	the	cat	died;	in	the	other,	it	didn’t.	When	you	open	the	box,	there	are
correspondingly	two	yous	and	two	boxes.	One	of	them	is	part	of	the	wave
function	of	a	universe	with	a	dead	cat;	the	other	is	part	of	a	different	wave
function	with	a	live	cat.	In	place	of	a	unique	classical	world	that	somehow
emerges	from	the	superposition	of	quantum	possibilities,	we	have	a	vast	range	of
classical	worlds,	each	corresponding	to	one	quantum	possibility.

Everett’s	original	version,	which	he	called	the	relative	state	formulation,
came	to	popular	attention	in	the	1970s	through	Bryce	DeWitt,	who	gave	it	a
more	catchy	name:	the	many-worlds	interpretation	of	quantum	mechanics.	It	is
often	dramatised	in	historical	terms:	for	example,	that	there	is	a	universe	in
which	Adolf	Hitler	won	World	War	II,	and	another	one	in	which	he	didn’t.	The
one	in	which	I	am	writing	this	book	is	the	latter,	but	somewhere	alongside	it	in



the	quantum	realm	another	Ian	Stewart	is	writing	a	book	very	similar	to	this	one,
but	in	German,	reminding	his	readers	that	they	are	in	the	universe	where	Hitler
won.	Mathematically,	Everett’s	interpretation	can	be	viewed	as	a	logical
equivalent	of	conventional	quantum	mechanics,	and	it	leads	–	in	more	limited
interpretations	–	to	efficient	ways	to	solve	physics	problems.	His	formalism	will
therefore	survive	any	experimental	test	that	conventional	quantum	mechanics
survives.	So	does	that	imply	that	these	parallel	universes,	‘alternate	worlds’	in
transatlantic	parlance,	really	exist?	Is	another	me	typing	away	happily	on	a
computer	keyboard	in	a	world	where	Hitler	won?	Or	is	the	set-up	a	convenient
mathematical	fiction?

There	is	an	obvious	problem:	how	can	we	be	sure	that	in	a	world	dominated
by	Hitler’s	dream,	the	Thousand	Year	Reich,	computers	like	the	one	I’m	using
would	exist?	Clearly	there	must	be	many	more	universes	than	two,	and	events	in
them	must	follow	sensible	classical	patterns.	So	maybe	Stewart-2	doesn’t	exist
but	Hitler-2	does.	A	common	description	of	the	formation	and	evolution	of
parallel	universes	involves	them	‘splitting	off’	whenever	there	is	a	choice	of
quantum	state.	Greene	points	out	that	this	image	is	wrong:	nothing	splits.	The
universe’s	wave	function	has	been,	and	always	will	be,	split.	Its	component
eigenfunctions	are	there:we	imagine	a	split	when	we	select	one	of	them,	but	the
whole	point	of	Everett’s	explanation	is	that	nothing	in	the	wave	function	actually
changes.

With	that	as	a	caveat,	a	surprising	number	of	quantum	physicists	accept	the
many-worlds	interpretation.	Schrödinger’s	cat	really	is	alive	and	dead.	Hitler
really	did	win	and	lose.	One	version	of	us	lives	in	one	of	those	universes,	others
do	not.	That’s	what	the	mathematics	says.	It’s	not	an	interpretation,	a	convenient
way	to	arrange	the	calculations.	It’s	as	real	as	you	and	I.	It	is	you	and	I.

I’m	not	convinced.	It’s	not	the	superposition	that	bothers	me,	though.	I	don’t
find	the	existence	of	a	parallel	Nazi	world	unthinkable,	or	impossible.3	But	I	do
object,	strenuously,	to	the	idea	that	you	can	separate	a	quantum	wave	function
according	to	human-scale	historical	narratives.	The	mathematical	separation
occurs	at	the	level	of	quantum	states	of	constituent	particles.	Most	combinations
of	particle	states	make	no	sense	whatsoever	as	a	human	narrative.	A	simple
alternative	to	a	dead	cat	is	not	a	live	cat.	It	is	a	dead	cat	with	one	electron	in	a
different	state.	Complex	alternatives	are	far	more	numerous	than	a	live	cat.	They
include	a	cat	that	suddenly	explodes	for	no	apparent	reason,	one	that	turns	into	a
flower	vase,	one	that	gets	elected	president	of	the	United	States,	and	one	that
survived	even	though	the	radioactive	atom	released	the	poison.	Those	alternative
cats	are	rhetorically	useful	but	unrepresentative.	Most	alternatives	are	not	cats	at



all;	in	fact,	they	are	indescribable	in	classical	terms.	If	so,	most	of	the
alternative	Stewarts	aren’t	recognisable	as	people	–	indeed	as	anything	–	and
almost	all	of	those	that	exist	do	so	within	a	world	that	makes	absolutely	no	sense
in	human	terms.	So	the	chance	that	another	version	of	little	old	me	happens	to
live	in	another	world	that	makes	narrative	sense	to	a	human	being	is	negligible.

The	universe	may	well	be	an	incredibly	complex	superposition	of	alternative
states.	If	you	think	quantum	mechanics	is	basically	right,	it	has	to	be.	In	1983	the
physicist	Stephen	Hawking	said	that	the	many-worlds	interpretation	was	‘self-
evidently	correct’	in	this	sense.	But	it	doesn’t	follow	that	there	exists	a
superposition	of	universes	in	which	a	cat	is	alive	or	dead,	and	Hitler	did	or	did
not	win.	There	is	no	reason	to	suppose	that	the	mathematical	components	can	be
separated	into	sets	that	fit	together	to	create	human	narratives.	Hawking
dismissed	narrative	interpretations	of	the	many-worlds	formalism,	saying	‘All
that	one	does,	really,	is	to	calculate	conditional	probabilities	–	in	other	words,
the	probability	of	A	happening,	given	B.	I	think	that	that’s	all	the	many-worlds
interpretation	is.	Some	people	overlay	it	with	a	lot	of	mysticism	about	the	wave
function	splitting	into	different	parts.	But	all	that	you’re	calculating	is
conditional	probabilities.’

It’s	worth	comparing	the	Hitler	tale	with	Feynman’s	story	of	the	light	ray.	In
the	style	of	alternative	Hitlers,	Feynman	would	be	telling	us	that	there	is	one
classical	world	where	the	light	ray	bounces	off	the	mirror	at	the	same	angle	at
which	it	hit,	another	classical	world	in	which	it	bounces	at	an	angle	that’s	one
degree	wrong,	another	where	it’s	two	degrees	wrong,	and	so	on.	But	he	didn’t.
He	told	us	that	there	is	one	classical	world,	emerging	from	the	superposition	of
the	quantum	alternatives.	There	may	be	innumerable	parallel	worlds	at	the
quantum	level,	but	these	do	not	correspond	in	any	meaningful	way	to	parallel
worlds	that	are	describable	at	the	classical	level.	Snell’s	law	is	valid	in	any
classical	world.	If	it	weren’t,	the	world	couldn’t	be	classical.	As	Feynman
explained	for	light	rays,	the	classical	world	emerges	when	you	superpose	all	of
the	quantum	alternatives.	There	is	only	one	such	superposition,	so	there	is	only
one	classical	universe.	Ours.

Quantum	mechanics	isn’t	confined	to	the	laboratory.	The	whole	of	modern
electronics	depends	on	it.	Semiconductor	technology,	the	basis	of	all	integrated
circuits	–	silicon	chips	–	is	quantum-mechanical.	Without	the	physics	of	the
quantum,	no	one	would	have	dreamed	that	such	devices	could	work.	Computers,
mobile	phones,	CD	players,	games	consoles,	cars,	refrigerators,	ovens,	virtually
all	modern	household	gadgets,	contain	memory	chips,	to	contain	the	instructions



that	make	these	devices	do	what	we	want.	Many	contain	more	complex	circuitry,
such	as	microprocessors,	an	entire	computer	on	a	chip.	Most	memory	chips	are
variations	on	the	first	true	semiconductor	device:	the	transistor.

In	the	1930s,	American	physicists	Eugene	Wigner	and	Frederick	Seitz
analysed	how	electrons	move	though	a	crystal,	a	problem	that	requires	quantum
mechanics.	They	discovered	some	of	the	basic	features	of	semiconductors.	Some
materials	are	conductors	of	electricity:	electrons	can	flow	through	them	with
ease.	Metals	are	good	conductors,	and	in	everyday	use	copper	wire	is
commonplace	for	this	purpose.	Insulators	do	not	permit	electrons	to	flow,	so
they	stop	the	flow	of	electricity:	the	plastics	that	sheathe	electrical	wires,	to
prevent	us	electrocuting	ourselves	on	the	TV	power	lead,	are	insulators.
Semiconductors	are	a	bit	of	both,	depending	on	circumstances.	Silicon	is	the	best
known,	and	currently	the	most	widely	used,	but	several	other	elements	such	as
antimony,	arsenic,	boron,	carbon,	germanium,	and	selenium	are	also
semiconductors.	Because	semiconductors	can	be	switched	from	one	state	to	the
other,	they	can	be	used	to	manipulate	electrical	currents,	and	this	is	the	basis	of
all	electronic	circuits.

Wigner	and	Seitz	discovered	that	the	properties	of	semiconductors	depend	on
the	energy	levels	of	the	electrons	within	them,	and	these	levels	can	be	controlled
by	‘doping’	the	basic	semiconductor	material	by	adding	small	quantities	of
specific	impurities.	Two	important	types	are	p-type	semiconductors,	which	carry
current	as	a	flow	of	electrons,	and	n-type	semiconductors,	in	which	current	flows
in	the	opposite	direction	to	the	electrons,	carried	by	‘holes’	–	places	where	there
are	fewer	electrons	than	normal.	In	1947	John	Bardeen	and	Walter	Brattain	at
Bell	Laboratories	discovered	that	a	crystal	of	germanium	could	act	as	an
amplifier.	If	an	electrical	current	was	fed	into	it,	the	output	current	was	higher.
William	Shockley,	leader	of	the	Solid	State	Physics	Group,	realised	how
important	this	could	be,	and	initiated	a	project	to	investigate	semiconductors.
Out	of	this	came	the	transistor	–	short	for	‘transfer	resistor’.	There	were	some
earlier	patents	but	no	working	devices	or	published	papers.	Technically	the	Bell
Labs’	device	was	a	JFET	(junction	gate	field-effect	transistor,	Figure	55).	Since
this	initial	breakthrough,	many	other	kinds	of	transistor	have	been	invented.
Texas	Instruments	manufactured	the	first	silicon	transistor	in	1954.	The	same
year	saw	a	transistor-based	computer,	TRIDAC,	built	by	the	US	military.	It	was
three	cubic	feet	in	size	and	its	power	requirement	was	the	same	as	one	light	bulb.
This	was	an	early	step	in	a	huge	American	military	programme	to	develop
alternatives	to	vacuum	tube	electronics,	which	was	too	cumbersome,	fragile,	and
unreliable	for	military	use.



Fig	55	Structure	of	a	JFET.	The	source	and	drain	are	at	the	ends,	in	a	p-type
layer,	while	the	gate	is	an	n-type	layer	that	controls	the	flow.	If	you	think	of	the
flow	of	electrons	from	source	to	drain	as	a	hose,	the	gate	in	effect	squeezes	the
hose,	increasing	the	pressure	(voltage)	at	the	drain.

Because	semiconductor	technology	is	based	on	doping	silicon	or	similar
substances	with	impurities,	it	lent	itself	to	miniaturisation.	Circuits	can	be	built
up	in	layers	on	a	silicon	substrate,	by	bombarding	the	surface	with	the	desired
impurity,	and	etching	away	unwanted	regions	with	acid.	The	areas	affected	are
determined	by	photographically	produced	masks,	and	these	can	be	shrunk	to
very	small	size	using	optical	lenses.	Out	of	all	this	emerged	today’s	electronics,
including	memory	chips	that	can	hold	billions	of	bytes	of	information	and	very
fast	microprocessors	that	orchestrate	the	activity	of	computers.

Another	ubiquitous	application	of	quantum	mechanics	is	the	laser.	This	is	a
device	that	emits	a	strong	beam	of	coherent	light:	one	in	which	the	light	waves
are	all	in	phase	with	each	other.	It	consists	of	an	optical	cavity	with	mirrors	at
each	end,	filled	with	something	that	reacts	to	light	of	a	specific	wavelength	by
producing	more	light	of	the	same	wavelength	–	a	light	amplifier.	Pump	in	energy
to	start	the	process	rolling,	let	the	light	bounce	to	and	fro	along	the	cavity,
amplifying	all	the	time,	and	when	it	reaches	a	sufficiently	high	intensity,	let	it
out.	The	gain	medium	can	be	a	fluid,	a	gas,	a	crystal,	or	a	semiconductor.
Different	materials	work	at	different	wavelengths.	The	amplification	process
depends	on	the	quantum	mechanics	of	atoms.	The	electrons	in	the	atoms	can
exist	in	different	energy	states,	and	they	can	be	switched	between	them	by
absorbing	or	emitting	photons.



LASER	means	light	amplification	by	stimulated	emission	of	radiation.	When
the	first	laser	was	invented,	it	was	widely	derided	as	an	answer	looking	for	a
problem.	This	was	unimaginative:	a	whole	host	of	suitable	problems	quickly
appeared,	once	there	was	a	solution.	Producing	a	coherent	beam	of	light	is	basic
technology,	and	it	was	always	bound	to	have	uses,	just	as	an	improved	hammer
would	automatically	find	many	uses.	When	inventing	generic	technology,	you
don’t	have	to	have	a	specific	application	in	mind.	Today	we	use	lasers	for	so
many	purposes	that	it’s	impossible	to	list	them	all.	There	are	prosaic	uses	like
laser	pointers	for	lectures	and	laser	beams	for	DIY.	CD	players,	DVD	players,
and	Blu-ray	all	use	lasers	to	read	information	from	tiny	pits	or	marks	on	discs.
Surveyors	use	lasers	to	measure	distances	and	angles.	Astronomers	use	lasers	to
measure	the	distance	from	the	Earth	to	the	Moon.	Surgeons	use	lasers	for	fine
cutting	of	delicate	tissues.	Laser	treatment	of	eyes	is	routine,	for	repairing
detached	retinas	and	remoulding	the	surface	of	the	cornea	to	correct	vision
instead	of	using	glasses	or	contact	lenses.	The	‘Star	Wars’	antimissile	system
was	intended	to	use	powerful	lasers	to	shoot	down	enemy	missiles,	and	although
it	was	never	built,	some	of	the	lasers	were.	Military	uses	of	lasers,	akin	to	the
pulp	science-fiction	ray-gun,	are	being	investigated	right	now.	And	it	may	even
be	possible	to	launch	space	vehicles	from	Earth	by	making	them	ride	a	powerful
laser	beam.

New	uses	of	quantum	mechanics	arrive	almost	by	the	week.	One	of	the	latest
is	quantum	dots,	tiny	pieces	of	semiconductor	whose	electronic	properties,
including	the	light	that	they	emit,	vary	according	to	their	size	and	shape.	They
can	therefore	be	tailored	to	have	many	desirable	features.	They	already	have	a
variety	of	applications,	including	biological	imaging,	where	they	can	replace
traditional	(and	often	toxic)	dyes.	They	also	perform	much	better,	emitting
brighter	light.

Further	down	the	line,	some	engineers	and	physicists	are	working	on	the	basic
components	of	a	quantum	computer.	In	such	a	device,	the	binary	states	of	0	and
1	can	be	superposed	in	any	combination,	in	effect	allowing	computations	to
assume	both	values	at	the	same	time.	This	would	allow	many	different
calculations	to	be	performed	in	parallel,	speeding	them	up	enormously.
Theoretical	algorithms	have	been	devised,	carrying	out	such	tasks	as	splitting	a
number	into	its	prime	factors.	Conventional	computers	run	into	trouble	when	the
numbers	have	more	than	a	hundred	digits	or	so,	but	a	quantum	computer	should
be	able	to	factorise	much	bigger	numbers	with	ease.	The	main	obstacle	to
quantum	computing	is	decoherence,	which	destroys	superposed	states.
Schrödinger’s	cat	is	exacting	revenge	for	its	inhumane	treatment.



15	Codes,	communications,	and	computers

Information	Theory

What	does	it	say?

It	defines	how	much	information	a	message	contains,	in	terms	of	the
probabilities	with	which	the	symbols	that	make	it	up	are	likely	to	occur.

Why	is	that	important?

It	is	the	equation	that	ushered	in	the	information	age.	It	established	limits	on	the
efficiency	of	communications,	allowing	engineers	to	stop	looking	for	codes	that
were	too	effective	to	exist.	It	is	basic	to	today’s	digital	communications	–
phones,	CDs,	DVDs,	the	internet.

What	did	it	lead	to?

Efficient	error-detecting	and	error-correcting	codes,	used	in	everything	from
CDs	to	space	probes.	Applications	include	statistics,	artificial	intelligence,
cryptography,	and	extracting	meaning	from	DNA	sequences.



	

In	1977	NASA	launched	two	space	probes,	Voyager	1	and	2.	The	planets	of	the
Solar	System	had	arranged	themselves	in	unusually	favourable	positions,	making
it	possible	to	find	reasonably	efficient	orbits	that	would	let	the	probes	visit
several	planets.	The	initial	aim	was	to	examine	Jupiter	and	Saturn,	but	if	the
probes	held	out,	their	trajectories	would	take	them	on	past	Uranus	and	Neptune.
Voyager	1	could	have	gone	to	Pluto	(at	that	time	considered	a	planet,	and
equally	interesting	–	indeed	totally	unchanged	–	now	that	it’s	not)	but	an
alternative,	Saturn’s	intriguing	moon	Titan,	took	precedence.	Both	probes	were
spectacularly	successful,	and	Voyager	1	is	now	the	most	distant	human-made
object	from	Earth,	more	than	10	billion	miles	away	and	still	sending	back	data.

Signal	strength	falls	off	with	the	square	of	the	distance,	so	the	signal	received
on	Earth	is	10–20	times	the	strength	that	it	would	be	if	received	from	a	distance
of	one	mile.	That	is,	one	hundred	quintillion	times	weaker.	Voyager	1	must	have
a	really	powerful	transmitter	…	No,	it’s	a	tiny	space	probe.	It	is	powered	by	a
radioactive	isotope,	plutonium-238,	but	even	so	the	total	power	available	is	now
about	one	eighth	that	of	a	typical	electric	kettle.	There	are	two	reasons	why	we
can	still	obtain	useful	information	from	the	probe:	powerful	receivers	on	Earth,
and	special	codes	used	to	protect	the	data	from	errors	caused	by	extraneous
factors	such	as	interference.
Voyager	1	can	send	data	using	two	different	systems.	One,	the	low-rate

channel,	can	send	40	binary	digits,	0s	or	1s,	every	second,	but	it	does	not	allow
coding	to	deal	with	potential	errors.	The	other,	the	high-rate	channel,	can
transmit	up	to	120,000	binary	digits	every	second,	and	these	are	encoded	so	that
errors	can	be	spotted	and	put	right	provided	they’re	not	too	frequent.	The	price
paid	for	this	ability	is	that	the	messages	are	twice	as	long	as	they	would
otherwise	be,	so	they	carry	only	half	as	much	data	as	they	could.	Since	errors
could	ruin	the	data,	this	is	a	price	worth	paying.

Codes	of	this	kind	are	widely	used	in	all	modern	communications:	space
missions,	landline	phones,	mobile	phones,	the	Internet,	CDs	and	DVDs,	Blu-ray,
and	so	on.	Without	them,	all	communications	would	be	liable	to	errors;	this
would	not	be	acceptable	if,	for	instance,	you	were	using	the	Internet	to	pay	a	bill.
If	your	instruction	to	pay	£20	was	received	as	£200,	you	wouldn’t	be	pleased.	A
CD	player	uses	a	tiny	lens,	which	focuses	a	laser	beam	on	to	very	thin	tracks
impressed	in	the	material	of	the	disc.	The	lens	hovers	a	very	tiny	distance	above
the	spinning	disc.	Yet	you	can	listen	to	a	CD	while	driving	along	a	bumpy	road,



because	the	signal	is	encoded	in	a	way	that	allows	errors	to	be	found	and	put
right	by	the	electronics	while	the	disc	is	being	played.	There	are	other	tricks,	too,
but	this	one	is	fundamental.

Our	information	age	relies	on	digital	signals	–	long	strings	of	0s	and	1s,
pulses	and	non-pulses	of	electricity	or	radio.	The	equipment	that	sends,	receives,
and	stores	the	signals	relies	on	very	small,	very	precise	electronic	circuits	on	tiny
slivers	of	silicon	–	‘chips’.	But	for	all	the	cleverness	of	the	circuit	design	and
manufacture,	none	of	it	would	work	without	error-detecting	and	error-correcting
codes.	And	it	was	in	this	context	that	the	term	‘information’	ceased	to	be	an
informal	word	for	‘know-how’,	and	became	a	measurable	numerical	quantity.
And	that	provided	fundamental	limitations	on	the	efficiency	with	which	codes
can	modify	messages	to	protect	them	against	errors.	Knowing	these	limitations
saved	engineers	lots	of	wasted	time,	trying	to	invent	codes	that	would	be	so
efficient	they’d	be	impossible.	It	provided	the	basis	for	today’s	information
culture.

I’m	old	enough	to	remember	when	the	only	way	to	telephone	someone	in
another	country	(shock	horror)	was	to	make	a	booking	ahead	of	time	with	the
phone	company	–	in	the	UK	there	was	only	one,	Post	Office	Telephones	–	for	a
specific	time	and	length.	Say	ten	minutes	at	3.45	p.m.	on	11	January.	And	it	cost
a	fortune.	A	few	weeks	ago	a	friend	and	I	did	an	hour-long	interview	for	a
science	fiction	convention	in	Australia,	from	the	United	Kingdom,	using
SkypeTM.	It	was	free,	and	it	sent	video	as	well	as	sound.	A	lot	has	changed	in
fifty	years.	Nowadays,	we	exchange	information	online	with	friends,	both	real
ones	and	the	phonies	that	large	numbers	of	people	collect	like	butterflies	using
social	networking	sites.	We	no	longer	buy	music	CDs	or	movie	DVDs:	we	buy
the	information	that	they	contain,	downloaded	over	the	Internet.	Books	are
heading	the	same	way.	Market	research	companies	amass	huge	quantities	of
information	about	our	purchasing	habits	and	try	to	use	it	to	influence	what	we
buy.	Even	in	medicine,	there	is	a	growing	emphasis	on	the	information	that	is
contained	in	our	DNA.	Often	the	attitude	seems	to	be	that	if	you	have	the
information	required	to	do	something,	then	that	alone	suffices;	you	don’t	need
actually	to	do	it,	or	even	know	how	to	do	it.

There	is	little	doubt	that	the	information	revolution	has	transformed	our	lives,
and	a	good	case	can	be	made	that	in	broad	terms	the	benefits	outweigh	the
disadvantages	–	even	though	the	latter	include	loss	of	privacy,	potential
fraudulent	access	to	our	bank	accounts	from	anywhere	in	the	word	at	the	click	of
a	mouse,	and	computer	viruses	that	can	disable	a	bank	or	a	nuclear	power
station.



What	is	information?	Why	does	it	have	such	power?	And	is	it	really	what	it	is
claimed	to	be?

The	concept	of	information	as	a	measurable	quantity	emerged	from	the	research
laboratories	of	the	Bell	Telephone	Company,	the	main	provider	of	telephone
services	in	the	United	States	from	1877	to	its	break-up	in	1984	on	anti-trust
(monopoly)	grounds.	Among	its	engineers	was	Claude	Shannon,	a	distant	cousin
of	the	famous	inventor	Edison.	Shannon’s	best	subject	at	school	was
mathematics,	and	he	had	an	aptitude	for	building	mechanical	devices.	By	the
time	he	was	working	for	Bell	Labs	he	was	a	mathematician	and	cryptographer,
as	well	as	an	electronic	engineer.	He	was	one	of	the	first	to	apply	mathematical
logic	–	so-called	Boolean	algebra	–	to	computer	circuits.	He	used	this	technique
to	simplify	the	design	of	switching	circuits	used	by	the	telephone	system,	and
then	extended	it	to	other	problems	in	circuit	design.

During	World	War	II	he	worked	on	secret	codes	and	communications,	and
developed	some	fundamental	ideas	that	were	reported	in	a	classified
memorandum	for	Bell	in	1945	under	the	title	‘A	mathematical	theory	of
cryptography’.	In	1948	he	published	some	of	his	work	in	the	open	literature,	and
the	1945	article,	declassified,	was	published	soon	after.	With	additional	material
by	Warren	Weaver,	it	appeared	in	1949	as	The	Mathematical	Theory	of
Communication.

Shannon	wanted	to	know	how	to	transmit	messages	effectively	when	the
transmission	channel	was	subject	to	random	errors,	‘noise’	in	the	engineering
jargon.	All	practical	communications	suffer	from	noise,	be	it	from	faulty
equipment,	cosmic	rays,	or	unavoidable	variability	in	circuit	components.	One
solution	is	to	reduce	the	noise	by	building	better	equipment,	if	possible.	An
alternative	is	to	encode	the	signals	using	mathematical	procedures	that	can	detect
errors,	and	even	put	them	right.

The	simplest	error-detecting	code	is	to	send	the	same	message	twice.	If	you
receive

the	same	massage	twice
the	same	message	twice

then	there	is	clearly	an	error	in	the	third	word,	but	without	understanding
English	it	is	not	obvious	which	version	is	correct.	A	third	repetition	would
decide	the	matter	by	majority	vote	and	become	an	error-correcting	code.	How
effective	or	accurate	such	codes	are	depends	on	the	likelihood,	and	nature,	of	the



errors.	If	the	communication	channel	is	very	noisy,	for	instance,	then	all	three
versions	of	the	message	might	be	so	badly	garbled	that	it	would	be	impossible	to
reconstruct	it.

In	practice	mere	repetition	is	too	simple-minded:	there	are	more	efficient
ways	to	encode	messages	to	reveal	or	correct	errors.	Shannon’s	starting	point
was	to	pinpoint	the	meaning	of	efficiency.	All	such	codes	replace	the	original
message	by	a	longer	one.	The	two	codes	above	double	or	treble	the	length.
Longer	messages	take	more	time	to	send,	cost	more,	occupy	more	memory,	and
clog	the	communication	channel.	So	the	efficiency,	for	a	given	rate	of	error
detection	or	correction,	can	be	quantified	as	the	ratio	of	the	length	of	the	coded
message	to	that	of	the	original.

The	main	issue,	for	Shannon,	was	to	determine	the	inherent	limitations	of
such	codes.	Suppose	an	engineer	had	devised	a	new	code.	Was	there	some	way
to	decide	whether	it	was	about	as	good	as	they	get,	or	might	some	improvement
be	possible?	Shannon	began	by	quantifying	how	much	information	a	message
contains.	By	so	doing,	he	turned	‘information’	from	a	vague	metaphor	into	a
scientific	concept.

There	are	two	distinct	ways	to	represent	a	number.	It	can	be	defined	by	a
sequence	of	symbols,	for	example	its	decimal	digits,	or	it	can	correspond	to
some	physical	quantity,	such	as	the	length	of	a	stick	or	the	voltage	in	a	wire.
Representations	of	the	first	kind	are	digital,	the	second	are	analogue.	In	the
1930s,	scientific	and	engineering	calculations	were	often	performed	using
analogue	computers,	because	at	the	time	these	were	easier	to	design	and	build.
Simple	electronic	circuits	can	add	or	multiply	two	voltages,	for	example.
However,	machines	of	this	type	lacked	precision,	and	digital	computers	began	to
appear.	It	very	quickly	became	clear	that	the	most	convenient	representation	of
numbers	was	not	decimal,	base	10,	but	binary,	base	2.	In	decimal	notation	there
are	ten	symbols	for	digits,	0–9,	and	every	digit	multiplies	ten	times	in	value	for
every	step	it	moves	to	the	left.	So	157	represents

1	×	102	+	5	×	101	+	7	×	100

Binary	notation	employs	the	same	basic	principle,	but	now	there	are	only	two
digits,	0	and	1.	A	binary	number	such	as	10011101	encodes,	in	symbolic	form,
the	number

1	×	27	+	0	×	26	+	0	×	25	+	1	×	24	+	1	×	23	+	1	×	22



+	0	×	21	+	1	×	20

so	that	each	digit	doubles	in	value	for	every	step	it	moves	to	the	left.	In	decimal,
this	number	equals	157	–	so	we	have	written	the	same	number	in	two	different
forms,	using	two	different	types	of	notation.

Binary	notation	is	ideal	for	electronic	systems	because	it	is	much	easier	to
distinguish	between	two	possible	values	of	a	current,	or	a	voltage,	or	a	magnetic
field,	than	it	is	to	distinguish	between	more	than	two.	In	crude	terms,	0	can	mean
‘no	electric	current’	and	1	can	mean	‘some	electric	current’,	0	can	mean	‘no
magnetic	field’	and	1	can	mean	‘some	magnetic	field’,	and	so	on.	In	practice
engineers	set	a	threshold	value,	and	then	0	means	‘below	threshold’	and	1	means
‘above	threshold’.	By	keeping	the	actual	values	used	for	0	and	1	far	enough
apart,	and	setting	the	threshold	in	between,	there	is	very	little	danger	of
confusing	0	with	1.	So	devices	based	on	binary	notation	are	robust.	That’s	what
makes	them	digital.

With	early	computers,	the	engineers	had	to	struggle	to	keep	the	circuit
variables	within	reasonable	bounds,	and	binary	made	their	lives	much	easier.
Modern	circuits	on	silicon	chips	are	precise	enough	to	permit	other	choices,	such
as	base	3,	but	the	design	of	digital	computers	has	been	based	on	binary	notation
for	so	long	now	that	it	generally	makes	sense	to	stick	to	binary,	even	if
alternatives	would	work.	Modern	circuits	are	also	very	small	and	very	quick.
Without	some	such	technological	breakthrough	in	circuit	manufacture,	the	world
would	have	a	few	thousand	computers,	rather	than	billions.	Thomas	J.	Watson,
who	founded	IBM,	once	said	that	he	didn’t	think	there	would	be	a	market	for
more	than	about	five	computers	worldwide.	At	the	time	he	seemed	to	be	talking
sense,	because	in	those	days	the	most	powerful	computers	were	about	the	size	of
a	house,	consumed	as	much	electricity	as	a	small	village,	and	cost	tens	of
millions	of	dollars.	Only	big	government	organisations,	such	as	the	United	States
Army,	could	afford	one,	or	make	enough	use	of	it.	Today	a	basic,	out-of-date
mobile	phone	contains	more	computing	power	than	anything	that	was	available
when	Watson	made	his	remark.

The	choice	of	binary	representation	for	digital	computers,	hence	also	for
digital	messages	transmitted	between	computers	–	and	later	between	almost	any
two	electronic	gadgets	on	the	planet	–	led	to	the	basic	unit	of	information:	the
bit.	The	name	is	short	for	‘binary	digit’,	and	one	bit	of	information	is	one	0	or
one	1.	It	is	reasonable	to	define	the	information	‘contained	in’	a	sequence	of
binary	digits	to	be	the	total	number	of	digits	in	the	sequence.	So	the	8-digit
sequence	10011101	contains	8	bits	of	information.



Shannon	realised	that	simple-minded	bit-counting	makes	sense	as	a	measure	of
information	only	if	0s	and	1s	are	like	heads	and	tails	with	a	fair	coin,	that	is,	are
equally	likely	to	occur.	Suppose	we	know	that	in	some	specific	circumstances	0
occurs	nine	times	out	of	ten,	and	1	only	once.	As	we	read	along	the	string	of
digits,	we	expect	most	digits	to	be	0.	If	that	expectation	is	confirmed,	we	haven’t
received	much	information,	because	this	is	what	we	expected	anyway.	However,
if	we	see	1,	that	conveys	a	lot	more	information,	because	we	didn’t	expect	that	at
all.

We	can	take	advantage	of	this	by	encoding	the	same	information	more
efficiently.	If	0	occurs	with	probability	9/10	and	1	with	probability	1/10,	we	can
define	a	new	code	like	this:

000→00	(use	whenever	possible)

		00→01	(if	no	000	remains)

					0→10	(if	no	00	remains)

					1→11	(always)

What	I	mean	here	is	that	a	message	such	as

00000000100010000010000001000000000

is	first	broken	up	from	left	to	right	into	blocks	that	read	000,	00,	0,	or	1.	With
strings	of	consecutive	0s,	we	use	000	whenever	we	can.	If	not,	what’s	left	is
either	00	or	0,	followed	by	a	1.	So	here	the	message	breaks	up	as

000-000-00-1-000-1-000-00-1-000-000-1-000-000-000

and	the	coded	version	becomes

00-00-01-11-00-11-00-01-11-00-00-11-11-00-00-00

The	original	message	has	35	digits,	but	the	encoded	version	has	only	32.	The
amount	of	information	seems	to	have	decreased.

Sometimes	the	coded	version	might	be	longer:	for	instance,	111	turns	into
111111.	But	that’s	rare	because	1	occurs	only	one	time	in	ten	on	average.	There
will	be	quite	a	lot	of	000s,	which	drop	to	00.	Any	spare	00	changes	to	01,	the
same	length;	a	spare	0	increases	the	length	by	changing	to	00.	The	upshot	is	that
in	the	long	run,	for	randomly	chosen	messages	with	the	given	probabilities	of	0



and	1,	the	coded	version	is	shorter.
My	code	here	is	very	simple-minded,	and	a	cleverer	choice	can	shorten	the

message	even	more.	One	of	the	main	questions	that	Shannon	wanted	to	answer
was:	how	efficient	can	codes	of	this	general	type	be?	If	you	know	the	list	of
symbols	that	is	being	used	to	create	a	message,	and	you	also	know	how	likely
each	symbol	is,	how	much	can	you	shorten	the	message	by	using	a	suitable
code?	His	solution	was	an	equation,	defining	the	amount	of	information	in	terms
of	these	probabilities.

Suppose	for	simplicity	that	the	messages	use	only	two	symbols	0	and	1,	but	now
these	are	like	flips	of	a	biased	coin,	so	that	0	has	probability	p	of	occurring,	and
1	has	probability	q	=	1–	p.	Shannon’s	analysis	led	him	to	a	formula	for	the
information	content:	it	should	be	defined	as

H	=	−p	log	p	−	q	log	q

where	log	is	the	logarithm	to	base	2.
At	first	sight	this	doesn’t	seem	terribly	intuitive.	I’ll	explain	how	Shannon

derived	it	in	a	moment,	but	the	main	thing	to	appreciate	at	this	stage	is	how	H
behaves	as	p	varies	from	0	to	1,	which	is	shown	in	Figure	56.	The	value	of	H
increases	smoothly	from	0	to	1	as	p	rises	from	0	to	 ,	and	then	drops	back
symmetrically	to	0	as	p	goes	from	 	to	1.

Fig	56	How	Shannon	information	H	depends	on	p.	H	runs	vertically	and	p	runs
horizontally.

Shannon	pointed	out	several	‘interesting	properties’	of	H,	so	defined:
	If	p	=	0,	in	which	case	only	the	symbol	1	will	occur,	the	information	H	is



zero.	That	is,	if	we	are	certain	which	symbol	is	going	to	be	transmitted	to	us,
receiving	it	conveys	no	information	whatsoever.
	The	same	holds	when	p	=	1.	Only	the	symbol	0	will	occur,	and	again	we
receive	no	information.
	The	amount	of	information	is	largest	when	p	=	q	=	 ,	corresponding	to	the
toss	of	a	fair	coin.	In	this	case,

bearing	in	mind	that	the	logarithms	are	to	base	2.	That	is,	one	toss	of	a	fair
coin	conveys	one	bit	of	information,	as	we	were	originally	assuming	before
we	started	worrying	about	coding	messages	to	compress	them,	and	biased
coins.
	In	all	other	cases,	receiving	one	symbol	conveys	less	information	than	one
bit.
	The	more	biased	the	coin	becomes,	the	less	information	the	result	of	one	toss
conveys.
	The	formula	treats	the	two	symbols	in	exactly	the	same	way.	If	we	exchange
p	and	q,	then	H	stays	the	same.

All	of	these	properties	correspond	to	our	intuitive	sense	of	how	much
information	we	receive	when	we	are	told	the	result	of	a	coin	toss.	That	makes	the
formula	a	reasonable	working	definition.	Shannon	then	provided	a	solid
foundation	for	his	definition	by	listing	several	basic	principles	that	any	measure
of	information	content	ought	to	obey	and	deriving	a	unique	formula	that	satisfied
them.	His	set-up	was	very	general:	the	message	could	choose	from	a	number	of
different	symbols,	occurring	with	probabilities	p1,	p2,	…,	pn	where	n	is	the
number	of	symbols.	The	information	H	conveyed	by	a	choice	of	one	of	these
symbols	should	satisfy:

	H	is	a	continuous	function	of	p1,	p2,	…,	pn.	That	is,	small	changes	in	the
probabilities	should	lead	to	small	changes	in	the	amount	of	information.
	If	all	of	the	probabilities	are	equal,	which	implies	they	are	all	1/n,	then	H
should	increase	if	n	gets	larger.	That	is,	if	you	are	choosing	between	3
symbols,	all	equally	likely,	then	the	information	you	receive	should	be	more
than	if	the	choice	were	between	just	2	equally	likely	symbols;	a	choice
between	4	symbols	should	convey	more	information	than	a	choice	between
3	symbols,	and	so	on.



	If	there	is	a	natural	way	to	break	a	choice	down	into	two	successive	choices,
then	the	original	H	should	be	a	simple	combination	of	the	new	Hs.

This	final	condition	is	most	easily	understood	using	an	example,	and	I’ve	put
one	in	the	Notes.1	Shannon	proved	that	the	only	function	H	that	obeys	his	three
principles	is

or	a	constant	multiple	of	this	expression,	which	basically	just	changes	the	unit	of
information,	like	changing	from	feet	to	metres.

There	is	a	good	reason	to	take	the	constant	to	be	1,	and	I’ll	illustrate	it	in	one
simple	case.	Think	of	the	four	binary	strings	00,	01,	10,	11	as	symbols	in	their
own	right.	If	0	and	1	are	equally	likely,	each	string	has	the	same	probability,

namely	 .	The	amount	of	information	conveyed	by	one	choice	a	such	a	string	is
therefore

That	is,	2	bits.	Which	is	a	sensible	number	for	the	information	in	a	length-2
binary	string	when	the	choices	0	and	1	are	equally	likely.	In	the	same	way,	if	the
symbols	are	all	length-n	binary	strings,	and	we	set	the	constant	to	1,	then	the
information	content	is	n	bits.	Notice	that	when	n	=	2	we	obtain	the	formula
pictured	in	Figure	56.	The	proof	of	Shannon’s	theorem	is	too	complicated	to
give	here,	but	it	shows	that	if	you	accept	Shannon’s	three	conditions	then	there	is
a	single	natural	way	to	quantify	information.2	The	equation	itself	is	merely	a
definition:	what	counts	is	how	it	performs	in	practice.

Shannon	used	his	equation	to	prove	that	there	is	a	fundamental	limit	on	how
much	information	a	communication	channel	can	convey.	Suppose	that	you	are
transmitting	a	digital	signal	along	a	phone	line,	whose	capacity	to	carry	a
message	is	at	most	C	bits	per	second.	This	capacity	is	determined	by	the	number
of	binary	digits	that	the	phone	line	can	transmit,	and	it	is	not	related	to	the
probabilities	of	various	signals.	Suppose	that	the	message	is	being	generated
from	symbols	with	information	content	H,	also	measured	in	bits	per	second.
Shannon’s	theorem	answers	the	question:	if	the	channel	is	noisy,	can	the	signal
be	encoded	so	that	the	proportion	of	errors	is	as	small	as	we	wish?	The	answer	is
that	this	is	always	possible,	no	matter	what	the	noise	level	is,	if	H	is	less	than	or
equal	to	C.	It	is	not	possible	if	H	is	greater	than	C.	In	fact,	the	proportion	of



errors	cannot	be	reduced	below	the	difference	H—C,	no	matter	which	code	is
employed,	but	there	exist	codes	that	get	as	close	as	you	wish	to	that	error	rate.

Shannon’s	proof	of	his	theorem	demonstrates	that	codes	of	the	required	kind
exist,	in	each	of	his	two	cases,	but	the	proof	doesn’t	tell	us	what	those	codes	are.
An	entire	branch	of	information	science,	a	mixture	of	mathematics,	computing,
and	electronic	engineering,	is	devoted	to	finding	efficient	codes	for	specific
purposes.	It	is	called	coding	theory.	The	methods	for	coming	up	with	these	codes
are	very	diverse,	drawing	on	many	areas	of	mathematics.	It	is	these	methods	that
are	incorporated	into	our	electronic	gadgetry,	be	it	a	smartphone	or	Voyager	1’s
transmitter.	People	carry	significant	quantities	of	sophisticated	abstract	algebra
around	in	their	pockets,	in	the	form	of	software	that	implements	error-correcting
codes	for	mobile	phones.

I’ll	try	to	convey	the	flavour	of	coding	theory	without	getting	too	tangled	in
the	complexities.	One	of	the	most	influential	concepts	in	the	theory	relates	codes
to	multidimensional	geometry.	It	was	published	by	Richard	Hamming	in	1950	in
a	famous	paper,	‘Error	detecting	and	error	correcting	codes’.	In	its	simplest
form,	it	provides	a	comparison	between	strings	of	binary	digits.	Consider	two
such	strings,	say	10011101	and	10110101.	Compare	corresponding	bits,	and
count	how	many	times	they	are	different,	like	this:

10011101
10110101

where	I’ve	marked	the	differences	in	bold	type.	Here	there	are	two	locations	at
which	the	bit-strings	differ.	We	call	this	number	the	Hamming	distance	between
the	two	strings.	It	can	be	thought	of	as	the	smallest	number	of	one-bit	errors	that
can	convert	one	string	into	the	other.	So	it	is	closely	related	to	the	likely	effect	of
errors,	if	these	occur	at	a	known	average	rate.	That	suggests	it	might	provide
some	insight	into	how	to	detect	such	errors,	and	maybe	even	how	to	put	them
right.

Multidimensional	geometry	comes	into	play	because	the	strings	of	a	fixed
length	can	be	associated	with	the	vertices	of	a	multidimensional	‘hypercube’.
Riemann	taught	us	how	to	think	of	such	spaces	by	thinking	of	lists	of	numbers.
For	example,	a	space	of	four	dimensions	consists	of	all	possible	lists	of	four
numbers:	(x1,	x2,	x3,	x4).	Each	such	list	is	considered	to	represent	a	point	in	the
space,	and	all	possible	lists	can	in	principle	occur.	The	separate	xs	are	the
coordinates	of	the	point.	If	the	space	has	157	dimensions,	you	have	to	use	lists	of



157	numbers:	(x1,	x2,…,	x157).	It	is	often	useful	to	specify	how	far	apart	two	such
lists	are.	In	‘flat’	Euclidean	geometry	this	is	done	using	a	simple	generalisation
of	Pythagoras’s	theorem.	Suppose	we	have	a	second	point	(y1,	y2,	…,	y157)	in	our
157-dimensional	space.	Then	the	distance	between	the	two	points	is	the	square
root	of	the	sum	of	the	squares	of	the	differences	between	corresponding
coordinates.	That	is,

If	the	space	is	curved,	Riemann’s	idea	of	a	metric	can	be	used	instead.
Hamming’s	idea	is	to	do	something	very	similar,	but	the	values	of	the

coordinates	are	restricted	to	just	0	and	1.	Then	(x1	–	y1)2	is	0	if	x1	and	y1	are	the
same,	but	1	if	not,	and	the	same	goes	for	(x2	–	y2)2	and	so	on.	He	also	omitted	the
square	root,	which	changes	the	answer,	but	in	compensation	the	result	is	always
a	whole	number,	equal	to	the	Hamming	distance.	This	notion	has	all	the
properties	that	make	‘distance’	useful,	such	as	being	zero	only	when	the	two
strings	are	identical,	and	ensuring	that	the	length	of	any	side	of	a	‘triangle’	(a	set
of	three	strings)	is	less	than	or	equal	to	the	sum	of	the	lengths	of	the	other	two
sides.

We	can	draw	pictures	of	all	bit	strings	of	lengths	2,	3,	and	4	(and	with	more
effort	and	less	clarity,	5,	6,	and	possibly	even	10,	though	no	one	would	find	that
useful).	The	resulting	diagrams	are	shown	in	Figure	57.

Fig	57	Spaces	of	all	bit-strings	of	lengths	2,	3,	and	4.

The	first	two	are	recognisable	as	a	square	and	a	cube	(projected	on	to	a	plane
because	it	has	to	be	printed	on	a	sheet	of	paper).	The	third	is	a	hypercube,	the	4-
dimensional	analogue,	and	again	this	has	to	be	projected	on	to	a	plane.	The
straight	lines	joining	the	dots	have	Hamming	length	1	–	the	two	strings	at	either
end	differ	in	precisely	one	location,	one	coordinate.	The	Hamming	distance
between	any	two	strings	is	the	number	of	such	lines	in	the	shortest	path	that



connects	them.
Suppose	we	are	thinking	of	3-bit	strings,	living	on	the	corners	of	a	cube.	Pick

one	of	the	strings,	say	101.	Suppose	the	rate	of	errors	is	at	most	one	bit	in	every
three.	Then	this	string	may	either	be	transmitted	unchanged,	or	it	could	end	up	as
any	of	001,	111,	or	100.	Each	of	these	differs	from	the	original	string	in	just	one
location,	so	its	Hamming	distance	from	the	original	string	is	1.	In	a	loose
geometrical	image,	the	erroneous	strings	lie	on	a	‘sphere’	centred	at	the	correct
string,	of	radius	1.	The	sphere	consists	of	just	three	points,	and	if	we	were
working	in	157-dimensional	space	with	a	radius	of	5,	say,	it	wouldn’t	even	look
terribly	spherical.	But	it	plays	a	similar	role	to	an	ordinary	sphere:	it	has	a	fairly
compact	shape,	and	it	contains	exactly	the	points	whose	distance	from	the	centre
is	less	than	or	equal	to	the	radius.

Suppose	we	use	the	spheres	to	construct	a	code,	so	that	each	sphere
corresponds	to	a	new	symbol,	and	that	symbol	is	encoded	with	the	coordinates	of
the	centre	of	the	sphere.	Suppose	moreover	that	these	spheres	don’t	overlap.	For
instance,	I	might	introduce	a	symbol	a	for	the	sphere	centred	at	101.	This	sphere
contains	four	strings:	101,	001,	111,	and	100.	If	I	receive	any	of	these	four
strings,	I	know	that	the	symbol	was	originally	a.	At	least,	that’s	true	provided
my	other	symbols	correspond	in	a	similar	way	to	spheres	that	do	not	have	any
points	in	common	with	this	one.

Now	the	geometry	starts	to	make	itself	useful.	In	the	cube,	there	are	eight
points	(strings)	and	each	sphere	contains	four	of	them.	If	I	try	to	fit	spheres	into
the	cube,	without	them	overlapping,	the	best	I	can	manage	is	two	of	them,
because	8/4	=	2.	I	can	actually	find	another	one,	namely	the	sphere	centred	on
010.	This	contains	010,	110,	000,	011,	none	of	which	are	in	the	first	sphere.	So	I
can	introduce	a	second	symbol	b	associated	with	this	sphere.	My	error-correcting
code	for	messages	written	with	a	and	b	symbols	now	replaces	every	a	by	101,
and	every	b	by	010.	If	I	receive,	say,

101-010-100-101-000

then	I	can	decode	the	original	message	as

a-b-a-a-b

despite	the	errors	in	the	third	and	fifth	string.	I	just	see	which	of	my	two	spheres
the	erroneous	string	belongs	to.

All	very	well,	but	this	multiplies	the	length	of	the	message	by	3,	and	we



already	know	an	easier	way	to	achieve	the	same	result:	repeat	the	message	three
times.	But	the	same	idea	takes	on	a	new	significance	if	we	work	in	higher-
dimensional	spaces.	With	strings	of	length	4,	the	hypercube,	there	are	16	strings,
and	each	sphere	contains	5	points.	So	it	might	be	possible	to	fit	three	spheres	in
without	them	overlapping.	If	you	try	that,	it’s	not	actually	possible	–	two	fit	in
but	the	remaining	gap	is	the	wrong	shape.	But	the	numbers	increasingly	work	in
our	favour.	The	space	of	strings	of	length	5	contains	32	strings,	and	each	sphere
uses	just	6	of	them	–	possibly	room	for	5,	and	if	not,	a	better	chance	of	fitting	in
4.	Length	6	gives	us	64	points,	and	spheres	that	use	7,	so	up	to	9	spheres	might
fit	in.

From	this	point	on	a	lot	of	fiddly	detail	is	needed	to	work	out	just	what	is
possible,	and	it	helps	to	develop	more	sophisticated	methods.	But	what	we	are
looking	at	is	the	analogue,	in	the	space	of	strings,	of	the	most	efficient	ways	to
pack	spheres	together.	And	this	is	a	long-standing	area	of	mathematics,	about
which	quite	a	lot	is	known.	Some	of	that	technique	can	be	transferred	from
Euclidean	geometry	to	Hamming	distances,	and	when	that	doesn’t	work	we	can
invent	new	methods	more	suited	to	the	geometry	of	strings.	As	an	example,
Hamming	invented	a	new	code,	more	efficient	than	any	known	at	the	time,
which	encodes	4-bit	strings	by	converting	them	into	7-bit	strings.	It	can	detect
and	correct	any	single-bit	error.	Modified	to	an	8-bit	code,	it	can	detect,	but	not
correct,	any	2-bit	error.

This	code	is	called	the	Hamming	code.	I	won’t	describe	it,	but	let’s	do	the
sums	to	see	if	it	might	be	possible.	There	are	16	strings	of	length	4,	and	128	of
length	7.	Spheres	of	radius	1	in	the	7-dimensional	hypercube	contain	8	points.
And	128/8	=	16.	So	with	enough	cunning,	it	might	just	be	possible	to	squeeze
the	required	16	spheres	into	the	7-dimensional	hypercube.	They	would	have	to
fit	exactly,	because	there’s	no	spare	room	left	over.	As	it	happens,	such	an
arrangement	exists,	and	Hamming	found	it.	Without	the	multidimensional
geometry	to	help,	it	would	be	difficult	to	guess	that	it	existed,	let	alone	find	it.
Possible,	but	hard.	Even	with	the	geometry,	it’s	not	obvious.

Shannon’s	concept	of	information	provides	limits	on	how	efficient	codes	can	be.
Coding	theory	does	the	other	half	of	the	job:	finding	codes	that	are	as	efficient	as
possible.	The	most	important	tools	here	come	from	abstract	algebra.	This	is	the
study	of	mathematical	structures	that	share	the	basic	arithmetical	features	of
integers	or	real	numbers,	but	differ	from	them	in	significant	ways.	In	arithmetic,
we	can	add	numbers,	subtract	them,	and	multiply	them,	to	get	numbers	of	the
same	kind.	For	the	real	numbers	we	can	also	divide	by	anything	other	than	zero



to	get	a	real	number.	This	is	not	possible	for	the	integers,	because,	for	example,	
is	not	an	integer.	However,	it	is	possible	if	we	pass	to	the	larger	system	of
rational	numbers,	fractions.	In	the	familiar	number	systems,	various	algebraic
laws	hold,	for	example	the	commutative	law	of	addition,	which	states	that	2	+	3
=	3	+	2	and	the	same	goes	for	any	two	numbers.

The	familiar	systems	share	these	algebraic	properties	with	less	familiar	ones.
The	simplest	example	uses	just	two	numbers,	0	and	1.	Sums	and	products	are
defined	just	as	for	integers,	with	one	exception:	we	insist	that	1	+	1	=	0,	not	2.
Despite	this	modification,	all	of	the	usual	laws	of	algebra	survive.	This	system
has	only	two	‘elements’,	two	number-like	objects.	There	is	exactly	one	such
system	whenever	the	number	of	elements	is	a	power	of	any	prime	number:	2,	3,
4,	5,	7,	8,	9,	11,	13,	16,	and	so	on.	Such	systems	are	called	Galois	fields	after	the
French	mathematician	Évariste	Galois,	who	classified	them	around	1830.
Because	they	have	finitely	many	elements,	they	are	suited	to	digital
communications,	and	powers	of	2	are	especially	convenient	because	of	binary
notation.

Galois	fields	lead	to	coding	systems	called	Reed–Solomon	codes,	after	Irving
Reed	and	Gustave	Solomon	who	invented	them	in	1960.	They	are	used	in
consumer	electronics,	especially	CDs	and	DVDs.	They	are	error-correcting
codes	based	on	algebraic	properties	of	polynomials,	whose	coefficients	are	taken
from	a	Galois	field.	The	signal	being	encoded	–	audio	or	video	–	is	used	to
construct	a	polynomial.	If	the	polynomial	has	degree	n,	that	is,	the	highest	power
occurring	is	xn,	then	the	polynomial	can	be	reconstructed	from	its	values	at	any	n
points.	If	we	specify	the	values	at	more	than	n	points,	we	can	lose	or	modify
some	of	the	values	without	losing	track	of	which	polynomial	it	is.	If	the	number
of	errors	is	not	too	large,	it	is	still	possible	to	work	out	which	polynomial	it	is,
and	decode	to	get	the	original	data.

In	practice	the	signal	is	represented	as	a	series	of	blocks	of	binary	digits.	A
popular	choice	uses	255	bytes	(8-bit	strings)	per	block.	Of	these,	223	bytes
encode	the	signal,	while	the	remaining	32	bytes	are	‘parity	symbols’,	telling	us
whether	various	combinations	of	digits	in	the	uncorrupted	data	are	odd	or	even.
This	particular	Reed–Solomon	code	can	correct	up	to	16	errors	per	block,	an
error	rate	just	less	than	1%.

Whenever	you	drive	along	a	bumpy	road	with	a	CD	on	the	car	stereo,	you	are
using	abstract	algebra,	in	the	form	of	a	Reed–Solomon	code,	to	ensure	that	the
music	comes	over	crisp	and	clear,	instead	of	being	jerky	and	crackly,	perhaps
with	some	parts	missing	altogether.	Information	theory	is	widely	used	in



cryptography	and	cryptanalysis	–	secret	codes	and	methods	for	breaking	them.
Shannon	himself	used	it	to	estimate	the	amount	of	coded	messages	that	must	be
intercepted	to	stand	a	chance	of	breaking	the	code.	Keeping	information	secret
turns	out	to	be	more	difficult	than	might	be	expected,	and	information	theory
sheds	light	on	this	problem,	both	from	the	point	of	view	of	the	people	who	want
it	kept	secret	and	those	who	want	to	find	out	what	it	is.	This	issue	is	important
not	just	to	the	military,	but	to	everyone	who	uses	the	Internet	to	buy	goods	or
engages	in	telephone	banking.

Information	theory	now	plays	a	significant	role	in	biology,	particularly	in	the
analysis	of	DNA	sequence	data.	The	DNA	molecule	is	a	double-helix,	formed	by
two	strands	that	wind	round	each	other.	Each	strand	is	a	sequence	of	bases,
special	molecules	that	come	in	four	types	–	adenine,	guanine,	thymine,	and
cytosine.	So	DNA	is	like	a	code	message	written	using	four	possible	symbols:	A,
G,	T,	and	C.	The	human	genome,	for	example,	is	3	billion	bases	long.	Biologists
can	now	find	the	DNA	sequences	of	innumerable	organisms	at	a	rapidly	growing
rate,	leading	to	a	new	area	of	computer	science:	bioinformatics.	This	centres	on
methods	for	handling	biological	data	efficiently	and	effectively,	and	one	of	its
basic	tools	is	information	theory.

A	more	difficult	issue	is	the	quality	of	information,	rather	than	the	quantity.
The	messages	‘two	plus	two	make	four’	and	‘two	plus	two	make	five’	contain
exactly	the	same	amount	of	information,	but	one	is	true	and	the	other	is	false.
Paeans	of	praise	for	the	information	age	ignore	the	uncomfortable	truth	that
much	of	the	information	rattling	around	the	Internet	is	misinformation.	There	are
websites	run	by	criminals	who	want	to	steal	your	money,	or	denialists	who	want
to	replace	solid	science	by	whichever	bee	happens	to	be	buzzing	around	inside
their	own	bonnet.

The	vital	concept	here	is	not	information	as	such,	but	meaning.	Three	billion
DNA	bases	of	human	DNA	information	are,	literally,	meaningless	unless	we	can
find	out	how	they	affect	our	bodies	and	behaviour.	On	the	tenth	anniversary	of
the	completion	of	the	Human	Genome	Project,	several	leading	scientific	journals
surveyed	medical	progress	resulting	so	far	from	listing	human	DNA	bases.	The
overall	tone	was	muted:	a	few	new	cures	for	diseases	have	been	found	so	far,	but
not	in	the	quantity	originally	predicted.	Extracting	meaning	from	DNA
information	is	proving	harder	than	most	biologists	had	hoped.	The	Human
Genome	Project	was	a	necessary	first	step,	but	it	has	revealed	just	how	difficult
such	problems	are,	rather	than	solving	them.

The	notion	of	information	has	escaped	from	electronic	engineering	and



invaded	many	other	areas	of	science,	both	as	a	metaphor	and	as	a	technical
concept.	The	formula	for	information	looks	very	like	that	for	entropy	in
Boltzmann’s	approach	to	thermodynamics;	the	main	differences	are	logarithms
to	base	2	instead	of	natural	logarithms,	and	a	change	in	sign.	This	similarity	can
be	formalised,	and	entropy	can	be	interpreted	as	‘missing	information’.	So	the
entropy	of	a	gas	increases	because	we	lose	track	of	exactly	where	its	molecules
are,	and	how	fast	they’re	moving.	The	relation	between	entropy	and	information
has	to	be	set	up	rather	carefully:	although	the	formulas	are	very	similar,	the
context	in	which	they	apply	is	different.	Thermodynamic	entropy	is	a	large-scale
property	of	the	state	of	a	gas,	but	information	is	a	property	of	a	signal-producing
source,	not	of	a	signal	as	such.	In	1957	the	American	physicist	Edwin	Jaynes,	an
expert	in	statistical	mechanics,	summed	up	the	relationship:	thermodynamic
entropy	can	be	viewed	as	an	application	of	Shannon	information,	but	entropy
itself	should	not	be	identified	with	missing	information	without	specifying	the
right	context.	If	this	distinction	is	borne	in	mind,	there	are	valid	contexts	in
which	entropy	can	be	viewed	as	a	loss	of	information.	Just	as	entropy	increase
places	constraints	on	the	efficiency	of	steam	engines,	the	entropic	interpretation
of	information	places	constraints	on	the	efficiency	of	computations.	For
example,	it	must	take	at	least	5.8	×	10-23	joules	of	energy	to	flip	a	bit	from	0	to	1
or	vice	versa	at	the	temperature	of	liquid	helium,	whatever	method	you	use.

Problems	arise	when	the	words	‘information’	and	‘entropy’	are	used	in	a
more	metaphorical	sense.	Biologists	often	say	that	DNA	determines	‘the
information’	required	to	make	an	organism.	There	is	a	sense	in	which	this	is
almost	correct:	delete	‘the’.	However,	the	metaphorical	interpretation	of
information	suggests	that	once	you	know	the	DNA,	then	you	know	everything
there	is	to	know	about	the	organism.	After	all,	you’ve	got	the	information,	right?
And	for	a	time	many	biologists	thought	that	this	statement	was	close	to	the	truth.
However,	we	now	know	that	it	is	overoptimistic.	Even	if	the	information	in
DNA	really	did	specify	the	organism	uniquely,	you	would	still	need	to	work	out
how	it	grows	and	what	the	DNA	actually	does.	However,	it	takes	a	lot	more	than
a	list	of	DNA	codes	to	create	an	organism:	so-called	epigenetic	factors	must	also
be	taken	into	account.	These	include	chemical	‘switches’	that	make	a	segment	of
DNA	code	active	or	inactive,	but	also	entirely	different	factors	that	are
transmitted	from	parent	to	offspring.	For	human	beings,	those	factors	include	the
culture	in	which	we	grow	up.	So	it	pays	not	to	be	too	casual	when	you	use
technical	terms	like	‘information’.



16	The	imbalance	of	nature

Chaos	Theory

What	does	it	say?

It	models	how	a	population	of	living	creatures	changes	from	one	generation	to
the	next,	when	there	are	limits	to	the	available	resources.

Why	is	that	important?

It	is	one	of	the	simplest	equations	that	can	generate	deterministic	chaos	–
apparently	random	behaviour	with	no	random	cause.

What	did	it	lead	to?

The	realisation	that	simple	nonlinear	equations	can	create	very	complex
dynamics,	and	that	apparent	randomness	may	conceal	hidden	order.	Popularly
known	as	chaos	theory,	this	discovery	has	innumerable	applications	throughout
the	sciences	including	the	motion	of	the	planets	in	the	Solar	System,	weather
forecasting,	population	dynamics	in	ecology,	variable	stars,	earthquake
modelling,	and	efficient	trajectories	for	space	probes.



	

The	metaphor	of	the	balance	of	nature	trips	readily	off	the	tongue	as	a
description	of	what	the	world	would	do	if	nasty	humans	didn’t	keep	interfering.
Nature,	left	to	its	own	devices,	would	settle	down	to	a	state	of	perfect	harmony.
Coral	reefs	would	always	harbour	the	same	species	of	colourful	fish	in	similar
numbers,	rabbits	and	foxes	would	learn	to	share	the	fields	and	woodlands	so	that
the	foxes	would	be	well	fed,	most	rabbits	would	survive,	and	neither	population
would	explode	or	crash.	The	world	would	settle	down	to	a	fixed	state	and	stay
there.	Until	the	next	big	meteorite,	or	a	supervolcano,	upset	the	balance.

It’s	a	common	metaphor,	perilously	close	to	being	a	cliché.	It’s	also	highly
misleading.	Nature’s	balance	is	distinctly	wobbly.

We’ve	been	here	before.	When	Poincaré	was	working	on	King	Oscar’s	prize,
the	conventional	wisdom	held	that	a	stable	Solar	System	is	one	in	which	the
planets	follow	much	the	same	orbits	forever,	give	or	take	a	harmless	bit	of
jiggling.	Technically	this	is	not	a	steady	state,	but	one	in	which	each	planet
repeats	similar	motions	over	and	over	again,	subject	to	minor	disturbances
caused	by	all	the	others,	but	not	deviating	hugely	from	what	it	would	have	done
without	them.	The	dynamics	is	‘quasiperiodic’	–	combining	several	separate
periodic	motions	whose	periods	are	not	all	multiples	of	the	same	time	interval.	In
the	realm	of	planets,	that’s	as	close	to	‘steady’	as	anyone	can	hope	for.

But	the	dynamics	wasn’t	like	that,	as	Poincaré	belatedly,	and	to	his	cost,
found	out.	It	could,	in	the	right	circumstances,	be	chaotic.	The	equations	had	no
explicit	random	terms,	so	that	in	principle	the	present	state	completely
determined	the	future	state,	yet	paradoxically	the	actual	motion	could	appear	to
be	random.	In	fact,	if	you	asked	coarse-grained	questions	like	‘which	side	of	the
Sun	will	it	be	on?’,	the	answer	could	be	a	genuinely	random	series	of
observations.	Only	if	you	could	look	infinitely	closely	would	you	be	able	to	see
that	the	motion	really	was	completely	determined.

This	was	the	first	intimation	of	what	we	now	call	‘chaos’,	which	is	short	for
‘deterministic	chaos’,	and	quite	different	from	‘random’	–	even	though	that’s
what	it	can	look	like.	Chaotic	dynamics	has	hidden	patterns,	but	they’re	subtle;
they	differ	from	what	we	might	naturally	think	of	measuring.	Only	by
understanding	the	causes	of	chaos	can	we	extract	those	patterns	from	an	irregular
mishmash	of	data.

As	always	in	science,	there	were	a	few	isolated	precursors,	generally	viewed



as	minor	curiosities	unworthy	of	serious	attention.	Only	in	the	1960s	did
mathematicians,	physicists,	and	engineers	begin	to	realise	just	how	natural	chaos
is	in	dynamics,	and	how	radically	it	differs	from	anything	envisaged	in	classical
science.	We	are	still	learning	to	appreciate	what	that	tells	us,	and	what	to	do
about	it.	But	already	chaotic	dynamics,	‘chaos	theory’	in	popular	parlance,
pervades	most	areas	of	science.	It	may	even	have	things	to	tell	us	about
economics	and	the	social	sciences.	It’s	not	the	answer	to	everything:	only	critics
ever	claimed	it	was,	and	that	was	to	make	it	easier	to	shoot	it	down.	Chaos	has
survived	all	such	attacks,	and	for	a	good	reason:	it	is	absolutely	fundamental	to
all	behaviour	governed	by	differential	equations,	and	those	are	the	basic	stuff	of
physical	law.

There	is	chaos	in	biology,	too.	One	of	the	first	to	appreciate	that	this	might	be
the	case	was	the	Australian	ecologist	Robert	May,	now	Lord	May	of	Oxford	and
a	former	president	of	the	Royal	Society.	He	sought	to	understand	how	the
populations	of	various	species	change	over	time	in	natural	systems	such	as	coral
reefs	and	woodlands.	In	1975	May	wrote	a	short	article	for	the	journal	Nature,
pointing	out	that	the	equations	typically	used	to	model	changes	to	animal	and
plant	populations	could	produce	chaos.	May	didn’t	claim	that	the	models	he	was
discussing	were	accurate	representations	of	what	real	populations	did.	His	point
was	more	general:	chaos	was	natural	in	models	of	that	kind,	and	this	had	to	be
borne	in	mind.

The	most	important	consequence	of	chaos	is	that	irregular	behaviour	need	not
have	irregular	causes.	Previously,	if	ecologists	noticed	that	some	population	of
animals	was	fluctuating	wildly,	they	would	look	for	some	external	cause	–	also
presumed	to	be	fluctuating	wildly,	and	generally	labelled	‘random’.	The
weather,	perhaps,	or	a	sudden	influx	of	predators	from	elsewhere.	May’s
examples	showed	that	the	internal	workings	of	the	animal	populations	could
generate	irregularity	without	outside	help.

His	main	example	was	the	equation	that	decorates	the	opening	of	this	chapter.
It	is	called	the	logistic	equation,	and	it	is	a	simple	model	of	a	population	of
animals	in	which	the	size	of	each	generation	is	determined	by	the	previous	one.
‘Discrete’	means	that	the	flow	of	time	is	counted	in	generations,	and	is	thus	an
integer.	So	the	model	is	similar	to	a	differential	equation,	in	which	time	is	a
continuous	variable,	but	conceptually	and	computationally	simpler.	The
population	is	measured	as	a	fraction	of	some	overall	large	value,	and	can
therefore	be	represented	by	a	real	number	that	lies	between	0	(extinction)	and	1
(the	theoretical	maximum	that	the	system	can	sustain).	Letting	time	t	tick	in



integer	steps,	corresponding	to	generations,	this	number	is	xt	in	generation	t.	The
logistic	equation	states	that

xt	+	1	=	kxt	(1	−xt)

where	k	is	a	constant.	We	can	interpret	k	as	the	growth	rate	of	the	population
when	diminishing	resources	do	not	slow	it	down.1

We	start	the	model	at	time	0	with	an	initial	population	x0.	Then	we	use	the
equation	with	t	=	0	to	calculate	x1,	then	we	set	t	=	1	and	compute	x2,	and	so	on.
Without	even	doing	the	sums	we	can	see	straight	away	that,	for	any	fixed	growth
rate	k,	the	population	size	of	generation	zero	completely	determines	the	sizes	of
all	succeeding	generations.	So	the	model	is	deterministic:	knowledge	of	the
present	determines	the	future	uniquely	and	exactly.

So	what	is	the	future?	The	‘balance	of	nature’	metaphor	suggests	that	the
population	should	settle	to	a	steady	state.	We	can	even	calculate	what	that	steady
state	should	be:	just	set	the	population	at	time	t	+	1	to	be	the	same	as	that	at	time
t.	This	leads	to	two	steady	states:	populations	0	and	1-1/k.	A	population	of	size	0
is	extinct,	so	the	other	value	should	apply	to	an	existing	population.
Unfortunately,	although	this	is	a	steady	state,	it	can	be	unstable.	If	it	is,	then	in
practice	you’ll	never	see	it:	it’s	like	trying	to	balance	a	pencil	vertically	on	its
sharpened	point.	The	slightest	disturbance	will	cause	it	to	topple.	The
calculations	show	that	the	steady	state	is	unstable	when	k	is	bigger	than	3.

What,	then,	do	we	see	in	practice?	Figure	58	shows	a	typical	‘time	series’	for
the	population	when	k	=	4.	It’s	not	steady:	it’s	all	over	the	place.	However,	if
you	look	closely	there	are	hints	that	the	dynamics	is	not	completely	random.
Whenever	the	population	gets	really	big,	it	immediately	crashes	to	a	very	low
value,	and	then	grows	in	a	regular	manner	(roughly	exponentially)	for	the	next
two	or	three	generations:	see	the	short	arrows	in	Figure	58.	And	something
interesting	happens	whenever	the	population	gets	close	to	0.75	or	thereabouts:	it
oscillates	alternately	above	and	below	that	value,	and	the	oscillations	grow
giving	a	characteristic	zigzag	shape,	getting	wider	towards	the	right:	see	the
longer	arrows	in	the	figure.



Fig	58	Chaotic	oscillations	in	a	model	animal	population.	Short	arrows	show
crashes	followed	by	short-term	exponential	growth.	Longer	arrows	show
unstable	oscillations.

Despite	these	patterns,	there	is	a	sense	in	which	the	behaviour	is	truly	random
–	but	only	when	you	throw	away	some	of	the	detail.	Suppose	we	assign	the
symbol	H	(heads)	whenever	the	population	is	bigger	than	0.5,	and	T	(tails)	when
it’s	less	than	0.5.	This	particular	set	of	data	begins	with	the	sequence
THTHTHHTHHTTHH	and	continues	unpredictably,	just	like	a	random
sequence	of	coin	tosses.	This	way	of	coarsening	the	data,	by	looking	at	specific
ranges	of	values	and	noting	only	which	range	the	population	belongs	to,	is	called
symbolic	dynamics.	In	this	case,	it	is	possible	to	prove	that,	for	almost	all	initial
population	values	x0,	the	sequence	of	heads	and	tails	is	in	all	respects	like	a
typical	sequence	of	random	tosses	of	a	fair	coin.	Only	when	we	look	at	the	exact
values	do	we	start	to	see	some	patterns.

It’s	a	remarkable	discovery.	A	dynamical	system	can	be	completely
deterministic,	with	visible	patterns	in	detailed	data,	yet	a	coarse-grained	view	of
the	same	data	can	be	random	–	in	a	provable,	rigorous	sense.	Determinism	and
randomness	are	not	opposites.	In	some	circumstances,	they	can	be	entirely
compatible.

May	didn’t	invent	the	logistic	equation,	and	he	didn’t	discover	its	astonishing
properties.	He	didn’t	claim	to	have	done	either	of	those	things.	His	aim	was	to
alert	workers	in	the	life	sciences,	especially	ecologists,	to	the	remarkable
discoveries	emerging	in	the	physical	sciences	and	mathematics:	discoveries	that
fundamentally	change	the	way	scientists	should	think	about	observational	data.
We	humans	may	have	trouble	solving	equations	based	on	simple	rules,	but
nature	doesn’t	have	to	solve	the	equations	the	way	we	do.	It	just	obeys	the	rules.



So	it	can	do	things	that	strike	us	as	being	complicated,	for	simple	reasons.
Chaos	emerged	from	a	topological	approach	to	dynamics,	orchestrated	in

particular	by	the	American	mathematician	Stephen	Smale	and	the	Russian
mathematician	Vladimir	Arnold	in	the	1960s.	Both	were	trying	to	find	out	what
types	of	behaviour	were	typical	in	differential	equations.	Smale	was	motivated
by	Poincaré’s	strange	results	on	the	three-body	problem	(Chapter	4),	and	Arnold
was	inspired	by	related	discoveries	of	his	former	research	supervisor	Andrei
Kolmogorov.	Both	quickly	realised	why	chaos	is	common:	it	is	a	natural
consequence	of	the	geometry	of	differential	equations,	as	we’ll	see	in	a	moment.

As	interest	in	chaos	spread,	examples	were	spotted	lurking	unnoticed	in
earlier	scientific	papers.	Previously	considered	to	be	just	isolated	weird	effects,
these	examples	now	slotted	into	a	broader	theory.	In	the	1940s	the	English
mathematicians	John	Littlewood	and	Mary	Cartwright	had	seen	traces	of	chaos
in	electronic	oscillators.	In	1958	Tsuneji	Rikitake	of	Tokyo’s	Association	for	the
Development	of	Earthquake	Prediction	had	found	chaotic	behaviour	in	a	dynamo
model	of	the	Earth’s	magnetic	field.	And	in	1963	the	American	meteorologist
Edward	Lorenz	had	pinned	down	the	nature	of	chaotic	dynamics	in	considerable
detail,	in	a	simple	model	of	atmospheric	convection	motivated	by	weather-
forecasting.	These	and	other	pioneers	had	pointed	the	way;	now	all	of	their
disparate	discoveries	were	starting	to	fit	together.

In	particular,	the	circumstances	that	led	to	chaos,	rather	than	something
simpler,	turned	out	to	be	geometric	rather	than	algebraic.	In	the	logistic	model
with	k	=	4,	both	extremes	of	the	population,	0	and	1,	move	to	0	in	the	next
generation,	while	the	midpoint,	 ,	moves	to	1.	So	at	each	time-step	the	interval
from	0	to	1	is	stretched	to	twice	its	length,	folded	in	half,	and	slapped	down	in	its
original	location.	This	is	what	a	cook	does	to	dough	when	making	bread,	and	by
thinking	about	dough	being	kneaded,	we	gain	a	handle	on	chaos.	Imagine	a	tiny
speck	in	the	logistic	dough	–	a	raisin,	say.	Suppose	that	it	happens	to	lie	on	a
periodic	cycle,	so	that	after	a	certain	number	of	stretch-and-fold	operations	it
returns	to	where	it	started.	Now	we	can	see	why	this	point	is	unstable.	Imagine
another	raisin,	initially	very	close	to	the	first	one.	Each	stretch	moves	it	further
away.	For	a	time,	though,	it	doesn’t	move	far	enough	away	to	stop	tracking	the
first	raisin.	When	the	dough	is	folded,	both	raisins	end	up	in	the	same	layer.	So
next	time,	the	second	raisin	has	moved	even	further	away	from	the	first.	This	is
why	the	periodic	state	is	unstable:	stretching	moves	all	nearby	points	away	from
it,	not	towards	it.	Eventually	the	expansion	becomes	so	great	that	the	two	raisins
end	up	in	different	layers	when	the	dough	is	folded.	After	that,	their	fates	are



pretty	much	independent	of	each	other.	Why	does	a	cook	knead	dough?	To	mix
up	the	ingredients	(including	trapped	air).	If	you	mix	stuff	up,	the	individual
particles	have	to	move	in	a	very	irregular	way.	Particles	that	start	close	together
end	up	far	apart;	points	far	apart	may	be	folded	back	to	be	close	together.	In
short,	chaos	is	the	natural	result	of	mixing.

I	said	at	the	start	of	this	chapter	that	you	don’t	have	anything	chaotic	in	your
kitchen,	except	perhaps	that	dishwasher.	I	lied.	You	probably	have	several
chaotic	gadgets:	a	food	processor,	an	egg-beater.	The	blade	of	the	food	processor
follows	a	very	simple	rule:	go	round	and	round,	fast.	The	food	interacts	with	the
blade:	it	ought	to	do	something	simple	too.	But	it	doesn’t	go	round	and	round:	it
gets	mixed	up.	As	the	blade	cuts	through	the	food,	some	bits	go	one	side	of	it,
some	go	the	other	side:	locally,	the	food	gets	pulled	apart.	But	it	doesn’t	escape
from	the	mixing	bowl,	so	it	all	gets	folded	back	in	on	itself.

Smale	and	Arnold	realised	that	all	chaotic	dynamics	is	like	this.	They	didn’t
phrase	their	results	in	quite	that	language,	mind	you:	‘pulled	apart’	was	‘positive
Liapunov	exponent’	and	‘folded	back’	was	‘the	system	has	a	compact	domain’.
But	in	fancy	language,	they	were	saying	that	chaos	is	like	mixing	dough.

This	also	explains	something	else,	noticed	especially	by	Lorenz	in	1963.
Chaotic	dynamics	is	sensitive	to	initial	conditions.	However	close	the	two	raisins
are	to	begin	with,	they	eventually	get	pulled	so	far	apart	that	their	subsequent
movements	are	independent.	This	phenomenon	is	often	called	the	butterfly
effect:	a	butterfly	flaps	its	wings,	and	a	month	later	the	weather	is	completely
different	from	what	it	would	otherwise	have	been.	The	phrase	is	generally
credited	to	Lorenz.	He	didn’t	introduce	it,	but	something	similar	featured	in	the
title	of	one	of	his	lectures.	However,	someone	else	invented	the	title	for	him,	and
the	lecture	wasn’t	about	the	famous	1963	article,	but	a	lesser-known	one	from
the	same	year.

Whatever	the	phenomenon	is	called,	it	has	an	important	practical
consequence.	Although	chaotic	dynamics	is	in	principle	deterministic,	in
practice	it	becomes	unpredictable	very	quickly,	because	any	uncertainty	in	the
exact	initial	state	grows	exponentially	fast.	There	is	a	prediction	horizon	beyond
which	the	future	cannot	be	foreseen.	For	weather,	a	familiar	system	whose
standard	computer	models	are	known	to	be	chaotic,	this	horizon	is	a	few	days
ahead.	For	the	Solar	System,	it	is	tens	of	millions	of	years	ahead.	For	simple
laboratory	toys,	such	as	a	double	pendulum	(a	pendulum	hung	from	the	bottom
of	another	one)	it	is	a	few	seconds	ahead.	The	long-held	assumption	that
‘deterministic’	and	‘predictable’	are	the	same	is	wrong.	It	would	be	valid	if	the



present	state	of	a	system	could	be	measured	with	perfect	accuracy,	but	that’s	not
possible.

The	short-term	predictability	of	chaos	can	be	used	to	distinguish	it	from	pure
randomness.	Many	different	techniques	have	been	devised	to	make	this
distinction,	and	to	work	out	the	underlying	dynamics	if	the	system	is	behaving
deterministically	but	chaotically.

Chaos	now	has	applications	in	every	branch	of	science,	from	astronomy	to
zoology.	In	Chapter	4	we	saw	how	it	is	leading	to	new,	more	efficient
trajectories	for	space	missions.	In	broader	terms,	astronomers	Jack	Wisdom	and
Jacques	Laskar	have	shown	that	the	dynamics	of	the	Solar	System	is	chaotic.	If
you	want	to	know	whereabouts	in	its	orbit	Pluto	will	be	in	10,000,000	AD	–
forget	it.	They	have	also	shown	that	the	Moon’s	tides	stabilise	the	Earth	against
influences	that	would	otherwise	lead	to	chaotic	motion,	causing	rapid	shifts	of
climate	from	warm	periods	to	ice	ages	and	back	again.	So	chaos	theory
demonstrates	that,	without	the	Moon,	the	Earth	would	be	a	pretty	unpleasant
place	to	live.	This	feature	of	our	planetary	neighbourhood	is	often	used	to	argue
that	the	evolution	of	life	on	a	planet	requires	a	stabilising	Moon,	but	this	is	an
overstatement.	Life	in	the	oceans	would	scarcely	notice	if	the	planet’s	axis
changed	over	a	period	of	millions	of	years.	Life	on	land	would	have	plenty	of
time	to	migrate	elsewhere,	unless	it	got	trapped	somewhere	that	lacked	a	land
route	to	a	place	where	conditions	were	more	suitable.	Climate	change	is
happening	much	faster	right	now	than	anything	that	a	change	in	axial	tilt	could
cause.

May’s	suggestion	that	irregular	population	dynamics	in	an	ecosystem	might
sometimes	be	caused	by	internal	chaos,	rather	than	extraneous	randomness,	has
been	verified	in	laboratory	versions	of	several	real-world	ecosystems.	In	1995	a
team	headed	by	American	ecologist	James	Cushing	found	chaotic	dynamics	in
populations	of	the	flour	beetle	(or	bran	bug)	Tribolium	castaneum,	which	can
infest	stores	of	flour.2	In	1999,	Dutch	biologists	Jef	Huisman	and	Franz
Weissing	applied	chaos	to	the	‘paradox	of	the	plankton’,	the	unexpected
diversity	of	plankton	species.3	A	standard	principle	in	ecology,	the	principle	of
competitive	exclusion,	states	that	an	ecosystem	cannot	contain	more	species	than
the	number	of	environmental	niches,	ways	to	make	a	living.	Plankton	appear	to
violate	this	principle:	the	number	of	niches	is	small,	but	the	number	of	species	is
in	the	thousands.	They	traced	this	to	a	loophole	in	the	derivation	of	the	principle
of	competitive	exclusion:	the	assumption	that	populations	are	steady.	If	the
populations	can	change	over	time,	then	the	mathematical	derivation	from	the



usual	model	fails,	and	intuitively	different	species	can	occupy	the	same	niche	by
taking	turns	–	not	by	conscious	cooperation,	but	by	one	species	temporarily
taking	over	from	another	and	undergoing	a	population	boom,	while	the	displaced
species	drops	to	a	small	population,	Figure	59.

Fig	59	Six	species	sharing	three	resources.	The	bands	are	closely	spaced	chaotic
oscillations.	Courtesy	of	Jef	Huisman	and	Franz	Weissing.

In	2008,	Huisman’s	team	published	the	results	of	a	laboratory	experiment
with	a	miniature	ecology	based	on	one	found	in	the	Baltic	Sea,	involving
bacteria	and	several	kinds	of	plankton.	A	six-year	study	revealed	chaotic
dynamics	in	which	populations	fluctuated	wildly,	often	becoming	100	times	as
large	for	a	time	and	then	crashing.	The	usual	methods	for	detecting	chaos
confirmed	its	presence.	There	was	even	a	butterfly	effect:	the	system’s
prediction	horizon	was	a	few	weeks.4

There	are	applications	of	chaos	that	impinge	on	everyday	life,	but	they	mostly
occur	in	manufacturing	processes	and	public	services,	rather	than	being
incorporated	into	gadgets.	The	discovery	of	the	butterfly	effect	has	changed	the
way	weather	forecasts	are	carried	out.	Instead	of	putting	all	of	the	computational
effort	into	refining	a	single	prediction,	meteorologists	now	run	many	forecasts,
making	different	tiny	random	changes	to	the	observations	provided	by	weather
balloons	and	satellites	before	starting	each	run.	If	all	of	these	forecasts	agree,
then	the	prediction	is	likely	to	be	accurate;	if	they	differ	significantly,	the
weather	is	in	a	less	predictable	state.	The	forecasts	themselves	have	been
improved	by	several	other	advances,	notably	in	calculating	the	influence	of	the
oceans	on	the	state	of	the	atmosphere,	but	the	main	role	of	chaos	has	been	to



warn	forecasters	not	to	expect	too	much	and	to	quantify	how	likely	a	forecast	is
to	be	correct.

Industrial	applications	include	a	better	understanding	of	mixing	processes,
which	are	widely	used	to	make	medicinal	pills	or	mix	food	ingredients.	The
active	medicine	in	a	pill	usually	occurs	in	very	small	quantities,	and	it	has	to	be
mixed	with	some	inert	substance.	It’s	important	to	get	enough	of	the	active
ingredient	in	each	pill,	but	not	too	much.	A	mixing	machine	is	like	a	giant	food
processor,	and	like	the	food	processor,	its	dynamics	is	deterministic	but	chaotic.
The	mathematics	of	chaos	has	provided	a	new	understanding	of	mixing
processes	and	led	to	some	improved	designs.	The	methods	used	to	detect	chaos
in	data	have	inspired	new	test	equipment	for	the	wire	used	to	make	springs,
improving	efficiency	in	spring-	and	wire-making.	The	humble	spring	has	many
vital	uses:	it	can	be	found	in	mattresses,	cars,	DVD	players,	even	ballpoint	pens.
Chaotic	control,	a	technique	that	uses	the	butterfly	effect	to	keep	dynamic
behaviour	stable,	is	showing	promise	in	the	design	of	more	efficient	and	less
intrusive	heart	pacemakers.

Overall,	though,	the	main	impact	of	chaos	has	been	on	scientific	thinking.	In
the	forty	years	or	so	since	its	existence	started	to	be	widely	appreciated,	chaos
has	changed	from	a	minor	mathematical	curiosity	into	a	basic	feature	of	science.
We	can	now	study	many	of	nature’s	irregularities	without	resorting	to	statistics,
by	teasing	out	the	hidden	patterns	that	characterise	deterministic	chaos.	This	is
just	one	of	the	ways	in	which	modern	dynamical	systems	theory,	with	its
emphasis	on	nonlinear	behaviour,	is	causing	a	quiet	revolution	in	the	way
scientists	think	about	the	world.



17	The	Midas	formula

Black–Scholes	Equation

What	does	it	say?

It	describes	how	the	price	of	a	financial	derivative	changes	over	time,	based	on
the	principle	that	when	the	price	is	correct,	the	derivative	carries	no	risk	and	no
one	can	make	a	profit	by	selling	it	at	a	different	price.

Why	is	that	important?

It	makes	it	possible	to	trade	a	derivative	before	it	matures	by	assigning	an	agreed
‘rational’	value	to	it,	so	that	it	can	become	a	virtual	commodity	in	its	own	right.

What	did	it	lead	to?

Massive	growth	of	the	financial	sector,	ever	more	complex	financial	instruments,
surges	in	economic	prosperity	punctuated	by	crashes,	the	turbulent	stock	markets
of	the	1990s,	the	2008–9	financial	crisis,	and	the	ongoing	economic	slump.



	

Since	the	turn	of	the	century	the	greatest	source	of	growth	in	the	financial	sector
has	been	in	financial	instruments	known	as	derivatives.	Derivatives	are	not
money,	nor	are	they	investments	in	stocks	and	shares.	They	are	investments	in
investments,	promises	about	promises.	Derivatives	traders	use	virtual	money,
numbers	in	a	computer.	They	borrow	it	from	investors	who	have	probably
borrowed	it	from	somewhere	else.	Often	they	haven’t	borrowed	it	at	all,	not	even
virtually:	they	have	clicked	a	mouse	to	agree	that	they	will	borrow	the	money	if
it	ever	becomes	necessary.	But	they	have	no	intention	of	letting	it	become
necessary;	they	will	sell	the	derivative	before	that	happens.	The	lender	–
hypothetical	lender,	since	the	loan	will	never	occur,	for	the	same	reason	–
probably	doesn’t	actually	have	the	money	either.	This	is	finance	in	cloud	cuckoo
land,	yet	it	has	become	the	standard	practice	of	the	world’s	banking	system.

Unfortunately,	the	consequences	of	derivatives	trading	do,	ultimately,	turn
into	real	money,	and	real	people	suffer.	The	trick	works,	most	of	the	time,
because	the	disconnect	with	reality	has	no	notable	effect,	other	than	making	a
few	bankers	and	traders	extremely	rich	as	they	siphon	off	real	money	from	the
virtual	pool.	Until	things	go	wrong.	Then	the	pigeons	come	home	to	roost,
bearing	with	them	virtual	debts	that	have	to	be	paid	with	real	money.	By
everyone	else,	naturally.

This	is	what	triggered	the	banking	crisis	of	2008–9,	from	which	the	world’s
economies	are	still	reeling.	Low	interest	rates	and	enormous	personal	bonus
payments	encouraged	bankers	and	their	banks	to	bet	ever	larger	sums	of	virtual
money	on	ever	more	complex	derivatives,	ultimately	secured	–	so	they	believed
–	in	the	property	market,	houses	and	businesses.	As	the	supply	of	suitable
property	and	people	to	buy	it	began	to	dry	up,	the	financial	world’s	leaders
needed	to	find	new	ways	to	convince	shareholders	that	they	were	creating	profit,
in	order	to	justify	and	finance	their	bonuses.	So	they	started	trading	packages	of
debt,	also	allegedly	secured,	somewhere	down	the	line,	on	real	property.
Keeping	the	scheme	going	demanded	the	continued	purchase	of	property,	to
increase	the	pool	of	collateral.	So	the	banks	started	selling	mortgages	to	people
whose	ability	to	repay	them	was	increasingly	doubtful.	This	was	the	subprime
mortgage	market,	‘subprime’	being	a	euphemism	for	‘likely	to	default’.	Which
soon	became	‘certain	to	default’.

The	banks	behaved	like	one	of	those	cartoon	characters	who	wanders	off	the
edge	of	a	cliff,	hovers	in	space	until	he	looks	down,	and	only	then	plunges	to	the



ground.	It	all	seemed	to	be	going	nicely	until	the	bankers	asked	themselves
whether	multiple	accounting	with	non-existent	money	and	overvalued	assets	was
sustainable,	wondered	what	the	real	value	of	their	holdings	in	derivatives	was,
and	realised	that	they	didn’t	have	a	clue.	Except	that	it	was	definitely	a	lot	less
than	they’d	told	shareholders	and	government	regulators.

As	the	dreadful	truth	dawned,	confidence	plummeted.	This	depressed	the
housing	market,	so	the	assets	against	which	the	debts	were	secured	started	to
lose	their	value.	At	this	point	the	whole	system	became	trapped	in	a	positive
feedback	loop,	in	which	each	downward	revision	of	value	caused	it	to	be	revised
even	further	downward.	The	end	result	was	the	loss	of	about	17	trillion	dollars.
Faced	with	the	prospect	of	the	total	collapse	of	the	world	financial	system,
trashing	depositors’	savings	and	making	the	Great	Depression	of	1929	look	like
a	garden	party,	governments	were	forced	to	bail	out	the	banks,	which	were	on
the	verge	of	bankruptcy.	One,	Lehman	Brothers,	was	allowed	to	go	under,	but
the	loss	of	confidence	was	so	great	that	it	seemed	unwise	to	repeat	the	lesson.	So
taxpayers	stumped	up	the	money,	and	a	lot	of	it	was	real	money.	The	banks
grabbed	the	cash	with	both	hands,	and	then	tried	to	pretend	that	the	catastrophe
hadn’t	been	their	fault.	They	blamed	government	regulators,	despite	having
campaigned	against	regulation:	an	interesting	case	of	‘It’s	your	fault:	you	let	us
do	it.’

How	did	the	biggest	financial	train	wreck	in	human	history	come	about?
Arguably,	one	contributor	was	a	mathematical	equation.

The	simplest	derivatives	have	been	around	for	a	long	time.	They	are	known	as
futures	and	options,	and	they	go	back	to	the	eighteenth	century	at	the	Dojima
rice	exchange	in	Osaka,	Japan.	The	exchange	was	founded	in	1697,	a	time	of
great	economic	prosperity	in	Japan,	when	the	upper	classes,	the	samurai,	were
paid	in	rice,	not	money.	Naturally	there	emerged	a	class	of	ricebrokers	who
traded	rice	as	though	it	were	money.	As	the	Osaka	merchants	strengthened	their
grip	on	rice,	the	country’s	staple	food,	their	activities	had	a	knock-on	effect	on
the	commodity’s	price.	At	the	same	time,	the	financial	system	was	beginning	to
shift	to	hard	cash,	and	the	combination	proved	deadly.	In	1730	the	price	of	rice
dropped	through	the	floor.

Ironically,	the	trigger	was	poor	harvests.	The	samurai,	still	wedded	to
payment	in	rice,	but	watchful	of	the	growth	of	money,	started	to	panic.	Their
favoured	‘currency’	was	rapidly	losing	its	value.	Merchants	exacerbated	the
problem	by	artificially	keeping	rice	out	of	the	market,	squirrelling	away	huge



quantities	in	warehouses.	Although	it	might	seem	that	this	would	increase	the
monetary	price	of	rice,	it	had	the	opposite	effect,	because	the	samurai	were
treating	rice	as	a	currency.	They	could	not	eat	anything	remotely	approaching
the	amount	of	rice	they	owned.	So	while	ordinary	people	starved,	the	merchants
stockpiled	rice.	Rice	became	so	scarce	that	paper	money	took	over,	and	it
quickly	became	more	desirable	than	rice	because	it	was	possible	actually	to	lay
hands	on	it.	Soon	the	Dojima	merchants	were	running	what	amounted	to	a
gigantic	banking	system,	holding	accounts	for	the	wealthy	and	determining	the
exchange	rate	between	rice	and	paper	money.

Eventually	the	government	realised	that	this	arrangement	handed	far	too
much	power	to	the	rice	merchants,	and	reorganised	the	Rice	Exchange	along
with	most	other	parts	of	the	country’s	economy.	In	1939	the	Rice	Exchange	was
replaced	by	the	Government	Rice	Agency.	But	while	the	Rice	Exchange	existed,
the	merchants	invented	a	new	kind	of	contract	to	even	out	the	large	swings	in	the
price	of	rice.	The	signatories	guaranteed	to	buy	(or	sell)	a	specified	quantity	of
rice	at	a	specified	future	date	for	a	specified	price.	Today	these	instruments	are
known	as	futures	or	options.	Suppose	a	merchant	agrees	to	buy	rice	in	six
months’	time	at	an	agreed	price.	If	the	market	price	has	risen	above	the	agreed
one	by	the	time	the	option	falls	due,	he	gets	the	rice	cheap	and	immediately	sells
it	at	a	profit.	On	the	other	hand,	if	the	price	is	lower,	he	is	committed	to	buying
rice	at	a	higher	price	than	its	market	value	and	makes	a	loss.

Farmers	find	such	instruments	useful	because	they	actually	want	to	sell	a	real
commodity:	rice.	People	using	rice	for	food,	or	manufacturing	foodstuffs	that
use	it,	want	to	buy	the	commodity.	In	this	sort	of	transaction,	the	contract
reduces	the	risk	to	both	parties	–	though	at	a	price.	It	amounts	to	a	form	of
insurance:	a	guaranteed	market	at	a	guaranteed	price,	independent	of	shifts	in	the
market	value.	It’s	worth	paying	a	small	premium	to	avoid	uncertainty.	But	most
investors	took	out	contracts	in	rice	futures	with	the	sole	aim	of	making	money,
and	the	last	thing	the	investor	wanted	was	tons	and	tons	of	rice.	They	always
sold	it	before	they	had	to	take	delivery.	So	the	main	role	of	futures	was	to	fuel
financial	speculation,	and	this	was	made	worse	by	the	use	of	rice	as	currency.
Just	as	today’s	gold	standard	creates	artificially	high	prices	for	a	substance
(gold)	that	has	little	intrinsic	value,	and	thereby	fuels	demand	for	it,	so	the	price
of	rice	became	governed	by	the	trading	of	futures	rather	than	the	trading	of	rice
itself.	The	contracts	were	a	form	of	gambling,	and	soon	the	contracts	themselves
acquired	a	value,	and	could	be	traded	as	though	they	were	real	commodities.
Moreover,	although	the	amount	of	rice	was	limited	by	what	the	farmers	could
grow,	there	was	no	limit	to	the	number	of	contracts	for	rice	that	could	be	issued.



The	world’s	major	stock	markets	were	quick	to	spot	an	opportunity	to	convert
smoke	and	mirrors	into	hard	cash,	and	they	have	traded	futures	ever	since.	At
first,	this	practice	did	not	of	itself	cause	enormous	economic	problems,	although
it	sometimes	led	to	instability	rather	than	the	stability	that	is	often	asserted	to
justify	the	system.	But	around	the	year	2000,	the	world’s	financial	sector	began
to	invent	ever	more	elaborate	variants	on	the	futures	theme,	complex
‘derivatives’	whose	value	was	based	on	hypothetical	future	movements	of	some
asset.	Unlike	futures,	for	which	the	asset,	at	least,	was	real,	derivatives	might	be
based	on	an	asset	that	was	itself	a	derivative.	No	longer	were	banks	buying	and
selling	bets	on	the	future	price	of	a	commodity	like	rice;	they	were	buying	and
selling	bets	on	the	future	price	of	a	bet.

It	quickly	became	big	business.	In	1998	the	international	financial	system
traded	roughly	$100	trillion	in	derivatives.	By	2007	this	had	grown	to	one
quadrillion	US	dollars.	Trillions,	quadrillions…	we	know	these	are	large
numbers,	but	how	large?	To	put	this	figure	in	context,	the	total	value	of	all	the
products	made	by	the	world’s	manufacturing	industries,	for	the	last	thousand
years,	is	about	100	trillion	US	dollars,	adjusted	for	inflation.	That’s	one	tenth	of
one	year’s	derivatives	trading.	Admittedly	the	bulk	of	industrial	production	has
occurred	in	the	past	fifty	years,	but	even	so,	this	is	a	staggering	amount.	It
means,	in	particular,	that	the	derivatives	trades	consist	almost	entirely	of	money
that	does	not	actually	exist	–	virtual	money,	numbers	in	a	computer,	with	no	link
to	anything	in	the	real	world.	In	fact,	these	trades	have	to	be	virtual:	the	total
amount	of	money	in	circulation,	worldwide,	is	completely	inadequate	to	pay	the
amounts	that	are	being	traded	at	the	click	of	a	mouse.	By	people	who	have	no
interest	in	the	commodity	concerned,	and	wouldn’t	know	what	to	do	with	it	if
they	took	delivery,	using	money	that	they	don’t	actually	possess.

You	don’t	need	to	be	a	rocket	scientist	to	suspect	that	this	is	a	recipe	for
disaster.	Yet	for	a	decade,	the	world	economy	grew	relentlessly	on	the	back	of
derivatives	trading.	Not	only	could	you	get	a	mortgage	to	buy	a	house:	you	could
get	more	than	the	house	was	worth.	The	bank	didn’t	even	bother	to	check	what
your	true	income	was,	or	what	other	debts	you	had.	You	could	get	a	125%	self-
certified	mortgage	–	meaning	you	told	the	bank	what	you	could	afford	and	it
didn’t	ask	awkward	questions	–	and	spend	the	surplus	on	a	holiday,	a	car,	plastic
surgery,	or	crates	of	beer.	Banks	went	out	of	their	way	to	persuade	customers	to
take	out	loans,	even	when	they	didn’t	need	them.

What	they	thought	would	save	them	if	a	borrower	defaulted	on	their
repayments	was	straightforward.	Those	loans	were	secured	on	your	house.
House	prices	were	soaring,	so	that	missing	25%	of	equity	would	soon	become



real;	if	you	defaulted,	the	bank	could	seize	your	house,	sell	it,	and	get	its	loan
back.	It	seemed	foolproof.	Of	course	it	wasn’t.	The	bankers	didn’t	ask
themselves	what	would	happen	to	the	price	of	housing	if	hundreds	of	banks	were
all	trying	to	sell	millions	of	houses	at	the	same	time.	Nor	did	they	ask	whether
prices	could	continue	to	rise	significantly	faster	than	inflation.	They	genuinely
seemed	to	think	that	house	prices	could	rise	10–15%	in	real	terms	every	year,
indefinitely.	They	were	still	urging	regulators	to	relax	the	rules	and	allow	them
to	lend	even	more	money	when	the	bottom	dropped	out	of	the	property	market.

Many	of	today’s	most	sophisticated	mathematical	models	of	financial	systems
can	be	traced	back	to	Brownian	motion,	mentioned	in	Chapter	12.	When	viewed
through	a	microscope,	small	particles	suspended	in	a	fluid	jiggle	around
erratically,	and	Einstein	and	Smoluchowski	developed	mathematical	models	of
this	process	and	used	them	to	establish	the	existence	of	atoms.	The	usual	model
assumes	that	the	particle	receives	random	kicks	through	distances	whose
probability	distribution	is	normal,	a	bell	curve.	The	direction	of	each	kick	is
uniformly	distributed	–	any	direction	has	the	same	chance	of	happening.	This
process	is	called	a	random	walk.	The	model	of	Brownian	motion	is	a	continuum
version	of	such	random	walks,	in	which	the	sizes	of	the	kicks	and	the	time
between	successive	kicks	become	arbitrarily	small.	Intuitively,	we	consider
infinitely	many	infinitesimal	kicks.

The	statistical	properties	of	Brownian	motion,	over	large	numbers	of	trials,
are	determined	by	a	probability	distribution,	which	gives	the	likelihood	that	the
particle	ends	up	at	a	particular	location	after	a	given	time.	This	distribution	is
radially	symmetric:	the	probability	depends	only	on	how	far	the	point	is	from	the
origin.	Initially	the	particle	is	very	likely	to	be	close	to	the	origin,	but	as	time
passes,	the	range	of	likely	positions	spreads	out	as	the	particle	gets	more	chance
to	explore	distant	regions	of	space.	Remarkably,	the	time	evolution	of	this
probability	distribution	obeys	the	heat	equation,	which	in	this	context	is	often
called	the	diffusion	equation.	So	the	probability	spreads	just	like	heat.

After	Einstein	and	Smoluchowski	published	their	work,	it	turned	out	that
much	of	the	mathematical	content	had	been	derived	earlier,	in	1900,	by	the
French	mathematician	Louis	Bachelier	in	his	PhD	thesis.	But	Bachelier	had	a
different	application	in	mind:	the	stock	and	option	markets.	The	title	of	his	thesis
was	Théorie	de	la	speculation	(‘Theory	of	Speculation’).	The	work	was	not
received	with	wild	praise,	probably	because	its	subject-matter	was	far	outside	the
normal	range	of	mathematics	at	that	period.	Bachelier’s	supervisor	was	the
renowned	and	formidable	mathematician	Henri	Poincaré,	who	declared	the	work



to	be	‘very	original’.	He	also	gave	the	game	way	somewhat,	by	adding,	with
reference	to	the	part	of	the	thesis	that	derived	the	normal	distribution	for	errors:
‘It	is	regrettable	that	M.	Bachelier	did	not	develop	this	part	of	his	thesis	further.’
Which	any	mathematician	would	interpret	as	‘that	was	the	place	where	the
mathematics	started	to	get	really	interesting,	and	if	only	he’d	done	more	work	on
that,	rather	than	on	fuzzy	ideas	about	the	stock	market,	it	would	have	been	easy
to	give	him	a	much	better	grade.’	The	thesis	was	graded	‘honorable’,	a	pass;	it
was	even	published.	But	it	did	not	get	the	top	grade	of	‘très	honorable’.

Bachelier	in	effect	pinned	down	the	principle	that	fluctuations	of	the	stock
market	follow	a	random	walk.	The	sizes	of	successive	fluctuations	conform	to	a
bell	curve,	and	the	mean	and	standard	deviation	can	be	estimated	from	market
data.	One	implication	is	that	large	fluctuations	are	very	improbable.	The	reason
is	that	the	tails	of	the	normal	distribution	die	down	very	fast	indeed:	faster	than
exponential.	The	bell	curve	decreases	towards	zero	at	a	rate	that	is	exponential	in
the	square	of	x.	Statisticians	(and	physicists	and	market	analysts)	talk	of	two-
sigma	fluctuations,	three-sigma	ones,	and	so	on.	Here	sigma	(σ)	is	the	standard
deviation,	a	measure	of	how	wide	the	bell	curve	is.	A	three-sigma	fluctuation,
say,	is	one	that	deviates	from	the	mean	by	at	least	three	times	the	standard
deviation.	The	mathematics	of	the	bell	curve	lets	us	assign	probabilities	to	these
‘extreme	events’,	see	Table	3.

Table	3	Probabilities	of	many-sigma	events.

The	upshot	of	Bachelier’s	Brownian	motion	model	is	that	large	stock	market
fluctuations	are	so	rare	that	in	practice	they	should	never	happen.	Table	3	shows
that	a	five-sigma	event,	for	example,	is	expected	to	occur	about	six	times	in
every	10	million	trials.	However,	stock	market	data	show	that	they	are	far	more
common	than	that.	Stock	in	Cisco	Systems,	a	world	leader	in	communications,
has	undergone	ten	5-sigma	events	in	the	last	twenty	years,	whereas	Brownian
motion	predicts	0.003	of	them.	I	picked	this	company	at	random	and	it’s	in	no



way	unusual.	On	Black	Monday	(19	October	1987)	the	world’s	stock	markets
lost	more	than	20%	of	their	value	within	a	few	hours;	an	event	this	extreme
should	have	been	virtually	impossible.

The	data	suggest	unequivocally	that	extreme	events	are	nowhere	near	as	rare
as	Brownian	motion	predicts.	The	probability	distribution	does	not	die	way
exponentially	(or	faster);	it	dies	away	like	a	power-law	curve	x−a	for	some
positive	constant	a.	In	the	financial	jargon,	such	a	distribution	is	said	to	have	a
fat	tail.	Fat	tails	indicate	increased	levels	of	risk.	If	your	investment	has	a	five-
sigma	expected	return,	then	assuming	Brownian	motion,	the	chance	that	it	will
fail	is	less	than	one	in	a	million.	But	if	tails	are	fat,	it	might	be	much	larger,
maybe	one	in	a	hundred.	That	makes	it	a	much	poorer	bet.

A	related	term,	made	popular	by	Nassim	Nicholas	Taleb,	an	expert	in
mathematical	finance,	is	‘black	swan	event’.	His	2007	book	The	Black	Swan
became	a	major	bestseller.	In	ancient	times,	all	known	swans	were	white.	The
poet	Juvenal	refers	to	something	as	‘a	rare	bird	in	the	lands,	and	very	like	a	black
swan’,	and	he	meant	that	it	was	impossible.	The	phrase	was	widely	used	in	the
sixteenth	century,	much	as	we	might	refer	to	a	flying	pig.	But	in	1697,	when	the
Dutch	explorer	Willem	de	Vlamingh	went	to	the	aptly	named	Swan	River	in
Western	Australia,	he	found	masses	of	black	swans.	The	phrase	changed	its
meaning,	and	now	refers	to	an	assumption	that	appears	to	be	grounded	in	fact,
but	might	at	any	moment	turn	out	to	be	wildly	mistaken.	Yet	another	term
current	is	X-event,	‘extreme	event’.

These	early	analyses	of	markets	in	mathematical	terms	encouraged	the	seductive
idea	that	the	market	could	be	modelled	mathematically,	creating	a	rational	and
safe	way	to	make	unlimited	sums	of	money.	In	1973	it	seemed	that	the	dream
might	become	real,	when	Fischer	Black	and	Myron	Scholes	introduced	a	method
for	pricing	options:	the	Black–Scholes	equation.	Robert	Merton	provided	a
mathematical	analysis	of	their	model	in	the	same	year,	and	extended	it.	The
equation	is:

It	involves	five	distinct	quantities	–	time	t,	the	price	S	of	the	commodity,	the
price	V	of	the	derivative,	which	depends	on	S	and	t,	the	risk-free	interest	rate	r
(the	theoretical	interest	that	can	be	earned	by	an	investment	with	zero	risk,	such
as	government	bonds),	and	the	volatility	σ2	of	the	stock.	It	is	also	mathematically
sophisticated:	a	second-order	partial	differential	equation	like	the	wave	and	heat



equations.	It	expresses	the	rate	of	change	of	the	price	of	the	derivative,	with
respect	to	time,	as	a	linear	combination	of	three	terms:	the	price	of	the	derivative
itself,	how	fast	that	changes	relative	to	the	stock	price,	and	how	that	change
accelerates.	The	other	variables	appear	in	the	coefficients	of	those	terms.	If	the
terms	representing	the	price	of	the	derivative	and	its	rate	of	change	were	omitted,
the	equation	would	be	exactly	the	heat	equation,	describing	how	the	price	of	the
option	diffuses	through	stock-price-space.	This	traces	back	to	Bachelier’s
assumption	of	Brownian	motion.	The	other	terms	take	additional	factors	into
account.

The	Black–Scholes	equation	was	derived	as	a	consequence	of	a	number	of
simplifying	financial	assumptions	–	for	instance,	that	there	are	no	transaction
costs	and	no	limits	on	short-selling,	and	that	it	is	possible	to	lend	and	borrow
money	at	a	known,	fixed,	risk-free	interest	rate.	The	approach	is	called	arbitrage
pricing	theory,	and	its	mathematical	core	goes	back	to	Bachelier.	It	assumes	that
market	prices	behave	statistically	like	Brownian	motion,	in	which	both	the	rate
of	drift	and	the	market	volatility	are	constant.	Drift	is	the	movement	of	the	mean,
and	volatility	is	financial	jargon	for	standard	deviation,	a	measure	of	average
divergence	from	the	mean.	This	assumption	is	so	common	in	the	financial
literature	that	it	has	become	an	industry	standard.

There	are	two	main	kinds	of	option.	In	a	put	option,	the	buyer	of	the	option
purchases	the	right	to	sell	a	commodity	or	financial	instrument	at	a	specified
time	for	an	agreed	price,	if	they	so	wish.	A	call	option	is	similar,	but	it	confers
the	right	to	buy	instead	of	sell.	The	Black–Scholes	equation	has	explicit
solutions:	one	formula	for	put	options,	another	for	call	options.1	If	such	formulas
had	not	existed,	the	equation	could	still	have	been	solved	numerically	and
implemented	as	software.	However,	the	formulas	make	it	straightforward	to
calculate	the	recommended	price,	as	well	as	yielding	important	theoretical
insights.

The	Black–Scholes	equation	was	devised	to	bring	a	degree	of	rationality	to
the	futures	market,	which	it	does	very	effectively	under	normal	market
conditions.	It	provides	a	systematic	way	to	calculate	the	value	of	an	option
before	it	matures.	Then	it	can	be	sold.	Suppose,	for	instance,	that	a	merchant
contracts	to	buy	1000	tons	of	rice	in	12	months’	time	at	a	price	of	500	per	ton	–	a
call	option.	After	five	months	she	decides	to	sell	the	option	to	anyone	willing	to
buy	it.	Everyone	knows	how	the	market	price	for	rice	has	been	changing,	so	how
much	is	that	contract	worth	right	now?	If	you	start	trading	such	options	without
knowing	the	answer,	you’re	in	trouble.	If	the	trade	loses	money,	you’re	open	to
the	accusation	that	you	got	the	price	wrong	and	your	job	could	be	at	risk.	So



what	should	the	price	be?	Trading	by	the	seat	of	your	pants	ceases	to	be	an
option	when	the	sums	involved	are	in	the	billions.	There	has	to	be	an	agreed	way
to	price	an	option	at	any	time	before	maturity.	The	equation	does	just	that.	It
provides	a	formula,	which	anyone	can	use,	and	if	your	boss	uses	the	same
formula,	he	will	get	the	same	result	that	you	did,	provided	you	didn’t	make
errors	of	arithmetic.	In	practice,	both	of	you	would	use	a	standard	computer
package.

The	equation	was	so	effective	that	it	won	Merton	and	Scholes	the	1997	Nobel
Prize	in	Economics.2	Black	had	died	by	then,	and	the	rules	of	the	prize	prohibit
posthumous	awards,	but	his	contribution	was	explicitly	cited	by	the	Swedish
Academy.	The	effectiveness	of	the	equation	depended	on	the	market	behaving
itself.	If	the	assumptions	behind	the	model	ceased	to	hold,	it	was	no	longer	wise
to	use	it.	But	as	time	passed	and	confidence	grew,	many	bankers	and	traders
forgot	that;	they	used	the	equation	as	a	kind	of	talisman,	a	bit	of	mathematical
magic	that	protected	them	against	criticism.	Black–Scholes	not	only	provides	a
price	that	is	reasonable	under	normal	conditions;	it	also	covers	your	back	if	the
trade	goes	belly-up.	Don’t	blame	me,	boss,	I	used	the	industry	standard	formula.
The	financial	sector	was	quick	to	see	the	advantages	of	the	Black–Scholes
equation	and	its	solutions,	and	equally	quick	to	develop	a	host	of	related
equations	with	different	assumptions	aimed	at	different	financial	instruments.
The	then-sedate	world	of	conventional	banking	could	use	the	equations	to	justify
loans	and	trades,	always	keeping	an	eye	open	for	potential	trouble.	But	less
conventional	businesses	would	soon	follow,	and	they	had	the	faith	of	a	true
convert.	To	them,	the	possibility	of	the	model	going	wrong	was	inconceivable.	It
became	known	as	the	Midas	formula	–	a	recipe	for	making	everything	turn	to
gold.	But	the	financial	sector	forgot	how	the	story	of	King	Midas	ended.

The	darling	of	the	financial	sector,	for	several	years,	was	a	company	called
Long	Term	Capital	Management	(LTCM).	It	was	a	hedge	fund,	a	private	fund
that	spreads	its	investments	in	a	way	that	is	intended	to	protect	investors	when
the	market	goes	down,	and	make	big	profits	when	it	goes	up.	It	specialised	in
trading	strategies	based	on	mathematical	models,	including	the	Black–Scholes
equation	and	its	extensions,	together	with	techniques	such	as	arbitrage,	which
exploits	discrepancies	between	the	prices	of	bonds	and	the	value	that	can
actually	be	realised.	Initially	LTCM	was	a	spectacular	success,	yielding	returns
in	the	region	of	40%	per	year	until	1998.	At	that	point	it	lost	$4.6	billion	in
under	four	months,	and	the	Federal	Reserve	Bank	persuaded	its	major	creditors
to	bail	it	out	to	the	tune	of	$3.6	billion.	Eventually	the	banks	involved	got	their
money	back,	but	LTCM	was	wound	up	in	2000.



What	went	wrong?	There	are	as	many	theories	as	there	are	financial
commentators,	but	the	consensus	is	that	the	proximate	cause	of	LTCM’s	failure
was	the	Russian	financial	crisis	of	1998.	Western	markets	had	invested	heavily
in	Russia,	whose	economy	was	heavily	dependent	on	oil	exports.	The	Asian
financial	crisis	of	1997	caused	the	price	of	oil	to	slump,	and	the	main	casualty
was	the	Russian	economy.	The	World	Bank	provided	a	loan	of	$22.6	billion	to
prop	the	Russians	up.

The	ultimate	cause	of	LTCM’s	demise	was	already	in	place	on	the	day	it
started	trading.	As	soon	as	reality	ceased	to	obey	the	assumptions	of	the	model,
LTCM	was	in	deep	trouble.	The	Russian	financial	crisis	threw	a	spanner	in	the
works	that	demolished	almost	all	of	those	assumptions.	Some	factors	had	a
bigger	effect	than	others.	Increased	volatility	was	one	of	them.	Another	was	the
assumption	that	extreme	fluctuations	hardly	ever	occur:	no	fat	tails.	But	the
crisis	sent	the	markets	into	turmoil,	and	in	the	panic,	prices	dropped	by	huge
amounts	–	many	sigmas	–	in	seconds.	Because	all	of	the	factors	concerned	were
interrelated,	these	events	triggered	other	rapid	changes,	so	rapid	that	traders
could	not	possibly	know	the	state	of	the	market	at	any	instant.	Even	if	they
wanted	to	behave	rationally,	which	people	don’t	do	in	a	general	panic,	they	had
no	basis	upon	which	to	do	so.

If	the	Brownian	model	is	right,	events	as	extreme	as	the	Russian	financial
crisis	should	occur	no	more	often	than	once	a	century.	I	can	remember	seven
from	personal	experience	in	the	past	40	years:	overinvestment	in	property,	the
former	Soviet	Union,	Brazil,	property	(again),	property	(yet	again),	dotcom
companies,	and	…	oh,	yes,	property.

With	hindsight,	the	collapse	of	LTCM	was	a	warning.	The	dangers	of	trading
by	formula	in	a	world	that	did	not	obey	the	cosy	assumptions	behind	the	formula
were	duly	noted	–	and	quickly	ignored.	Hindsight	is	all	very	well,	but	anyone
can	see	the	danger	after	a	crisis	has	struck.	What	about	foresight?	The	orthodox
claim	about	the	recent	global	financial	crisis	is	that,	like	the	first	swan	with	black
feathers,	no	one	saw	it	coming.

That’s	not	entirely	true.

The	International	Congress	of	Mathematicians	is	the	largest	mathematical
conference	in	the	world,	taking	place	every	four	years.	In	August	2002	it	took
place	in	Beijing,	and	Mary	Poovey,	professor	of	humanities	and	director	of	the
Institute	for	the	Production	of	Knowledge	at	New	York	University,	gave	a
lecture	with	the	title	‘Can	numbers	ensure	honesty?’3	The	subtitle	was



‘unrealistic	expectations	and	the	US	accounting	scandal’,	and	it	described	the
recent	emergence	of	a	‘new	axis	of	power’	in	world	affairs:

This	axis	runs	through	large	multinational	corporations,	many	of
which	avoid	national	taxes	by	incorporating	in	tax	havens	like	Hong
Kong.	It	runs	through	investment	banks,	through	nongovernmental
organizations	like	the	International	Monetary	Fund,	through	state
and	corporate	pension	funds,	and	through	the	wallets	of	ordinary
investors.	This	axis	of	financial	power	contributes	to	economic
catastrophes	like	the	1998	meltdown	in	Japan	and	Argentina’s
default	in	2001,	and	it	leaves	its	traces	in	the	daily	gyrations	of	stock
indexes	like	the	Dow	Jones	Industrials	and	London’s	Financial
Times	Stock	Exchange	100	Index	(the	FTSE).

She	went	on	to	say	that	this	new	axis	of	power	is	intrinsically	neither	good	nor
bad:	what	matters	is	how	it	wields	its	power.	It	helped	to	raise	China’s	standard
of	living,	which	many	of	us	would	consider	to	be	beneficial.	It	also	encouraged	a
worldwide	abandonment	of	welfare	societies,	replacing	them	by	a	shareholder
culture,	which	many	of	us	would	consider	to	be	harmful.	A	less	controversial
example	of	a	bad	outcome	is	the	Enron	scandal,	which	broke	in	2001.	Enron	was
an	energy	company	based	in	Texas,	and	its	collapse	led	to	what	was	then	the
biggest	bankruptcy	in	American	history,	and	a	loss	to	shareholders	of	$11
billion.	Enron	was	another	warning,	this	time	about	deregulated	accounting	laws.
Again,	few	heeded	the	warning.

Poovey	did.	She	pointed	to	the	contrast	between	the	traditional	financial
system	based	on	the	production	of	real	goods,	and	the	emerging	new	one	based
on	investment,	currency	trading,	and	‘complex	wagers	that	future	prices	would
rise	or	fall’.	By	1995	this	economy	of	virtual	money	had	overtaken	the	real
economy	of	manufacturing.	The	new	axis	of	power	was	deliberately	confusing
real	and	virtual	money:	arbitrary	figures	in	company	accounts	and	actual	cash	or
commodities.	This	trend,	she	argued,	was	leading	to	a	culture	in	which	the
values	of	both	goods	and	financial	instruments	were	becoming	wildly	unstable,
liable	to	explode	or	collapse	at	the	click	of	a	mouse.

The	article	illustrated	these	points	using	five	common	financial	techniques
and	instruments,	such	as	‘mark	to	market	accounting’,	in	which	a	company	sets
up	a	partnership	with	a	subsidiary.	The	subsidiary	buys	a	stake	in	the	parent
company’s	future	profits;	the	money	involved	is	then	recorded	as	instant
earnings	by	the	parent	company	while	the	risk	is	relegated	to	the	subsidiary’s



balance	sheet.	Enron	used	this	technique	when	it	changed	its	marketing	strategy
from	selling	energy	to	selling	energy	futures.	The	big	problem	with	bringing
forward	potential	future	profits	in	this	manner	is	that	they	cannot	then	be	listed
as	profits	next	year.	The	answer	is	to	repeat	the	manoeuvre.	It’s	like	trying	to
drive	a	car	without	brakes	by	pressing	ever	harder	on	the	accelerator.	The
inevitable	result	is	a	crash.

Poovey’s	fifth	example	was	derivatives,	and	it	was	the	most	important	of
them	all	because	the	sums	of	money	involved	were	so	gigantic.	Her	analysis
largely	reinforces	what	I’ve	already	said.	Her	main	conclusion	was:	‘Futures	and
derivatives	trading	depends	upon	the	belief	that	the	stock	market	behaves	in	a
statistically	predictable	way,	in	other	words,	that	mathematical	equations
accurately	describe	the	market.’	But	she	noted	that	the	evidence	points	in	a
totally	different	direction:	somewhere	between	75%	and	90%	of	all	futures
traders	lose	money	in	any	year.

Two	types	of	derivative	were	particularly	implicated	in	creating	the	toxic
financial	markets	of	the	early	twenty-first	century:	credit	default	swaps	and
collateralised	debt	obligations.	A	credit	default	swap	is	a	form	of	insurance:	pay
your	premium	and	you	collect	from	an	insurance	company	if	someone	defaults
on	a	debt.	But	anyone	could	take	out	such	insurance	on	anything.	They	didn’t
have	to	be	the	company	that	owed,	or	was	owed,	the	debt.	So	a	hedge	fund
could,	in	effect,	bet	that	a	bank’s	customers	were	going	to	default	on	their
mortgage	payments	–	and	if	they	did,	the	hedge	fund	would	make	a	bundle,	even
though	it	was	not	a	party	to	the	mortgage	agreements.	This	provided	an	incentive
for	speculators	to	influence	market	conditions	to	make	defaults	more	likely.	A
collateralised	debt	obligation	is	based	on	a	collection	(portfolio)	of	assets.	These
might	be	tangible,	such	as	mortgages	secured	against	real	property,	or	they	might
be	derivatives,	or	they	might	be	a	mixture	of	both.	The	owner	of	the	assets	sells
investors	the	right	to	a	share	of	the	profits	from	those	assets.	The	investor	can
play	it	safe,	and	get	first	call	on	the	profits,	but	this	costs	them	more.	Or	they	can
take	a	risk,	pay	less,	and	be	lower	down	the	pecking	order	for	payment.

Both	types	of	derivative	were	traded	by	banks,	hedge	funds,	and	other
speculators.	They	were	priced	using	descendants	of	the	Black–Scholes	equation,
so	they	were	considered	to	be	assets	in	their	own	right.	Banks	borrowed	money
from	other	banks,	so	that	they	could	lend	it	to	people	who	wanted	mortgages;
they	secured	these	loans	with	real	property	and	fancy	derivatives.	Soon	everyone
was	lending	huge	sums	of	money	to	everyone	else,	much	of	it	secured	on
financial	derivatives.	Hedge	funds	and	other	speculators	were	trying	to	make
money	by	spotting	potential	disasters	and	betting	that	they	would	happen.	The



value	of	the	derivatives	concerned,	and	of	real	assets	such	as	property,	was	often
calculated	on	a	mark	to	market	basis,	which	is	open	to	abuse	because	it	uses
artificial	accounting	procedures	and	risky	subsidiary	companies	to	represent
estimated	future	profit	as	actual	present-day	profit.	Nearly	everyone	in	the
business	assessed	how	risky	the	derivatives	were	using	the	same	method,	known
as	‘value	at	risk’.	This	calculates	the	probability	that	the	investment	might	make
a	loss	that	exceeds	some	specified	threshold.	For	example,	investors	might	be
willing	to	accept	a	loss	of	a	million	dollars	if	its	probability	were	less	than	5%,
but	not	if	it	were	more	likely.	Like	Black–Scholes,	value	at	risk	assumes	that
there	are	no	fat	tails.	Perhaps	the	worst	feature	was	that	the	entire	financial	sector
was	estimating	its	risks	using	exactly	the	same	method.	If	the	method	were	at
fault,	this	would	create	a	shared	delusion	that	the	risk	was	low	when	in	reality	it
was	much	higher.

It	was	a	train	crash	waiting	to	happen,	a	cartoon	character	who	had	walked	a
mile	off	the	edge	of	the	cliff	and	remained	suspended	in	mid-air	only	because	he
flatly	refused	to	take	a	look	at	what	was	under	his	feet.	As	Poovey	and	others
like	her	had	repeatedly	warned,	the	models	used	to	value	the	financial	products
and	estimate	their	risks	incorporated	simplifying	assumptions	that	did	not
accurately	represent	real	markets	and	the	dangers	inherent	in	them.	Players	in	the
financial	markets	ignored	these	warnings.	Six	years	later,	we	all	found	out	why
this	was	a	mistake.

Perhaps	there	is	a	better	way.
The	Black–Scholes	equation	changed	the	world	by	creating	a	booming

quadrillion-dollar	industry;	its	generalisations,	used	unintelligently	by	a	small
coterie	of	bankers,	changed	the	world	again	by	contributing	to	a	multitrillion-
dollar	financial	crash	whose	ever	more	malign	effects,	now	extending	to	entire
national	economics,	are	still	being	felt	worldwide.	The	equation	belongs	to	the
realm	of	classical	continuum	mathematics,	having	its	roots	in	the	partial
differential	equations	of	mathematical	physics.	This	is	a	realm	in	which
quantities	are	infinitely	divisible,	time	flows	continuously,	and	variables	change
smoothly.	The	technique	works	for	mathematical	physics,	but	it	seems	less
appropriate	to	the	world	of	finance,	in	which	money	comes	in	discrete	packets,
trades	occur	one	at	a	time	(albeit	very	fast),	and	many	variables	can	jump
erratically.

The	Black–Scholes	equation	is	also	based	on	the	traditional	assumptions	of
classical	mathematical	economics:	perfect	information,	perfect	rationality,
market	equilibrium,	the	law	of	supply	and	demand.	The	subject	has	been	taught



for	decades	as	if	these	things	are	axiomatic,	and	many	trained	economists	have
never	questioned	them.	Yet	they	lack	convincing	empirical	support.	On	the	few
occasions	when	anyone	does	experiments	to	observe	how	people	make	financial
decisions,	the	classical	scenarios	usually	fail.	It’s	as	though	astronomers	had
spent	the	last	hundred	years	calculating	how	planets	move,	based	on	what	they
thought	was	reasonable,	without	actually	taking	a	look	to	see	what	they	really
did.

It’s	not	that	classical	economics	is	completely	wrong.	But	it’s	wrong	more
often	that	its	proponents	claim,	and	when	it	does	go	wrong,	it	goes	very	wrong
indeed.	So	physicists,	mathematicians,	and	economists	are	looking	for	better
models.	At	the	forefront	of	these	efforts	are	models	based	on	complexity	science,
a	new	branch	of	mathematics	that	replaces	classical	continuum	thinking	by	an
explicit	collection	of	individual	agents,	interacting	according	to	specified	rules.

A	classical	model	of	the	movement	of	the	price	of	some	commodity,	for
example,	assumes	that	at	any	instant	there	is	a	single	‘fair’	price,	which	in
principle	is	known	to	everyone,	and	that	prospective	purchasers	compare	this
price	with	a	utility	function	(how	useful	the	commodity	is	to	them)	and	buy	it	if
its	utility	outweighs	its	cost.	A	complex	system	model	is	very	different.	It	might
involve,	say,	ten	thousand	agents,	each	with	its	own	view	of	what	the	commodity
is	worth	and	how	desirable	it	is.	Some	agents	would	know	more	than	others,
some	would	have	more	accurate	information	than	others;	many	would	belong	to
small	networks	that	traded	information	(accurate	or	not)	as	well	as	money	and
goods.

A	number	of	interesting	features	have	emerged	from	such	models.	One	is	the
role	of	the	herd	instinct.	Market	traders	tend	to	copy	other	market	traders.	If	they
don’t,	and	it	turns	out	that	the	others	are	on	to	a	good	thing,	their	bosses	will	be
unhappy.	On	the	other	hand,	if	they	follow	the	herd	and	everyone’s	got	it	wrong,
they	have	a	good	excuse:	it’s	what	everyone	else	was	doing.	Black–Scholes	was
perfect	for	the	herd	instinct.	In	fact,	virtually	every	financial	crisis	in	the	last
century	has	been	pushed	over	the	edge	by	the	herd	instinct.	Instead	of	some
banks	investing	in	property	and	others	in	manufacturing,	say,	they	all	rush	into
property.	This	overloads	the	market,	with	too	much	money	seeking	too	little
property,	and	the	whole	thing	comes	to	bits.	So	now	they	all	rush	into	loans	to
Brazil,	or	to	Russia,	or	back	into	a	newly	revived	property	market,	or	lose	their
collective	marbles	over	dotcom	companies	–	three	kids	in	a	room	with	a
computer	and	a	modem	being	valued	at	ten	times	the	worth	of	a	major
manufacturer	with	a	real	product,	real	customers,	and	real	factories	and	offices.
When	that	goes	belly-up,	they	all	rush	into	the	subprime	mortgage	market	…



That’s	not	hypothetical.	Even	as	the	repercussions	of	the	global	banking	crisis
reverberate	through	ordinary	people’s	lives,	and	national	economies	flounder,
there	are	signs	that	no	lessons	have	been	learned.	A	rerun	of	the	dotcom	fad	is	in
progress,	now	aimed	at	social	networking	websites:	Facebook	has	been	valued	at
$100	billion,	and	Twitter	(the	website	where	celebrities	send	140-character
‘tweets’	to	their	devoted	followers)	has	been	valued	at	$8	billion	despite	never
having	made	a	profit.	The	International	Monetary	Fund	has	also	issued	a	strong
warning	about	exchange	traded	funds	(ETFs),	a	very	successful	way	to	invest	in
commodities	like	oil,	gold,	or	wheat	without	actually	buying	any.	All	of	these
have	gone	up	in	price	very	rapidly,	providing	big	profits	for	pension	funds	and
other	large	investors,	but	the	IMF	has	warned	that	these	investment	vehicles
have	‘all	the	hallmarks	of	a	bubble	waiting	to	burst	…	reminiscent	of	what
happened	in	the	securitisation	market	before	the	crisis’.	ETFs	are	very	like	the
derivatives	that	triggered	the	credit	crunch,	but	secured	in	commodities	rather
than	property.	The	stampede	into	ETFs	has	driven	commodity	prices	through	the
roof,	inflating	them	out	of	all	proportion	to	the	real	demand.	Many	people	in	the
third	world	are	now	unable	to	afford	staple	foodstuffs	because	speculators	in
developed	countries	are	taking	big	gambles	on	wheat.	The	ousting	of	Hosni
Mubarak	in	Egypt	was	to	some	extent	triggered	by	huge	increases	in	the	price	of
bread.

The	main	danger	is	that	ETFs	are	starting	to	be	repackaged	into	further
derivatives,	like	the	collateralised	debt	obligations	and	credit	default	swaps	that
burst	the	subprime	mortgage	bubble.	If	the	commodities	bubble	bursts,	we	could
see	a	rerun	of	the	collapse:	just	delete	‘property’	and	insert	‘commodities’.
Commodity	prices	are	very	volatile,	so	ETFs	are	high-risk	investments	–	not	a
great	choice	for	a	pension	fund.	So	once	again	investors	are	being	encouraged	to
take	ever	more	complex,	and	ever	more	risky,	bets,	using	money	they	don’t	have
to	buy	stakes	in	things	they	don’t	want	and	can’t	use,	in	pursuit	of	speculative
profits	–	while	the	people	who	do	want	those	things	can	no	longer	afford	them.

Remember	the	Dojima	rice	exchange?

Economics	is	not	the	only	area	to	discover	that	its	prized	traditional	theories	no
longer	work	in	an	increasingly	complex	world,	where	the	old	rules	no	longer
apply.	Another	is	ecology,	the	study	of	natural	systems	such	as	forests	or	coral
reefs.	In	fact,	economics	and	ecology	are	uncannily	similar	in	many	respects.
Some	of	the	resemblance	is	illusory:	historically	each	has	often	used	the	other	to
justify	its	models,	instead	of	comparing	the	models	with	the	real	world.	But
some	is	real:	the	interactions	between	large	numbers	of	organisms	are	very	like



those	between	large	numbers	of	stock	market	traders.
This	resemblance	can	be	used	as	an	analogy,	in	which	case	it	is	dangerous

because	analogies	often	break	down.	Or	it	can	be	used	as	a	source	of	inspiration,
borrowing	modelling	techniques	from	ecology	and	applying	them	in	suitably
modified	form	to	economics.	In	January	2011,	in	the	journal	Nature,	Andrew
Haldane	and	Robert	May	outlined	some	possibilities.4	Their	arguments	reinforce
several	of	the	messages	earlier	in	this	chapter,	and	suggest	ways	of	improving
the	stability	of	financial	systems.

Haldane	and	May	looked	at	an	aspect	of	the	financial	crisis	that	I’ve	not	yet
mentioned:	how	derivatives	affect	the	stability	of	the	financial	system.	They
compare	the	prevailing	view	of	orthodox	economists,	which	maintain	that	the
market	automatically	seeks	a	stable	equilibrium,	with	a	similar	view	in	1960s
ecology,	that	the	‘balance	of	nature’	tends	to	keep	ecosystems	stable.	Indeed,	at
that	time	many	ecologists	thought	that	any	sufficiently	complex	ecosystem
would	be	stable	in	this	way,	and	that	unstable	behaviour,	such	as	sustained
oscillations,	implied	that	the	system	was	insufficiently	complex.	We	saw	in
Chapter	16	that	this	is	wrong.	In	fact,	current	understanding	indicates	exactly	the
opposite.	Suppose	that	a	large	number	of	species	interact	in	an	ecosystem.	As	the
network	of	ecological	interactions	becomes	more	complex	through	the	addition
of	new	links	between	species,	or	the	interactions	become	stronger,	there	is	a
sharp	threshold	beyond	which	the	ecosystem	ceases	to	be	stable.	(Here	chaos
counts	as	stability;	fluctuations	can	occur	provided	they	remain	within	specific
limits.)	This	discovery	led	ecologists	to	look	for	special	types	of	interaction
network,	unusually	conducive	to	stability.

Might	it	be	possible	to	transfer	these	ecological	discoveries	to	global	finance?
There	are	close	analogies,	with	food	or	energy	in	an	ecology	corresponding	to
money	in	a	financial	system.	Haldane	and	May	were	aware	that	this	analogy
should	not	be	used	directly,	remarking:	‘In	financial	ecosystems,	evolutionary
forces	have	often	been	survival	of	the	fattest	rather	than	the	fittest.’	They
decided	to	construct	financial	models	not	by	mimicking	ecological	models,	but
by	exploiting	the	general	modelling	principles	that	had	led	to	a	better
understanding	of	ecosystems.

They	developed	several	economic	models,	showing	in	each	case	that	under
suitable	circumstances,	the	economic	system	would	become	unstable.	Ecologists
deal	with	an	unstable	ecosystem	by	managing	it	in	a	way	that	creates	stability.
Epidemiologists	do	the	same	with	a	disease	epidemic;	this	is	why,	for	example,
the	British	government	developed	a	policy	of	controlling	the	2001	foot-and-



mouth	epidemic	by	rapidly	slaughtering	cattle	on	farms	near	any	that	proved
positive	for	the	disease,	and	stopping	all	movement	of	cattle	around	the	country.
So	government	regulators’	answer	to	an	unstable	financial	system	should	be	to
take	action	to	stabilise	it.	To	some	extent	they	are	now	doing	this,	after	an	initial
panic	in	which	they	threw	huge	amounts	of	taxpayers’	money	at	the	banks	but
omitted	to	impose	any	conditions	beyond	vague	promises,	which	have	not	been
kept.

However,	the	new	regulations	largely	fail	to	address	the	real	problem,	which
is	the	poor	design	of	the	financial	system	itself.	The	facility	to	transfer	billions	at
the	click	of	a	mouse	may	allow	ever-quicker	profits,	but	it	also	lets	shocks
propagate	faster,	and	encourages	increasing	complexity.	Both	of	these	are
destabilising.	The	failure	to	tax	financial	transactions	allows	traders	to	exploit
this	increased	speed	by	making	bigger	bets	on	the	market,	at	a	faster	rate.	This
also	tends	to	create	instability.	Engineers	know	that	the	way	to	get	a	rapid
response	is	to	use	an	unstable	system:	stability	by	definition	indicates	an	innate
resistance	to	change,	whereas	a	quick	response	requires	the	opposite.	So	the
quest	for	ever	greater	profits	has	caused	an	ever	more	unstable	financial	system
to	evolve.

Building	yet	again	on	analogies	with	ecosystems,	Haldane	and	May	offer
some	examples	of	how	stability	might	be	enhanced.	Some	correspond	to	the
regulators’	own	instincts,	such	as	requiring	banks	to	hold	more	capital,	which
buffers	them	against	shocks.	Others	do	not;	an	example	is	the	suggestion	that
regulators	should	focus	not	on	the	risks	associated	with	individual	banks,	but	on
those	associated	with	the	entire	financial	system.	The	complexity	of	the
derivatives	market	could	be	reduced	by	requiring	all	transactions	to	pass	through
a	centralised	clearing	agency.	This	would	have	to	be	extremely	robust,	supported
by	all	major	nations,	but	if	it	were,	then	propagating	shocks	would	be	damped
down	as	they	passed	through	it.

Another	suggestion	is	increased	diversity	of	trading	methods	and	risk
assessment.	An	ecological	monoculture	is	unstable	because	any	shock	that
occurs	is	likely	to	affect	everything	simultaneously,	in	the	same	way.	When	all
banks	are	using	the	same	methods	to	assess	risk,	the	same	problem	arises:	when
they	get	it	wrong,	they	all	get	it	wrong	at	the	same	time.	The	financial	crisis
arose	in	part	because	all	of	the	main	banks	were	funding	their	potential	liabilities
in	the	same	way,	assessing	the	value	of	their	assets	in	the	same	way,	and
assessing	their	likely	risk	in	the	same	way.

The	final	suggestion	is	modularity.	It	is	thought	that	ecosystems	stabilise



themselves	by	organising	(through	evolution)	into	more	or	less	self-contained
modules,	connected	to	each	other	in	a	fairly	simple	manner.	Modularity	helps	to
prevent	shocks	propagating.	This	is	why	regulators	worldwide	are	giving	serious
consideration	to	breaking	up	big	banks	and	replacing	them	by	a	number	of
smaller	ones.	As	Alan	Greenspan,	a	distinguished	American	economist	and
former	chairman	of	the	Federal	Reserve	of	the	USA	said	of	banks:	‘If	they’re	too
big	to	fail,	they’re	too	big.’

Was	an	equation	to	blame	for	the	financial	crash,	then?
An	equation	is	a	tool,	and	like	any	tool,	it	has	to	be	wielded	by	someone	how

knows	how	to	use	it,	and	for	the	right	purpose.	The	Black–Scholes	equation	may
have	contributed	to	the	crash,	but	only	because	it	was	abused.	It	was	no	more
responsible	for	the	disaster	than	a	trader’s	computer	would	have	been	if	its	use
led	to	a	catastrophic	loss.	The	blame	for	the	failure	of	tools	should	rest	with
those	who	are	responsible	for	their	use.	There	is	a	danger	that	the	financial	sector
may	turn	its	back	on	mathematical	analysis,	when	what	it	actually	needs	is	a
better	range	of	models,	and	–	crucially	–	a	solid	understanding	of	their
limitations.	The	financial	system	is	too	complex	to	be	run	on	human	hunches	and
vague	reasoning.	It	desperately	needs	more	mathematics,	not	less.	But	it	also
needs	to	learn	how	to	use	mathematics	intelligently,	rather	than	as	some	kind	of
magical	talisman.



Where	Next?
When	someone	writes	down	an	equation,	there	isn’t	a	sudden	clap	of	thunder
after	which	everything	is	different.	Most	equations	have	little	or	no	effect	(I
write	them	down	all	the	time,	and	believe	me,	I	know).	But	even	the	greatest	and
most	influential	equations	need	help	to	change	the	world	–	efficient	ways	to
solve	them,	people	with	the	imagination	and	drive	to	exploit	what	they	tell	us,
machinery,	resources,	materials,	money.	Bearing	this	in	mind,	equations	have
repeatedly	opened	up	new	directions	for	humanity,	and	acted	as	our	guides	as	we
explore	them.

It	took	a	lot	more	than	seventeen	equations	to	get	us	where	we	are	today.	My
list	is	a	selection	of	some	of	the	most	influential,	and	each	of	them	required	a
host	of	others	before	it	became	seriously	useful.	But	each	of	the	seventeen	fully
deserves	inclusion,	because	it	played	a	pivotal	role	in	history.	Pythagoras	led	to
practical	methods	for	surveying	our	lands	and	navigating	our	way	to	new	ones.
Newton	tells	us	how	planets	move	and	how	to	send	space	probes	to	explore
them.	Maxwell	provided	a	vital	clue	that	led	to	radio,	TV,	and	modern
communications.	Shannon	derived	unavoidable	limits	to	how	efficient	those
communications	can	be.

Often,	what	an	equation	led	to	was	quite	different	from	what	interested	its
inventor/discoverers.	Who	would	have	predicted	in	the	fifteenth	century	that	a
baffling,	apparently	impossible	number,	stumbled	upon	while	solving	algebra
problems,	would	be	indelibly	linked	to	the	even	more	baffling	and	apparently
impossible	world	of	quantum	physics	–	let	alone	that	this	would	pave	the	road	to
miraculous	devices	that	can	solve	a	million	algebra	problems	every	second,	and
let	us	instantly	be	seen	and	heard	by	friends	on	the	other	side	of	the	planet?	How
would	Fourier	have	reacted	if	he	had	been	told	that	his	new	method	for	studying
heat	flow	would	be	built	into	machines	the	size	of	a	pack	of	cards,	able	to	paint
extraordinarily	accurate	and	detailed	pictures	of	anything	they	are	pointed	at	–	in
colour,	even	moving,	with	thousands	of	them	contained	in	something	the	size	of
a	coin?

Equations	trigger	events,	and	events,	to	paraphrase	former	British	Prime
Minister	Harold	Macmillan,	are	what	keep	us	awake	at	night.	When	a
revolutionary	equation	is	unleashed,	it	develops	a	life	of	its	own.	The
consequences	can	be	good	or	bad,	even	when	the	original	intention	was
benevolent,	as	it	was	for	every	one	of	my	seventeen.	Einstein’s	new	physics
gave	us	a	new	understanding	of	the	world,	but	one	of	the	things	we	used	it	for



was	nuclear	weapons.	Not	as	directly	as	popular	myth	claims,	but	it	played	its
part	nonetheless.	The	Black–Scholes	equation	created	a	vibrant	financial	sector
and	then	threatened	to	destroy	it.	Equations	are	what	we	make	of	them,	and	the
world	can	be	changed	for	the	worse	as	well	as	for	the	better.

Equations	come	in	many	kinds.	Some	are	mathematical	truths,	tautologies:
think	of	Napier’s	logarithms.	But	tautologies	can	still	be	powerful	aids	to	human
thought	and	deed.	Some	are	statements	about	the	physical	world,	which	for	all
we	know	could	have	been	different.	Equations	of	this	kind	tell	us	nature’s	laws,
and	solving	them	tells	us	the	consequences	of	those	laws.	Some	have	both
elements:	Pythagoras’s	equation	is	a	theorem	in	Euclid’s	geometry,	but	it	also
governs	measurements	made	by	surveyors	and	navigators.	Some	are	little	better
than	definitions	–	but	i	and	information	tell	us	a	great	deal,	once	we	have	defined
them.

Some	equations	are	universally	valid.	Some	describe	the	world	very
accurately,	but	not	perfectly.	Some	are	less	accurate,	confined	to	more	limited
realms,	yet	offer	vital	insights.	Some	are	basically	plain	wrong,	yet	they	can	act
as	stepping-stones	to	something	better.	They	may	still	have	a	huge	effect.

Some	even	open	up	difficult	questions,	philosophical	in	nature,	about	the
world	we	live	in	and	our	own	place	within	it.	The	problem	of	quantum
measurement,	dramatised	by	Schrödinger’s	hapless	cat,	is	one	such.	The	second
law	of	thermodynamics	raises	deep	issues	about	disorder	and	the	arrow	of	time.
In	both	cases,	some	of	the	apparent	paradoxes	can	be	resolved,	in	part,	by
thinking	less	about	the	content	of	the	equation	and	more	about	the	context	in
which	it	applies.	Not	the	symbols,	but	the	boundary	conditions.	The	arrow	of
time	is	not	a	problem	about	entropy:	it’s	a	problem	about	the	context	in	which
we	think	about	entropy.

Existing	equations	can	acquire	new	importance.	The	search	for	fusion	power,
as	a	clean	alternative	to	nuclear	power	and	fossil	fuels,	requires	an	understanding
of	how	extremely	hot	gas,	forming	a	plasma,	moves	in	a	magnetic	field.	The
atoms	of	the	gas	lose	electrons	and	become	electrically	charged.	So	the	problem
is	one	in	magnetohydrodynamics,	requiring	a	combination	of	the	existing
equations	for	fluid	flow	and	for	electromagnetism.	The	combination	leads	to	new
phenomena,	suggesting	how	to	keep	the	plasma	stable	at	the	temperatures
needed	to	produce	fusion.	The	equations	are	old	favourites.

There	is	(or	may	be)	one	equation,	above	all,	that	physicists	and	cosmologists
would	give	their	eye	teeth	to	lay	hands	on:	a	Theory	of	Everything,	which	in
Einstein’s	day	was	called	a	Unified	Field	Theory.	This	is	the	long-sought



equation	that	unifies	quantum	mechanics	and	relativity,	and	Einstein	spent	his
later	years	in	a	fruitless	quest	to	find	it.	These	two	theories	are	both	successful,
but	their	successes	occur	in	different	domains:	the	very	small	and	the	very	large.
When	they	overlap,	they	are	incompatible.	For	example,	quantum	mechanics	is
linear,	relativity	isn’t.	Wanted:	an	equation	that	explains	why	both	are	so
successful,	but	does	the	job	of	both	with	no	logical	inconsistencies.	There	are
many	candidates	for	a	Theory	of	Everything,	the	best	known	being	the	theory	of
superstrings.	This,	among	other	things,	introduces	extra	dimensions	of	space:	six
of	them,	seven	in	some	versions.	Superstrings	are	mathematically	elegant,	but
there	is	no	convincing	evidence	for	them	as	a	description	of	nature.	In	any	case,
it	is	desperately	hard	to	carry	out	the	calculations	needed	to	extract	quantitative
predictions	from	superstring	theory.

For	all	we	know,	there	may	not	be	a	Theory	of	Everything.	All	of	our
equations	for	the	physical	world	may	just	be	oversimplified	models,	describing
limited	realms	of	nature	in	a	way	that	we	can	understand,	but	not	capturing	the
deep	structure	of	reality.	Even	if	nature	truly	obeys	rigid	laws,	they	might	not	be
expressible	as	equations.

Even	if	equations	are	relevant,	they	need	not	be	simple.	They	might	be	so
complicated	that	we	can’t	even	write	them	down.	The	3	billion	DNA	bases	of
the	human	genome	are,	in	a	sense,	part	of	the	equation	for	a	human	being.	They
are	parameters	that	might	be	inserted	into	a	more	general	equation	for	biological
development.	It	is	(barely)	possible	to	print	the	genome	on	paper;	it	would	need
about	two	thousand	books	the	size	of	this	one.	It	fits	into	a	computer	memory
fairly	easily.	But	it’s	only	one	tiny	part	of	any	hypothetical	human	equation.

When	equations	become	that	complex,	we	need	help.	Computers	are	already
extracting	equations	from	big	sets	of	data,	in	circumstances	where	the	usual
human	methods	fail	or	are	too	opaque	to	be	useful.	A	new	approach	called
evolutionary	computing	extracts	significant	patterns:	specifically,	formulas	for
conserved	quantities	–	things	that	don’t	change.	One	such	system	called	Eureqa,
formulated	by	Michael	Schmidt	and	Hod	Lipson,	has	scored	some	successes.
Software	like	this	might	help.	Or	it	might	not	lead	anywhere	that	really	matters.

Some	scientists,	especially	those	with	backgrounds	in	computing,	think	that
it’s	time	we	abandoned	traditional	equations	altogether,	especially	continuum
ones	like	ordinary	and	partial	differential	equations.	The	future	is	discrete,	it
comes	in	whole	numbers,	and	the	equations	should	give	way	to	algorithms	–
recipes	for	calculating	things.	Instead	of	solving	the	equations,	we	should
simulate	the	world	digitally	by	running	the	algorithms.	Indeed,	the	world	itself



may	be	digital.	Stephen	Wolfram	made	a	case	for	this	view	in	his	controversial
book	A	New	Kind	of	Science,	which	advocates	a	type	of	complex	system	called	a
cellular	automaton.	This	is	an	array	of	cells,	typically	small	squares,	each
existing	in	a	variety	of	distinct	states.	The	cells	interact	with	their	neighbours
according	to	fixed	rules.	They	look	a	bit	like	an	eighties	computer	game,	with
coloured	blocks	chasing	each	other	over	the	screen.

Wolfram	puts	forward	several	reasons	why	cellular	automata	should	be
superior	to	traditional	mathematical	equations.	In	particular,	some	of	them	can
carry	out	any	calculation	that	could	be	performed	by	a	computer,	the	simplest
being	the	famous	Rule	110	automaton.	This	can	find	successive	digits	of	π,	solve
the	three-body	equations	numerically,	implement	the	Black–Scholes	formula	for
a	call	option	–	whatever.	Traditional	methods	for	solving	equations	are	more
limited.	I	don’t	find	this	argument	terribly	convincing,	because	it	is	also	true	that
any	cellular	automaton	can	be	simulated	by	a	traditional	dynamical	system.
What	counts	is	not	whether	one	mathematical	system	can	simulate	another,	but
which	is	most	effective	for	solving	problems	or	providing	insights.	It’s	quicker
to	sum	a	traditional	series	for	π	by	hand	than	it	is	to	calculate	the	same	number
of	digits	using	the	Rule	110	automaton.

However,	it	is	still	entirely	credible	that	we	might	soon	find	new	laws	of
nature	based	on	discrete,	digital	structures	and	systems.	The	future	may	consist
of	algorithms,	not	equations.	But	until	that	day	dawns,	if	ever,	our	greatest
insights	into	nature’s	laws	take	the	form	of	equations,	and	we	should	learn	to
understand	them	and	appreciate	them.	Equations	have	a	track	record.	They	really
have	changed	the	world	–	and	they	will	change	it	again.
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Notes
Chapter	1

1	The	Penguin	Book	of	Curious	and	Interesting	Mathematics	by	David	Wells
quotes	a	brief	form	of	the	joke:	An	Indian	chief	had	three	wives	who	were
preparing	to	give	birth,	one	on	a	buffalo	hide,	one	on	a	bear	hide,	and	the
third	on	a	hippopotamus	hide.	In	due	course,	the	first	gave	him	a	son,	the
second	a	daughter,	and	the	third,	twins,	a	boy	and	a	girl,	thereby	illustrating
the	well-known	theorem	that	the	squaw	on	the	hippopotamus	is	equal	to	the
sum	of	the	squaws	on	the	other	two	hides.	The	joke	goes	back	at	least	to	the
mid-1950s,	when	it	was	broadcast	in	the	BBC	radio	series	‘My	Word’,
hosted	by	comedy	scriptwriters	Frank	Muir	and	Denis	Norden.

2	Quoted	without	reference	on:	http://www-history.mcs.st-
and.ac.uk/HistTopics/Babylonian_Pythagoras.html

3	A.	Sachs,	A.	Goetze,	and	O.	Neugebauer.	Mathematical	Cuneiform	Texts,
American	Oriental	Society,	New	Haven	1945.

4	The	figure	is	repeated	for	convenience	in	Figure	60.

Fig	60	Splitting	a	triangle	into	two	with	right	angles.

The	perpendicular	cuts	the	side	b	into	two	pieces.	By	trigonometry,	one	piece
has	length	a	cos	C,	so	the	other	has	length	b-a	cos	C.	Let	h	be	the	height	of
the	perpendicular.	By	Pythagoras:

a2	=	h2	+	(a	cos	C)2

c2	=	h2	+	(b	-	a	cos	C)2

That	is,

a2	-	h2	=	a2	cos2	C

http://www-history.mcs.st-and.ac.uk/HistTopics/Babylonian_Pythagoras.html


c2	-	h2	=	(b	-	a	cos	C)2	=	b2	-	2ab	cos	C	+	a2	cos2	C

Subtract	the	first	equation	from	the	second;	now	the	unwanted	h2	cancels	out.
So	do	the	terms	a2	cos2	C,	and	we	are	left	with

c2	-	a2	=	b2	-	2ab	cos	C

which	leads	to	the	stated	formula.

Chapter	2

1	http://www.17centurymaths.com/contents/napiercontents.html

2	Quoted	from	a	letter	John	Marr	wrote	to	William	Lilly.

3	Prosthapheiresis	was	based	on	a	trigonometric	formula	discovered	by
François	Viète,	namely

If	you	owned	a	table	of	sines,	the	formula	allowed	you	to	calculate	any
product	using	only	sums,	differences,	and	division	by	2.

Chapter	3

1	Keynes	never	delivered	the	lecture.	The	Royal	Society	planned	to
commemorate	Isaac	Newton’s	tercentenary	in	1942,	but	World	War	II
intervened,	so	the	celebrations	were	postponed	to	1946.	The	lecturers	were
the	physicists	Edward	da	Costa	Andrade	and	Niels	Bohr,	and	the
mathematicians	Herbert	Turnbull	and	Jacques	Hadamard.	The	society	had
also	invited	Keynes,	whose	interests	included	Newton’s	manuscripts	as	well
as	economics.	He	had	written	a	lecture	with	the	title	‘Newton,	the	man’,	but
he	died	just	before	the	event	took	place.	His	brother	Geoffrey	read	the
lecture	on	his	behalf.

2	This	phrase	comes	from	a	letter	that	Newton	wrote	to	Hooke	in	1676.	It
wasn’t	new:	in	1159	John	of	Salisbury	wrote	that	‘Bernard	of	Chartres	used
to	say	that	we	are	like	dwarfs	on	the	shoulders	of	giants,	so	that	we	can	see
more	than	they.’	By	the	seventeenth	century	it	had	become	a	cliché.

3	Division	by	zero	leads	to	fallacious	proofs.	For	example,	we	can	‘prove’
that	all	numbers	are	zero.	Assume	that	a	=	b.	Therefore	a2	=	ab,	so	a2	–	b2
=	ab	–	b2.	Factorise	to	get	(a	+	b)(a–b)=	b(a–b).	Divide	by	(a	–	b)	to
deduce	that	a	+	b	=	b.	Therefore	a	=	0.	The	error	is	the	division	by	(a–b),
which	is	0	because	we	assumed	a	=	b.

http://www.17centurymaths.com/contents/napiercontents.html


4	Richard	Westfall.	Never	at	Rest,	Cambridge	University	Press,	Cambridge
1980,	p.	425.

5	Erik	H.	Hauri,	Thomas	Weinreich,	Alberto	E.	Saal,	Malcolm	C.	Rutherford,
and	James	A.	Van	Orman.	High	pre-eruptive	water	contents	preserved	in
lunar	melt	inclusions,	Science	Online	(26	May	2011)	1204626.
[DOI:10.1126/science.1204626].	Their	results	proved	controversial.

6	However,	it’s	not	coincidence.	It	works	for	any	differentiable	function:	one
with	a	continuous	derivative.	These	include	all	polynomials	and	all
convergent	power	series,	such	as	the	logarithm,	the	exponential,	and	the
various	trigonometric	functions.

7	The	modern	definition	is:	a	function	f(h)	tends	to	a	limit	L	as	h	tends	to	zero
if	for	any	ε	>	0	there	exists	δ	>	0	such	that	|h|	<	δ	implies	that	|f(h)–	L|	<	ε.
Using	any	ε	>	0	avoids	referring	to	anything	flowing	or	becoming	smaller:
it	deals	with	all	possible	values	in	one	go.

Chapter	4

1	The	book	of	Genesis	refers	to	the	‘firmament’.	Most	scholars	think	this
derives	from	the	ancient	Hebrew	belief	that	the	stars	were	tiny	lights	fixed
to	a	solid	vault	of	Heaven,	shaped	like	a	hemisphere.	This	is	what	the	night
sky	looks	like:	the	way	our	visual	senses	respond	to	distant	objects	makes
the	stars	appear	to	be	at	much	the	same	distance	from	us.	Many	cultures,
especially	in	the	Middle	and	Far	East,	thought	of	the	heavens	as	a	slowly
spinning	bowl.

2	The	Great	Comet	of	1577	is	not	Halley’s	comet,	but	another	of	historical
importance,	now	called	C/1577	V1.	It	was	visible	to	the	naked	eye	in	1577
AD.	Brahe	observed	the	comet	and	deduced	that	comets	were	located
outside	the	Earth’s	atmosphere.	The	comet	is	currently	about	24	billion
kilometres	from	the	Sun.

3	The	figure	was	not	known	until	1798,	when	Henry	Cavendish	obtained	a
reasonably	accurate	value	in	a	laboratory	experiment.	It	is	about	6.67	×	6
10–11	newton	metre	squared	per	kilogram	squared.

4	June	Barrow-Green.	Poincaré	and	the	Three	Body	Problem,	American
Mathematical	Society,	Providence	1997.

Chapter	5

1	In	1535	the	mathematicians	Antonio	Fior	and	Niccolò	Fontana	(nicknamed



Tartaglia,	‘the	stammerer’)	engaged	in	a	public	contest.	They	set	each	other
cubic	equations	to	solve,	and	Tartaglia	beat	Fior	comprehensively.	At	that
time,	cubic	equations	were	classified	into	three	distinct	types,	because
negative	numbers	were	not	recognised.	Fior	knew	how	to	solve	just	one
type;	initially	Tartaglia	knew	how	to	solve	one	different	type,	but	shortly
before	the	contest	he	figured	out	how	to	solve	all	the	other	types.	He	then
set	Fior	only	the	types	that	he	knew	Fior	could	not	solve.	Cardano,	working
on	his	algebra	text,	heard	about	the	contest,	and	realised	that	Fior	and
Tartaglia	knew	how	to	solve	cubics.	This	discovery	would	greatly	enhance
the	book,	so	he	asked	Tartaglia	to	reveal	his	methods.
Eventually	Tartaglia	divulged	the	secret,	later	stating	that	Cardano	had

promised	never	to	make	it	public.	But	the	method	appeared	in	the	Ars
Magna,	so	Tartaglia	accused	Cardano	of	plagiarism.	However,	Cardano	had
an	excuse,	and	he	also	had	a	good	reason	to	find	a	way	round	his	promise.
His	student	Lodovico	Ferrari	had	found	how	to	solve	quartic	equations,	an
equally	novel	and	dramatic	discovery,	and	Cardano	wanted	that	in	his	book,
too.	However,	Ferrari’s	method	required	the	solution	of	an	associated	cubic
equation,	so	Cardano	could	not	publish	Ferrari’s	work	without	also
publishing	Tartaglia’s.
Then	he	learned	that	Fior	was	a	student	of	Scipio	del	Ferro,	who	was

rumoured	to	have	solved	all	three	types	of	cubic,	passing	just	one	type	on	to
Fior.	Del	Ferro’s	unpublished	papers	were	in	the	possession	of	Annibale	del
Nave.	So	Cardano	and	Ferrari	went	to	Bologna	in	1543	to	consult	del	Nave,
and	in	the	papers	they	found	solutions	to	all	three	types	of	cubic.	So
Cardano	could	honestly	say	that	he	was	publishing	del	Ferro’s	method,	not
Tartaglia’s.	Tartaglia	still	felt	cheated,	and	published	a	long,	bitter	diatribe
against	Cardano.	Ferrari	challenged	him	to	a	public	debate	and	won	hands
down.	Tartaglia	never	really	recovered	his	reputation	after	that.

Chapter	6

1	Summarised	in	Chapter	12	of:	Ian	Stewart.	Mathematics	of	Life,	Profile,
London	2011.

Chapter	7

1	Yes,	I	know	this	is	the	plural	of	‘die’,	but	nowadays	everyone	uses	it	for	the
singular	as	well,	and	I’ve	given	up	fighting	this	tendency.	It	could	be	worse:
someone	just	sent	me	an	e-mail	carefully	using	‘dice’	for	the	singular	and
‘die’	for	the	plural.



2	There	are	many	fallacies	in	Pascal’s	argument.	The	main	one	is	that	it	would
apply	to	any	hypothetical	supernatural	being.

3	The	theorem	states	that	under	certain	(fairly	common)	conditions,	the	sum
of	a	large	number	of	random	variables	will	have	an	approximately	normal
distribution.	More	precisely,	if	(x1,	…,	xn)	is	a	sequence	of	independent
identically	distributed	random	variables,	each	having	mean	μ	and	variance
σ2,	then	the	central	limit	theorem	states	that

converges	to	a	normal	distribution	with	mean	0	and	standard	deviation	σ	as	n
becomes	arbitrarily	large.

Chapter	8

1	Look	at	three	consecutive	masses,	numbered	n–1,	n,	n	+	1.	Suppose	that	at
time	t	they	are	displaced	distances	un-1(t),	un(t),	and	un+1(t)	from	their	initial
positions	on	the	horizontal	axis.	By	Newton’s	second	law	the	acceleration
of	each	mass	is	proportional	to	the	forces	that	act	on	it.	Make	the
simplifying	assumption	that	each	mass	moves	through	a	very	small	distance
in	the	vertical	direction	only.	To	a	very	good	approximation,	the	force	that
mass	n–1	exerts	on	mass	n	is	then	proportional	to	the	difference	un–1(t)	–
un(t),	and	similarly	the	force	that	mass	n	+	1	exerts	on	mass	n	is
proportional	to	the	difference	un+1(t)	–	un(t).	Adding	these	together,	the
total	force	exerted	on	mass	n	is	proportional	to	un	–1(t)–2un(t)	+	un+1(t).
This	is	the	difference	between	un	–	1(t)–	un(t)	and	un(t)–	un+1(t),	and	each	of
these	expressions	is	also	the	difference	between	the	positions	of	consecutive
masses.	So	the	force	exerted	on	mass	n	is	a	difference	between	differences.
Now	suppose	the	masses	are	very	close	together.	In	calculus,	a	difference

–	divided	by	a	suitable	small	constant	–	is	an	approximation	to	a	derivative.
A	difference	between	differences	is	an	approximation	to	a	derivative	of	a
derivative,	that	is,	a	second	derivative.	In	the	limit	of	infinitely	many	point
masses,	infinitesimally	close	together,	the	force	exerted	at	a	given	point	of
the	spring	is	therefore	proportional	to	∂2u	/	∂x2,	where	x	is	the	space
coordinate	measured	along	the	length	of	the	string.	By	Newton’s	second
law	this	is	proportional	to	the	acceleration	at	right	angles	to	that	line,	which
is	the	second	time	derivative	∂2	u/∂t	2.	Writing	the	constant	of
proportionality	as	c2	we	get



where	u(x,	t)	is	the	vertical	position	of	location	x	on	the	string	at	time	t.

2	For	an	animation	see	http://en.wikipedia.org/wiki/Wave_equation

3	In	symbols,	the	solutions	are	precisely	the	expressions

u(x,	t)	=	f(x	-	ct)	+	g(x	+	ct)

for	any	functions	f	and	g.

4	Animations	of	the	first	few	normal	modes	of	a	circular	drum	can	be	found	at
http://en.wikipedia.org/wiki/Vibrations_of_a_circular_drum
Circular	and	rectangular	drum	animations	are	at
http://www.mobiusilearn.com/viewcasestudies.aspx?id=2432

Chapter	9

1	Suppose	that	u(x,	t)=e-n
2αt	sin	nx.	Then

Therefore	u(x,	t)	satisfies	the	heat	equation.

2	This	is	JFIF	encoding,	used	for	the	web.	EXIF	coding,	for	cameras,	also
includes	‘metadata’	describing	the	camera	settings,	such	as	date,	time,	and
exposure.

Chapter	10

1	http://www.nasa.gov/topics/earth/features/2010-warmest-year.html

Chapter	11

1	Donald	McDonald.	How	does	a	cat	fall	on	its	feet?,	New	Scientist	7	no.	189
(1960)	1647–9.	See	also	http://en.wikipedia.org/wiki/Cat_righting_reflex

2	The	curl	of	both	sides	of	the	third	equation	gives

Vector	calculus	tells	us	that	the	left-hand	side	of	this	equation	simplifies	to

∇	×	∇	×	E	=	∇(∇.E)	-	∇2E)	=	-	∇2E

where	we	also	use	the	first	equation.	Here	∇2	is	the	Laplace	operator.	Using

http://en.wikipedia.org/wiki/Wave_equation
http://en.wikipedia.org/wiki/Vibrations_of_a_circular_drum
http://www.mobiusilearn.com/viewcasestudies.aspx?id=2432
http://www.nasa.gov/topics/earth/features/2010-warmest-year.html
http://en.wikipedia.org/wiki/Cat_righting_reflex


the	fourth	equation,	the	right-hand	side	becomes

Cancelling	out	two	minus	signs	and	multiplying	by	c2	yields	the	wave
equation	for	E:

A	similar	calculation	yields	the	wave	equation	for	H.

Chapter	12

1	Specifically,

where	SA	and	SB	are	the	entropies	in	states	A	and	B.

2	The	second	law	of	thermodynamics	is	technically	an	inequality,	not	an
equation.	I’ve	included	the	second	law	in	this	book	because	its	central
position	in	science	demanded	its	inclusion.	It	is	undeniably	a	mathematical
formula,	a	loose	interpretation	of	‘equation’	that	is	widespread	outside	the
technical	scientific	literature.	The	formula	alluded	to	in	Note	1	of	this
chapter,	using	an	integral,	is	a	genuine	equation.	It	defines	the	change	in
entropy,	but	the	second	law	tells	us	what	its	most	important	feature	is.

3	Brown	was	anticipated	by	the	Dutch	physiologist	Jan	Ingenhousz,	who	saw
the	same	phenomenon	in	coal	dust	floating	on	the	surface	of	alcohol,	but	he
didn’t	propose	any	theory	to	explain	what	he	had	seen.

Chapter	13

1	In	the	Gran	Sasso	National	Laboratory,	in	Italy,	is	a	1300-tonne	particle
detector	called	OPERA	(oscillation	project	with	emulsion-tracking
apparatus).	Over	two	years	it	tracked	16,000	neutrinos	produced	at	CERN,
the	European	particle	physics	laboratory	in	Geneva.	Neutrinos	are
electrically	neutral	subatomic	particles	with	a	very	small	mass,	and	they	can
pass	through	ordinary	matter	with	ease.	The	results	were	baffling:	on
average	the	neutrinos	completed	the	730-kilometre	trip	60	nanoseconds
(billionths	of	a	second)	sooner	than	they	would	have	done	if	they	had	been
travelling	at	the	speed	of	light.	The	measurements	are	accurate	to	within	10
nanoseconds,	but	there	remains	the	possibility	of	some	systematic	error	in



the	way	the	times	are	calculated	and	interpreted,	which	is	highly	complex.
The	results	have	been	posted	online:	‘Measurement	of	the	neutrino

velocity	with	the	OPERA	detector	in	the	CNGS	beam’	by	the	OPERA
Collaboration,	http://arxiv.org/abs/1109.4897
This	article	does	not	claim	to	have	disproved	relativity:	it	merely	presents

its	observations	as	something	that	the	team	cannot	explain	with
conventional	physics.	A	non-technical	report	can	be	found	at
http://www.nature.com/news/2011/110922/full/news.2011.554.html
A	possible	source	of	systematic	error,	related	to	differences	in	the	force

of	gravity	at	the	two	laboratories,	is	proposed	at
http://www.nature.com/news/2011/111005/full/news.2011.575.html	but	the
OPERA	team	disputes	this	suggestion.
Most	physicists	think	that,	despite	the	great	care	exercised	by	the

researchers,	some	systematic	error	is	involved.	In	particular,	previous
observations	of	neutrinos	from	a	supernova	seem	to	conflict	with	the	new
ones.	The	resolution	of	the	controversy	will	require	independent
experiments,	and	these	will	take	several	years.	Theoretical	physicists	are
already	analysing	potential	explanations	ranging	from	minor,	well-known
extensions	of	the	standard	model	of	particle	physics	to	exotic	new	physics
in	which	the	universe	has	more	dimensions	than	the	usual	four.	By	the	time
you	read	this,	the	story	will	already	have	moved	on.

2	A	thorough	explanation	is	given	by	Terence	Tao	on	his	website:
http://terrytao.wordpress.com/2007/12/28/einsteins-derivation-of-emc2/
The	derivation	of	the	equation	involves	five	steps:
(a)	Describe	how	space	and	time	coordinates	transform	when	the	frame	of

reference	is	changed.
(b)	Use	this	description	to	work	out	how	the	frequency	of	a	photon

transforms	when	the	frame	of	reference	is	changed.
(c)	Use	Planck’s	law	to	work	out	how	the	energy	and	momentum	of	a

photon	transform.
(d)	Apply	conservation	of	energy	and	momentum	to	work	out	how	the

energy	and	momentum	of	a	moving	body	transform.
(e)	Fix	the	value	of	an	otherwise	arbitrary	constant	in	the	calculation	by

comparing	the	results	with	Newtonian	physics	when	the	velocity	of	the
body	is	small.

3	Ian	Stewart	and	Jack	Cohen.	Figments	of	Reality,	Cambridge	University

http://arxiv.org/abs/1109.4897
http://www.nature.com/news/2011/110922/full/news.2011.554.html
http://www.nature.com/news/2011/111005/full/news.2011.575.html
http://terrytao.wordpress.com/2007/12/28/einsteins-derivation-of-emc2/


Press,	Cambridge	1997,	page	37.

4	http://en.wikipedia.org/wiki/Mass%E2%80%93energy_equivalence

5	A	few	didn’t	see	it	that	way.	Henry	Courten,	reanalysing	photographs	of	the
1970	solar	eclipse,	reported	the	existence	of	at	least	seven	very	tiny	bodies
in	close	orbits	round	the	Sun	–	perhaps	evidence	of	a	thinly	populated	inner
asteroid	belt.	No	conclusive	evidence	of	their	existence	has	been	found,	and
they	would	have	to	be	less	than	60	kilometres	across.	The	objects	seen	in
the	photographs	may	just	have	been	passing	small	comets	or	asteroids	in
eccentric	orbits.	Whatever	they	were,	they	weren’t	Vulcan.

6	The	vacuum	energy	in	a	cubic	centimetre	of	free	space	is	estimated	to	be
10–15	joules.	According	to	quantum	electrodynamics	it	should	in	theory	be
10107	joules	–	wrong	by	a	factor	of	10122.
http://en.wikipedia.org/wiki/Vacuum_energy

7	Penrose’s	work	is	reported	in:	Paul	Davies.	The	Mind	of	God,	Simon	&
Schuster,	New	York	1992.

8	Joel	Smoller	and	Blake	Temple.	A	one	parameter	family	of	expanding	wave
solutions	of	the	Einstein	equations	that	induces	an	anomalous	acceleration
into	the	standard	model	of	cosmology.	http://arxiv.org/abs/0901.1639

9	R.S.	MacKay	and	C.P.	Rourke.	A	new	paradigm	for	the	universe,	preprint,
University	of	Warwick	2011.	For	more	details	see	the	papers	listed	on
http://msp.warwick.ac.uk/~cpr/paradigm/

Chapter	14

1	The	Copenhagen	interpretation	is	usually	said	to	have	emerged	from
discussions	between	Niels	Bohr,	Werner	Heisenberg,	Max	Born,	and
others,	in	the	mid-1920s.	It	acquired	the	name	because	Bohr	was	Danish,
but	none	of	the	physicists	involved	used	the	term	at	the	time.	Don	Howard
has	suggested	that	the	name,	and	the	viewpoint	that	it	encapsulates,	first
appeared	in	the	1950s,	probably	through	Heisenberg.	See:	D.	Howard.
‘Who	Invented	the	“Copenhagen	Interpretation”?	A	Study	in	Mythology’,
Philosophy	of	Science	71	(2004)	669–682.

2	Our	cat	Harlequin	can	often	be	observed	in	a	superposition	of	the	states
‘asleep’	and	‘snoring’,	but	that	probably	doesn’t	count.

3	Two	science	fiction	novels	about	this	are	Philip	K.	Dick’s	The	Man	in	the
High	Castle	and	Norman	Spinrad’s	The	Iron	Dream.	Thriller	writer	Len

http://en.wikipedia.org/wiki/Mass%E2%80%93energy_equivalence
http://en.wikipedia.org/wiki/Vacuum_energy
http://arxiv.org/abs/0901.1639
http://msp.warwick.ac.uk/~cpr/paradigm/


Deighton’s	SSGB	is	also	set	in	a	counterfactual	Nazi-ruled	England.

Chapter	15

1	Suppose	I	roll	a	dice	[see	Note	1	of	Chapter	7]	and	assign	symbols	a,	b,	c
like	this:

a	The	dice	rolls	1,	2,	or	3

b	The	dice	rolls	4	or	5

c	The	dice	rolls	6

Symbol	a	occurs	with	probability	 	symbol	b	has	probability	 ,	and	symbol	c
has	probability	 .	Then	my	formula,	whatever	it	is,	will	assign	an
information	content	H( , , ).
However,	I	could	think	of	this	experiment	in	a	different	way.	First	I

decide	whether	the	dice	rolls	something	less	than	or	equal	to	3,	or	greater.
Call	these	possibilities	q	and	r,	so	that

q	The	dice	rolls	1,	2,	or	3

r	The	dice	rolls	4,	5,	or	6

Now	q	has	probability	 	and	r	has	probability	 .	Each	conveys	information
H( , ).	Case	q	is	my	original	a,	and	case	r	is	my	original	b	and	c.	I	can	split
case	r	into	b	and	c,	and	their	probabilities	are	 	and	 	given	that	r	has
happened.	If	we	now	consider	only	this	case,	the	information	conveyed	by
whichever	of	b	and	c	turns	up	is	H( ,	 ).	Shannon	now	insists	that	the
original	information	should	be	related	to	the	information	in	these	subcases
like	this:

See	Figure	61.

Fig	61	Combining	choices	in	different	ways.	The	information	should	be	the
same	in	either	case.

The	factor	 	in	front	of	the	final	H	is	present	because	this	second	choice
occurs	only	half	the	time,	namely	when	r	is	chosen	in	the	first	stage.	There



is	no	such	factor	in	front	of	the	H	just	after	the	equals	sign,	because	this
refers	to	a	choice	that	is	always	made	–	between	q	and	r.

2	See	Chapter	2	of:	C.E.	Shannon	and	W.	Weaver.	The	Mathematical	Theory
of	Communication,	University	of	Illinois	Press,	Urbana	1964.

Chapter	16

1	If	the	population	xt	is	relatively	small,	so	that	is	close	to	zero,	then	1	–	xt	is
close	to	1.	The	next	generation	will	therefore	have	a	size	close	to	kxt,	which
is	k	times	as	large	as	the	current	one.	As	the	size	of	the	population
increases,	the	extra	factor	1	–	xt	makes	the	actual	growth	rate	smaller,	and	it
drops	to	zero	as	the	population	approaches	its	theoretical	maximum.

2	R.F.	Costantino,	R.A.	Desharnais,	J.M.	Cushing,	and	B.	Dennis.	Chaotic
dynamics	in	an	insect	population,	Science	275	(1997)	389–391.

3	J.	Huisman	and	F.J.	Weissing.	Biodiversity	of	plankton	by	species
oscillations	and	chaos,	Nature	402	(1999)	407–410.

4	E.	Benincà,	J.	Huisman,	R.	Heerkloss,	K.D.	Jöhnk,	P.	Branco,	E.H.	Van
Nes,	M.	Scheffer,	and	S.P.	Ellner.	Chaos	in	a	long-term	experiment	with	a
plankton	community,	Nature	451	(2008)	822–825.

Chapter	17

1	The	value	of	a	call	option	is

C(s,	t)	=	N(d1)S	-	N(d2)Ke-r(T	-	t)

where

The	price	of	a	corresponding	put	option	is

Here	N(dj)	is	the	cumulative	distribution	function	of	the	standard	normal
distribution	for	j	=	1,	2,	and	T–t	is	the	time	to	maturity.

2	Strictly,	a	Sveriges	Riksbank	Prize	in	Economic	Sciences	in	Memory	of



Alfred	Nobel.

3	M.	Poovey.	Can	numbers	ensure	honesty?	Unrealistic	expectations	and	the
U.S.	accounting	scandal,	Notices	of	the	American	Mathematical	Society	50
(2003)	27–35.

4	A.G.	Haldane	and	R.M.	May.	Systemic	risk	in	banking	ecosystems,	Nature
469	(2011)	351–355.
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