
Atomic Design
Brad Frost

Atomic Design
Brad Frost

Table of Contents

 1.
 Designing Systems

 Create design systems, not pages 8

 2. Atomic Design Methodology

 Atoms, molecules, organisms, templates,
 and pages 38

 3. Tools of the Trade

 Pattern Lab and the qualities of effective
 style guides 64

 4. The Atomic Workflow

 People, process, and making design
 systems happen 94

 5. Maintaining Design Systems

 Making design systems stand the test of time 142

Thanks & Acknowledgements 182

Resources 184

About the Author 191

Copyright © 2016 Brad Frost All rights reserved

Publisher: Brad Frost
Copy editor: Owen Gregory
Print book designer: Rachel Arnold Sager
Ebook designer: Rachel Andrew
ISBN: 978-0-9982966-0-9

Proudly created in Pittsburgh, Pennsylvania

6 ATOMIC DESIGN

Foreword
It was 2013, and we huddled with Brad Frost and Jennifer Brook around
a sunlit kitchen table in Brooklyn. The four of us had just begun work
on a new website for TechCrunch, and we were sketching wireframes
in Jennifer’s apartment, wrestling with the new demands of responsive
design. Brad pulled out his laptop: “I’ve been playing with a new idea.”

Brad’s screen looked like a webpage had exploded. Bits and pieces of UI
floated free of each other, untethered by a unified design or hierarchy.
It looked like a pile of spare parts from a web garage.

Brad flashed his crazy grin and nodded, “Great, right?” The three of
us stared back blankly. Somebody coughed.

And then Brad Frost the front-end developer started talking like Brad
Frost the chemist. He talked about atoms and molecules and organisms
– about how large pieces of design can be broken down into smaller
ones and even recombined into different large pieces. Instead
of visualizing the finished recipe for the design, in other words, he
was showing us the ingredients. And we lit up: this was a shift in
perspective, a way to move away from conceiving a website design as
a collection of static page templates, and instead as a dynamic system
of adaptable components. It was an inspired way to approach this
responsive website – and all responsive projects for that matter.

Brad’s new idea was atomic design, and it changed the way we work
in this astonishingly multi-device world. By thinking about interfaces
simultaneously at both the large (page) level as well as the small
(atomic) level, we streamlined our process: we introduced more rigorous
thought into the role of every element; we fell into habits that improved
the consistency of our UX; and crucially, we started working much faster
and more collaboratively. Atomic design was our superpower.

In the early stages of the TechCrunch redesign, there was this moment
where we talked about what we wanted the article page to be. Within
an hour, Brad had a fully responsive version wired up from his kit of
parts. That was the moment we realized just how quickly we were going
to be able to move, a powerful case for investing in this clever, modular
approach.

Almost four years later, we haven’t looked back. Brad continued to
refine his techniques and tools over the projects that followed,

FOREWARD 7

including blockbuster sites for Entertainment Weekly and Time, Inc.
We’ve used these lessons to help in-house product teams make
sites faster and with higher quality, build massive design systems
for organizations looking to centralize their design and development
work across international offices, and much more.

Atomic design gave us speed, creative freedom, and flexibility.
It changed everything. We think it will do the same for you, too.

This wonderful book explains the philosophy, practice, and
maintenance of atomic design systems. And it does so with the
cheerful, helpful generosity that so describes Brad himself.

Brad’s energy and big-hearted enthusiasm for the web and its
makers are boundless. For years, Brad has worked at the forefront
of responsive design technique – and he’s shared everything along
the way. His This Is Responsive site is the go-to resource for finding
responsive solutions to any UX problem. His blog and Twitter feeds
share his roadblocks and his solutions. When designers and developers
follow Brad Frost, they get a fast and dense stream of practical,
passionate insight for building beautiful and resilient websites.
This book doubles down on all of that.

Given the chance, Brad would knock on the door of every designer
and developer to personally deliver his message. We’ve watched
with astonishment (and mild envy) as this whirling dervish has
barnstormed around the globe to share his advice with hundreds of
teams and organizations across six continents. (Atomic design, coming
soon to Antarctica!) But even Brad Frost can’t be everywhere at once,
and we’re delighted that he’s detailed his ideas with such depth and
good humor in this book.

Atomic design is blowing up around the world; it transformed our
design practice; and we’re excited for it to bring the same creative
combustion to your process, too.

- Josh Clark and Dan Mall, Brad’s frequent collaborators and his
 biggest fans

https://bigmedium.com/
http://danielmall.com/

8 ATOMIC DESIGN

7 http://www.uie.com/articles/magic_escalator/

8 http://en.wikipedia.org/wiki/Scrum_%28software_development%29

Create design systems, not pages

Designing

Systems

Chapter 1

CHAPTER 1 / DESIGNING SYSTEMS 9

A long, long time ago, there were these things called books.
Remember them? These contraptions were heavy and bulky and
made from the pulp of dead trees. Inside these books were things
called pages. You turned them, and they cut your fingers.

Awful things. I’m so glad these book things with their razor-sharp
pages aren’t around anymore.

Oh, wait…

Our paginated past

The page has been with us for a long time now. A few millennia,
actually. The first books were thick slabs of clay created about 4,000
years ago, soon replaced by scrolls as the preferred way to consume
the written word. And while reading technology has come a long
way – from papyrus to parchment to paperback to pixels – the
concept of the page holds strong to this day.

The page metaphor has been baked into the lexicon of the web since
the very beginning. Tim Berners-Lee invented the World Wide Web
so that he, his colleagues at CERN, and other academics could easily
share and link together their world of documents. This document-
based, academic genesis of the web is why the concept of the page is
so deeply ingrained in the vocabulary of the internet.

So what?

As we’ll discuss throughout this book, the way things are named
very much impacts how they’re perceived and utilized. Thinking
of the web as pages has real ramifications on how people interact
with web experiences, and influences how we go about creating web
interfaces.

From the beginning, the page metaphor provided users with a
familiar language with which to navigate this brave new World Wide
Web. Concepts like bookmarking and pagination helped new web
users explore and eventually master an entirely new medium using
conventions they were already comfortable with.

10 ATOMIC DESIGN

The page was – and continues to be – a very visible and helpful
metaphor for the users of the web. It also has a profound influence
on how web experiences are created.

In the early days of the web, companies looking to get online simply
translated their printed materials onto their websites. But even
though these brochure websites offered a very one-dimensional
perspective of what the web could offer, viewing websites as digital
representations of the printed page was easy for creators to wrap
their heads around.

But we’re now 25 years into this new medium, and this
once necessary figure of speech has overstayed its welcome.
Unfortunately, the page metaphor continues to run deep with
respect to how we scope and execute our web projects. Here are
just a few examples I hear on a regular basis:

“We’re a startup looking to launch a five-page website
this October…”

“Brad, how long will the homepage take to build?”

“How are we ever going to redesign this university website that
contains over 30,000 pages?!”

Chrome browser displaying ‘This webpage is not available’ message.

CHAPTER 1 / DESIGNING SYSTEMS 11

All of the statements above make the fundamental mistake of
assuming a page is a uniform, isolated, quantifiable thing. The
reality is that the web is a fluid, interactive, interdependent
medium. As soon as we come to terms with this fact, the notion
of the page quickly erodes as a useful means to scope and create
web experiences.

How long will a homepage take to build? Well, that sort of depends
on what’s on it, right? Maybe the homepage simply consists of a
tagline and a background image, which means it could be done by
lunch. Or maybe it’s chock-full of carousels, dynamic forms, and
third-party integrations. In that case, maybe the homepage will
take several months to complete.

As for the 30,000-page university website, it might be tempting to
declare, “Thousands of pages?! Wow, that sounds challenging!” But
in reality, those 30,000 pages may consist of three content types
and two overarching layouts.

Ultimately, a project’s level of effort is much better determined by
the functionality and components contained within those pages,
rather than on the quantity of pages themselves.

The page metaphor has served its purpose helping users familiarize
themselves with the web, and provided creators with the necessary
transitional language with which to create for a brand new medium.
But to build thoughtful interfaces meant to be served to a multitude
of connected devices, the time has come for us to evolve beyond
the page.

Tearing up the page

Thankfully, the web community is hard at work establishing
principles and practices to help us effectively talk about and
create for the web. And there’s one concept that keeps popping
up in every conversation about how to make successful web
experiences: modularity.

Modularity predates the web by a long shot. The Industrial
Revolution brought about interchangeable parts and Henry Ford’s
assembly line forever transformed the automobile manufacturing

http://bradfrost.com/blog/post/scope-components-not-pages/

12 ATOMIC DESIGN

process. The earliest cars and components were individually crafted,
which led to many safety and maintainability nightmares. Ford broke
the automobile down into its component parts and modularized the
assembly process. The results spoke for themselves: more uniform,
more reliable, safer cars rolled out of the factory, and in record time
to boot.

As the machine age became the computer age, computer scientists
began practicing object-oriented programming and establishing
important modular concepts like separation of concerns and the single
responsibility principle. It is from this world that the World Wide Web
was born, so it’s no surprise that modular design quickly became a
design principle for the architecture of the web.

Slowly, but surely, these concepts found their way into web designers’
workflows. In the early 2000s we saw the introduction of libraries
like YUI and jQuery UI that provided developers with a toolkit of
widgets and patterns to create more consistent user interfaces.

If modularity has been around for such a long time, why are we
talking about it now?

The short answer is that modularity matters more than ever. Right
now, our entire industry is drowning in a sea of devices, viewport
sizes, and online environments. And things aren’t slowing down
anytime soon.

Disruption will only accelerate. The quantity and diversity
of connected devices – many of which we haven’t imagined
yet – will explode, as will the quantity and diversity of the
people around the world who use them. Our existing standards,
workflows, and infrastructure won’t hold up. Today’s onslaught
of devices is already pushing them to the breaking point. They
can’t withstand what’s ahead.

- The Future-Friendly manifesto

http://www.w3.org/DesignIssues/Principles.html#Modular
http://yuilibrary.com/
http://jqueryui.com/
http://futurefriendlyweb.com/

CHAPTER 1 / DESIGNING SYSTEMS 13

Like it or not, this multi-device universe is our reality. It was hard
enough to get our web pages to display consistently in a handful
of desktop browsers, but we’re now tasked with ensuring our web
experiences look and function beautifully on a dizzying array of
smartphones, tablets, phablets, netbooks, notebooks, desktops, TVs,
game consoles, and more.

To address this reality while maintaining our sanity, it’s absolutely
necessary for us to take a step back and break these giant
responsibilities into smaller, more manageable chunks.

And that’s exactly what folks are doing. The spirit of modularity
is weaving its way into every aspect of the web creation process
and having profound effects on organizations’ strategy, process,
content, design, and development.

A manageable strategy

Every organization is finally realizing that bulldozing their entire
website and replacing it with a New-And-Shiny™ website every
three to eight years isn’t (and never was) an optimal solution.

These are just some of the connected devices we need to worry about.

14 ATOMIC DESIGN

Out with the old! In with the new! It’s certainly an attractive
prospect. But even before the launch party confetti is swept up, the
calls start coming in. “You moved my cheese!” cry the users, who
spent years learning the previous interface and functionality.

When massive redesigns launch with significant changes to the
experience, users get knocked down what Jared Spool calls the
“Magic Escalator of Acquired Knowledge”. Huge redesigns are a
jolt to the system, and newly frustrated users have to spend a great
deal of time and energy relearning the experience in order to slowly
climb back up that escalator of acquired knowledge.

In addition to disorienting users, these monolithic redesigns
don’t get to the organizational root of the problem. Without
a fundamental change in process, history is bound to repeat
itself, and what’s New-And-Shiny™ today becomes Old-And-
Crusty™ tomorrow. The cycle repeats itself as companies push off
minor updates until the next big redesign, ultimately paralyzing
themselves and frustrating users in the process.

Thankfully, even massive organizations are taking cues from the
smaller, leaner startup world and striving to get things out the
door quicker. By creating minimum viable products and shipping
often to iteratively improve the experience, organizations are able
to better address user feedback and keep up with the ever-shifting
web landscape.

Moving away from Ron Popeil-esque, set-it-and-forget-it
redesigns requires deliberate changes in organizational structure
and workflow. Which is a heck of a lot easier said than done.

An iterative process

If I had a quarter for every time I heard some stakeholder declare
“We’re trying to be more agile,” I’d be orbiting the earth in my
private spacecraft instead of writing this book.

Wanting to be more agile is commendable. But agile is a loaded
term, with big differences between capital-A Agile and lowercase-a
agile. Capital-A Agile is a specific methodology for software
development, equipped with a manifesto and accompanying
frameworks like Scrum and Lean.

http://www.uie.com/articles/magic_escalator/
http://www.agilemanifesto.org/
http://en.wikipedia.org/wiki/Scrum_%28software_development%29
http://en.wikipedia.org/wiki/Lean_software_development

CHAPTER 1 / DESIGNING SYSTEMS 15

Lowercase-a agile is more of an informal desire to create an
efficient process. This desire may certainly involve adopting general
principles from capital-A Agile, but it may not involve adopting the
Agile process in its entirety. Project manager Brett Harned explains:

We want to be more agile; we’re embracing change, continuing
improvement, being as flexible as possible, and adapting as
we see fit. The thing is, we won’t ever truly be Agile, as the
Manifesto states. That’s okay, as long as we say what we will be.

- Brett Harned

Organizational structure, client relations, personalities, and so on
all play major roles in determining a project’s process. The trick
is to find the process that works best for you, your organizational
constraints and opportunities.

Even though it may be impossible to adopt a truly Agile process, it’s
still a sound idea to work in cross-disciplinary teams, get into the
final environment faster, ship early and often, and break bigger tasks
into smaller components. In chapter 4, we’ll detail how to establish
an effective pattern-based workflow.

Modularizing content: I’m on Team Chunk

Get your content ready to go anywhere, because it’s going to
go everywhere.

- For A Future-Friendly Web

Publishing content for the Web used to be a fairly straightforward
endeavor, as the desktop web was the only game in town. Oh, how
things have changed. Today, our content is consumed by a whole
slew of smartphones, dumb phones, netbooks, notebooks, tablets,
e-readers, smartwatches, TVs, game consoles, digital signage, car
dashboards, and more.

To properly address this increasingly diverse and eclectic digital
landscape, we need to dramatically overhaul our perception of
content and the tools we use to manage it.

http://www.agilemanifesto.org/principles.html
http://cognition.happycog.com/article/diy-process
http://bradfrost.com/blog/web/for-a-future-friendly-web/

16 ATOMIC DESIGN

In the future, what I believe is that we are going to have better
content management and content publishing tools. We are
going to have ways to take well-structured content, well-
designed chunks of content that we can then figure out how
we want to restructure and publish and display in a way that’s
going to be right for the appropriate platform.

- Karen McGrane

Thankfully, this future is starting to take shape. Organizations are
recognizing the need to create modularized content to better reach
their audience wherever they may be. And content management
systems are evolving beyond their web publishing platform roots
into tools that can elegantly create and maintain modular content.
While sophisticated content management systems have existed for
years in the form of custom solutions like NPR’s COPE (Create Once,
Publish Everywhere) platform, smart modular thinking is making
its way into mainstream content management systems.

Classy code

Modularity has long been a staple principle in the world of
computer science, as we discussed earlier. While this principle
existed long before the web was invented, it has taken some time
for modularity to become engrained in the minds and hearts of
web developers.

Despite being around since 1995, JavaScript, the programming
language of the web, first had to endure some growing pains to
mature into the capable, respected language it is today. Now that
JavaScript has grown up, developers can apply those tried-and-true
computer science principles to their web development workflows.
As a result, we’re seeing folks develop sophisticated JavaScript
patterns and architectures.

Applying modular programming principles to JavaScript is a bit of
a no-brainer, since JavaScript is itself a programming language.
But object-oriented thinking is weaving its way into other aspects
of the web as well, including CSS, the styling language of the web.
Methodologies like OOCSS, SMACSS, and BEM have cropped up to
help web designers create and maintain modular CSS architectures.

http://karenmcgrane.com/2012/09/04/adapting-ourselves-to-adaptive-content-video-slides-and-transcript-oh-my/
http://www.programmableweb.com/news/cope-create-once-publish-everywhere/2009/10/13
http://www.programmableweb.com/news/cope-create-once-publish-everywhere/2009/10/13
http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://oocss.org/
https://smacss.com/
http://csswizardry.com/2013/01/mindbemding-getting-your-head-round-bem-syntax

CHAPTER 1 / DESIGNING SYSTEMS 17

Visually repaired

Not only is modularity infiltrating the code side of style on the
web, it’s revolutionizing how visual designers approach modern
web design.

As the number of viewports and environments proliferate, it’s
become untenable to produce static mockups of every page of a
web experience. As Stephen Hay quipped, presenting fully baked
Photoshop comps “is the most effective way to show your clients
what their website will never look like.”

That’s not to say static design tools like Photoshop and Sketch
aren’t important. Far from it. But it’s the way we use these
tools that has changed dramatically. While creating hundreds
of full-on comps isn’t realistic, these static tools excel at
providing a playground to establish what Andy Clarke calls
“design atmosphere”:

Atmosphere describes the feelings we get that are evoked
by colour, texture and typography. You might already think
of atmosphere in different terms. You might call it “feel”,
“mood” or even “visual identity.” Whatever words you choose,
the atmosphere of a design doesn’t depend on layout. It’s
independent of arrangement and visual placement. It will be
seen, or felt, at every screen size and on every device.

- Andy Clarke

Establishing design atmosphere early is critical to a project’s
success, which is why designers have found ways to facilitate these
important conversations without having to generate full mockups.
Designer Samantha Warren developed design artifacts called
style tiles, which demonstrate color, type, and texture explorations
in a nice encapsulated one-pager. Designer Dan Mall built on
Samantha’s idea with a concept called element collages, which
demonstrate design atmosphere explorations in an exploded collage
of interface elements.

http://stuffandnonsense.co.uk/blog/about/an-extract-from-designing-atoms-and-elements
http://styletil.es/
http://danielmall.com/articles/rif-element-collages/

18 ATOMIC DESIGN

By breaking visual explorations into smaller chunks, designers
save time and effort while avoiding presenting unrealistic,
premature layouts to clients. More importantly, these approaches
shift stakeholders away from simply reacting to a pretty picture,
and instead facilitate crucial conversations about overall design
direction and how they relate to the project’s goals. We’ll discuss
these concepts in more detail in chapter 4, but suffice it to say the
visual design workflow is changing in a big way!

Systematic UI design

We’re not designing pages, we’re designing systems of
components.

- Stephen Hay

What is an interface made of? What are our Lego bricks? What
are our Subway sandwich pieces that we combine into millions of
delicious combinations? It’s these questions that we’ve been asking
ourselves more and more now that we’re sending our interfaces to
more and more places.

A few years ago Ethan Marcotte introduced us to the idea of
responsive web design and its three core tenets: fluid grids, flexible
media, and CSS media queries. These three ingredients provided a
much-needed foundation for designers to create flexible layouts

Style tiles, a concept created by designer Samantha Warren, allow designers to explore
color, typography, and texture without having to develop fully realized comps.

http://bradfrost.com/blog/mobile/bdconf-stephen-hay-presents-responsive-design-workflow/
http://alistapart.com/article/responsive-web-design

CHAPTER 1 / DESIGNING SYSTEMS 19

that smartly adapt to any screen size. Perhaps more importantly,
responsive design helped get designers excited about creating
thoughtful, adaptable, multi-device web experiences.

As designers quickly discovered, creating multi-device web
experiences involves a lot more than creating squishy pages. Each
individual piece of an interface contains its own unique challenges
and opportunities in order for it to look and function beautifully
across many screen sizes and environments.

How can we present primary navigation – typically displayed as a
horizontal list on large screens – in a thoughtful way on smaller
screens? How do lightboxes, breadcrumbs, and carousels translate
to smaller viewports and alternate input types? It’s these questions
that led me to create This Is Responsive, a showcase of responsive
patterns that demonstrate the various ways a particular component
could be executed in a responsive environment.

While This Is Responsive is successful at articulating how these
interface patterns can scale across screen sizes and environments,
it’s still up to designers and developers to put these patterns into
action. And as it turns out, that’s a lot of work.

UI frameworks, in theory and in practice
Designers and developers are already strapped for time and
resources, and they’re now being tasked with making interfaces
that look and function beautifully in any environment. That’s a very
tall order.

This need to address growing device diversity while still
sanely getting projects out the door has given rise to front-
end frameworks like Foundation by Zurb and Bootstrap. These
user interface frameworks provide designers with a collection
of preassembled HTML patterns, CSS styles, and JavaScript to
add functionality to interactive components like dropdowns and
carousels. In essence, these frameworks are handy tool kits for
quickly assembling interfaces.

http://bradfrost.github.io/this-is-responsive/index.html
http://foundation.zurb.com/
http://getbootstrap.com/

20 ATOMIC DESIGN

And boy are these things popular. As I’m writing this, Bootstrap is
the most popular repository on the code-sharing site GitHub, with
over 77,000 stars and 30,000 forks. These frameworks’ popularity
is a testament to the fact that designers and developers are seeking
solid ground to stand on in this ever-complex web landscape.

One of the most attractive aspects of these frameworks is speed.
Frameworks like Bootstrap allow designers to get ideas off the
ground quickly, rapidly create prototypes, and launch sites sooner.
Because the patterns provided by a tool kit are already cross-
browser tested, developers can spend their time on more important
tasks rather than beating their heads against a table testing some
archaic version of Internet Explorer. And in case designers do get
stuck, these frameworks’ communities can provide helpful support
and advice.

For freelancers, this increase in speed might mean they can take
on an extra project or three, yielding more financial stability for
the year. And in the startup world – a place where Bootstrap is

Bootstrap provides a collection of UI components to speed up development.

https://github.com/

CHAPTER 1 / DESIGNING SYSTEMS 21

omnipresent – minimum viable products can launch sooner,
leading to faster answers regarding the products’ viability.

So frameworks like Bootstrap are insanely popular design systems
that provide well-tested components, resulting in consistent
designs and faster launches. What’s not to love? Well, like most
everything in life, there are cons right there alongside the pros.

Trouble in framework paradise

When I was a kid, I’d watch sci-fi movies and TV shows with a
strange fascination. There was one question I could never quite
shake: why are they all dressed the same?

I could only guess that given enough time, we solve fashion. “Say,
these jumpsuits are pretty snazzy, and comfortable too! Let’s just
all wear these from now on.” “Sounds good to me!”

Of course, that’s not how human beings work. We all have different
tastes, goals, and desires. Variety, as they say, is the spice of life,
and fashion, music, and design reflect our diverse nature. Yet on
the web we tend to fall into the trap of wanting everyone to do
things the same way. “Why don’t all browsers just standardize
on WebKit?” “Why can’t device manufacturers just use the same
screen sizes?” “Always use jQuery!” “Never use jQuery!” “Just use
frameworks!” “Never use frameworks!”

In the future, everyone dresses the same. Illustration credit: Melissa Frost.

22 ATOMIC DESIGN

Just like the real world, the diverse needs, goals, and desires of web
projects lead to a myriad of different solutions. Of course, there’s a
time and place for everything, and designers and developers need
the discernment to know which tools to use and when.

Front-end frameworks are tools that provide a specific solution
and a particular look and feel. While those solutions help speed up
development, the resulting experiences end up resembling those
sci-fi jumpsuits. When everyone uses the same buttons, grids,
dropdowns, and components, things naturally start to look the
same. If Nike, Adidas, Puma, and Reebok were to redesign their
respective sites using Bootstrap, they would look substantially
similar. That’s certainly not what these brands are going for. Sure,
each brand can modify and extend the default look and feel, but
after a while customization means fighting the framework’s given
structure, style, and functionality.

In addition to look-alike issues, these frameworks can add
unnecessary bloat to an experience. It’s fantastic that frameworks
provide plenty of prebuilt components and functionality, but a large
percentage of designers and developers won’t adopt every aspect
of the framework. Unfortunately, users still have to download the
framework’s unused CSS and JavaScript, resulting in slower page
loads and frustration.

On the flip side of that coin, frameworks might not go far
enough, leading to developers needing to create a substantial
amount of custom code to achieve their projects’ goals. At some
point, a threshold is crossed where the initial benefits of using
a framework–namely development–are outweighed by the time
spent modifying, extending, and fixing the framework.

And then there’s the issue with naming. Using a framework
means subscribing to someone else’s structure, naming, and style
conventions. Of course, it’s important to establish a useful front-
end lexicon, but what makes sense for an organization might not
be what comes out of a framework’s box. I, for one, would balk
at the idea of using Bootstrap’s default component for a featured
content area they call a “jumbotron”. How a framework’s naming
conventions jive with an existing codebase and workflow should be
properly discussed before jumping on board the framework train.

CHAPTER 1 / DESIGNING SYSTEMS 23

Now that we’ve put frameworks through the wringer, it’s
important to take a step back and recognize that conceptually these
frameworks are very much on point. It’s an excellent idea to work
with a design tool kit that promotes consistency and speeds up
development time. While discussing the redesign of Microsoft’s
homepage by Austin-based web shop Paravel, developer Dave
Rupert stressed the importance of creating and delivering a design
system to their client. Dave wonderfully articulated that it’s not
necessarily about using Bootstrap for every client, but rather
creating “tiny Bootstraps for every client.”

Responsive deliverables should look a lot like fully-functioning
Twitter Bootstrap-style systems custom tailored for your
clients’ needs. These living code samples are self-documenting
style guides that extend to accommodate a client’s needs as
well as the needs of the ever-evolving multi-device web.

- Dave Rupert

It’s not just about using a design system, it’s about creating
your system.

Design systems save the day

So what do robust design systems look like? What form do they
take? How do you create, maintain, and enforce them?

The cornerstones of good design systems are style guides, which
document and organize design materials while providing guidelines,
usage, and guardrails.

As it happens, there are many flavors of style guides, including
documentation for brand identity, writing, voice and tone, code,
design language, and user interface patterns. This book won’t detail
every category of style guide, but it’s important to take a look at
each to better understand how each style guide influences the
others, and how style guides for the web fit into a larger ecosystem.

http://daverupert.com/2013/04/responsive-deliverables/
http://bradfrost.com/blog/post/style-guides/2

24 ATOMIC DESIGN

Brand identity

Brand identity guidelines define the assets and materials that make
a company unique. Logos, typography, color palettes, messaging
(such as mission statements and taglines), collateral (such as
business card and PowerPoint templates), and more are aggregated
and described in brand identity guidelines.

It’s essential for a brand to present itself in a cohesive manner
across an increasing number of media, channels, and touchpoints.
How can everyone within an organization speak in one voice and
feel part of a singular entity? How do third parties know which
Pantone colors to use and how to correctly use the brand’s logo?
Brand identity guidelines provide answers to these fundamental
questions in one centralized hub.

Historically, brand identity guidelines were contained in hard-
cover books (remember, those things with the pages?), but as with
everything else, brand style guides are making their way online.

West Virginia University’s brand style guide.

CHAPTER 1 / DESIGNING SYSTEMS 25

Design language

While brand identity guidelines are fairly tactile, design language
guidelines are a bit harder to pin down. Design language style guides
articulate a general design direction, philosophy, and approach to
specific projects or products.

To present itself in a cohesive way across a growing range of
products and media, Google developed a design language called
material design. The material design style guide defines its
overarching design philosophy, goals, and general principles, while
also providing specific applications of the material design language.

Design language style guides can (and usually do) incorporate
aspects of other style guide categories in order to make high-level
concepts a bit more tangible.

Design language guidelines aren’t set in stone the way brand guidelines
are. For example, one day Google will likely develop a new design
language to replace material design, so while Google’s overall brand will
remain intact, the design vocabulary around its products will change.

Google’s material design language.

http://www.google.com/design/spec/material-design/introduction.html

26 ATOMIC DESIGN

Voice and tone

People interact with brands across a huge array of channels and
media. In addition to the digital media we’ve discussed so far,
brands also operate in print, retail, outdoor, radio, TV, and other
channels. When a brand must communicate across so many varied
touchpoints, speaking in a unified, consistent manner becomes
critical to a brand’s success.

A brand’s voice stays the same from day to day, but its tone has
to change all the time, depending on both the situation and the
reader’s feelings.

- Kate Kiefer Lee

Voice is an elemental aspect of a brand’s identity, so typically brand
identity guidelines include some reference to the brand’s voice.
However, these guidelines usually aren’t very nuanced, which is
why voice and tone guidelines are so important.

Voice and tone guidelines get into the weeds by articulating how
the company’s voice and tone should shift across a variety of
scenarios. MailChimp’s brilliant voice and tone guidelines define

MailChimp’s Voice and Tone guidelines

http://www.slideshare.net/katekiefer/kkl-c-sforum
http://voiceandtone.com/

CHAPTER 1 / DESIGNING SYSTEMS 27

how the brand’s tone changes across content types, so that when a
user’s credit card is declined, writers know to shift away from their
generally cheeky and playful tone of voice and adopt a more serious
tone instead.

Writing

The rise of the web and content-managed websites makes it
easier than ever for many people within an organization to
publish content. This, of course, can be a double-edged sword, as
maintaining a consistent writing style for an organization with
many voices can be challenging. Writing style guides provide every
author some guidelines and guardrails for contributing content.

Writing style guides can be extremely granular, defining particulars
around punctuation and grammar, but they don’t always have to
be so detailed. Dalhousie University’s writing style guide provides a
concise list of principles and best practices for content contributors
to follow.

The Economist’s writing style guide.

http://www.dal.ca/webteam/web_style_guide/writing_for_the_web.html

28 ATOMIC DESIGN

Code style guides

It’s essential for teams to write legible, scalable, maintainable
code. But without a way to promote and enforce code consistency,
it’s easy for things to fall apart and leave every developer to fend
for themselves.

Code style guides provide conventions, patterns, and examples
for how teams should approach their code. These guidelines and
guardrails help rein in the madness so that teams can focus on
producing great work together rather than refactoring a bunch of
sloppy, inconsistent code.

GitHub’s code style guide provides best practices for writing HTML, CSS, JavaScript, and Ruby
within their organization.

CHAPTER 1 / DESIGNING SYSTEMS 29

Pattern Libraries

And now for the main event. Pattern libraries, also known as front-
end style guides, UI libraries, or component libraries, are quickly
becoming a cornerstone of modern interface design.

The rest of this book will concentrate on how to approach interface
design in a systematic manner, and detail how to establish and
maintain pattern libraries.

Style guide benefits
Getting UIs to work across a myriad of screen sizes, devices,
browsers, and environments is a tall order in and of itself. But
once you factor in other team members, clients, stakeholders, and
organizational quirks, things start looking downright intimidating.

Style guides are important tools that help prevent chaos, both
from a design and development standpoint and also from an
organizational perspective. Here’s why style guides are now
essential tools for modern web design and development.

Code for America’s pattern library

30 ATOMIC DESIGN

Consistently awesome

Web style guides promote consistency and cohesion across a user
interface. This consistency benefits both the people who create
these interfaces and also their users.

I recently visited my health insurance provider’s website to pay
my bill. In the course of five clicks, I was hit with four distinct
interface designs, some of which looked like they were last touched
in 1999. This inconsistent experience put the burden on me, the
user, to figure out what went where and how to interpret disparate
interface elements. By the time I got to the payment form, I felt like
I couldn’t trust the company to successfully and securely process
my payment.

Style guides help iron out these inconsistencies by encouraging
reuse of interface elements. Designers and developers can refer
back to existing patterns to ensure the work they’re producing is
consistent with what’s already been established.

Even third parties responsible for matching their UIs with the
look and feel of a company’s internal UIs can make great use of a
style guide. Externally hosted experiences like payment portals or
localized sites can better match the look and feel of the primary
experience by applying the styles defined in the guide.

Making style guides central to your process results in user
interfaces that feel more united and trustworthy, which helps
users accomplish their tasks faster and empowers them to master
the interface.

A shared vocabulary

What does “utility toolbar” mean? Does everyone understand what
a “touch slider hero” is?

As the number of people working on a project increases, it becomes
all too easy for communication breakdowns to occur. It’s not
uncommon for different disciplines to have different names for the
same module, and for individuals to go rogue and invent their own
naming conventions. For true collaboration to occur, it’s essential
for teams to speak a common language. Style guides are there to
help establish that shared vocabulary.

CHAPTER 1 / DESIGNING SYSTEMS 31

Style guides establish a consistent, shared vocabulary between
everyone involved in a project, encouraging collaboration between
disciplines and reducing communication breakdowns.

Education

In her book Front-End Style Guides, Anna Debenham deftly explains
the many advantages of creating style guides, including one of the
most crucial benefits: education.

Education is as important as documentation. A style guide can
show clients that websites are systems rather than collections
of pages.

- Anna Debenham

Style guides demonstrate to clients, stakeholders, and other
disciplines that there’s a lot of really thoughtful work going into
a website’s design and development beyond just “Hey, let’s make
a new website.” A pattern library communicates the design
language in a very tangible way, which helps stakeholders
understand that an underlying system is determining the
final interface.

Style guides can help alleviate what I call special snowflake syndrome,
where certain departments in an organization think that they
have unique problems and therefore demand unique solutions.
By exposing the design system in the form of a style guide,
these special snowflakes can better appreciate consistency and
understand why their requests for custom designs receive pushback.

Giving names to patterns like ‘Blocks Three-Up’ in Starbucks’ style guide helps team members
speak the same language.

http://maban.co.uk/projects/front-end-style-guides/
http://maban.co.uk/projects/front-end-style-guides/

32 ATOMIC DESIGN

An empathetic workflow

Education isn’t just important for clients and stakeholders. A good
style guide helps inform designers and developers of the tools they
have in their toolbox, and provides rules and best practices for how
to use them properly.

By making a style guide a cornerstone of your workflow (which we’ll
detail in chapter 4), designers and developers are forced to think
about how their decisions affect the broader design system. It
becomes harder to go rogue and easier to think of the greater good.
And this is exactly where you want team members to be.

A style guide provides a home for each discipline to contribute their
respective considerations and concerns for patterns. By collecting
all these considerations under one roof, the style guide becomes a
hub for everyone involved in the project, which helps each discipline
better understand the design system from many perspectives.

Testing, testing, 1-2-3

The homepage is broken, you say? Well, what exactly is breaking it?

The ability to pull an interface apart into its component pieces
makes testing a lot easier. A style guide allows you to view interface
patterns in isolation, allowing developers to zero in on what’s
causing errors, browser inconsistencies, or performance issues.

Speed

Earlier in the chapter we discussed how faster design and development
is one of the main reasons why UI frameworks like Bootstrap are so
popular. We’re under pressure to get projects out the door as soon as
humanly possible. By developing your own design system, you can
reap those same speed rewards as the out-of-the-box UI tool kits.

It’s true that devising an interface design system and creating a
custom pattern library initially takes a lot of time, thought, and

CHAPTER 1 / DESIGNING SYSTEMS 33

effort. But once the pattern library is established, subsequent
design and development becomes much faster, which tends to make
everybody happy.

Federico Holgado, lead UX developer at MailChimp, explained how
MailChimp’s pattern library initially consisted of patterns created
from the four primary screens of their app. But once they moved
on to other areas of the site, they realized they were able to use
existing patterns rather than having to generate brand new patterns
from scratch every time.

…Once we did that, as we were implementing things in other
pages we started to realize: man, this system will actually work
here and this system will actually work here and here.

- Federico Holgado

In it for the long haul

There’s no doubt style guides help teams effectively get things done
in the here and now. But much like a fine wine, style guides increase
in value over time. The beautiful thing about interface design
systems is that they can and should be modified, extended, and
refined for years to come.

As previously mentioned, creating a custom pattern library requires
a lot of hard work up front, but that hard work should provide a
structural foundation for future iteration and refinement. Lessons
learned from analytics, user testing, A/B testing, and experience
should be incorporated into the style guide, making it a powerful
hub for truth, knowledge, and best practices.

Better yet, even if you were to undertake a major redesign you’ll
find that many of the structural interface building blocks will
remain the same. You’ll still have forms, buttons, headings,
other common interface patterns, so there’s no need to throw the
baby out with the bath water. A style guide provides a rock-solid
foundation for all future work, even if that future work may look
totally different.

http://styleguides.io/podcast/federico-holgado/
http://styleguides.io/podcast/federico-holgado/

34 ATOMIC DESIGN

Style guide challenges

By now the benefits of creating design systems should be
abundantly clear, and hopefully visions of sugar plums and
beautiful style guides are dancing through your head. But to reach
style guide nirvana, you must first overcome the many treacherous
challenges that come with the territory.

The hard sell

To benefit from style guides, organizations must first appropriate
the necessary time and budget to make them happen. That requires
organizations to overcome the short-term mentality that all too
often creeps its way into company culture.

The long-term benefits that style guides provide are obvious to
those who are already thinking about the long game. The challenge,
therefore, becomes convincing those stuck in a short-term,
quarter-by-quarter mindset that establishing a thoughtful design
system is a smart investment in the future.

A matter of time

The hard part is building the machine that builds the product.

- Dennis Crowley

Perhaps the biggest, most unavoidable challenge is that style guides
are time-consuming to create. I don’t know about you, but I don’t
go into work every day twiddling my thumbs wondering what to do
with my time. I’ve never met a person who isn’t feeling pressure to
get work out the door, and this pressure naturally leads to focusing
on the primary web project. Unfortunately, aggressive timelines and
finite budgets detract from the effort required to make style guides
happen, even when teams are committed to the cause.

http://techcrunch.com/2011/03/03/founder-stories-foursquare-crowley-machine/

CHAPTER 1 / DESIGNING SYSTEMS 35

Auxiliary Projects

Pattern libraries are often treated as auxiliary projects, rather than
as the component parts of the final product. By treating pattern
libraries as something separate from the core project, they tend to
fall into the nice to have category and become first on the chopping
block when the going gets tough.

This auxiliary project conundrum reminds me of sentiments I often
hear around factoring accessibility into projects. They say, “Oh,
we wish we had the time and budget for accessibility, but…” The
notion that accessibility (and other principles like performance
and responsiveness) is a costly extra line item is a fallacy. Pattern
libraries, like accessibility, are good ideas to bake into your
workflow whether or not the project plan explicitly calls for them.

Maintenance and governance

Even if time and money are allocated to establish style guides, these
valuable tools often die on the vine if they’re not given the focus
they need to reach their true potential.

A maintenance and governance strategy is critical to style guides’
success. Style guides will be thrown in the trash (right beside
all those PSDs and wireframes) and abandoned without a proper
strategy in place for who will manage, maintain, and enforce them.

Style guide maintenance is a hugely important topic and deserves
to be covered in detail, so we’ll dive into how to create maintainable
style guides in chapter 5.

Audience confusion

Style guides can be misunderstood as tools useful only to
designers or developers, which leads to a lack of visibility that
immediately limits their effectiveness. Instead of serving as a
watering hole for everyone in the organization, a style guide can
become a best-kept secret guarded by one discipline. Color me
naive, but I don’t think this helps foster a culture of collaboration.

Without thinking of broader audiences, style guides may come
across as too vague or too technical, which can intimidate other
disciplines and lead them to believe these resources aren’t for them.

36 ATOMIC DESIGN

Style guide structure

For style guides to be useful resources for everyone in an
organization, they should clearly convey what they are and why
they matter. Style guides should be attractive, inviting, visible,
clear, and easy to use. As mentioned above, they should be aware
that a whole host of audiences will be viewing them, so should
therefore aim to be welcoming and useful for as many people
as possible.

Lack of context

Context is key to understanding a design system. Unfortunately,
most pattern libraries out in the wild don’t provide any hints as
to when, how, and where their components get used. Without
providing context, designers and developers don’t know how global
a particular pattern is, and as a result wouldn’t know which pages
of their app would need to be revisited, QA’d, and tested if changes
were made.

Yelp’s style guide homepage sports a handsome design and important intro text explaining the
purpose and audience for the guide.

CHAPTER 1 / DESIGNING SYSTEMS 37

Lacking a clear methodology

As much as I adore the pattern libraries out there, I can’t help but
notice a lack of structure in many of them. Don’t get me wrong, I
think it’s absolutely fantastic that teams are thinking systematically
and are documenting their UI patterns. But I often feel like many
pattern libraries are little more than loosely arranged sprays of
modules. I think there’s room for improvement.

In search of an interface design methodology

For us to create experiences for this eclectic web landscape, we
must evolve beyond the page metaphor that’s been with us since
the birth of the web. Thankfully, organizations are embracing
modularity across every aspect of the web creation process, which is
leading to smarter work and more sustainable systems.

As the number of devices, browsers, and environments continues
to increase at a staggering rate, the need to create thoughtful,
deliberate interface design systems is becoming more apparent
than ever.

Enter atomic design.

‘Highlight Block’ looks useful, but where is this pattern being used?

http://styleguides.io/examples.html

38 ATOMIC DESIGN

7 http://www.uie.com/articles/magic_escalator/

8 http://en.wikipedia.org/wiki/Scrum_%28software_development%29

Atoms, molecules, organisms,

templates, and pages

Atomic Design

Methodology

Chapter 2

CHAPTER 2 / ATOMIC DESIGN METHODOLOGY 39

My search for a methodology to craft interface design systems led
me to look for inspiration in other fields and industries. Given this
amazingly complex world we’ve created, it seemed only natural that
other fields would have tackled similar problems we could learn from
and appropriate. As it turns out, loads of other fields such as industrial
design and architecture have developed smart modular systems for
manufacturing immensely complex objects like airplanes, ships, and
skyscrapers.

But my original explorations kept creeping back to the natural world,
which triggered memories of sitting at a rickety desk in my high
school’s chemistry lab.

Taking cues from chemistry

My high school chemistry class was taught by a no-nonsense Vietnam
vet with an extraordinarily impressive mustache. Mr. Rae’s class had a
reputation for being one of the hardest classes in school, largely because
of an assignment that required students to balance hundreds upon
hundreds of chemical equations contained in a massive worksheet.

If you’re like me, you may need a bit of a refresher to recall what a
chemical equation looks like, so here you go:

An example of a chemical equation showing hydrogen and oxygen atoms combining together to
form a water molecule.

http://us5.campaign-archive1.com/?u=7e093c5cf4&id=ead8a72012&e=ecb25a3f93
http://us5.campaign-archive1.com/?u=7e093c5cf4&id=ead8a72012&e=ecb25a3f93

40 ATOMIC DESIGN

Chemical reactions are represented by chemical equations, which
often show how atomic elements combine together to form
molecules. In the example above, we see how hydrogen and oxygen
combine together to form water molecules.

In the natural world, atomic elements combine together to
form molecules. These molecules can combine further to form
relatively complex organisms. To expound a bit further:

 ɕ Atoms are the basic building blocks of all matter. Each chemical
element has distinct properties, and they can’t be broken down
further without losing their meaning. (Yes, it’s true atoms
are composed of even smaller bits like protons, electrons, and
neutrons, but atoms are the smallest functional unit.)

 ɕ Molecules are groups of two or more atoms held together by
chemical bonds. These combinations of atoms take on their own
unique properties, and become more tangible and operational
than atoms.

 ɕ Organisms are assemblies of molecules functioning together
as a unit. These relatively complex structures can range
from single-celled organisms all the way up to incredibly
sophisticated organisms like human beings.

Of course, I’m simplifying the incredibly rich composition of the
universe, but the basic gist remains: atoms combine together to
form molecules, which further combine to form organisms. This
atomic theory means that all matter in the known universe can be
broken down into a finite set of atomic elements:

The periodic table of chemical elements.

Apparently Mr. Rae’s strategy of having students mind-numbingly
balance tons of chemical equations worked, because I’m coming
back to it all these years later for inspiration on how to approach
interface design.

The atomic design methodology

By now you may be wondering why we’re talking about atomic
theory, and maybe you’re even a bit angry at me for forcing you to
relive memories of high school chemistry class. But this is going
somewhere, I promise.

We discussed earlier how all matter in the universe can be broken
down into a finite set of atomic elements. As it happens, our
interfaces can be broken down into a similar finite set of elements.
Josh Duck’s Periodic Table of HTML Elements beautifully articulates
how all of our websites, apps, intranets, hoobadyboops, and
whatevers are all composed of the same HTML elements.

CHAPTER 2 / ATOMIC DESIGN METHODOLOGY 41

The periodic table of HTML elements by Josh Duck.

http://smm.zoomquiet.io/data/20110511083224/index.html

42 ATOMIC DESIGN

Because we’re starting with a similar finite set of building blocks,
we can apply that same process that happens in the natural world to
design and develop our user interfaces.

Enter atomic design.

Atomic design is a methodology composed of five distinct stages
working together to create interface design systems in a more
deliberate and hierarchical manner. The five stages of atomic
design are:

1. Atoms
2. Molecules
3. Organisms
4. Templates
5. Pages

Atomic design is not a linear process, but rather a mental model
to help us think of our user interfaces as both a cohesive whole and
a collection of parts at the same time. Each of the five stages plays a
key role in the hierarchy of our interface design systems. Let’s dive
into each stage in a bit more detail.

Atomic design is atoms, molecules, organisms, templates, and pages concurrently working together
to create effective interface design systems.

CHAPTER 2 / ATOMIC DESIGN METHODOLOGY 43

Atoms

If atoms are the basic building blocks of matter, then the atoms
of our interfaces serve as the foundational building blocks that
comprise all our user interfaces. These atoms include basic HTML
elements like form labels, inputs, buttons, and others that can’t be
broken down any further without ceasing to be functional.

Each atom in the natural world has its own unique properties.
A hydrogen atom contains one electron, while a helium atom
contains two. These intrinsic chemical properties have profound
effects on their application (for example, the Hindenburg explosion
was so catastrophic because the airship was filled with extremely
flammable hydrogen gas versus inert helium gas). In the same

42 https://developer.mozilla.org/en-US/docs/Web/HTML/Element

Atoms include basic HTML tags like
inputs, labels, and buttons.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element

44 ATOMIC DESIGN

manner, each interface atom has its own unique properties, such
as the dimensions of a hero image, or the font size of a primary
heading. These innate properties influence how each atom should
be applied to the broader user interface system.

In the context of a pattern library, atoms demonstrate all your base
styles at a glance, which can be a helpful reference to keep coming
back to as you develop and maintain your design system. But like
atoms in the natural world, interface atoms don’t exist in a vacuum
and only really come to life with application.

Molecules

In chemistry, molecules are groups of atoms bonded together that
take on distinct new properties. For instance, water molecules and
hydrogen peroxide molecules have their own unique properties and
behave quite differently, even though they’re made up of the same
atomic elements (hydrogen and oxygen).

In interfaces, molecules are relatively simple groups of UI
elements functioning together as a unit. For example, a form
label, search input, and button can join together to create a search
form molecule.

When combined, these abstract atoms suddenly have purpose. The
label atom now defines the input atom. Clicking the button atom
now submits the form. The result is a simple, portable, reusable
component that can be dropped in anywhere search functionality
is needed.

Now, assembling elements into simple functioning groups is
something we’ve always done to construct user interfaces. But
dedicating a stage in the atomic design methodology to these
relatively simple components affords us a few key insights.

Creating simple components helps UI designers and developers
adhere to the single responsibility principle, an age-old computer
science precept that encourages a “do one thing and do it well”
mentality. Burdening a single pattern with too much complexity
makes software unwieldy. Therefore, creating simple UI molecules
makes testing easier, encourages reusability, and promotes
consistency throughout the interface.

Now we have simple, functional, reusable components that we can
put into a broader context. Enter organisms!

A search form molecule is composed of a label atom, input
atom, and button atom.

CHAPTER 2 / ATOMIC DESIGN METHODOLOGY 45

https://en.wikipedia.org/wiki/Single_responsibility_principle

46 ATOMIC DESIGN

Organisms

Organisms are relatively complex UI components composed of
groups of molecules and/or atoms and/or other organisms. These
organisms form distinct sections of an interface.

Let’s revisit our search form molecule. A search form can often
be found in the header of many web experiences, so let’s put that
search form molecule into the context of a header organism.

The header forms a standalone section of an interface, even though
it contains several smaller pieces of interface with their own unique
properties and functionality.

Organisms can consist of similar or different molecule types. A
header organism might consist of dissimilar elements such as a logo
image, primary navigation list, and search form. We see these types
of organisms on almost every website we visit.

This header organism is composed of a search form molecule, logo atom, and primary
navigation molecule.

Organisms like website headers consist of smaller molecules like primary navigation, search forms,
utility navigation, and logos.

CHAPTER 2 / ATOMIC DESIGN METHODOLOGY 47

While some organisms might consist of different types of
molecules, other organisms might consist of the same molecule
repeated over and over again. For instance, visit a category page of
almost any e-commerce website and you’ll see a listing of products
displayed in some form of grid.

Building up from molecules to more elaborate organisms provides
designers and developers with an important sense of context.
Organisms demonstrate those smaller, simpler components in
action and serve as distinct patterns that can be used again and
again. The product grid organism can be employed anywhere a
group of products needs to be displayed, from category listings to
search results to related products.

Now that we have organisms defined in our design system, we can
break our chemistry analogy and apply all these components to
something that resembles a web page!

48 ATOMIC DESIGN

Templates

A product grid organism on Gap’s e-commerce website consists of the same product item molecule
repeated again and again.

Now, friends, it’s time to say goodbye to our chemistry analogy.
The language of atoms, molecules, and organisms carries with it a
helpful hierarchy for us to deliberately construct the components
of our design systems. But ultimately we must step into language
that is more appropriate for our final output and makes more sense
to our clients, bosses, and colleagues. Trying to carry the chemistry
analogy too far might confuse your stakeholders and cause them to
think you’re a bit crazy. Trust me.

Templates are page-level objects that place components into a
layout and articulate the design’s underlying content structure.
To build on our previous example, we can take the header organism
and apply it to a homepage template.

This homepage template displays all the necessary page
components functioning together, which provides context for
these relatively abstract molecules and organisms. When crafting
an effective design system, it’s critical to demonstrate how
components look and function together in the context of a layout to

CHAPTER 2 / ATOMIC DESIGN METHODOLOGY 49

The homepage template consists of organisms and molecules applied to a layout.

50 ATOMIC DESIGN

prove the parts add up to a well-functioning whole. We’ll discuss this
more in a bit.

Another important characteristic of templates is that they focus
on the page’s underlying content structure rather than the page’s
final content. Design systems must account for the dynamic nature
of content, so it’s very helpful to articulate important properties of
components like image sizes and character lengths for headings and
text passages.

Mark Boulton discusses the importance of defining the underlying
content structure of a page:

You can create good experiences without knowing the content.
What you can’t do is create good experiences without knowing
your content structure. What is your content made from, not
what your content is.

- Mark Boulton

By defining a page’s skeleton we’re able to create a system that can
account for a variety of dynamic content, all while providing needed
guardrails for the types of content that populate certain design
patterns. For example, the homepage template for Time Inc. shows
a few key components in action while also demonstrating content
structure regarding image sizes and character lengths:

http://www.markboulton.co.uk/journal/structure-first-content-always

Time Inc.’s homepage template demonstrates the content’s underlying structure.

CHAPTER 2 / ATOMIC DESIGN METHODOLOGY 51

Now that we’ve established our pages’ skeletal system, let’s put
some meat on them bones!

52 ATOMIC DESIGN

Pages

Pages are specific instances of templates that show what a UI
looks like with real representative content in place. Building on
our previous example, we can take the homepage template and pour
representative text, images, and media into the template to show
real content in action.

The page stage is the most concrete stage of atomic design, and it’s
important for some rather obvious reasons. After all, this is what
users will see and interact with when they visit your experience.
This is what your stakeholders will sign off. And this is where you
see all those components coming together to form a beautiful and
functional user interface. Exciting!

CHAPTER 2 / ATOMIC DESIGN METHODOLOGY 53

In addition to demonstrating the final interface as your users will
see it, pages are essential for testing the effectiveness of the
underlying design system. It is at the page stage that we’re able
to take a look at how all those patterns hold up when real content
is applied to the design system. Does everything look great and
function as it should? If the answer is no, then we can loop back and
modify our molecules, organisms, and templates to better address
our content’s needs.

When we pour real representative content into Time Inc.’s
homepage template, we’re able to see how all those underlying
design patterns hold up.

The page stage replaces placeholder content with real representative content to bring the design
system to life.

54 ATOMIC DESIGN

At the page stage, we’re able to see what Time Inc.’s homepage looks like with real representative
content in place. With actual content in place, we’re able to see if the UI components making up
the page properly serve the content being poured into them.

We must create systems that establish reusable design patterns and
also accurately reflect the reality of the content we’re putting inside
of those patterns.

CHAPTER 2 / ATOMIC DESIGN METHODOLOGY 55

Pages also provide a place to articulate variations in templates,
which is crucial for establishing robust and reliant design systems.
Here are just a few examples of template variations:

 ɕ A user has one item in their shopping cart and another user has
ten items in their cart.

 ɕ A web app’s dashboard typically shows recent activity, but that
section is suppressed for first-time users.

 ɕ One article headline might be 40 characters long, while another
article headline might be 340 characters long.

 ɕ Users with administrative privileges might see additional
buttons and options on their dashboard compared to users who
aren’t admins.

In all of these examples, the underlying templates are the same,
but the user interfaces change to reflect the dynamic nature of the
content. These variations directly influence how the underlying
molecules, organisms, and templates are constructed. Therefore,
creating pages that account for these variations helps us create
more resilient design systems.

So that’s atomic design! These five distinct stages concurrently
work together to produce effective user interface design systems.
To sum up atomic design in a nutshell:

 ɕ Atoms are UI elements that can’t be broken down any further
and serve as the elemental building blocks of an interface.

 ɕ Molecules are collections of atoms that form relatively simple
UI components.

 ɕ Organisms are relatively complex components that form
discrete sections of an interface.

 ɕ Templates place components within a layout and demonstrate
the design’s underlying content structure.

 ɕ Pages apply real content to templates and articulate variations
to demonstrate the final UI and test the resilience of the
design system.

56 ATOMIC DESIGN

Advantages of atomic design

So why go through all this rigamarole? What’s atomic design good for?
These are valid questions, considering we’ve been building user
interfaces for a long time now without having an explicit five-stage
methodology in place. But atomic design provides us with a few key
insights that help us create more effective, deliberate UI design systems.

The part and the whole

One of the biggest advantages atomic design provides is the ability to
quickly shift between abstract and concrete. We can simultaneously
see our interfaces broken down to their atomic elements and also see
how those elements combine together to form our final experiences.

In his book The Shape of Design, Frank Chimero beautifully articulates
the power this traversal provides:

The painter, when at a distance from the easel, can assess and
analyze the whole of the work from this vantage. He scrutinizes
and listens, chooses the next stroke to make, then approaches the
canvas to do it. Then, he steps back again to see what he’s done
in relation to the whole. It is a dance of switching contexts, a
pitter-patter pacing across the studio floor that produces a tight
feedback loop between mark-making and mark-assessing.

- Frank Chimero

Atomic design allows designers to traverse between abstract and concrete.

http://read.shapeofdesignbook.com/chapter01.html

CHAPTER 2 / ATOMIC DESIGN METHODOLOGY 57

Atomic design lets us dance between contexts like the painter Frank
so eloquently describes. The atoms, molecules, and organisms that
comprise our interfaces do not live in a vacuum. And our interfaces’
templates and pages are indeed composed of smaller parts. The
parts of our designs influence the whole, and the whole influences
the parts. The two are intertwined, and atomic design embraces
this fact.

When designers and developers are crafting a particular component,
we are like the painter at the canvas creating detailed strokes. When
we are viewing those components in the context of a layout with
real representative content in place, we are like the painter several
feet back from the canvas assessing how their detailed strokes affect
the whole composition. It’s necessary to zero in on one particular
component to ensure it is functional, usable, and beautiful. But it’s
also necessary to ensure that component is functional, usable, and
beautiful in the context of the final UI.

Atomic design provides us a structure to navigate between the parts
and the whole of our UIs, which is why it’s crucial to reiterate that
atomic design is not a linear process. It would be foolish to design
buttons and other elements in isolation, then cross our fingers
and hope everything comes together to form a cohesive whole. So
don’t interpret the five stages of atomic design as “Step 1: atoms;
Step 2: molecules; Step 3: organisms; Step 4: templates; Step 5:
pages.” Instead, think of the stages of atomic design as a mental
model that allows us to concurrently create final UIs and their
underlying design systems.

Clean separation between structure and content

Discussing design and content is a bit like discussing the chicken and
the egg. Mark Boulton explains:

Content needs to be structured and structuring alters your
content, designing alters content. It’s not ‘content then design’,
or ‘content or design’. It’s ‘content and design’.

- Mark Boulton

http://www.markboulton.co.uk/journal/structure-first-content-always

58 ATOMIC DESIGN

A well-crafted design system caters to the content that lives inside
it, and well-crafted content is aware of how it’s presented in the
context of a UI. The interface patterns we establish must accurately
reflect the nature of the text, images, and other content that live
inside them. Similarly, our content should be aware of the manner
in which it will be presented. The close relationship between content
and design requires us to consider both as we construct our UIs.

Atomic design gives us a language for discussing the structure of
our UI patterns and also the content that goes inside those patterns.
While there is a clean separation between the content structure
skeleton (templates) and the final content (pages), atomic design
recognizes the two very much influence each other. For instance,
take the following example:

On the left we see the UI’s content skeleton, which consists of the
same person block molecule repeated again and again. On the right
we see what happens when we populate each instance of the person
block molecule with representative content. Visualizing the content
skeleton and the representative final content allows us to create
patterns that accurately reflect the content that lives inside them. If
a person’s name were to wrap onto five lines within the pattern, we
would need to address that broken behavior at a more atomic level.

CHAPTER 2 / ATOMIC DESIGN METHODOLOGY 59

The content we pour into our UIs at the page stage will influence the
characteristics and parameters of the underlying design patterns.

What’s in a name?

Throughout this book I’ve mentioned that modular design and
development is nothing new. So why are we introducing terms like
atoms, molecules, and organisms when we can just stick with established
terms like modules, components, elements, sections, and regions?

For as long as I’ve been talking about atomic design, I’ve had people
proffer alternate names for the stages of the methodology. Person
One would suggest, “Why not just name them elements, modules,
and components?” while Person Two would suggest, “Why not just
name them base, components, and modules?” The issue with terms
like components and modules is that a sense of hierarchy can’t be
deduced from the names alone. Atoms, molecules, and organisms
imply a hierarchy that anyone with a basic knowledge of chemistry
can hopefully wrap their head around.

That being said, naming things is hard and imperfect. The names I’ve
chosen for the stages of atomic design have worked really well for me
and the teams I’ve worked with as we create UI design systems. But
maybe they don’t work for you and your organization. That’s more
than OK. Here’s one perspective from the design team at GE:

As we showed our initial design system concepts that used the
Atomic Design taxonomy to our colleagues, we were met with the
some confused looks. […] The evidence was clear, for this to be
successful within our organization we had to make the taxonomy
more approachable.

- Jeff Crossman, GE Design

The taxonomy the team landed on were “Principles”, “Basics”,
“Components”, “Templates”, “Features”, and “Applications”. Do
these labels make sense to you? It doesn’t matter. By establishing
a taxonomy that made sense for their organization, everyone was
able to get on board with atomic design principles and do effective
work together.

https://medium.com/ge-design/ges-predix-design-system-8236d47b0891#.d5ddaoujk

60 ATOMIC DESIGN

“Atomic design” as a buzzword encapsulates the concepts of
modular design and development, which becomes a useful
shorthand for convincing stakeholders and talking with colleagues.
But atomic design is not rigid dogma. Ultimately, whatever
taxonomy you choose to work with should help you and your
organization communicate more effectively in order to craft an
amazing UI design system.

Atomic design is for user interfaces

Atomic design is a concept born of the web. After all, your lowly
author is a web designer, which is mainly the reason this book
primarily focuses on web-based interfaces. But it’s important to
understand that atomic design applies to all user interfaces, not
just web-based ones.

You can apply the atomic design methodology to the user interface
of any software: Microsoft Word, Keynote, Photoshop, your bank’s
ATM, whatever. To demonstrate, let’s apply atomic design to the
native mobile app Instagram.

Atomic design applied to the native mobile app Instagram.

CHAPTER 2 / ATOMIC DESIGN METHODOLOGY 61

Let’s walk through this atomized Instagram interface:

 ɕ Atoms: This screen of Instagram’s UI consists of a handful
of icons, some text-level elements, and two image types: the
primary image and the user’s avatar image.

 ɕ Molecules: Several icons form simple utilitarian components
like the bottom navigation bar and the photo actions bar where
users can like or comment on a photo. Also, simple combinations
of text and/or images form relatively simple components.

 ɕ Organisms: Here we can see the photo organism take shape,
which consists of the user’s information, time stamp, the photo
itself, actions around that photo, and information about the
photo including like count and caption. This organism becomes
the cornerstone of the entire Instagram experience as it is
stacked repeatedly in a never-ending stream of user-generated
photos.

 ɕ Templates: We get to see our components come together in the
context of a layout. Also, it’s here where we see the exposed
content skeleton of the Instagram experience, highlighting
dynamic content such as the user’s handle, avatar, photo, like
count, and caption.

 ɕ Pages: And finally we see the final product, complete with real
content poured into it, which helps ensure the underlying design
system comes together to form a beautiful and functional UI.

I show this non-web example because atomic design tends to get
misinterpreted as an approach to web-specific technologies like
CSS and JavaScript. Let me be clear about this: atomic design has
nothing to do with web-specific subjects like CSS or JavaScript
architecture. In chapter 1 we discussed the trend toward modularity
in all aspects of design and development, which includes CSS and
JavaScript. These are fantastic trends in CSS and JavaScript, but
atomic design deals with crafting user interface design systems
irrespective of the technology used to create them.

62 ATOMIC DESIGN

Atomic design in theory and in practice

This chapter introduced the atomic design methodology and
demonstrated how atoms, molecules, organisms, templates, and
pages all work together to craft thoughtful, deliberate interface
design systems. Atomic design allows us to see our UIs broken down
to their atomic elements, and also allows us to simultaneously step
through how those elements join together to form our final UIs. We
learned about the tight bond between content and design, and how
atomic design allows us to craft design systems that are tailored
to the content that lives inside them. And finally we learned how
the language of atomic design gives us a helpful shorthand for
discussing modularity with our colleagues, and provides a much
needed sense of hierarchy in our design systems.

Atomic design is a helpful design and development methodology,
but essentially it’s merely a mental model for constructing a UI. By
now you may be wondering how you make atomic design happen.
Well, fear not, dear reader, because the rest of the book focuses on
tools and processes to make your atomic design dreams come true.

Pattern Lab and the qualities of

effective style guides

Tools of

the Trade

Chapter 3

CHAPTER 3 / TOOLS OF THE TRADE 65

In the previous chapter, I introduced the atomic design
methodology for constructing user interfaces. I hope you’ll find
atomic design to be a helpful mental model for constructing UI
design systems, but now it’s time to climb down from the ivory
tower and actually put atomic design into practice in the real world.

The cornerstone of pattern-based design and development is the
pattern library, which serves as a centralized hub of all the UI
components that comprise your user interface. As we discussed in
chapter 1, the benefits of pattern libraries are many:

 ɕ They promote consistency and cohesion across the entire
experience.

 ɕ They speed up your team’s workflow, saving time and money.

 ɕ They establish a more collaborative workflow between all
disciplines involved in a project.

 ɕ They establish a shared vocabulary between everyone in an
organization, including outside vendors.

 ɕ They provide helpful documentation to help educate
stakeholders, colleagues, and even third parties.

 ɕ They make cross-browser/device, performance, and
accessibility testing easier.

 ɕ They serve as a future-friendly foundation for teams to modify,
extend, and improve on over time.

That all sounds wonderful, right? I can almost hear you saying,
“I need this whole pattern library thing in my life.” But how do
we make pattern libraries happen? Well, you’ve come to the right
place, friend, because the rest of this book is dedicated to exactly
that. This chapter will introduce helpful tools for creating pattern
libraries, the next chapter will discuss how to make patterns a
cornerstone of your design and development workflow, and the fifth
chapter will cover how to make your design system stand the test
of time.

This chapter will talk about the qualities of effective pattern
libraries through the lens of a tool called Pattern Lab, an open
source project maintained by web developers Dave Olsen,

http://patternlab.io/
http://dmolsen.com/

66 ATOMIC DESIGN

Brian Muenzenmeyer, and me to execute atomic design systems.
While I’ll excitedly discuss Pattern Lab and its various features,
I want to stress that the point of this chapter is to cover the
characteristics of well-constructed pattern libraries, not sell any
one specific tool to you. Hell, Pattern Lab isn’t even for sale! No
single tool will be a perfect fit for every setup and scenario, but be
sure to keep the following principles in mind when deciding what
tools to use to create your pattern libraries.

Just what exactly is Pattern Lab?
Before we dive into the nuts and bolts of how Pattern Lab works,
it’s important to take time to explain what the tool is and isn’t.

Pattern Lab is...

 ɕ a static site generator tool for building atomic design systems.

 ɕ a pattern documentation and annotation tool.

 ɕ a pattern starter kit.

Pattern Lab isn’t...

 ɕ a UI framework like Bootstrap or Foundation.

 ɕ language-, library-, or style-dependent.

 ɕ a replacement for a content management system.

Let’s walk through these points, starting with the term static site
generator. Static site generator tools take in some source code
and assets, compile them, and spit out plain ol’ HTML, CSS, and
JavaScript at the other end. Pattern Lab takes source code –
namely patterns – and compiles those patterns into a functional
front-end UI inside a pattern library shell.

So what does Pattern Lab look like out of the box? Drumroll, please.

http://www.brianmuenzenmeyer.com/

CHAPTER 3 / TOOLS OF THE TRADE 67

Not a terribly inspiring design, eh? Believe it or not, this minimal
(one might even say lack of) design is deliberate. To avoid incorrect
classification as a UI framework like Bootstrap, the design is
deliberately stripped down so no one would mistakenly take Pattern
Lab’s demo UI for suggested styles. Pattern Lab doesn’t give you
any answers as to how to design or architect your front-end code
– you have to do all that work yourself. The look and feel, naming
conventions, syntax, structure, libraries, and scripts you choose to
use to create your UI are entirely up to you and your team. Heck,
you can even use UI frameworks like Bootstrap within Pattern Lab.
Pattern Lab is just there to help stitch everything together.

As a technical aside, Pattern Lab uses either PHP or Node.js as the
engine that stitches patterns together and generates the pattern
library. However, you don’t need to be a PHP wizard or Node.js
guru to use Pattern Lab any more than you have to know how to
build an internal combustion engine to drive a car. Moreover, your
final website doesn’t have to be built with PHP or Node.js to use the
tool, as Pattern Lab’s output is backend-agnostic HTML, CSS, and
JavaScript. So like any technology decision, choose a pattern library

One default Pattern Lab dashboard. What it lacks in good looks, it makes up for in utility.

68 ATOMIC DESIGN

tool that fits with your organization’s infrastructure and jives with
how your team works together.

If that all sounded like gibberish to you, don’t worry. This chapter
focuses on the overarching features of Pattern Lab and principles
of effective pattern libraries rather than going too far down the
technical rabbit hole. If interested, you can check out Pattern Lab’s
documentation to dive into the nitty-gritty.

Building atomic design systems with Pattern Lab
To understand the core concept behind Pattern Lab, you need to
understand Russian nesting dolls.

Matryoshka dolls (also known as Russian nesting dolls) are
beautifully carved hollow wooden dolls of increasing size that are
placed inside one another. Patterns in Pattern Lab operate in a
similar manner: the smallest patterns (atoms) are included inside
bigger patterns (molecules), which are included in even bigger
patterns (organisms), which are in turn included in even bigger
patterns (templates).

Russian nesting dolls. Image credit: S. Faric on Flickr

http://patternlab.io/docs/
http://patternlab.io/docs/
https://www.flickr.com/photos/tromal/6901848291/

CHAPTER 3 / TOOLS OF THE TRADE 69

Constructing UIs in this manner keeps things DRY, which is a
long-standing computer science principle that stands for “don’t
repeat yourself.” What this means is that you can make a change
to a pattern, and anywhere that pattern is employed will magically
update with those changes. This Russian nesting doll approach
considerably speeds up your workflow, and certainly beats the pants
off sifting through hundreds of Photoshop documents for every
instance of a pattern in order to make a simple change.

To make this happen, Pattern Lab uses the include feature of
Mustache, a logicless templating language. Here’s what a Mustache
include looks like:

{{> atom-thumbnail }}

This is Mustache code, in case the double curly braces ({{}}) that
look like little mustaches didn’t give it away. The greater-than
symbol (>) is Mustache’s way of telling Pattern Lab to include an
atom pattern called “thumbnail”. Pattern Lab will go searching
through its folders of patterns to find an atom named “thumbnail”.

This is what Pattern Lab’s patterns folder structure can look like. You can
name and categorize these folders however you’d like, including changing
the labels “atoms”, “molecules”, and “organisms”, “templates”, and
”pages”. The most important consideration is to establish naming and
categorization that is most effective for your team.

https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://mustache.github.io/

70 ATOMIC DESIGN

Now that we know what an include looks like, let’s put it into
practice and take a look at a few patterns from a website I helped
make for Time Inc. Here’s one reusable pattern we designed:

This pattern should look fairly familiar. A thumbnail image,
headline, and excerpt working together as a single unit is a common
pattern found on countless websites. Let’s take a peek behind the
curtain to see how this pattern is constructed.

For Time Inc.’s website, we created a basic block molecule consisting of a thumbnail image,
headline, and excerpt.

CHAPTER 3 / TOOLS OF THE TRADE 71

<div class="block-post">

 {{> atoms-thumb }}

 <h3>{{ headline }}</h3>

 <p>{{ excerpt }}</p>

</div>

You can see we have: HTML markup consisting of a wrapper div
with a class name of block-post; a link; a Mustache include for the
thumbnail image; an <h3> element for the headline; and a <p> tag
for the excerpt. You’ll notice there’s more Mustache code for url,
headline, and excerpt, which we’ll use later to dynamically swap
in actual content. More on that in a bit.

Now that our pattern markup is established, we can include that
chunk of code in bigger patterns using the same include method:

{{> molecules-block-post }}

Now let’s move up to more complex organisms like the website’s
header, which looks a little something like this:

The website header consists of fairly common conventions like a logo atom, primary navigation
molecule, and a search form molecule.

72 ATOMIC DESIGN

When we crack open the hood to look at the header’s markup in
Pattern Lab, we see the following:

<header role="banner">

 {{> atoms-logo }}

 {{> molecules-primary-nav }}

 {{> molecules-search }}

</header>

What’s going on here? Well, we have a basic <header> element,
and inside that element we’re including the logo image atom, the
primary navigation molecule, and the search form molecule.

And now we can include that relatively complex pattern anywhere
we need it.

{{> organisms-header }}

I hope by now you can see the Russian nesting dolls in action.
The smallest atoms are included in bigger molecules, and those
molecules get included in even bigger organisms. Now let’s take
these components and plug them into a layout. Take the homepage
template, for instance:

CHAPTER 3 / TOOLS OF THE TRADE 73

The Time Inc. homepage template consists of a few repeatable patterns: a global
header, a hero area, a few sections (containing an image, headline, excerpt, and
call to action), an area featuring four items, a factoid area, and a global footer.

74 ATOMIC DESIGN

Take a quick stroll through the homepage template and you’ll see
some pretty standard patterns: a site header at the top, a site footer
at the bottom, and a full-screen hero area. You’ll also see a few
other patterns repeating themselves throughout the template.

So how does this look in code? As you might expect, it involves
more includes!

{{> organisms-header }}

<main role="main">

 {{# hero }}

 {{> molecules-hero }}

 {{/ hero }}

 <section>

 {{# experience-block }}

 {{> molecules-block-main }}

 {{/ experience-block }}

 {{# experience-feature }}

 {{> organisms-story-feature }}

 {{/ experience-feature }}

 </section>

 <section>

 {{# factoid-advertising }}

 {{> organisms-factoid }}

 {{/ factoid-advertising }}

 </section>

 <section>

 {{# advertising }}

 {{> molecules-block-main }}

 {{/ advertising }}

 </section>

 ...

</main>

{{> organisms-footer }}

At this stage in the game the smaller patterns are already
constructed, so all the template needs to do is pull them into the
context of a page layout and give them unique names.

CHAPTER 3 / TOOLS OF THE TRADE 75

Taking a closer look at the code, notice that certain patterns like
{{> organisms-header }} and {{> organisms-footer }} are
included the same way as the earlier examples. But there are also a
few other includes patterns that are supplemented by some additional
information, like the following:

{{# factoid-advertising }}

{{> organisms-factoid }}

{{/ factoid-advertising }}

We’re including organisms-factoid in the same way as all the
other patterns, but we’re also naming it factoid-advertising
by wrapping the include in a Mustache section, indicated by the
Mustache code containing the # and / symbols. By giving the pattern
instance a unique name, we can latch on to it and dynamically replace
the content of the pattern. More on that in the next section!

This Russian nesting doll approach to building UIs is simple
but tremendously powerful. The structure allows designers and
developers to keep patterns DRY, saving time, effort, and money.
The approach allows teams to build a final UI while simultaneously
creating the underlying UI design system. After all, the final interface
is one instantiation of its underlying design system. Teams can
also move between abstract and concrete, zeroing in on a particular
pattern to fix bugs (“The header’s broken!”), while also seeing how
changes to small patterns affect the overall page layout.

Working with dynamic data
It’s important to articulate the underlying content structure of
UI patterns within the context of a pattern library. That’s why
we’ve been looking at dimension-displaying grayscale images
and placeholder text containing character limits. But while this
information is helpful for creative teams, grayscale images and Lorem
ipsum text are not what users interact with on your actual site. We
need a way to replace our dummy content with real representative
content to ensure our UI patterns match the reality of the content
that lives inside them.

To demonstrate how Pattern Lab dynamically swaps in real content
into templates, let’s take a look at a side-by-side comparison of Time
Inc.’s homepage template and page levels:

76 ATOMIC DESIGN

A side-by-side comparison of Time Inc.’s homepage template and page levels. The template
articulates the content structure of the design system, while the page shows what the system looks
like with real content displayed by it.

CHAPTER 3 / TOOLS OF THE TRADE 77

On the left we have the template level, which articulates the content
structure of the patterns making up the web page. And on the right
we have the page level, where we’re pouring in real representative
content to demonstrate what the final UI might look like and test
the effectiveness of the design system.

How do we swap dummy content for real content in Pattern Lab?
Pattern Lab uses JSON (as well as YAML, Markdown, and other
data formats) to define and swap out the dynamic bits of content in
our designs.

The default placeholder data is defined in a file called data.json that
lives in Pattern Lab’s /source directory. Inside this file we define all
the text, image paths, and other dynamic data that will make up our
UI. Here’s a small sample from Time Inc.’s data.json file:

"hero" : {

 "headline": "Lorem Ipsum",

 "img": {

 "src": "/images/sample/fpo_hero.png",

 "alt": "Hero Image"

 }

}

For developers, this type of format most likely looks familiar. If
you’re not a developer, don’t freak out! Once you look beyond the
curly braces and quotes, you’ll see that we’re defining a hero object
(for the full-bleed hero area directly below the header) that has a
headline value of “Lorem Ipsum”, and an img with a src value of
“/images/sample/fpo_hero.png”. We’re simply defining this
object’s attributes and providing values for those attributes.

Once those objects are defined, we can then override their
attributes at Pattern Lab’s page level. This is accomplished by
creating a new JSON file that matches the page pattern name
(for Time Inc.’s homepage, we’ll call it 00-homepage.json) inside
the /pages directory.

78 ATOMIC DESIGN

When we open up 00-homepage.json we can override the placeholder
data we established earlier. Here’s what that might look like:

"hero" : {

 "headline": "Moving People",

 "img": {

 "src": "/images/hero_beyonce.jpg",

 "alt": "Beyonce"

 }

}

By overriding the default data, the hero headline now reads
“Moving People” instead of “Lorem Ipsum.” And instead of
pointing to a grayscale for-placement-only (FPO) hero image,
we’re now pointing to a picture of Beyoncé located at “/images/
hero_beyonce.jpg”.

Inside the ‘pages’ directory we have the homepage pattern as well as a JSON file that
matches the name of the pattern. This is where we’ll override the default content
with page-specific content.

CHAPTER 3 / TOOLS OF THE TRADE 79

This process of establishing defaults for dynamic data then
replacing them with page-specific content continues for each
section of the website. In addition to replacing simple strings like
headings, we can also dynamically set variables to true or false,
loop through an array of items, and more. We can even dramatically
alter the UI with just a few changes to a JSON file, which we’ll talk
about next.

Articulating pattern variations

with pseudo-patterns
Historically, designers working with static tools have had a
tendency to only design best-case scenarios. You know what I’m
talking about: the user’s name is Sara Smith and always fits neatly
on one line; her profile picture looks like it was clipped out of a
magazine; her profile is completely filled out; the two columns of
her profile content are exactly the same height.

Of course, these best-case scenarios rarely, if ever, occur in the
real world.

To create more robust and resilient designs, we need to
concurrently account for the best situations and the worst –
and everything in between.

What if the user doesn’t upload a profile picture? What if the
user has 87 items in their shopping cart? What if the product has
14 options? What if the blog post title contains 400 characters?
What about a returning user? A first-time user? What if the article
doesn’t have any comments? What if it has seven layers of nested
comments? What if we need to display an urgent message on
the dashboard?

Articulating these UI variations in a static design tool is an exercise
in tediousness and redundancy, which may explain why they’re
rarely designed. But if we want to create systems that address all
the variables and realities of our content, we must take those ‘what
if’ questions into account.

How do we address all manner of UI variation without exhausting
ourselves in the process? Pattern Lab’s pseudo-pattern feature

http://patternlab.io/docs/pattern-pseudo-patterns.html

80 ATOMIC DESIGN

allows us to articulate sometimes wildly different scenarios with
just a few changes to our data.

Let’s say we’re making an app whose dashboard displays a list of
project collaborators. The UI might look something like this:

To create the dynamic content inside each of these blocks, we’ll
define our list of collaborators as an array inside dashboard.json:

"collaborators": [

 {

 "img": "/images/sample/avatar1.jpg",

 "name": "Steve Boomshakalaka",

 "title": "CIA"

 },

 {

 "img": "/images/sample/avatar2.jpg",

 "name": "Gingersnap Jujubees-Daniels",

 "title": "President of the Longest Company

Name in the World Corporation, Global Division"

 },

 {

 "img": "/images/sample/avatar3.jpg",

 "name": "Sarunus Marciulionis",

 "title": "Golden State Warriors"

 },

 {

 "img": "/images/sample/avatar4.jpg",

A list of project collaborators in
our hypothetical app.

CHAPTER 3 / TOOLS OF THE TRADE 81

 "name" : "Sara Smith",

 "title" : "Short Title"

 }

]

By default, our design assumes the user is a regular user and not
an administrator, but what if we wanted to give administrators the
ability to manage project collaborators from the dashboard? That UI
might look something like this:

To show additional admin edit and delete actions on the dashboard
in Pattern Lab, we can create a pseudo-pattern, a new file in the
/pages folder that looks like this:

dashboard~admin.json

The tilde (~) symbol indicates a pseudo-pattern. dashboard~admin.json
will inherit all the data contained in dashboard.json, but also gives us
the opportunity to append or override additional data. That means
the list of collaborators we defined earlier in dashboard.json is still
available, but we can add additional data inside dashboard~admin.json
like so:

"isAdmin" : true

We’re defining a variable called isAdmin and setting it to true.
We can now use that to conditionally include the additional actions
inside the block pattern.

The administrator’s dashboard
UI introduces extra edit and
delete actions.

82 ATOMIC DESIGN

<div class="block">

 <h3>{{ name }}</h3>

 <h4>{{ title }}</h4>

 {{# isAdmin }}

 {{> molecules-block-actions }}

 {{/ isAdmin }}

</div>

The first few lines are pulling in the img, name, and title we
defined in dashboard.json. But pay close attention to what’s wrapped
in the isAdmin Mustache section. What we’re saying here is: if
isAdmin is set to true, include a molecule pattern called block-
actions. The block-actions pattern contains the edit and delete
buttons, and will only display if isAdmin is set to true (or anything
besides false). In our default dashboard.json, isAdmin isn’t set,
so the extra actions won’t display. In dashboard~admin.json, we’re
setting isAdmin to true so the extra actions will display. You
can extend this technique to dramatically alter the entire UI (like
altering the primary navigation, showing additional panels on the
dashboard, adding extra controls, and so on) just by changing a
single variable. Powerful stuff, indeed.

Whew. If you’ve made it this far, congratulations! You now
know how to add and manipulate dynamic data in Pattern Lab.
Pattern Lab’s ability to design with dynamic data provides some
crucial benefits:

 ɕ Creates a clear separation between structure and content. A
pattern’s structure and its content very much influence each
other. However, resilient design systems strive to establish
agnostic, flexible patterns that can contain a variety of content.
Decoupling pattern structure and data allows us to keep things
DRY (which, again, stands for don’t repeat yourself) and make
changes to content without affecting the pattern structure.
Likewise, we’re able to make changes to a pattern without
having to update every instance of that pattern simply because
each instance contains different data. This separation results in
huge savings in both time and effort.

 ɕ Establishes an ad hoc CMS. Establishing default and page-
specific data serves as an ad hoc content management system.

CHAPTER 3 / TOOLS OF THE TRADE 83

As mentioned earlier, static design tools aren’t well equipped to
handle dynamic data, but it’s also overkill to install WordPress,
Drupal, or some other CMS just to demonstrate UI variations.
Pattern Lab strikes a balance as it allows teams to work
with dynamic data but doesn’t require setting up any crazy
MySQL databases.

 ɕ Serves as a blueprint for back-end developers responsible for
integrating the front-end UI into a real content management
system. Back-end developers can look at the UI created in
Pattern Lab, understand which bits are static and dynamic, then
translate that into the back-end system.

 ɕ Allows writers, content people, designers, and other non-
developers to contribute to the living, breathing design
system. As a front-end developer, I can’t count the number of
times I’ve had to fix typos, swap in new images, translate copy
decks, and make other content-related edits to front-end code.
It’s death by a million paper cuts, and I’m sure most developers
would agree that making minor copy changes isn’t an effective
use of their time. By separating structure and data, Pattern Lab
enables non-developer team members to safely manage the
content-related aspects of the design, freeing up developers to
focus on building the design system’s structure.

We’ve now covered Pattern Lab’s core functionality, but we’re not
done yet! Next we’ll cover a few additional features that should
be considered, irrespective of the tool you use to create your
pattern library.

Viewport tools for flexible patterns
The multitude of devices now accessing the web has forced
designers to re-embrace the intrinsic fluidity of the medium.
Thankfully, techniques like responsive web design allow us to create
layouts that look and function beautifully on any screen.

It’s a no-brainer that we need to establish flexible UI patterns if
we want to create responsive designs, but creating fluid patterns
has additional advantages. The more fluid a UI component is, the
more resilient and versatile it becomes. Imagine being able to
take a component – let’s say a photo gallery slider – and plunk it

http://alistapart.com/article/responsive-web-design

84 ATOMIC DESIGN

anywhere we need it. Sometimes we may need it to be a full-bleed
element occupying the entire viewport. Other times we may need
to include it in the context of an article. And still other times we
may want to include it in the sidebar. The dream is to build our
components fluidly and they’ll adapt their styles and functionality to
fit whatever containers we put them into.

Indeed, this is the promise of container queries. Container queries
let elements adapt based on their parent containers rather than
the entire viewport, which is how we manipulate elements using
media queries at the moment. While still being developed as a native
browser capability, container queries will allow us pattern-crazed
designers and developers to easily create and deploy fluid UI systems.

Between responsive design, container queries, and good ol’-
fashioned common sense, we now understand why it’s imperative to
create flexible UI patterns. But how do we do that? And how can our
pattern library tools help us think and act flexibly?

Many early responsive design testing tools focused on viewing
designs on popular mobile device widths, such as 320px (an iPhone
4 in portrait mode), 480px (an iPhone 4 in landscape mode), 768px
(an iPad in portrait mode), and so on. But, of course, the web is much
more diverse than a mobile view, a tablet view, and a desktop view.
To help designers better consider the entire resolution spectrum
when testing their responsive designs, I created a tool called ish.

The tool is called ish. because selecting the small button results in
a small-ish viewport. Selecting it again provides a different small-
ish viewport. Selecting the medium button gives you a medium-ish
viewport. And the large button results in a – wait for it – large-ish
viewport. These randomized values help designers and developers
better consider the entire resolution spectrum rather than a handful
of popular device dimensions.

Ish. is baked into Pattern Lab, which means we can view our UIs and
their underlying patterns across the entire resolution spectrum.

While ish. helps designers and developers uncover bugs along the
viewport continuum, I’ve found it to be more helpful as a client and
colleague education tool. By building a device-agnostic viewport
resizing tool directly into the pattern library, clients and colleagues

http://alistapart.com/article/container-queries-once-more-unto-the-breach
http://bradfrost.com/demo/ish/

CHAPTER 3 / TOOLS OF THE TRADE 85

Pattern Lab displaying a design in a small-ish viewport.

Pattern Lab displaying a design in a medium-ish viewport.

can come to appreciate the fact that their design system should look
and function well no matter the viewport size.

86 ATOMIC DESIGN

Pattern Lab displaying a design in a large-ish viewport.

A look under the hood with code view
A common pattern library feature is the ability to peek under the
hood and view the underlying code that makes up a particular
component. Exposing a UI pattern’s code speeds up development
time (I love copying and pasting as much as the next coder) and
helps team leaders enforce code syntax and style conventions. This
becomes especially rewarding when a ton of developers are working
on an organization’s codebase.

The types of code to be highlighted in a pattern library naturally
vary from organization to organization, in order to meet the
requirements of the vast array of environments, technologies,
and conventions used. Most pattern libraries out there in the wild
demonstrate a pattern’s underlying HTML, while others also
include pattern-specific CSS and JavaScript. Salesforce’s Lightning
design system, for example, shows a pattern’s HTML as well as all
the (S)CSS pertaining to that pattern.

http://styleguides.io/examples.html

CHAPTER 3 / TOOLS OF THE TRADE 87

Including front-end code leads to authors writing it more
consistently, but that doesn’t guarantee perfection. There’s still
room for developers to go rogue and write sloppy, incongruent code
– which is why some organizations have gone above and beyond
to establish incredibly sophisticated design systems. Companies
like Lonely Planet have achieved the holy grail of pattern libraries,
which is to say their pattern library and production environment
are perfectly in sync. We’ll discuss the holy grail in more detail in
chapter 5, but it’s worth bringing up in this section to demonstrate
how that affects the code exposed in the context of a pattern library.
Rather than offering HTML and CSS, Lonely Planet’s Rizzo style
guide surfaces the include code for teams to pull in the appropriate
UI component.

Salesforce’s Lightning design system showcases the UI components’ HTML and SCSS code.

Lonely Planet’s Rizzo design system pattern library showcases the template usage.

http://rizzo.lonelyplanet.com/
http://rizzo.lonelyplanet.com/

88 ATOMIC DESIGN

This setup allows the core development team to maintain a single
source of truth for all patterns’ front-end code. For developers to
get up and running, the pattern library needs only provide the code
to include a particular pattern.

Pattern Lab provides the ability to view both a pattern’s underlying
HTML and the template code used to generate the HTML. It can also
be extended to showcase accompanying CSS and JavaScript code.

Ultimately, whichever pattern library tool you decide to use should
have some form of code view. Perhaps more importantly, the
pattern libraries you create should showcase the types of code
that enable you and your development team to be as effective
as possible.

Pattern Lab’s code view demonstrates both a pattern’s template code and the compiled HTML.

CHAPTER 3 / TOOLS OF THE TRADE 89

Pattern Lab displays important pattern documentation right alongside the living pattern examples,
which helps teams communicate definitions, usage, examples, outside resources, and more.

Living documentation and annotations

In a traditional siloed design process, it’s typical to see lengthy
wireframe and spec documents created, debated, and approved.
These documents usually take the form of gigantic PDFs, which
is unfortunate considering they often contain all sorts of valuable
insights, instructions, and documentation about the design system.
Sadly, these bulky artifacts are often thrown into a (virtual) trash
can by the time the project makes its way into production.

This shouldn’t be the case. A UI’s documentation should contain
insights from every discipline involved in creating it, and –
this is key – should be baked into the living, breathing design
system. Effective pattern libraries carve out a space to define and
describe UI components, articulating considerations ranging from
accessibility to performance to aesthetics and beyond.

Pattern Lab provides several ways to add pattern descriptions
and annotations to a design system. Pattern descriptions can be
added by creating a Markdown file that corresponds to the name
of a pattern (e.g. pattern-name.md), which will show the pattern
description in the library list view.

90 ATOMIC DESIGN

Pattern Lab also provides a (dare I say) cool feature that enables you
to attach annotations to any UI element and view those annotations
in the context of the living, breathing design. When annotations
are switched on, each annotated element receives a number which,
when clicked, jumps you to the corresponding annotation. This
allows teams to view pattern considerations within the context of
the full UI. Pretty neat!

Providing context with pattern lineage
When looking at various patterns in a library, I’ve found myself
wondering, “Great, but where is this component actually used?”
Defining and describing pattern characteristics is one thing, but
there’s an opportunity to provide additional contextual information
about your UI patterns.

Pattern Lab’s annotation feature is interactive and baked into the living UI.

Thanks to the Russian nesting doll include approach described
earlier, Pattern Lab can display what patterns make up any given
component, and also show where those patterns are employed in
the design system.

In the example above, we have a molecule pattern called media-
block, which contains an image, headline, text, and a group of
buttons. Looking at the pattern’s lineage, we can see it contains a
pattern called atoms-square, which is the thumbnail-sized image,
as well as molecules-button-bar, which is the group of buttons.
We can also see where exactly this pattern gets used: the media-
block-list organism.

This contextual information is amazingly helpful for designers and
developers; I know I use the lineage feature all the time in my own
workflow. Let’s say we wanted to make changes to a particular
pattern, like doubling the size of an image or adding an additional
element: we’d immediately know which patterns and templates
would need to be retested and QA’d to ensure nothing breaks with

CHAPTER 3 / TOOLS OF THE TRADE 91

Pattern Lab’s lineage feature displays what patterns make up any component, and also shows all
the places that component is employed.

92 ATOMIC DESIGN

the changes. The lineage feature also helps point out redundant
and underused patterns so teams can weed them out of the pattern
library as the launch date gets closer.

To each their own
So there you have it. Pattern Lab provides several helpful features
for teams to create deliberate, thoughtful design systems. But as I
mentioned before, no single tool is going to be perfect for everyone
and every situation. There are a ton of great tools out there to help
you create effective pattern libraries, and the tools you decide on
will undoubtedly be influenced by your organization’s environment,
technologies, workflow, and culture.

When choosing tools to create your pattern library, you should keep
your eyes open for these qualities and features of effective pattern
libraries:

 ɕ Providing pattern descriptions and annotations.

 ɕ Showcasing the relevant pattern HTML, templating, CSS, and/or
JavaScript code.

 ɕ Viewing patterns across the entire resolution spectrum.

 ɕ The ability to showcase pattern variations, such as active or
disabled tabs.

 ɕ The ability to dynamically add real representative content into
the patterns’ structures.

 ɕ Providing contextual information, like which patterns make up a
particular component, as well as where that component is used.

At the end of the day, it’s not about the tools we use to create
pattern libraries, but rather how we use them. Creating and
maintaining an effective design system means dramatically
changing your organization’s culture, processes, and workflows. If
that sounds hard to you, it’s because it is. But fear not! The rest of
the book will detail the entire process of creating and maintaining
a successful design system to set your organization up for long-
term success.

http://styleguides.io/tools.html

People, process, and making design

systems happen

The Atomic

Workflow

Chapter 4

CHAPTER 4 / THE ATOMIC WORKFLOW 95

Talk is cheap. And up until now, we’ve been doing a whole lotta
talkin’. That’s not to say it hasn’t been productive talk! After all,
we’ve discussed the importance of modular thinking, we’ve learned
a methodology for crafting deliberate UI design systems, and we’ve
showcased tools for creating effective pattern libraries.

But here’s where the rubber meets the road. Where we roll up our
sleeves and put all of this theory into practice. Where we get stuff
done. This chapter will tackle all that goes into selling, creating, and
maintaining effective design systems. You ready? Let’s go.

It’s people!

The not-so-secret secret about creating effective design systems
(or doing any great work, really): it all comes down to people truly
collaborating and communicating with one another.

If this is such common knowledge, why aren’t we constantly
hearing thousands of success stories from around the world? I’ll let
Mark Boulton explain:

The design process is weird and complicated, because people
are weird and complicated.

- Mark Boulton

You can have all the right technologies in place, use the latest and
greatest tools, and even have extraordinarily talented individuals
on board, but if everyone involved isn’t actually cooperating and
communicating with one another then you’re not going to create
great work. It’s as simple as that. That’s not to say you can’t create
good work, but more often than not you’re going to create one of the
many disappointing shades of bad work.

Establishing and maintaining successful interface design systems
requires an organization-wide effort, and this chapter will discuss
how to overcome human beings’ many quirks to make them happen.

96 ATOMIC DESIGN

When to establish a design system

So when’s the best time to establish an interface design system?
Short answer: now.

Design systems and their accompanying pattern libraries are
often created in conjunction with a new design or redesign
project, replatforming effort, or other initiative. Piggybacking off
another project is a great way to sneak a pattern library into your
organization.

That being said, creating a design system and pattern library
doesn’t necessarily need to coincide with another project. If you
can convince your clients and stakeholders to pony up the cash and
resources for a dedicated design system project, then good on you!

How exactly do you sell a design system to your clients, bosses,
colleagues, and stakeholders? Put on your business hat, because
we’re going to tackle that in the next section!

Pitching patterns

Introducing a new way of doing things is no easy task, as it requires
changing people’s existing mentalities and behaviors. Getting
stakeholders and clients on board with establishing a design system
involves constant education, in addition to a bit of marketing savvy.

First things first. It’s necessary to introduce the concept of interface
design systems to your clients, colleagues, and stakeholders.
Explain what these design systems are and the many ways they can
help the organization. We’ve discussed these benefits throughout
the book, so you can explain how design systems promote
consistency and cohesion, speed up your team’s productivity,
establish a more collaborative workflow, establish a shared
vocabulary, provide helpful documentation, make testing easier,
and serve as a future-friendly foundation. Who can say no to all
that?!

Alas, I’ve found that I can hype design systems until I’m blue in the
face, but the suits don’t always see things through the same lens as
the people on the ground. A simple reframing of the question helps

CHAPTER 4 / THE ATOMIC WORKFLOW 97

immensely. It’s much more effective to simply ask, “Do you like
saving time and money? Yes or no?” If the answer to that question
is no, I’m afraid you have way bigger problems than selling a design
system. If the answer is yes, then you can pitch the benefits through
the lens of time and money. Let’s try this out, shall we?

 ɕ Design systems lead to cohesive, consistent experiences. That
means users master your UI faster, leading to more conversions
and more money based on the metrics your stakeholders care
about.

 ɕ Design systems speed up your team’s workflow. Rather than
reinventing the wheel every time a new request comes through,
teams can reuse already established UI puzzle pieces to roll out
new pages and features faster than ever before.

 ɕ Centralizing UI components in a pattern library establishes a
shared vocabulary for everyone in the organization, and creates a
more collaborative workflow across all disciplines. With everyone
speaking the same language, more time is spent getting work
done and less time is spent dealing with superfluous back-and-
forth communications and meetings.

 ɕ Design systems make cross-browser/device, performance, and
accessibility testing easier, vastly speeding up production time
and allowing teams to launch higher-quality work faster. Also,
baking things like accessibility into a living design system scales
those best practices, allowing your interfaces to reach more users
while reducing the risk of you getting sued!

 ɕ Once a design system (with accompanying pattern library) is
established, it serves as a future-friendly foundation for the
organization to modify, tweak, extend, and improve on over time.
Doing some A/B testing? Roll the lessons from those tests into the
living design system. Made some big performance optimizations?
Roll them into the living design system! The living part of living
design systems means they can always adapt to meet the future
needs of the organization, saving time and money all the while.

Framing things in terms of time and money helps the people
controlling the purse strings understand why a design system is a
worthwhile pursuit. With any luck, these conversations will translate
to a concrete commitment from the organization (read: allocating
real time and money) to make a design system happen.

98 ATOMIC DESIGN

Show, don’t tell: the power of interface inventories
If only getting buy-in were as easy as having a few well-timed
conversations with the right people. Maybe you’re savvy enough to
seal the deal with talking points alone, but for us mere mortals words
aren’t enough. Sometimes you need more. Sometimes you need to
make them feel the pain.

Enter the interface inventory.

Many are familiar with the concept of a content inventory. Content
audits are usually performed in the early stages of a website redesign
process to take stock of all a site’s content. It’s a tedious process
involving spreadsheets and caffeine, but all that hard work pays off.
By the end of the exercise the organization’s content is laid out on
the table, giving teams valuable insights into how to handle their
content as they tackle the project.

An interface inventory is similar to a content inventory, only instead
of sifting through and categorizing content, you’re taking stock
of and categorizing all the components that make up your user
interface. An interface inventory is a comprehensive collection of
the bits and pieces that make up your user interface.

Here’s a collection of all the unique button styles found on the homepage of United.com. An
interface inventory rounds up and categorizes all the unique patterns that make up an interface.

https://en.wikipedia.org/wiki/Content_inventory

CHAPTER 4 / THE ATOMIC WORKFLOW 99

Conducting an interface audit

How do you go about conducting an interface audit? How do you
round up all the components that make up your UI? The simple
answer is screenshots. Lots of them! Creating an interface inventory
requires screenshotting and loosely categorizing all the unique
components that make up your user interfaces. While that’s a
relatively straightforward endeavor, there are some important
considerations to keep in mind to make the inventory as useful
as possible. Let’s go through the process for creating a successful
interface inventory.

Step 1: Round up the troops

I’ve encountered many ambitious designers and developers
who have taken it upon themselves to start documenting their
organization’s UI patterns. While I certainly applaud this individual
ambition, it’s absolutely essential to get all members of the team
to experience the pain of an inconsistent UI for them to start
thinking systematically.

For the interface inventory to be as effective as possible,
representatives from all disciplines responsible for the success of
the site should be in a room together for the exercise. Round up the
troops: UX designers, visual designers, front-end developers, back-
end developers, copywriters, content strategists, project managers,
business owners, QA, and any other stakeholders. The more the
merrier! After all, one of the most crucial results of this exercise is
to establish a shared vocabulary for everyone in the organization,
and that requires input from the entire team.

Step 2: Prepare for screenshotting

The interface inventory exercise generates a ton of screenshots,
so naturally you’ll need software to capture and display those
screenshots. Some possible tools include:

 ɕ PowerPoint or Keynote

 ɕ Photoshop or Sketch

 ɕ Evernote Web Clipper

 ɕ Google Docs or Microsoft Word

100 ATOMIC DESIGN

 ɕ Google Slides (If you’re interested, I’ve created a Google Slides
interface inventory template)

Ultimately, it doesn’t really matter what tool you use, but everyone
should agree on a single tool to make it easier to combine at the end
of the exercise. I’ve found online slide-building software like Google
Slides to be very effective as it provides a canvas for free-form image
positioning, they’re chunked out into slides for easier categorization,
and they’re web-based so can be shared with ease.

Step 3: Screenshot exercise

Get your screenshotting fingers ready because it’s time for the
main event! The interface audit exercise involves screenshotting
and categorizing all the unique UI patterns that make up your
experience. Bear in mind this exercise doesn’t mean capturing every
instance of a particular UI pattern, but rather capturing one instance of
each unique UI pattern.

Assign each participant a UI category. You may need to pair people
or have participants document multiple categories, depending on
how many people are taking part in the exercise. Once again, it’s
helpful to have as many participants as possible since more people
screenshotting will result in more thorough documentation.

It’s important for all participants to capture screenshots using the same software so they can be
combined later. I’ve created a Google Slides interface inventory template for teams to use as a
starting point.

https://docs.google.com/presentation/d/1GqFmiDV_NqKi36fXAwD3WTJL5-JV-gHL7XVD2fVeL0M/edit?usp=sharing
https://docs.google.com/presentation/d/1GqFmiDV_NqKi36fXAwD3WTJL5-JV-gHL7XVD2fVeL0M/edit?usp=sharing

CHAPTER 4 / THE ATOMIC WORKFLOW 101

What patterns to capture

What interface element categories should be captured? Obviously,
the categories are going to vary from interface to interface, but here
are a few categories to start with:

 ɕ Global elements: components like headers, footers, and other
global elements that are shared across the entire experience.

 ɕ Navigation: primary navigation, footer navigation, pagination,
breadcrumbs, interactive component controls, and essentially
anything that’s used to navigate around a user interface.

 ɕ Image types: logos, hero images, avatars, thumbnails,
backgrounds, and any other type of image pattern that shows up
in the UI.

 ɕ Icons: icons are a special type of image worthy of their own
category. Capture magnifying glasses, social icons, arrows,
hamburgers, spinners, favicons, and every other interface icon.

 ɕ Forms: inputs, text areas, select menus, checkboxes, switches,
radio buttons, sliders, and other forms of user input.

 ɕ Buttons: buttons are the quintessential UI element. Capture all
the unique button patterns found throughout the experience:
primary, secondary, big, small, disabled, active, loading, and
even buttons that look like text links.

 ɕ Headings: h1, h2, h3, h4, h5, h6 and variations of typographic
headings.

 ɕ Blocks: also known as touts, callouts, summaries, ads, or hero
units, blocks are collections of typographic headings and/or
images and/or summary text (see Nicole Sullivan’s write-up
about the media object as an example of a block).

 ɕ Lists: unordered, ordered, definition, bulleted, numbered,
lined, striped, or any group of elements presented in a list-type
format.

 ɕ Interactive components: accordions, tabs, carousels, and other
functional modules with moving parts.

 ɕ Media: video players, audio players and other rich media
elements.

 ɕ Third-party components: widgets, iframes, stock tickers, social
buttons, invisible tracking scripts, and anything else that isn’t
hosted on your domain.

http://www.stubbornella.org/content/2010/06/25/the-media-object-saves-hundreds-of-lines-of-code/
http://bradfrost.com/blog/post/surfacing-invisible-elements/

102 ATOMIC DESIGN

 ɕ Advertising: all ad formats and dimensions.

 ɕ Messaging: alerts, success, errors, warnings, validation, loaders,
popups, tooltips, and so on. This can be a challenging category
to capture as messaging often requires user action to expose.

 ɕ Colors: capture all unique colors presented in the interface. This
category can be aided by fantastic style guide bootstrapping
tools like CSS Stats and Stylify Me.

 ɕ Animation: animation is an elemental aspect of user interfaces,
and should therefore be documented. This requires using screen
recording software such as QuickTime to capture any UI element
that moves, fades, shakes, transitions, or shimmies across the
screen.

Again, these categories aren’t set in stone and will vary based on
the nature of the user interface you’re dealing with. Of course, it’s
important to add, subtract, or modify these categories to best fit
your organizational needs.

An example of unique button patterns captured in an interface inventory for a major bank’s website.

http://cssstats.com/
http://stylifyme.com/

CHAPTER 4 / THE ATOMIC WORKFLOW 103

Timing is everything

It’s important to set time limits on the screenshotting exercise to
avoid going down a rabbit hole that ends up lasting all day. The
amount of time you allocate will vary depending on how many
people are participating, but I find between 30 and 90 minutes to be
sufficient for a first pass of an interface inventory. Set a timer, throw
on some Jeopardy! music (well, maybe not Jeopardy! music, but some
other music that sets an upbeat mood for the exercise), and have the
participants concentrate on screenshotting the unique UI patterns
they encounter.

Dig deep

Which parts of the site should participants capture in the interface
inventory? Short answer: everything. Any piece of UI that is or could
be managed by your organization should be documented.

An example of various form elements captured in an interface inventory for a major bank’s website.

104 ATOMIC DESIGN

This is difficult as organizations tend to favor certain parts of the
experience (cough homepage cough) over others. For example,
people working on an e-commerce website tend to focus on the
core shopping experience, even though areas like customer support,
FAQs, sizing charts, 404 pages, and legal terms are also extremely
important to the user experience. Remember, users perceive your
brand as a singular entity and don’t care about your organizational
structure, tech stack, or anything else that might cause disparities
in the UI. Encourage interface audit participants to be as thorough
as possible during the exercise.

Step 4: Present findings
The screenshotting exercise can be a bit overwhelming, so be sure
the team takes a break after the exercise is complete. Get some food,
grab some coffee, and stretch your legs for a bit. Once everyone’s
feeling refreshed, it’s time to discuss what you captured.

Have each participant spend five or ten minutes presenting each UI
category to the group. Here’s where the fun begins. Presenting to
the group allows the team to discuss the rationale behind existing
UI patterns, kick-starts a conversation about naming conventions,
and gets the team excited to establish a more consistent interface.

Naming things is hard. It’s fascinating to hear the inconsistent
names designers, developers, product owners, and other
stakeholders all have for the same UI pattern. “Oh, we call that
the utility bar.” “Oh, we call it the admin nav.” “Oh, we call it the
floating action area!” This exercise is an opportunity to unearth
and iron out disparities between pattern labels, and also establish
names for previously unlabeled patterns. Don’t feel like you need
to come to a consensus on patterns’ final names in the course of
ten minutes; this exercise is simply meant to open up a broader
discussion.

Once every category has been presented and discussed, all the
participants should send their slides to the exercise leader. The
leader will then combine everything into one giant über-document,
which will soon become a wrecking ball of truth and justice.

CHAPTER 4 / THE ATOMIC WORKFLOW 105

Step 5: Regroup and establish next steps

With the über-document in hand, it’s time to get the entire
organization on board with crafting an interface design system.

Have you ever wanted to see a CEO cry? Laying bare all your UI’s
inconsistencies is a great way to make that happen! One of the
most powerful benefits of interface inventories is that you can
show them to anyone, including non-designers and developers,
and they’ll understand why inconsistent UIs are problematic.
You don’t need to be a designer to recognize that having 37 unique
button styles probably isn’t a good idea. Here’s your opportunity
to make it crystal clear to stakeholders that approaching your UI in
a more systematic way makes great sense for both your users and
your organization.

In addition to selling the idea to key stakeholders, all the hard
work and discussion that went into the initial interface inventory
exercise should be translated into the seeds of your future design
system and pattern library.

It’s very likely the initial exercise didn’t capture every unique
UI pattern, so you may need to conduct another interface audit
exercise to capture a more complete picture of your UI patterns.
This may involve a large group again, but in reality a smaller,
cross-disciplinary team will be going through the über-document
and establishing next steps for the design system.

Once the gaps in the interface inventory have been filled, the
working group can have some important conversations about next
steps for the design system project. Some key questions for this
group to cover include:

 ɕ Which patterns should stay, which should go, and which can be
merged together?

 ɕ What pattern names should we settle on?

 ɕ What are the next steps to translate the interface inventory into
a living pattern library?

106 ATOMIC DESIGN

Benefits of an interface inventory

Creating an interface inventory can be quite an undertaking, but the
benefits of making one are many:

 ɕ Captures all patterns and their inconsistencies: an interface
inventory rounds up all the unique patterns that make up your UI.
Seeing all those similar, but still different, patterns next to each
other exposes redundancy and underscores the need to create a
consistent, cohesive experience.

 ɕ Gets organizational buy-in: having a large, diverse group of
disciplines participate in the exercise helps everyone understand
the value of creating and maintaining a consistent user
interface. Also, the interface inventory über-document can be a
tremendously powerful tool for convincing stakeholders, bosses,
and clients to invest in an interface design system.

 ɕ Establishes a scope of work: an interface inventory helps design
teams determine the level of effort required to design and build
each UI pattern as part of a design or redesign project. Which
components will be relatively easy or difficult to convert into
a responsive environment? What are the content, design, and
development considerations around each component? An interface
inventory enables teams to have important conversations that
help establish a project’s realistic scope and timeline.

 ɕ Lays the groundwork to a sound interface design system: the
interface inventory is an important first step for setting up a
comprehensive pattern library. It’s essential to capture all existing
UI patterns to determine which patterns will make the final cut in
the living design system. The interface audit exercise also helps
teams establish a shared vocabulary, which will be crucial for the
success of the eventual design system.

Ask forgiveness, not permission

So you’ve discussed the benefits of establishing a living design
system with your stakeholders, and you’ve even created an interface
inventory to show them the inconsistent train wreck that is the
current UI. And yet, despite all your efforts, they still shoot down the

CHAPTER 4 / THE ATOMIC WORKFLOW 107

sound idea of establishing an interface design system and pattern
library. What’s a responsible web team to do?

Do it anyways.

Just how we build things like performance, accessibility, and
responsiveness into our products and process by default, we should
also create design systems by default. You don’t need to get the
client’s blessing to follow your craft’s best practices. When you give
stakeholders the option to say no to something, they will. So simply
don’t give them that opportunity. Our job is to create great work
for our clients and organizations, and interface design systems
are a means to that end.

In fact, to create the whole, you need to create the parts of that
whole. Our interfaces consist of smaller pieces, whether you pay
those smaller pieces any mind or not.

You have a decision to make: focus solely on creating the whole
while ignoring the parts, or spend some time organizing the parts
to help you more efficiently create the whole. In his book Multiscreen
UX Design, Wolfram Nagel wonderfully articulates these approaches
using Lego bricks as an analogy.

One way to approach a Lego project is to simply dump the pieces
out of the box onto a table, roll up your sleeves, then start building
your creation.

One way to approach a Lego project is to simply dump the pieces out onto a table, and rummage
through the pile to find the pieces you need. Image adapted from "Multiscreen UX Design" by
Wolfram Nagel.

http://store.elsevier.com/Multiscreen-UX-Design/Wolfram-Nagel/isbn-9780128027295/
http://store.elsevier.com/Multiscreen-UX-Design/Wolfram-Nagel/isbn-9780128027295/

108 ATOMIC DESIGN

This approach to a Lego project is certainly a viable strategy, even if
it is unapologetically haphazard. The only time you’d pay attention
to the pile of bricks is when you’re sifting through it to find the
specific piece you need.

This is not dissimilar to how many digital projects are approached.
The client needs a website, so we jump in to designing and building
it. The client needs a mobile app, so we immediately start building
the screens of the app. Our gaze remains transfixed on the final
product, and we rarely, if ever, glance at the underlying patterns that
comprise our final UIs.

Of course, there is another way to approach your Lego and digital
projects. Rather than diving headfirst into constructing the final
work, you can take the time to take stock of the available pieces and
organize them in such a way that they become more useful.

No doubt organizing takes time, planning, and effort. It doesn’t
come for free. The fact that this configuring isn’t visibly represented
in the final product may tempt us to say it serves as a distraction to
the real work that needs to be done. Why bother?

By taking the time to organize the parts, you can now create
the whole in a more realistic, deliberate, and efficient manner.
Creating a library of your available materials allows you to approach
the project in a more methodical way, and saves immense amounts
of time in the process. Rather than rummaging through a haphazard

Taking the time to organize the pieces that make up your final creations allows you to approach the
work in a more deliberate and efficient manner. Image adapted from "Multiscreen UX Design" by
Wolfram Nagel.

CHAPTER 4 / THE ATOMIC WORKFLOW 109

pile of bricks and burning time reinventing patterns, you can create
an organized system of components that will help produce better
work in a shorter amount of time.

As far as your clients and stakeholders are concerned, the final
product is still being produced. So long as you’re showing progress
on the final work, you can decide how much of your internal process
you’re willing to expose. The fact that you’re creating a design
system to produce the final product is really of no concern to them;
it’s simply a decision your team is making to create better work.

If you’re dealing with change-averse stakeholders, I say do
what you need to do and tell them to pay no attention to what’s
happening behind the scenes. Once you’ve successfully launched the
project and the champagne has been poured, you can pull back the
curtain and say, “Oh, by the way, we established a design system
and pattern library so the team could collaborate and work more
efficiently together.” It would be extremely difficult for them to
argue against you now, especially if the project came in on time and
on budget. If you’re really lucky, you can parlay the initial project’s
success into a more official initiative within the organization to
evolve your design system.

Taking the time to organize the pieces that make up your final creations allows you to work in
a more deliberate and efficient manner. Rather than sifting through a haphazard pile of bricks,
an organized inventory of components can produce better, faster work. Image adapted from
"Multiscreen UX Design" by Wolfram Nagel.

110 ATOMIC DESIGN

Of course, it’s preferable to get your clients, colleagues, and
stakeholders excited about creating an interface design system, or
at the very least get their blessing to pursue the project in a modular
fashion. But I think it’s important to find ways to follow your craft’s
best practices even when you’re faced with extreme organizational
resistance.

(Re)setting expectations

You’ve put in a lot of hard work to sell the concept of a design
system, but you still need to set stakeholder and team expectations
before you roll up your sleeves and get to work.

When I say “set expectations” I’m really saying “reset expectations.”
You see, we all bring our own experiences, opinions, and biases
to a project. Our industry is still incredibly young, so many people
working on web projects are coming from other industries with
their own established Ways Of Doing Things™. Even people who
have worked exclusively in the digital world have felt the baggage of
industries past. Moreover, the guiding principles, best practices, and
tactics of digital design are still very much being codified.

It’s ludicrous for anyone to utter the phrase, “This is how we’ve
always done things” in an industry that’s only 25 years old.
Unfortunately, we humans are creatures of habit, and stepping
outside familiarity’s warm embrace is uncomfortable. We don’t like
being uncomfortable. We must overcome our existing predispositions
if we’re going to embrace our ever-shifting industry’s best practices
and create successful digital work.

Redefining design

We’ve come a long way from simply transplanting print PDFs to the
World Wide Web, but print design still casts a long shadow and
continues to influence how things get done online.

Design in the print world focuses heavily on visual aesthetics. After
all, you can’t do much more with a poster than look at it. To be clear,
I’m certainly not implying print design is easy or one-dimensional;
the world of print is steeped in nuance and craft. What I am saying
is that the bidirectional and interactive nature of the web adds
many more dimensions to what constitutes good design. Speed,

CHAPTER 4 / THE ATOMIC WORKFLOW 111

screen size, environment, technological capabilities, form-factor,
ergonomics, usability, accessibility, context, and user preferences
must be considered if we want to create great work for this brave
new digital world.

These additional design considerations are vital for creating great
digital work, yet they are too often absent from our processes and
workflows. Designer Dan Mall explains:

As an industry, we sell websites like paintings. Instead, we
should be selling beautiful and easy access to content, agnostic
of device, screen size, or context.

- Dan Mall

How did we get to the point where we sell and design websites
like they’re static images? During the formative years of the web
we created experiences meant to be consumed solely by desktop
computers, which is understandable since desktops were really the
only game in town. The real estate provided by desktop screens
made the idea of simply translating a PDF onto the web feasible and
enticing. So that’s what we did – and for a while it actually worked!

Once upon a time, the web was primarily consumed on desktop screens, hence this crusty-looking,
old machine.

http://danielmall.com/articles/the-post-psd-era/

112 ATOMIC DESIGN

However, this didn’t come without consequences. This print-like
perspective of the web reinforced the notion that web designs, like
their offline counterparts, could and should look the same in every
environment. It also kept the focus on how a web design looked
rather than how it worked, ignoring all the unique characteristics of
this rich new medium. Moreover, it strengthened the belief that we
could apply the same linear processes used to create print work to
our digital work.

Time went by, of course, and mobile exploded, technology
improved, and the web become the incredibly large and diverse
landscape we know today. Gone are the desktop-only days of yore,
and in their place is a time of smartphones, dumb phones, tablets,
phablets, netbooks, notebooks, e-readers, wearables, TVs, game
consoles, car dashboards, and so much more.

The diversity of today’s web landscape has shattered the consensual
hallucination of the desktop web, where we could simply bolt on
the mentalities and processes of print to this new medium. Simply

This is the web: a potpourri of devices, screen sizes, capabilities, form factors, network speeds,
input types, and more.

https://adactio.com/journal/4443
https://adactio.com/journal/4443

CHAPTER 4 / THE ATOMIC WORKFLOW 113

looking at a smartphone, tablet, and desktop machine next to one
another quickly erodes the assumption that a web design should
look the same in every environment.

We’re still at the very beginning of the Big Bang of connected
devices. The device and web landscape of tomorrow will
undoubtedly be even bigger and diverse than today’s. In addition
to current devices and the nascent technologies already on the
horizon, the future web will involve technologies and ideas that
haven’t yet been conceived.

I’ve found the three previous images to be a tremendously helpful
shorthand for helping clients, colleagues, and stakeholders
understand the reality of the web landscape. With this newfound
understanding, everyone becomes a whole lot more receptive to
updating their processes and workflows to create great work for this
unique medium.

It’s our job to create great experiences for people using a diversity
of devices, screen sizes, network speeds, device capabilities,

In addition to all the web-capable devices we concern ourselves with today, we must understand
that the device and web landscape is becoming bigger and more diverse all the time.

114 ATOMIC DESIGN

browser features, input types, form factors, contexts, and
preferences. That’s undoubtedly a Herculean task, but all these
variables really underscore the need to extend far beyond visual
aesthetics when creating interface design systems.

In addition to making visually beautiful and consistent experiences,
we should:

 ɕ Embrace the ubiquity of the web by creating accessible, resilient
design systems. Recognize that a whole slew of people with a
vast spectrum of capabilities will be accessing our experiences,
so construct design systems to be as inclusive as possible.

 ɕ Create flexible layouts and components so our interfaces look
and function beautifully irrespective of any particular device
dimension or screen size.

 ɕ Treat performance as an essential design principle and create
fast-loading experiences that respect users and their time.

 ɕ Progressively enhance our interfaces by establishing core
experiences then layering on enhancements to take advantage of
the unique capabilities of modern devices and browsers.

 ɕ Create future-friendly design systems meant to stand the test
of time and anticipate inevitable changes to the device and web
landscape.

Of course, there are many other design considerations that should
be included in our interface design systems (ergonomics, input
type, Section 508 compliance, legibility, and so on), but the key
takeaway here is to expand the definition of what constitutes good
digital design beyond visual aesthetics.

As you might expect, substantial changes to our processes need to
happen so we can properly address all these uniquely digital design
considerations. It therefore becomes our responsibility to set client,
colleague, and stakeholder expectations so that everyone knows the
process for creating will be different this time around.

Death to the waterfall

Tell me if you’ve heard this one before. A team is tasked with
making a website. Once the kick-off meeting dust has settled, a UX

CHAPTER 4 / THE ATOMIC WORKFLOW 115

designer goes away, puts their head down, and eventually emerges
with a giant PDF document detailing the entire experience. This
monolithic wireframe document gets passed around to the project
stakeholders, who sign it off after some feedback and suggestions.

The UX designer then passes the wireframes to the visual designer,
who hops into Photoshop or Sketch to apply color, typography,
and texture to the structured-but-sterile wireframes. In the design
review meeting, stakeholders sit eagerly while the projector fires up
and the project manager runs off to print copies of the design deck
for everyone. The art director takes their position at the front of the
room and unveils the design. Behold, a website design! Once the
presentation is finished, the room quickly buzzes with feedback and
conversation. After the initial reactions and compliments die down,
a key stakeholder speaks up.

“This looks fantastic, and I think really hits the mark for what we’re
trying to accomplish with this project. But…”

They express their desire to see something perhaps with an
alternate layout, something that captures a certain vibe, maybe
something that uses different photography, something that just…
pops.

With the floodgates opened, the other stakeholders suddenly
realize they too have opinions and constructive criticism they’d
like to share. By the time the meeting draws to a close, everyone
has rambled off their wish list of what they’d like the design to
accomplish.

Slightly deflated but determined to nail it, the visual designer
retreats back to their tools to work in the stakeholders’ suggestions.
At the next design review meeting, the same scene repeats itself,
with stakeholders expressing equal parts encouragement and
longing for more. “I feel like we’re almost there. Could we just…”

Weeks pass and seasons change. Nerves wear thin, and the deadline
date looms over everyone’s heads. It’s with a sense of urgency that
homepage_v9_final_for-review_FINAL_bradEdits_for-handoff.psd
finally gets approval by the stakeholders.

The visual designer, relieved they’ve finally completed their job,
tiptoes oh-so-quietly up to the entrance of the Code Cave. They slip
the approved design under the door, and as they scamper away they

116 ATOMIC DESIGN

yell, “Can you get this done in three weeks? We’re already behind
schedule and we’re out of budget!”

The visual designer has already disappeared into the night by the
time the front-end developer picks the design off the floor. With one
glance at the composition, a strange feeling – some combination of
bewilderment, rage, and dread – washes over them. What’s wrong
with the design, exactly? Maybe it’s the seven typefaces and nine
unique button styles peppered throughout the comps. Maybe it’s the
desktop-centric, impossible-to-actually-execute layout. Maybe it’s
the perfect-yet-improbable user-generated content.

The front-end developer tries in vain to raise their concerns to the
broader group, but is quickly dismissed as being either inept or
curmudgeonly. Alas, it’s too late in the game to make significant
changes to the design, especially since it’s already been approved by
the stakeholders.

So the developer tries their best to make lemonade out of the lemony
static comps. They bend over backwards to create responsive layouts
that still retain the integrity of the static comps, normalize some
of the more blatant component inconsistencies, establish pattern
states (like button hover, active, and disabled states) that weren’t
articulated in the designs, and make some on-the-fly decisions
regarding the interactive aspects of the experience. Discussions with
designers are strained, but everyone realizes that they need to work
through these issues to get the project done.

After plugging the front-end code into a CMS, frantically finalizing
the site’s content, and doing some last-minute QA testing, the team
finally launches the site. While no one says it out loud, there’s a tinge
of disappointment in the air alongside the joy and relief of getting
the project out the door. After all, the live site lacks the glossy polish
that the comps promised to the stakeholders, and friction between
disciplines has bruised some relationships.

I hope this story reads as a work of fiction to you, but based on
my own experiences and conversations with countless others, I’m
guessing you’ve experienced this tale of woe at one point or another.
It may even hit home like a punch in the gut. Whether you’ve
endured this process firsthand or not, it’s important to recognize
that the Henry Ford-esque waterfall process increasingly isn’t likely
to result in great digital work.

https://en.wikipedia.org/wiki/Waterfall_model

CHAPTER 4 / THE ATOMIC WORKFLOW 117

The waterfall process may make sense for print, architecture,
manufacturing, and other physical media since mistakes and
changes are extraordinarily costly. If a team overlooks an error
made early in the process, they’ll pay dearly for it later. However,
the digital world isn’t constrained by the same limitations as the
physical one. Pixels are cheap. Changes can happen in an instant,
hypotheses can be quickly tested out, and designs and code can be
iterated on again and again.

The waterfall process hinges on the premise that work must flow
in a sequential order: the UX designer’s work must be completed
before visual design can start; the visual designer must finish their
job before front-end development can begin. This simply isn’t true.
There is much work that can and should happen in parallel. To
create sound UI design systems, we must reset our stakeholders’
expectations and get them comfortable with a blurrier, more
collaborative process.

That work will happen in parallel doesn’t imply that everyone will
be guns blazing throughout the entire process. Of course, the bulk
of research, information architecture, and other elemental aspects
of UX design will tend to happen earlier in the process, but that
work shouldn’t delay the other disciplines from starting their jobs.
And even when the bulk of a person’s active work is done, they
should never simply fade away from the project. It’s crucial for

The waterfall process, where disciplines pass off work to each other in sequential order, isn’t likely
to result in great digital work.

118 ATOMIC DESIGN

every discipline to continue to consult with the others to ensure
their vision makes it into the final product. So rather than a rigid,
sequential waterfall process, a more collaborative process over time
looks something like this:

Development is design

When a previous employer discovered I wrote HTML, CSS, and
presentational JavaScript, they moved me to sit with the engineers
and back-end developers. Before too long I was being asked, “Hey,
Brad. How long is that middleware going to take to build?” and
“Can you normalize this database real quick?”

Here’s the thing: I’ve never had a computer science class in my
life, and I spent my high school career hanging out in the art room.
Suffice it to say those requests made me extremely uncomfortable.

There’s a fundamental misunderstanding that all coding is ultra-
geeky programming, which simply isn’t the case. HTML is not a
programming language. CSS is not a programming language. But
because HTML and CSS are still code, front-end development is

A more collaborative workflow involves a cross-disciplinary team working together throughout the
entire process. While active work will wax and wane, each discipline continues to consult with the
other team members to ensure their insights are present in the final work.

CHAPTER 4 / THE ATOMIC WORKFLOW 119

often put in the same bucket as Python, Java, PHP, Ruby, C++, and
other programming languages. This misunderstanding tends to
give many front-end developers, myself included, a severe identity
crisis.

Organizationally, there is often a massive divide between designers
and developers (or marketing and IT, or creative and engineering,
or some other divisive labels). Designers and developers often sit on
different floors, in different buildings altogether, in different cities,
and sometimes even in different countries on different continents.
While some of this organizational separation may be justified,
creating a division between designers and front-end developers is
an absolutely terrible idea.

The fact remains that HTML, CSS, and presentational JavaScript
build user interfaces – yes, the same user interfaces that those
designers are meticulously crafting in tools like Photoshop and
Sketch. For teams to build successful user interface design systems
together, it’s crucial to treat front-end development as a core part
of the design process.

When you show stakeholders only static pictures of websites, they
can naturally only comment and sign off on pictures of websites.
This sets the wrong expectations. But by getting the design into
the browser as fast as possible, you confront stakeholders with the
realities of the final medium much sooner in the process. Working
in HTML, CSS, and presentational JavaScript allows teams to not
only create aesthetically beautiful designs, but demonstrates those
uniquely digital design considerations like:

 ɕ flexibility

 ɕ impact of the network

 ɕ interaction

 ɕ motion

 ɕ ergonomics

 ɕ color and text rendering

 ɕ pixel density

http://bradfrost.com/blog/post/development-is-design
http://bradfrost.com/blog/post/development-is-design
https://stuffandnonsense.co.uk/blog/about/time_to_stop_showing_clients_static_design_visuals

120 ATOMIC DESIGN

 ɕ scrolling performance

 ɕ device and browser quirks

 ɕ user preferences

Crucially, jumping into the browser faster also kick-starts the
creation of the patterns that will make up the living, breathing
design system. More on this in a bit.

This is not to say teams must design entirely in the browser. As
with anything, it’s about using the right tools at the right time to
articulate the right things. Having the design represented in the
browser in addition to other design artifacts gives teams the ability
to paint a richer, more realistic picture of the UI they’re crafting.
Teams may demonstrate an aesthetically focused design idea as a
static image, and simultaneously demonstrate a working prototype
of that same idea in the browser.

An iterative iterative iterative iterative process

I believe a successful digital design process is quite similar to
subtractive stone sculpture. At the beginning of the sculpting
process, the artist and their patron have a general idea of what’s
being created, but that vision won’t be fully realized until the
sculpture is complete.

The sculptor starts with a giant slab of rock and starts chipping
away. A crude shape begins to form after the first pass, and the
shape becomes more pronounced with every subsequent pass. After
a few rounds of whacking away at the rock, it becomes clear that the
sculptor’s subject is a human form.

With the general shape of the sculpture roughed out, the artist then
begins homing in on specific sections of the piece. For instance,
they may begin with the face, moving up close to carve the shape
of the eyes, nose, and mouth. After several passes, they then
move on to the arms, and then begin detailing the legs. At regular
intervals the artist steps back to see how their detailed work affects
the overall sculpture. This process continues until the sculpture is
complete and everyone is pleased with the results.

Again, I think subtractive stone sculpture is a great analogy for a
successful digital process, although unlike sculpture we have the
power of undo!

CHAPTER 4 / THE ATOMIC WORKFLOW 121

It’s essential to get stakeholders comfortable with reviewing
works in progress rather than fully baked designs and code. As I
mentioned in chapter 1, every organization these days wants to
become more agile, and iteration is a key part of being agile. It’s
more important to make steps in the right direction than exhaust
a ton of effort painting unrealistic pictures of what you want
the final piece to be. A sound design system doesn’t roll off an
assembly line, but is rather sculpted in iterative loops, building up
fidelity as the project progresses.

If this all sounds a bit messy, that’s because it is! To the dismay
of some project managers, the design process doesn’t fit neatly
into the rigid borders of Excel spreadsheets and Gantt charts. True
collaboration between disciplines is fuzzy and chaotic, and that’s
not a bad thing. Constant communication, tight feedback loops,
and true collaboration therefore become the glue that holds

An iterative digital process is similar to subtractive stone sculpture, where fidelity is built up over
many iterations. Image credit: Mike Beauregard on Flickr

https://flic.kr/p/dLrf6w

122 ATOMIC DESIGN

the process together. Get your entire team to commit to honest
conversation and genuine collaboration, and the details of your
process will fall into place.

Are everyone’s expectations properly set? Good! Now let’s roll up
our sleeves and get to work establishing our design system.

Establishing direction

Teams are often eager to jump right into fun high-fidelity design
and development work, and clients are eager to see and react to that
detailed work. However, this leads to distractions, assumptions, and
all the aforementioned misguided expectations. It’s essential to
agree on an overall design direction and paint the broad strokes
first before moving into high-fidelity design and development. This
requires restraint and expectation management, but results in more
focused decision-making and more realistic work.

What does this lo-fi work look like? Let’s take a look at some
techniques UX designers, visual designers, and front-end
developers can use to begin crafting a strong overall direction
for a UI design system.

Establishing content and display patterns

There’s a ton of up-front strategic and research work that can
and should happen toward the beginning of a project. UX designers
(known by other monikers such as information designers, information
architects, interaction designers, and so on) are responsible for
synthesizing all that vital information and translating it into a user
interface that meets the project’s business and user goals.

In a traditional waterfall process, many UX designers have gone
about this task by generating high-fidelity wireframes that
document every screen of the entire user experience. These
wireframe documents, stuffed to the gills with black rectangles
and annotations, spec out the details of what the interface will
accomplish, and are used to get stakeholder buy-in. As thorough
as these documents tend to be, they don’t paint the full picture
and often make dangerous assumptions about visual layout and
technical functionality.

CHAPTER 4 / THE ATOMIC WORKFLOW 123

Rather than jumping straight into such high-fidelity documents,
it’s better to start with lo-fi sketches that establish what appears
on a particular screen and in what general order. Establishing the
experience’s basic information architecture can be accomplished
with a simple bulleted list and a conversation. For a project I did for
the Greater Pittsburgh Community Food Bank, I started by stubbing
out the basic information architecture for a page on a site.

No one in their right mind would mistake this blocked out grayscale
page as complete, but it provides more than enough information
to have important conversations about the page structure and
hierarchy.

Making lo-fi wireframes mobile-first means using the constraints
of small screens to force the team to focus on the core content and
hierarchy. You can now ask, “Do we have the right things on this
screen?” “Are they in the right general order?”

Basic HTML wireframes for the Greater Pittsburgh Community Food Bank homepage.

http://www.lukew.com/ff/entry.asp?933

124 ATOMIC DESIGN

These blocky grayscale wireframes help establish the necessary
content patterns for the screen, but UX designers can also articulate
some site-wide UI patterns they anticipate using to ultimately
display those content patterns. For the redesign of TechCrunch,
designer Jennifer Brook defined a few site-wide UI patterns that
could be used anywhere:

From the image above, you can gather that the “featured island”
component will show content in some fashion. Note the gestural
nature of this sketch and how it doesn’t make any specific
assumptions about layout or functionality. The details of how this
pattern will look and function will come later, but at the beginning
of the project it’s useful simply to define it and articulate where it
might get used.

As I’ve discovered from subsequent projects, content and display
patterns can be effectively communicated in an even simpler format:
the lowly spreadsheet.

For the TechCrunch website redesign, Jennifer Brook defined site-wide, gestural display patterns,
which don’t make assumptions about aesthetics or functionality.

http://danielmall.com/articles/content-display-patterns/
http://jenniferbrook.co/about

CHAPTER 4 / THE ATOMIC WORKFLOW 125

With a few simple spreadsheet columns, we can articulate which
display patterns should be included in a given template, and what
content patterns they’ll contain. More importantly, we’re able to
articulate each pattern’s relative hierarchy and the role it plays
on the screen. If you read the leftmost column vertically, you’re
effectively looking at the mobile-first view of what the UI could be.

“What content and display patterns go on this page? And in what
general order?” are crucial questions to ask, and the techniques we
just described can help designers discuss them effectively without
making any layout or technical assumptions.

Establishing visual direction

A visual designer’s job is to create an aesthetic language and apply
it to the user interface in a way that aligns with the project’s
goals. To do this, it’s essential for a visual designer to unearth the
stakeholders’ aesthetic values.

Historically, visual designers have gone about this by creating
full comps – often many comps – to feel out the aesthetic values
of the organization. Throw some comps against the wall and see
what sticks. As you might imagine, generating a slew of comps
from scratch takes an immense amount of time and effort, and
unfortunately much of that work finds itself on the cutting room
floor. There must be a more efficient way.

A simple spreadsheet can articulate what content and display patterns go on a given page while
describing their order and purpose.

126 ATOMIC DESIGN

As it turns out, there’s a better path to take to arrive at aesthetic
values without having to do a hell of a lot of up-front design work.
Let’s talk about some of the tactics for making this happen.

The 20-second gut test

A fantastic exercise for quickly establishing aesthetic values is the
20-second gut test. Typically done as part of the project kick-off
meeting, the exercise involves showing the stakeholders a handful
of pertinent websites (about twenty to thirty of them) for twenty
seconds each. The sites you choose should be a healthy blend of
industry-specific sites and other visually interesting sites from
other industries. For added believability, you can photoshop in your
client’s logo in place of the site’s actual logo.

For each site presented, each person votes on a scale from 1 to 10,
where a score of 1 means “If this were our site I would quit my job
and cry myself to sleep,” while a score of 10 means “If this were our
site I would be absolutely ecstatic!” Instruct participants to consider
visual properties they find interesting, such as typography, color,
density, layout, illustration style, and general vibe.

For the Pittsburgh Food Bank website redesign kick-off, we showed stakeholders a variety of
relevant websites for twenty seconds each. The participants voted on how happy they would be if
the particular site was theirs. Then we discussed the results.

http://goodkickoffmeetings.com/2010/04/the-20-second-gut-test/

CHAPTER 4 / THE ATOMIC WORKFLOW 127

When the exercise is complete, quickly tally up the scores and come
back to the group to discuss the results. Have a conversation about
the sites that received the five lowest scores, the five highest scores,
and the most contentious scores (sites which some people ranked
very high and others ranked very low). The participants should
explain why they were attracted or repulsed by a particular site, and
work through differences in opinions with the group.

This exercise exposes stakeholders to a variety of aesthetic
directions early in the process, allows them to work through
differences in taste, and (with any luck) helps arrive at some shared
aesthetic values. The visual designer can then latch on to these
insights and begin to translate those aesthetic values into a visual
direction for the project.

Style tiles

Once again, visual designers’ first instinct is often to jump right
into creating full comps to articulate an aesthetic direction for
the project. This high-fidelity work is certainly tangible, but also
wastes a ton of time and effort if the comps don’t resonate with the
stakeholders. Also, creating high-fidelity comps often makes big
assumptions about technical feasibility, which leads to unrealistic
expectations and antagonistic relationships with frontend
developers.

It’s essential to establish a solid visual direction for the project,
so how does a visual designer do that without burning a ton of
time on up-front high-fidelity comps? That’s the question that
designer Samantha Warren answered when she created style tiles, a
deliverable that’s more tangible than a mood board but not as high-
fidelity as a fully baked comp.

http://styletil.es/

128 ATOMIC DESIGN

Style tiles (along with their in-browser counterparts, style
prototypes) allow designers to explore color, typography, texture,
icons, and other aspects of design atmosphere without making
assumptions about layout or worrying about polish. They can be
designed much faster because they’re not encumbered by the
expectations of high-fidelity comps, which means feedback and
discussion can happen sooner.

For the Entertainment Weekly website redesign project, visual designers used style tiles to explore
color, type, texture, and more.

http://sparkbox.github.io/style-prototype/
http://sparkbox.github.io/style-prototype/

CHAPTER 4 / THE ATOMIC WORKFLOW 129

Style tiles facilitate conversation to uncover what stakeholders
value and what they don’t. “Does this style tile resonate better with
you rather than this one? Why?” “Why does this color palette not
sit well with you?” “What is it about this typeface you like?” You
can have important conversations about aesthetic design without
having to create full comps.

Crucially, style tiles also reinforce pattern-based thinking
by educating stakeholders about design systems rather than
pages. Presenting color swatches, type examples, and textures
exposes stakeholders to the ingredients that will underpin any
implementation of the design system.

Element collages

While style tiles are great for exploring design atmosphere, they’re
still a bit abstract. To get a sense of how those design ingredients
will be applied to an interface, it’s important to quickly move into
something a bit more tangible than a style tile. But does that mean
visual designers need to jump from style tiles straight into full
comps? Not necessarily.

Somewhere in between style tiles and full comps live element
collages, which are collections of UI component design explorations.
Element collages provide a playground for designers to apply design
atmosphere to actual interface elements, yet still be free from
layout and highly polished presentation.

http://danielmall.com/articles/rif-element-collages/
http://danielmall.com/articles/rif-element-collages/

130 ATOMIC DESIGN

Like style tiles, element collages are meant to facilitate discussion
about the aesthetic direction of the project. It’s very clear these
collages aren’t an actual website, but stakeholders can still get a
sense of what the site could look like. Conversation about these
element collages can give visual designers more ideas and direction
about where to take the design next, and because of their lo-fi
nature, designers can quickly iterate and evolve ideas.

No doubt other tactics exist to establish aesthetic direction for
your projects, and which techniques you decide to employ will
vary from project to project. But the key is to paint some broader
strokes before spending a lot of time and effort on highly detailed
design work. Engaging in conversation with stakeholders at this
exploratory stage creates a more inclusive process, which is far
preferable to a process in which stakeholders simply grunt approval
or disapproval of design deliverables.

An element collage for the Entertainment Weekly redesign applied color, typography, and texture
to actual interface elements. These collages enabled important conversations about the aesthetic
direction of the project.

CHAPTER 4 / THE ATOMIC WORKFLOW 131

Front-end prep chef

As we discussed earlier, front-end developers are often relegated to
crude production machines that are brought into the project only after
all the design decisions are made. This archaic process keeps disciplines
out of sync with one another and prevents teams from working together
in a meaningful way. This is a huge mistake. Including front-end
development as a critical part of the design process requires changes to
both project structure and team members’ mentalities.

In the restaurant business, an important yet unsung role is that of the
prep chef. A prep chef chops vegetables, marinades meat, and makes
salads in preparation for the following day’s work. By having ingredients
prepared ahead of time, the kitchen staff can focus on collaboration and
cooking rather than menial tasks. Without the up-front work of the prep
chef, the flow of the main chefs would be interrupted and the fast pace
of the kitchen would grind to a halt.

A prep chef chops vegetables, marinades meat, makes salads, and prepares other ingredients so
that the main kitchen staff can focus on cooking meals and collaboration.

132 ATOMIC DESIGN

Front-end developers need to be the prep chefs of the web design
process. If developers aren’t coding from day one of the project,
there’s something wrong with the process. “But Brad,” I can
hear you saying, “how can I start coding if I don’t know what I’m
supposed to code?”

Believe me, there is plenty of front-end work to do without knowing
a thing about the project’s information design or aesthetic direction.
In addition to setting up the development environment (such as
preparing Git repositories, dev servers, CMSes, and development
tools), developers can dive into code and begin marking up patterns.
But what should you be marking up if you don’t know anything about
the design? That depends on the type of project you’re working on.

Are you making an e-commerce site? You can set up site search,
a shopping cart table, a placeholder product detail page, the
homepage, and checkout pages. Making an online service? Start
marking up the sign-up and login forms, the forgot password flow,
and dashboard. And, of course, most websites will have a header,
footer, and main content area. Set up shell templates and write basic
markup for patterns you anticipate using. This markup will initially
be crude, but it provides a crucial starting point for collaboration and
iteration.

This front-end prep chef work frees up developers’ time to
collaborate with designers, rather than working after design is
complete. With basic markup in place, developers can work with
designers to help validate UX design decisions through conversations
and working prototypes. They can help visual designers better
understand source order and web layout, and can quickly produce a
fledgling codebase that will eventually evolve into the final product.

Stop, collaborate, and listen

Let’s quickly review what establishing design direction looks like
across disciplines:

 ɕ UX designers can create lo-fi sketches to establish basic
information architecture and some anticipated UI patterns.

 ɕ Visual designers can gather the teams’ aesthetic values by
conducting a 20-second gut test exercise, then create style tiles
and element collages to explore initial design directions.

CHAPTER 4 / THE ATOMIC WORKFLOW 133

 ɕ Front-end developers can set up project dependencies, stub out
basic templates, and write structural markup for patterns the
team anticipates using in the project.

This work can happen concurrently but shouldn’t happen in
isolation. Sure, there will need to be some initial head-down time
for each discipline to get set up, but all team members should
be fully aware of each discipline’s explorations in anticipation of
working together to evolve these ideas.

Ideas are meant to be ugly.

- Jason Santa Maria

At this early stage, it’s important to stress the importance of
exploration, play, and idea generation. The lo-fi nature of the
techniques we just discussed help encourage this exploration,
allowing team members to pursue ideas that excite them.
Sometimes those ideas might be best articulated as a napkin sketch,
a prototype in CodePen, a visual exploration in Sketch, a quick wire
in Balsamiq, a motion concept in After Effects, or some combination
of media and tools. The point is for the team to generate ideas
and solve problems, not to enforce a rigid order of operations. By
approaching this design exploration in a cross-disciplinary way,
teams can find balance between aesthetics, technical feasibility,
usability, and functionality.

Rolling up our sleeves

With a general design direction established, the team can roll up
their sleeves to build the interface and its underlying design system.
But how do teams turn a vague sense of direction into a beautiful,
functional, usable, and complete design system?

From concept to complete

Turning explorations into finished patterns is a blurry, imperfect
process. This should come as absolutely no surprise to you by this
point in the book.

http://jasonsantamaria.com/articles/piles-of-ideas
http://codepen.io/

134 ATOMIC DESIGN

For the TechCrunch project, Dan Mall riffed on the team’s initial
design conversations to create a visual exploration for the site’s
header. This piece of interface was a logical place to start since the
header is one of the most prominent and branded elements on the
page. After a little bit of work, we hopped on a call to discuss the
exploration with the client.

Even though this design artifact was a simple in-progress
exploration, we were able to have important conversations about
the header’s aesthetics, hierarchy, and suggested functionality.
Because the header was presented sans context, we were able to
discuss the issues pertaining to the header without stakeholders’
focus wandering to other page elements.

Though the client didn’t know it, I had been building out a working
HTML version of the header behind the scenes in Pattern Lab.

Dan Mall created an element collage to explore an aesthetic direction for the global header.

Using Dan’s exploration as a reference, I created an HTML version of the global header in Pattern
Lab. This grayscale prototype helped us demonstrate interactivity and how the header would adapt
across the resolution spectrum.

CHAPTER 4 / THE ATOMIC WORKFLOW 135

This grayscale prototype allowed us to demonstrate interactivity
and responsiveness, which led to even more discussion. Collectively
we proposed changes to the header’s layout and functionality, and
I was able to make changes using the browser’s development tools
during the call. Suddenly, the entire team and stakeholders were
actively participating in the design process!

With input from the stakeholders and team, we iterated over the
header pattern to massage the layout, IA, aesthetic details, and
functionality to arrive at the solution we ultimately launched with.

Obviously the header pattern doesn’t exist in a vacuum. Within
Pattern Lab, the header was included in every template using
Mustache’s include pattern that we discussed in chapter 3.

{{> organisms-header }}

This allowed us to view the header within the context of the rest of
the pages, sketchy as they initially were. So while we were focusing
on designing one specific pattern, we were simultaneously taking
into account the context of where that pattern would be employed.

The header we launched with was the culmination of plenty of conversations and decisions around
the pattern’s content, design, and functionality.

136 ATOMIC DESIGN

Initially, in-browser designs tend to look crude at best, which is
A-OK. The intention is to stub out the template’s basic information
architecture in the browser, define patterns, wire up those patterns
using includes, and begin the patterns’ general markup. With
that work in place, the team can collectively begin styling specific
patterns and refining the overall structure.

Seeing these partially designed prototypes might look unusual to
those used to more traditional, pixel-perfect design deliverables.
But it’s far more important to communicate progress than a false
sense of perfection, which is why rolling updates are preferable to
big reveals.

In a more iterative process, there will be instances where some patterns are further developed
than others. Seeing a partially done page might look unusual out of context, but communication
between the team and stakeholders should alleviate confusion.

CHAPTER 4 / THE ATOMIC WORKFLOW 137

The role of comps in a post-PSD era

Up until this point we’ve been talking about establishing a general
aesthetic direction and then designing some patterns to experiment
with the application of that aesthetic direction. These relatively
lo-fi tactics allow teams to explore freely, iterate quickly, and get
feedback sooner.

But I’ll never forget this client feedback we received on the first
pattern-driven project I worked on: “These element collages look
great, but it’s like you’re asking me to comment on how beautiful a
face is by showing me the nose.”

If you’ve gotten to this point in your process, congratulations!
Feedback like this means they’re salivating for more, so now that
you’ve captured a general aesthetic direction you can safely put
those explorations into context. That likely involves creating full
static comps.

Listen to the chatter around “designing in the browser” and you’ll
undoubtedly hear that Photoshop comps are the devil incarnate. Which,
of course, isn’t true. Throughout this book we’ve discussed the
importance of breaking things down into their atomic elements
while simultaneously building up a cohesive whole. Static comps
are effective at painting a full picture of what the UI could look
like. The trick is knowing when to paint those full pictures, and
knowing how long to dwell in static design documents.

138 ATOMIC DESIGN

Dan Mall created a full comp to demonstrate what a featured article template for TechCrunch might
look like. This artifact was used to show the design system in context and get approval for the
overarching design. Subsequent design revisions would be handled in the browser.

CHAPTER 4 / THE ATOMIC WORKFLOW 139

For the TechCrunch project, we created a comp for the article
template only after the client was feeling good about our element
collage explorations. Creating full comps requires a lot of effort,
which is why we established the design direction first to mitigate
the risk of all that full-comp effort going straight into the trash if
we got it totally wrong.

Comps, like any other design artifact, are used to facilitate a
conversation with the project stakeholders. If their feedback is,
“This feels all wrong,” then it’s back to the drawing board to create
a new comp. But if their feedback suggests, “Can we move this from
here to here? Can we add a gray border around the article text?
Can we increase the size of this image?” that’s a sign the overall
direction is in good shape and those relatively minor issues can be
addressed in the browser.

In-browser iteration

Static comps can be great for shaping the overall aesthetic direction
of a template, but users will ultimately view and interact with the
experience in a browser. That’s why designs should be quickly
translated into the final environment and iterated on there.

Working in the browser allows teams to address layout issues
across the entire resolution spectrum, design around dynamic
data (such as variable character lengths, image sizes, and other
dynamic content), demonstrate interaction and animation,
gauge performance, factor in ergonomics, and confront technical
considerations (such as pixel density, text rendering, scrolling
performance, and browser quirks). Static design comps cannot
deal with all these considerations, so they should be treated merely
as hypotheses rather than set-in-stone specifications. Only when
transferred to the browser can any design hypothesis truly be
confirmed or rejected.

Let’s change the phrase “designing in the browser” to
“deciding in the browser.”

- Dan Mall

https://the-pastry-box-project.net/dan-mall/2012-september-12

140 ATOMIC DESIGN

Once the designs are in the browser, they should stay in the
browser. At this stage in the process, the point of production shifts
to team members adept at crafting HTML, CSS, and presentational
JavaScript. Patterns should be created, styled, and plugged in
wherever they’re needed. Designers can react to these in-browser
implementations and can create spot comps in static tools to help
iron out responsive wrinkles at the organism level. This back-and-
forth between static and in-browser tools establishes a healthy
loop between design and development, where the front-end code
becomes more solid and stable with each iterative loop.

The beautiful thing about a pattern-based workflow is that
as each pattern becomes more fully baked, any template that
includes the pattern will become more fully baked as well.
That means the level of effort to create new templates decreases
dramatically over the course of the project, until eventually creating
a new template mostly involves stitching together existing patterns.

This illustration by Trent Walton of Paravel perfectly articulates a more iterative design and
development process. By getting designs into the browser sooner, teams can iterate over the design
and address the many considerations that can only be dealt with once the design is in the browser.

CHAPTER 4 / THE ATOMIC WORKFLOW 141

Bring it on home

The design system is taking shape and the team is cooking with
gas to bring the project home. At this stage, UI patterns are
well established, the team is taking some final steps to tighten
everything up and prepare for launch.

UX designers are hitting the prototype hard to make sure the
flows and interactions are all logical and intuitive. Visual designers
are combing over the interface and proposing design tweaks to
the UI to polish up the design. Front-end developers are testing
the experience in a slew of browsers and devices while also
addressing design feedback. Back-end developers are hard at work
integrating the front-end UI into the CMS (we’ll talk more about
the relationship between front-end and back-end in chapter 5).
And, of course, the clients and stakeholders are making last-minute
demands – I mean suggestions – about the design and content.
The whole team is contributing documentation for the style guide,
cleaning up the patterns in the pattern library, and working hard to
get the website off the ground.

Then – seemingly in the blink of an eye – the website and
accompanying design system launch. Champagne is poured, high-
fives are exchanged and, of course, post-launch bugs are squashed.
Users visit the new site to find a beautiful, functional, consistent,
and cohesive experience that undoubtedly makes them weep tears
of joy. Mission accomplished.

What began as a giant slab of rock is now a finely polished
sculpture, thanks to a ton of hard work, genuine collaboration,
constant communication, and plenty of iteration. Moreover, in
addition to a brand-spanking-new website, the team leaves behind
a flexible, deliberate UI system bundled up in a beautiful style guide.

This chapter explored everything that goes into making an effective
UI design system. In the next chapter, we’ll discuss how to make
sure that design system continues to be successful in the long run.

Making design systems stand the test

of time

Maintaining

Design Systems

Chapter 5

And they made a design system, delivered a style guide, and lived
happily ever after. Right?

Not quite.

There’s a very real risk that a style guide will end up in the trash
can right alongside all the PSDs, PDFs and those other static
artifacts of the design process. Despite everyone’s best intentions,
all the time and effort that went into making a thoughtful design
system and style guide can go straight down the drain.

How can that be?

A style guide is an artifact of design process. A design system is
a living, funded product with a roadmap & backlog, serving an
ecosystem.

- Nathan Curtis

An artifact is something you’d find on an archaeological dig or in
a museum, whereas a system is a living, breathing entity. A style

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 143

https://twitter.com/nathanacurtis/status/656829204235972608

144 ATOMIC DESIGN

guide can provide documentation and serve as a helpful resource,
but the simple existence of a style guide doesn’t guarantee long-
term success for the underlying design system. A design system
needs ongoing maintenance, support, and tender loving care for it to
truly thrive.

Changing minds, once again

We’ve already discussed the importance of resetting everyone’s
expectations to establish a more collaborative, pattern-driven
workflow. To save our style guides from the bowels of a trash can,
we must once again fundamentally rewire people’s brains.

What is it we’re making again?

We think we merely design and build websites and apps. And that’s
true for the most part. After all, that’s what our clients pay us to do,
and the products we create are the vehicles that generate money
and success for our organizations. It seems natural to focus on the
final implementations rather than the underlying system. The live
products remain the primary focus of everyone’s attention, while
any pattern library exists as an offshoot that simply provides helpful
documentation.

The problem with this mindset is that you can almost see that
pattern library snapping off and sliding into the abyss. Once the
pattern library ceases to reflect the current state of the products

it serves, it becomes obsolete. And when the pattern library
managing the design system is no longer accurate, the website
maintenance process devolves into a smattering of hotfixes and ad
hoc changes, ruining all the thoughtfulness that went into creating
the original design system.

To set ourselves up for long-term success, we must fundamentally
shift our outlook around what we’re actually creating. Rather
than thinking of final applications as our sole responsibility, we
must recognize that the design system is what underpins our final
products and pattern libraries.

This “design system first” mentality inserts a bit of friction into the
maintenance process, and that friction can be friendly. It forces us
to step back and consider how any improvements, client requests,
feature additions, and iterations affect the overall system rather
than only a sliver of the whole ecosystem.

Say you’re working on an e-commerce site, and you run a test
that finds a custom-styled dropdown menu on the product detail
page isn’t performing as well as the browser’s default dropdown
menu. One course of action is to simply remove the custom-styled
dropdown from that particular page and call it a day. However,
considering the entire design system rather than just the product
detail page might cause you to take a step back and wonder,
“If this custom dropdown menu isn’t performing well here,
perhaps it’s not performing well elsewhere.” After digging into
the issue further, you find the best course of action is to globally

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 145

146 ATOMIC DESIGN

modify the dropdown pattern in the design system to remove the
custom styling. Now, anywhere the dropdown pattern appears
will reflect those changes and will likely see similar performance
improvements.

That is just one example of how design-system thinking can
lead to broader, more considered changes. Broken behavior and
opportunities to enhance the UI will often be realized at the
application level, but those changes should often be acted on at the
system level. Adding this bit of friendly friction into your workflow
ensures improvements are shared across the entire ecosystem,
and prevents the system from being eroded by a series of one-off
changes.

Done and done

Another expectation we must revisit is our definition of done.
Creating things for print and other physical media involves making
permanent, tangible objects. That sense of finality simply doesn’t
exist in the digital world, which means change can happen with
much less effort and friction than other media. Clients, colleagues,
and stakeholders should embrace the pliable nature of the digital
world to create living design systems that adapt to the ever-
shifting nature of the medium, user needs, and the needs of the
business.

This shift in thinking fundamentally affects the scope of our work.
Folks working in the client services business are often used to
delivering a project in a tidy package then riding off into the sunset.
Internal teams don’t fair much better, since they tend to float from
one initiative to the next. Whether you’re part of an internal team
or you’re an external gun for hire, I’m guessing you’ve experienced
the shortcomings of project-based work. We tend to talk about a
future that never comes, and instead we set it, forget it, then move
on to the next shiny project.

If we’re committed to creating genuinely useful work that truly
meets the needs of our clients and organizations, we must
fundamentally redefine the scope of our work. As Nathan Curtis
says, a design system shouldn’t be a project with a finite scope, but
rather a product meant to grow and evolve over time:

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 147

Focusing on style guide delivery as the climax is the wrong
story to tell. A system isn’t a project with an end, it’s the
origin story of a living and evolving product that’ll serve other
products.

- Nathan Curtis

The web is never done, and the creation of a design system is
merely the first step in a long (and hopefully fruitful!) journey.
A design system should be a long-term commitment with the
ambitious goal of revolutionizing how your organization creates
digital work. Exciting, eh?! So how do we make sure that happens?

Creating maintainable design systems

As you embark on this pattern-paved journey, let’s talk about
things you can do to craft a design system that sets up your
organization for long-term success. How do you create a design
system that takes root and becomes an essential part of your
organization’s workflow? What pitfalls do you need to be on the
lookout for? How do you ensure the design system yields big
results? To set up your design system for long-term success, you
need to:

 ɕ Make it official.

 ɕ Make it adaptable.

 ɕ Make it maintainable.

 ɕ Make it cross-disciplinary.

 ɕ Make it approachable.

 ɕ Make it visible.

 ɕ Make it bigger.

 ɕ Make it context-agnostic.

 ɕ Make it contextual.

 ɕ Make it last.

Let’s dive into each one of these points in a bit more detail.

https://medium.com/eightshapes-llc/a-design-system-isn-t-a-project-it-s-a-product-serving-products-74dcfffef935#.4umtnfxsx

148 ATOMIC DESIGN

Make it official
Your initial style guide may begin its life as a side project, the
result of a weekend hackathon, or as the brainchild of one or two
ambitious team members. As we discussed in the previous chapter,
your client or boss doesn’t even have to know that you’re creating
a thoughtful design system and accompanying pattern library.
Remember: ask forgiveness, not permission!

Organic beginnings are all well and good, but in order to establish
a truly impactful design system that creates long-term success
for your organization, the design system needs to evolve into
an officially sanctioned endeavor. That means thinking of it as a
true product rather than a simple side project, and consequently
allocating real time, budget, and people to it.

Convincing stakeholders to commit large chunks of money, time,
and resources up front for a design system can be extremely
challenging. So what are we to do? Here’s my advice:

1. Make a thing.
2. Show that it’s useful.
3. Make it official.

Let’s break down these steps a bit further.

1: Make a thing

You have to start somewhere, and having something started is
better than nothing at all. Pick a project that would be a great
pilot for establishing your design system; follow a process similar
to the one discussed in chapter 4; think about the atomic design
mental model detailed in chapter 2; and you’ll end up with a solid
foundation for a thoughtful design system and pattern library that
helps your team work more effectively.

Take the time to package your UI patterns in a pattern library and
get it ready to be shopped around. I’ve talked to several ambitious
team members who have established the basic gist of their pattern
library over the course of a weekend. This effort makes all the
difference in the world since it provides something tangible for
stakeholders to react to. Again: show, don’t tell.

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 149

2: Show that it’s useful

With a nascent-yet-tangible design system in place, you can have
more meaningful conversations with the people who control money,
scheduling, and resources. You can discuss exactly how the design
system helped save time and money (see “Pitching Patterns” in
chapter 4), then paint a picture of how those benefits would scale
even further if the organization invested in an official, full-fledged
design system.

Get team members from different disciplines to back you up and
discuss the initial success of the system, and also pull in others who
are sympathetic to the cause who would stand to benefit from an
expanded design system.

3: Make it official

You’ve proved the value of your initial design system and presented
a roadmap for how to make it even better. With any luck your
organization will commit to making the design system an Official
Thing.

With approval from the highest levels, you’re now able to put a
plan into action that involves: allocating or hiring people to work
on the design system; developing a plan to make it more robust;
establishing a clear governance strategy; and laying out a product
roadmap.

It’s worth pointing out that things may not shake out the way you
hoped. Despite demonstrating real value and presenting a concrete
plan of action, higher-ups still might shoot your initiative down.
Don’t be discouraged. You may have lost the battle, but you can
certainly win the war. Your team should continue to grow and
extend the design system in whatever capacity you can until its
value becomes undeniable. As more people benefit from the system,
you’ll end up with a grassroots-supported system that can help
push the endeavor through.

150 ATOMIC DESIGN

Establishing a design system team

With the design system initiative approved, it’s now time to put the
right people and processes in place to ensure the system flourishes
for your organization.

Design system makers and users

First things first. It’s important to recognize that there will
inevitably be people at the organization who help make and
maintain the design system, and there will be people who will
be users of the design system. There may be overlap between
these two groups, but establishing the roles of makers and users is
important nonetheless.

When I talk about establishing a more collaborative process like the
one I detailed in the previous chapter, I inevitably hear people who
work at large organizations say, “But Brad, we have hundreds (or
even thousands) of developers working on our products. Getting all
those people to collaborate and contribute like that would be far too
difficult.”

They’re likely right. It would be ideal if the entire organization
adopted nimbler, more collaborative processes, but the daunting
logistics around such an effort makes it improbable. But here’s the
thing: not everyone in the organization needs to contribute directly
to the design system, but someone (or more likely, some people)
must take ownership of it.

The design system makers are the ones who create, maintain,
and govern the system, and they need to work closely together to
ensure that the system is smart, flexible, scalable, and addresses
the needs of the users and business. The design system users are
the teams across the organization who will take the system and
employ its interface patterns to specific applications.

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 151

The design system makers and design system users need to
maintain a close working relationship to ensure the patterns
defined within the system serve the needs of the applications,
and that all documentation is clear. Makers provide a birds-eye
perspective of the entire ecosystem the design system serves,
while users provide an on-the-ground perspective focused on
specific applications of the system. Jina Bolton of Salesforce sums
up the relationship between makers and users quite nicely:

The Design System informs our Product Design. Our Product
Design informs the Design System.

- Jina Bolton, Salesforce

Design system makers and users.

https://medium.com/salesforce-ux/the-salesforce-team-model-for-scaling-a-design-system-d89c2a2d404b

152 ATOMIC DESIGN

Both outlooks are critical to the success of the design system,
which is why it’s so important for makers and users to have a
healthy relationship that involves frequent communication and
collaboration.

Design system makers

Who updates the design system? Who approves changes? Who
communicates with the users of the design system to make sure it’s
addressing their needs? Who gets to decide which patterns stay, go,
or need tweaking?

The answers to these questions will very much depend on the size
and setup of your organization.

Large organizations are able to dedicate serious resources to
managing design systems. Salesforce, for example, maintains
an official design systems team, which currently includes about a
dozen full-time employees, last I heard. That dedicated team is
responsible for governing the design system and making sure it’s
meeting the needs of the internal product teams, as well as external
developers who build things on the company’s platform. When a
design system is serving literally thousands of users, it’s a smart
idea to dedicate at least a few full-time employees to manage and
expand the system.

Smaller organizations most likely don’t have the luxury of building
an entire team to service a design system. Team members in
smaller organizations have to wear many (hopefully stylish!) hats
out of necessity, so governing the design system will likely become
another responsibility. This may sound like an added burden (“Oh
great, yet another thing I’m responsible for that doesn’t involve
a pay raise!”), but this particular hat should be a joy to wear as it
improves the efficiency and quality of all other work. Hooray for
design systems!

Typically, design system makers at smaller organizations will be
senior-level staff who have the experience to make thoughtful
decisions, and the authority to enforce the design system.

And then there are external agencies, contractors, and consultants.
What is the role of a third party when it comes to long-term
maintenance of a client’s design system? On one hand, external

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 153

partners are at a bit of a disadvantage since they don’t actually work
for their client’s organization. A successful design system needs to
become part of an organization’s DNA, and since third parties exist
outside the company’s walls, their influence is intrinsically limited.

But on the other hand, external parties can often provide a sense
of perspective that’s hard to see while working inside a company.
This is where outsiders can really shine. In my work as a consultant,
I work with organizations to establish long-term design system
maintenance strategies, and help get the right people and processes
in place. While the long-term success of the system will ultimately
be up to the organization, third parties can teach them to fish and
provide important strategic guidance, feedback, and perspective.

Design system users

Who are the people responsible for using the design system to build
new features and applications? Who are the people who talk with
the system makers to report issues and request features?

Once again, the answers to these questions will largely depend on
your organization’s size and structure.

Design system users may be the same team creating the design
system, separate development teams within your organization,
junior-level designers and developers, partner agencies, external
development shops, or other third-party teams.

Users’ proximity to and involvement in the creation of the design
system will undoubtedly vary. You may work on a singular product
at a scrappy startup, so your small team could be simultaneously
creating and using the design system. Or you may work at a large
multinational corporation with development teams and third-party
partners scattered all across the globe. If this is the case, design
system makers and users may seldom (or ever) meet, which means
that helpful documentation and a sharp birds-eye perspective
become that much more important.

154 ATOMIC DESIGN

One of the biggest advantages of establishing a thoughtful design
system is that it allows organizations to scale best practices. If all
those best practices – responsiveness, accessibility, performance,
UX, ergonomics, and so on – are baked into the system, users can
simply plug in the patterns and reap the rewards. This means design
system users don’t have to be senior-level designers or developers
to produce good work; the design system serves as a quality control
vehicle that helps users apply best practices regardless of each
individual’s skill level.

Design system team makeup

A cross-disciplinary team should be established to properly
manage, maintain, and extend the system. All disciplines at an
organization – UX designers, visual designers, content strategists,
front-end developers, back-end developers, product managers,
project managers, executives, and other stakeholders – have
unique perspectives that can undoubtedly inform and shape the
work. Incorporating these perspectives into the design system is
important, but doesn’t necessarily require every discipline to be
constantly involved in developing it.

There is a spectrum of potential relationships between design system users and makers, and the
size and makeup of your company will undoubtedly shape those relationships.

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 155

There will inevitably be disciplines that actively do the work, while
others may take on more of an advisory role. Those responsible
for designing and building the user interface – UX designers,
visual designers, front-end developers – will likely serve as the
hands that do the work and make updates to the design system.
They should work collaboratively (as detailed in chapter 4) and
coordinate with other disciplines to ensure that the system reflects
the values and considerations of the entire business.

Other people may not be the ones actively doing the work, but
must be consulted to make sure their perspectives are properly
reflected in the system. Back-end engineers need to make the team
aware of any architectural decisions that would affect the front-end
UI; executives need to make the team aware of important initiatives
that will affect the role and utility of the system; and, of course,
design system users need to coordinate with the makers to ensure
the system serves the needs of individual applications.

Make it adaptable

Change is the only constant, as they say. The living part of a living
design system means that it needs to roll with the punches, adapt to
feedback, be iterated on, and evolve alongside the products it serves.

A misconception about design systems is that once they’re
established, they become an omnipotent and unchangeable source
of truth. Thinking in such a rigid way is a surefire way to have
your design system effort backfire. If users feel handcuffed and
pigeonholed into using patterns that don’t solve their problems,
they’ll perceive the design system as a unhelpful tool and start
searching elsewhere for something that will better address their needs.

Creating a clear governance plan is essential for making sure
your design system can adapt and thrive as time goes on. A solid
governance strategy starts by answering some important questions
about handling change. Consider the following:

 ɕ What happens when an existing pattern doesn’t quite work for
a specific application? Does the pattern get modified? Do you
recommend using a different pattern? Does a new pattern need
creating?

 ɕ How are new pattern requests handled?

156 ATOMIC DESIGN

 ɕ How are old patterns retired?

 ɕ What happens when bugs are found?

 ɕ Who approves changes to the design system?

 ɕ Who is responsible for keeping documentation up to date?

 ɕ Who actually makes changes to the system’s UI patterns?

 ɕ How are design system changes deployed to live applications?

 ɕ How will people find out about changes?

There are likely many more specific questions to answer, but the
point is your team should have answers and processes in place to
address inevitable changes to the system.

As mentioned a few times already, frequent communication and
collaboration between makers and users is key for successfully
governing your design system. Make it as easy as possible for
users and makers to communicate. Set up a design system Slack
or Yammer channel, establish regular office hours, make sure your
bug ticket software helps facilitate conversation, and keep the doors
open for ad hoc chats and calls. If users are stuck on something,
they should know exactly where and who to turn to for help.

In addition to informal day-to-day conversation between makers
and users, schedule regular “state of the union” meetings to
review the design system with makers, users, and other key
stakeholders. Discuss what’s working, be honest with what needs
to be improved, and review priorities and the roadmap to make
sure the system is serving the needs of the business. These regular
checkups are especially helpful for keeping stakeholders up to
speed, since they often aren’t involved in the day-to-day of the
design system’s operations.

Making changes to patterns

A critical part of design system maintenance is ensuring that UI
patterns stay up to date, embrace evolving design and development
best practices, and continue to address the real needs of the
organization.

Developing a strategy for handling pattern changes is crucial, which
is why Inayaili de León Persson and the Canonical web team spent

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 157

time to map out their strategy as they created the Vanilla front-end
framework.

We thought that it would be good to document the process that
a pattern should follow in order to become a Vanilla pattern, so
after a little bit of brainstorming, we created a diagram that shows
the different steps that should be taken from before submitting a
pattern proposal to its full acceptance as a Vanilla pattern.

- Inayaili de León Persson, Canonical

The result is a gorgeous decision tree that maps out exactly what
processes need to happen to add a new pattern to the design system.

The three types of change that can happen to patterns in a design
system are modification, addition, and removal.

Modifying patterns

UI patterns can and should be modified for a number of reasons:
feature additions, bug fixes, subtle or major visual design tweaks,
performance improvements, accessibility enhancements, code
refactoring, UX best practice updates, and so on.

The Canonical web team mapped out the decision process used to manage updates and additions to
patterns in the Vanilla front-end framework.

http://ubuntudesign.github.io/vanilla-framework/
http://ubuntudesign.github.io/vanilla-framework/
http://design.canonical.com/2016/07/getting-vanilla-ready-for-v1-the-roadmap/

158 ATOMIC DESIGN

The design system maintainers need to understand why and when
to tweak patterns, how to go about making those changes, and how
to roll out those improvements into individual applications.

Keeping patterns fresh is essential for the long-term health of
the design system. Nobody wants to use and maintain a Web
2.0-looking design system full of bevels and crusty code!

Adding patterns

As smart as your team surely is, it’s quite possible you won’t think
of every conceivable pattern to include in your design system right
out of the gate. As the system is applied to more products, gaps will
inevitably emerge where the needs of the application aren’t solved
by existing patterns. In such cases, it will become clear that new
patterns will need created to address these needs.

Care should be taken when adding patterns to the library. If every
whim results in a brand new pattern, the design system will
become a bloated and unwieldy Wild West. It’s worth asking if this
is a one-off situation or something that can be leveraged in other
applications.

Perhaps you may want to assume a one-off until a different team
encounters a similar use case. If the team working on Application
2 looks at Application 1 and says, “I want that!” perhaps that’s a
good indicator that a one-off pattern should be added to the pattern
library.

Removing patterns

Patterns can be deprecated for a number of reasons. Perhaps you
discover through use that a particular pattern is a terrible idea.
Hindsight is 20/20, my friend. Maybe the industry has moved away
from a pattern for UX or technical reasons. Perhaps a pattern sat
there unused by any application for ages. Maybe users reported
back with a lot of negative feedback about working with a particular
pattern.

Having a plan for deprecating patterns is a great idea. But how
do you remove patterns from the design system without pulling
the rug out from under people relying on those patterns in their

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 159

applications? To address this issue, Salesforce created a neat utility
called Sass Deprecate that flags patterns that are heading to the
chopping block in the near future. Through some clever use of Sass
variable flags and styling, the maker team can give a heads-up to
users that a particular pattern is being deprecated, and recommend
an alternative pattern instead.

Make it maintainable

With all this talk about modifying, adding, and removing patterns,
you may be wondering, “How the hell are our applications supposed
to actually keep up with all these changes?!” And in asking that
question, you will have stumbled on to one of the biggest challenges
organizations face in successfully maintaining a design system.

The biggest existential threat to any system is neglect.

- Alex Schleifer, Airbnb

Many systems fall into a state of disrepair because the effort
required to make updates is far too high. If it’s difficult and time-
consuming to update patterns, documentation, and applications,
people will eventually get so frustrated that they stop making
the effort and the design system will begin its drift into oblivion.
Making updates to UI patterns, documentation, and applications
should be as frictionless as possible, so reducing this friction
should become a high priority for the design system team. This
involves careful consideration from both technological and
workflow standpoints.

In search of the holy grail

The design system holy grail involves creating an environment
where the pattern library and live applications are perfectly in
sync. The idea is that you should be able to make a change to a UI
pattern and see that change automatically reflected in both the
pattern library and anywhere the pattern is included in production.

https://github.com/salesforce-ux/sass-deprecate
http://airbnb.design/the-way-we-build/

160 ATOMIC DESIGN

This technique removes any duplication of effort and ensures the
pattern library and the applications using the patterns remain
synchronized. Sounds like a dream, right?

As it turns out, this dream can be a reality. Lonely Planet, the
travel guide company, was one of the first to establish a holy grail
design system called Rizzo. Through some smart architecture,
they created an API for their UI patterns that feeds into their
production environment as well as their pattern library. The result
is a centralized design system that ensures their live application and
documentation remain perfectly in sync.

This approach is no easy task, as it requires sophisticated technical
architecture, smart people to set it all up, and a relatively
centralized organizational culture. How you go about chasing
the holy grail – or even if you can achieve it – is dependent on a
whole load of factors, including your technical architecture and
organizational makeup.

The holy grail of design systems is an environment where making changes to a UI pattern updates
both the pattern library and production applications simultaneously.

http://rizzo.lonelyplanet.com/

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 161

Clearing technical hurdles

Keeping a pattern library in sync with production environments
requires sharing code in a smart, scalable, and maintainable way.
Detailing all the different technical strategies and considerations
around the holy grail would necessitate its own book, but let’s cover
a few important areas around keeping front-end code in sync.

The front-end of things

A UI design system manifests itself as the front-end of a web
experience, which is comprised of HTML, CSS, and JavaScript. How
we get that front-end code into a production environment, with
complex application logic and back-end code, is the task at hand.

In his article “Chasing the Holy Grail,” web developer Marcelo
Somers details various technical approaches to achieving the holy
grail. He highlights the pros and cons of each strategy for feeding a

Lonely Planet created an API for its UI patterns that is consumed by both their pattern library and
production environment. By constructing their design system in this manner, changes to UI patterns
are automatically reflected in both the pattern library and production environment.

https://medium.com/@marcelosomers/chasing-the-holy-grail-bbc0b7cce365#.ay1xeej7d

162 ATOMIC DESIGN

design system into applications to keep both codebases in lockstep.
While I won’t detail each of Marcelo’s strategies, it’s worth noting
there is a spectrum of approaches to choose from: crude, manual
front-end code copying-and-pasting on one end, to baking the
pattern library directly into the production environment on the
other.

In my experience, I’ve found that sharing CSS and presentational
JavaScript with production environments is relatively easy, while
sharing markup is tough. Because CSS and JavaScript tend to get
compiled into a single file (or perhaps a handful of files), it becomes
possible to throw them onto a CDN and then simply link to those
files in each application. Marcelo explains how to do this while
keeping versioning in mind:

You’d provide development teams with a versioned URL (e.g.,
http://mycdn.com/1.3.5/styles.css) and upgrading is as simple
as bumping the version number in the URL.

- Marcelo Somers

Sharing CSS and JavaScript is all well and good, but where things
get tricky is when you want to share markup between environments.
Why? you ask. Well, markup and back-end logic are often
intertwined in an application’s codebase, which tends to make it
difficult to simply copy and paste markup between your pattern
library and production environments. Thankfully, there are ways
around this problem.

Bridging the markup gap with templating languages
Using HTML templating languages (such as Mustache, Handlebars,
Twig, Underscore, Jade, Nunjucks, and a slew of others) makes
markup more portable and dynamic. Templating languages separate
structure and data, and supercharge our HTML to keep us from
having to write the same markup patterns over and over again. The
good news is that many CMSes and application environments also
make use of templating languages to serve up front-end markup.

https://medium.com/@marcelosomers/chasing-the-holy-grail-bbc0b7cce365#.ay1xeej7d

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 163

The templating language can serve as the bridge between your
pattern library and production environments. If you use a
templating language to create the patterns in your design system
(something we discussed at length in chapter 3), you can easily
share those patterns with production environments that utilize the
same templating engine.

The team at Phase2 Technology achieved the holy grail by using
Pattern Lab as their pattern library development tool and Drupal as
their content management system. Because both Pattern Lab and
Drupal support the popular Twig templating engine, Phase2 is able
to easily share patterns between the two environments, ensuring
their clients’ pattern libraries and production builds are always in
step with each other.

By using the same templating engine, along with the help of
the Component Libraries Drupal Module, the tool gives Drupal
the ability to directly include, extend, and embed the Twig
templates that Pattern Lab uses for its components without any
template duplication at all!

- Evan Lovely, Phase2 Technology

A templating language like Mustache, Handlebars, Underscore, Jade, and others can serve as a bridge
that allows front-end code to be shared between the pattern library and production application.

https://www.drupal.org/
http://twig.sensiolabs.org/
https://www.phase2technology.com/blog/introducing-pattern-lab-starter-8/

164 ATOMIC DESIGN

Is your culture holy grail compatible?

You may have read that last section and thought, “That’s amazing!
My company needs this now!” While holy grail systems are indeed
great, there are reasons why you may not be able to automagically
keep your production environments and pattern library in sync.
Perhaps your organization creates tons of digital products on many
different platforms using wildly different technologies. Maybe
you’re a giant multinational company scattered all over the world.
Maybe your company has an extremely decentralized, autonomous
culture. Or maybe you’re a gigantic federal government.

The U.S. government’s design system – called the Draft U.S. Web
Digital Standards – is a collection of UI components and visual
styles created to help people making government websites build
more consistent UIs. The design system provides markup and styles
for users to download and weave into their applications. It would
certainly be amazing to see a holy grail design system implemented
at such a gigantic scale, but as you might imagine, that’s a pretty
tall order. The vastness and decentralized nature of the organization

The Draft U.S. Web Design Standards are the design system for the United States federal government.

https://standards.usa.gov/
https://standards.usa.gov/

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 165

means that a synchronized pattern library isn’t really achievable
without some dramatic restructuring of how federal government
websites get built.

If a relatively scattered, decentralized culture is your reality, don’t
be disheartened! Even getting some design system in place – a
handful of go-to UI patterns, some helpful documentation, and
guiding principles – can show your organization the light that
points towards the grail. As we’ve discussed throughout this
chapter, these efforts should be ongoing, and before you can run
you must first learn to crawl.

Make it cross-disciplinary

Style guides often jump straight into code snippets and pattern
usage for the benefit of the design system users. Of course, a
pattern library needs to be helpful for the people actually making
use of the patterns, but treating a style guide solely as a developer
resource limits its potential.

A style guide has the opportunity to serve as a watering hole for
the entire organization, helping establish a common vocabulary
for every discipline invested in the success of the company’s digital
products. Establishing this common vocabulary can lead to more
efficient work, better communication, and more collaboration
between disciplines across the organization. That’s why the style
guide should be an inviting place for everybody, not just design
system users.

Take the carousel (please!). This component is amazingly complex
from an organizational standpoint. A homepage carousel on an
e-commerce website requires input from a host of disciplines
across the organization. Business owners and editorial staff must
choose products to be featured in the carousel. Copywriters must
ensure the copy is effective and stays within the constraints of the
design. Art directors need to make certain the aesthetic design is
pleasing and the product photography is legible across every screen
size. UX designers have to confirm the functionality and controls
are intuitive. Front-end people must be sure the component is
responsive, accessible, and performant. Back-end developers need
to ensure the component is properly wired up to the back-end
system. You get the idea.

166 ATOMIC DESIGN

A well-crafted style guide can help manage all these moving parts
and ensure the many perspectives that influence each pattern are
properly documented in the style guide. Make the pattern library
accessible to every discipline, and think about how to make it
easy and inviting for different disciplines to contribute to the
documentation.

Make it approachable

It should come as a surprise to no one that people tend to gravitate
towards attractive things. A big part of making a style guide a cross-
disciplinary resource is ensuring the container that houses your
pattern library and other documentation is good-looking, inviting,
and easy to navigate.

Taking the time to craft an attractive home for your style guide and
documentation can lead to more usage, help build awareness, help
create organizational investment, and help get non-developers’
eyeballs on the style guide. All of this contributes to that important
shared vocabulary that leads to better cross-disciplinary
collaboration.

But creating a great-looking, intuitive style guide experience
doesn’t just happen, and this can be problematic when getting

A homepage carousel on a site like Walmart requires input from many different disciplines and
stakeholders. A style guide can help gather those different perspectives under one roof.

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 167

a style guide off the ground. If teams think that making a useful
style guide involves making some Big, Official Thing with custom
branding and a glossy website, they might be deterred from ever
starting the initiative. So remember:

1. Make a thing.
2. Show that it’s useful.
3. Make it official.

Creating a useful design system should be the team’s first
priority. Building a happy home to contain it all might not happen
straightaway, but should become a bigger priority once the design
system becomes official. Making a good-looking style guide
isn’t just design for design’s sake; it reflects an organization’s
commitment to making and maintaining a thoughtful, deliberate
design system.

Make it visible

Visibility is critically important to the ongoing health of your
design system. Such an important endeavor shouldn’t be tucked

Yelp’s style guide has an attractive, friendly front page that explains what the resource is, who it’s
for, and how to use it.

168 ATOMIC DESIGN

away in a dark corner of your intranet. What steps can you take to
ensure the design system remains a cornerstone of your design and
development workflows?

Design system evangelism

You can create the best style guide in world, use the most
sophisticated technology, have an amazing team in place, and have
excited users, but if you don’t actively promote the design system
and communicate changes, the entire effort will suffer greatly.

Evangelizing your design system efforts can and should happen
even before the system is off the ground. At the onset of your
project, you can set up places to document progress of the project
to help garner awareness and excitement for the design system
effort. One client of mine set up an internal blog to publish updates
to the project, as well as a design system Yammer channel where
developers and other interested parties can share ideas, address
concerns, give feedback, and ask questions. Establishing a culture of
communication early in the process will increase the likelihood of
the design system taking root.

Communicating change

Once the design system is off the ground and is being used in real
applications, it’s imperative to communicate changes, updates, and
an ongoing vision to the entire organization.

The tactics for this communication can vary from nuts-and-bolts
utilities to more outward-facing marketing efforts. Here are some
materials that can help communicate change:

 ɕ Change logs: “Here’s what’s changed in the pattern library this
month.”

 ɕ Roadmap: “Here’s what’s coming up over the next few
months.”

 ɕ Success stories: “Team X launched this great new application
using the design system; read more about how they did it.”

 ɕ Tips and tricks: “Here are a few best practices and
considerations for using our system’s buttons throughout your
application.”

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 169

Having a base for all these materials is a great idea, and keeping
them adjacent to (or even within) the style guide itself makes a lot
of sense as well.

Design system changes, updates, and requests should be
communicated wherever your team hangs out. That may include
Slack, Basecamp, GitHub, wikis, Yammer, email lists, company
blogs, intranets, and any other internal tools your team uses to
communicate and collaborate. If that sounds like a lot of work to
you, fear not! Keeping your team and users updated doesn’t have to
require a huge manual effort. Thanks to the connected nature of our
tools, teams can automatically get alerted to changes via software,
as Micah Sivitz from Shyp explains:

Whenever someone makes a pull request, it sends a notification
to our #Design slack channel, announcing to the team that
there is a proposal change and feedback is required.

- Micah Sivitz, Shyp

The material design team publishes a handy changelog within its style guide so users can easily
learn about the latest updates and improvements to the system.

https://medium.com/shyp-design/managing-style-guides-at-shyp-c217116c8126

170 ATOMIC DESIGN

Baking this communication into the team’s everyday workflow keeps
makers, users, and stakeholders engaged, and helps reassure users
that the pattern library is being actively maintained and improved.

Training and support

You wouldn’t hand someone a hammer, saw, and screwdriver then
say, “All right, you’ve got what you need; now go and build me a
beautiful new house.” Knowing how to properly use a tool is often
even more important than that tool’s availability. Documentation
in the form of a style guide is no doubt helpful, but by itself it’s
not enough. It’s essential to provide adequate training and offer
ongoing support for your design system’s users to ensure they
successfully get up and running with the tool kit and continue to
create great work with it.

Training users how to work with the design system can take many
forms, including:

 ɕ Pair sessions: Nothing beats pulling up a chair and working
together on a project. While more time-intensive than other
training vehicles, it’s the best way to get makers and users
collaborating together, learning how the system works, and
exposing new opportunities and shortcomings.

 ɕ Workshops: From immersive full-day sessions to quick walk-
throughs, it’s incredibly helpful to set up face-to-face training
workshops involving both makers and users. These sessions can
help smooth out any misconceptions about the system, help
level-up users with hands-on guidance, and create a healthy
relationship between the people in charge of maintaining the
system and the people in charge of working with it.

 ɕ Webinars: If workshops or pair sessions aren’t possible, or you
need to train a lot of users at scale, webinars can be fantastic.
Users can tune into online sessions to learn about how to
properly use the system. When conducting webinars, be sure
to build in plenty of Q&A time to field both audio and typed
questions, concerns, and comments.

 ɕ Tutorials: A series of blog posts and screencasts can neatly
encapsulate core concepts of working with the design system.
Not only do these help serve as a training tool, but they can
serve as a great reference to keep coming back to.

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 171

 ɕ Onboarding: A great way of injecting your design system into
your company culture is to bake design system training right
into the onboarding process for new employees. New colleagues
will understand the importance of modularity, reuse, and all the
other benefits a design system brings.

Users will undoubtedly have questions or encounter issues once
they get up and running and start building things with the design
system. They need to know there’s a robust support system in place
to help answer any questions, listen to their requirements, and
address bugs. There are a host of mechanisms in place to provide
support for users, including:

 ɕ Issue trackers: Tools like JIRA and GitHub Issues are great
for users and makers to report bugs and have technical
conversations. Users should be aware of the protocol for filing
bugs and feel empowered to contribute.

 ɕ Office hours: Schedule regular times when the design system
team is available to field questions, address issues, and talk
about what’s next for the design system.

 ɕ Slack and chat tools: The real-time nature of many of our
work collaboration tools presents a huge opportunity to keep
the pattern-laden conversation going. Thanks to tools like
Slack, Yammer, and HipChat, makers and users can engage one
another whenever and wherever.

 ɕ Forums: Communities like Stack Overflow and GitHub have
proved to be extremely effective at enabling grassroots,
community-driven support. Rather than design system makers
becoming a support bottleneck, it can be worthwhile to open up
support to the entire user community.

 ɕ Outreach: Not everyone has the time or the personality to ask
questions and suggest changes. Design system makers should be
proactive and reach out to developers using the design system
to see if they have any issues or concerns. These kinds of actions
can help build a genuine and positive relationship between
makers and users.

172 ATOMIC DESIGN

Thanks to tools like GitHub, design system users don’t have to be
relegated to the role of dumb consumers. The people who use the
system day in and day out can be extremely valuable contributors to
the design system if given the chance. Embrace the fact that users
are eager to pitch in and make the system as great as it can be. Here
are some tactics for encouraging user contributions:

 ɕ Suggestions and pull requests: Encourage anyone using the
design system to suggest changes and new features. Better yet,
invite users to submit changes in the form of pull requests that
can be merged directly back into the codebase.

 ɕ Individual interviews and roundtable discussions: It’s always
a good idea to talk to users, so regularly schedule time to chat
with the people who are touching these patterns on a regular
basis. Take it all in, listen to both the good and the bad, and
collectively determine a plan of attack to address any issues and
suggestions.

The Draft U.S. Web Digital Standards system tracks issues using GitHub, providing a place for users
and makers to file bugs and have conversations about the nitty-gritty.

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 173

 ɕ Requests for feedback: Managing a system that can potentially
be deployed to hundreds of applications can be tricky. Before
pulling the trigger on decisions that could impact a lot of people,
ask for opinions: “We’re considering deprecating our carousel
pattern and would like to hear what you think.”

 ɕ Surveys: If interviews aren’t feasible, you can lean on quick
surveys to get a feel for how effective UI patterns and the style
guide are. Questions like “On a scale from one to five, how
useful is the pattern documentation? Any suggestions?” can help
identify blind spots and get users to suggest features that would
make their lives easier.

 ɕ Regular “state of the union” meetings: Schedule regular
meetings where the design system team discusses the product
roadmap, lessons learned along the way, and suggestions and
feedback. Encourage anyone to join the meeting, and be sure to
record and distribute these sessions so everyone is aware of the
master plan.

Make it public

Communicating change, evangelizing, and setting up proper
training and support are all great things to increase your system’s
visibility. But there’s another big opportunity to take your
communication strategy to another level: making your style guide
publicly accessible.

Why? Isn’t a style guide merely an internal resource to help people
in your organization work better together? What use is it to the
outside world? And wouldn’t publishing your style guide give away
all your trade secrets?

Publishing your style guide for the world to see increases its
visibility, increases accountability, and serves as an amazing
recruitment tool.

Putting your style guide behind a login or firewall reduces visibility
and adds an unnecessary burden to your team and partners, which
limits the resource’s effectiveness and potential. And the fears
about giving away your trade secrets are completely unfounded.
These are UI patterns, not nuclear codes.

174 ATOMIC DESIGN

In addition to making important documentation easier to access,
a public style guide helps create organizational accountability.
Publishing your style guide demonstrates your organization’s
commitment to the design system, which creates a helpful bit of
pressure to keep it an up-to-date and useful resource.

Public-facing style guides are also hugely helpful for recruiting.
Designers, developers, and people working in other disciplines
want to work for organizations that embrace modern digital best
practices, and (as we’ve discussed throughout this book) design
systems are quickly becoming an industry-wide best practice.
Publishing your style guide sends out a strong Bat-Signal that
can attract passionate, pattern-minded people. For instance, style
guide expert Jina Bolton went to work at Salesforce after seeing the
company’s style guide for their Salesforce1 product.

When I saw [Salesforce’s style guide] I thought it was beautiful
and it’s why I wanted to join this team.

- Jina Bolton

Styleguides.io rounds up over 150 public-facing style guides from organizations across the world.

http://styleguides.io/podcast/jina-bolton/

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 175

Since joining Salesforce, she’s helped create the ultra-successful
Lightning Design System and helps manage their growing design
system team. Jina’s story is not an isolated one; almost every guest
Anna Debenham and I interviewed on the Styleguides Podcast
discussed how helpful their public-facing pattern library was for
attracting talent. All that means your public style guide makes your
organization more competitive, not less.

Make it bigger

A visible, cross-disciplinary, approachable pattern library is one
that your team will come back to again and again. Use that to your
advantage. Since the team’s eyeballs are already fixated on that
one resource, there’s a big opportunity to extend it to include other
helpful documentation like the voice and tone, brand, code, design
principles and writing guidelines we discussed in chapter 1.

Now, your organization may not need to implement every flavor of
style guide out there, but the point is that creating a centralized
style guide hub builds more awareness of best practices,
increasing the documentation’s effectiveness.

Intuit’s Harmony design system includes a pattern library, design principles, voice and tone,
marketing guidelines, and more. Housing this helpful documentation under one roof helps increase
its visibility and effectiveness.

http://styleguides.io/podcast

176 ATOMIC DESIGN

Another way to extend the functionality of the pattern library is to
include guidelines for native platform patterns alongside web-based
patterns. We can look to Intuit’s Harmony design system once again
for an example of how native mobile platform patterns for iOS and
Android can live beside their web-based counterparts.

Make it context-agnostic

The way your UI patterns are named will undoubtedly shape how
they are used. The more agnostic pattern names are, the more
versatile and reusable they become.

Because we tend to establish UI patterns in the context of a broader
page, it can be tempting to name components based on where they
live. But rather than naming your component “homepage carousel”
(forgive my morbid obsession with carousels), you can simply call
it “carousel,” which means you can now put carousels everywhere!
(But for the love of all that is holy, please don’t.)

Another challenge for naming display patterns is that we tend to
get distracted by the content patterns that live inside them. For
instance, if working on an e-commerce site, you may be tempted to
call a block containing a product image and title a “product card.”

Intuit’s Harmony pattern library includes buttons to switch between web, iOS, and Android for each
pattern. This allows the team to maintain a mostly consistent design system across platforms but
also document pattern divergences when they occur.

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 177

But naming things in this manner immediately limits what type of
content can live inside it. By naming the pattern simply “card,” you
can put all sorts of content patterns inside it: products, promotions,
store locations, and so on.

Fair warning: naming things is really freaking hard. But there
are strategies to help you create robust names for your patterns.
Conducting an interface inventory (as detailed in chapter 4) helps
remove patterns from the context of the page where they normally
reside, meaning your team can create names that aren’t distracted
by their context. I’ve conducted naming exercises with teams where
we’ve blurred out the content residing inside a pattern so everyone
can focus on the pattern’s structure rather than the content that lives
inside it.

While naming things will always be a challenge, pattern names that
are agnostic to context and content will be more portable, reusable,
and versatile.

Make it contextual

Showcasing UI patterns in a pattern library is all well and good,
but you need to demonstrate context for design system users to
understand how and where to properly use them. Most pattern

A good exercise when naming patterns is to blur out the content so your names reflect the patterns’
structures rather than the content living inside them.

178 ATOMIC DESIGN

libraries show a demo of each UI pattern, but as we’ve discussed,
those patterns don’t live in a vacuum. Where exactly are these
patterns used?

One way to demonstrate context might include showing
screenshots or videos of a component in action. Material design’s
documentation does a fantastic job at this; each component is
rich with photos, videos, and usage details to give users a clear
understanding of what these patterns look like in the context of an
application, and demonstrate how each pattern should be used.

Another way to show context is to provide lineage information for
each pattern. As we discussed in Chapter 3, a tool like Pattern Lab
automatically generates this information, letting you see which
patterns make up any given component in addition to showing
where each component is employed. This provides a sort of pattern
paper trail that helps immensely with QA efforts, as it highlights
exactly which patterns and templates would need to be tested if
changes were made to a particular pattern.

Material design’s component library doesn’t just contain an example of each component; it
thoroughly documents the component’s usage with plenty of images and videos to support it.

Make it last

Making a design system is an incredibly and important endeavor.
But without proper maintenance, the value of your design system
will depreciate much like a car that’s just been driven off the
dealer’s lot. Instead, your design system should be like a bottle of
fine wine that increases in value over time.

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 179

Tools like Pattern Lab provide lineage information, allowing teams to see which smaller components
are included in any given component, as well as where each pattern gets used.

180 ATOMIC DESIGN

As we’ve discussed throughout this chapter, making your design
system stand the test of time requires a significant amount of time
and effort. But isn’t that the case with all living things? Animals
need to eat, and plants need water and sunlight in order to survive.
Creating a living design system means giving it attention and care
in order for it to continue to thrive.

All that effort not only creates a better present for your
organization, but sets you up for long-term success. Establishing a
clear governance plan, communicating change, and implementing
the other advice found in this chapter helps the design system take
root and become an integral part of your organization’s workflow.
Creating the damn thing in the first place is the hard part, but once
established, you have a solid foundation with which to build on
for years to come. Even if you were to burn everything down and
rebuild a new system from the ground up, you’ll find your UIs will
still need buttons, form fields, tabs, and other existing components.
And you’ll need a happy home to display and document the system.
Don’t throw the baby out with the bathwater!

With proper maintenance, your design system should increase in value over time like a bottle of fine
wine, rather than a used car that’s just been driven off the lot. Image credit: Sabin Paul Croce on
Flickr and Ray Larabie on Flickr

https://flic.kr/p/on4ffK
https://flic.kr/p/on4ffK
https://flic.kr/p/e35AtD

CHAPTER 5 / MAINTAINING DESIGN SYSTEMS 181

So there you have it. To make a maintainable design system, you
should:

 ɕ Make it official by allocating real time, money, and resources to
your design system.

 ɕ Make it adaptable by counting on change and establishing a
clear governance plan.

 ɕ Make it maintainable by seeking the holy grail and making it
easy to deploy and communicate changes to the design system.

 ɕ Make it cross-disciplinary by making your pattern library a
watering hole the entire organization can gather around.

 ɕ Make it approachable by making an attractive, easy-to-use
style guide with helpful accompanying documentation.

 ɕ Make it visible by communicating change, evangelizing the
design system, and making it public.

 ɕ Make it bigger by including brand, voice and tone, code, design
principles, and writing guidelines.

 ɕ Make it agnostic by naming patterns according to their
structure rather than their context or content.

 ɕ Make it contextual by demonstrating what patterns make up a
particular pattern and showing where each pattern is used.

 ɕ Make it last by laying a solid foundation with which to build on
for years to come.

Go forth and be atomic

We’re tasked with making a whole slew of products, sites, and
applications work and look great across a dizzying array of different
devices, screen sizes, form factors, and environments. I hope that
the concepts covered in this book give you solid ground to stand
on as you bravely tackle this increasingly diverse digital landscape.
By creating design systems, being deliberate in how you construct
user interfaces, establishing a collaborative and pattern-driven
workflow, and setting up processes to successfully maintain your
design system, I hope you and your team can create great things
together. Go forth and be atomic!

182 ATOMIC DESIGN

Thanks & Acknowledgements
This book is dedicated to my amazing wife Melissa, who supports
all of my crazy ideas and somehow puts up with all of my shit.
Thank you. I love you.

I’d like to give a massive thank you to Dave Olsen, who took my
nascent, poorly programmed Pattern Lab concept and transformed
it into a legit and amazing piece of software. Thanks to the tireless
work of Dave and Brian Muenzenmeyer, Pattern Lab is helping
teams all over the world create atomic design systems. I’m forever
grateful for all of your superb work, and consider myself fortunate
to call you friends.

To Josh Clark and Dan Mall for helping solidify atomic design as a
methodology and for writing the foreword to this book. You trusted
me enough to run with this approach and somehow convinced our
clients it wasn’t totally insane. Without your input and the crazy-
smart brains of early collaborators like Jennifer Brook, Jonathan
Stark, Robert Gorrell, Kelly Shaver, and Melissa Frost, this book
wouldn’t have existed.

Thanks to Owen Gregory for copyediting the book’s manuscript
and taking on the Herculean task of making me sound reasonably
coherent. Thanks to Rachel Andrew for wrangling all the technical
stuff that goes into making ebooks. And a big thanks to Rachel
Arnold Sager for all your work getting the print version of the book
laid out and ready for the printer.

To Anna Debenham for all your amazing thinking about front-end
style guides, your book on the topic, and your willingness to co-host
a podcast all about style guides with me. I’m proud of the work
we’ve done on Styleguides.io and I'm so happy we got to work
together.

To Jonathan Snook for your fantastic SMACSS methodology,
and for taking the time to guide me through the process of self-
publishing a book. Thanks for making such a scary endeavor a lot
more approachable.

http://patternlab.io/
http://maban.co.uk/projects/front-end-style-guides/
http://styleguides.io/

THANKS & ACKNOWLEDGEMENTS 183

To Stephen Hay, who was the first person I heard articulate the
need to break interfaces into smaller pieces. Thanks for being a
continued source of wisdom and sarcasm.

To Andy Clarke, who was talking about design systems and atoms
before it was the hip thing to do. Thank you for all your writing and
thinking, but you’re still not getting my dog.

To Dave “Tiny Bootstraps” Rupert, Susan Robertson, Samantha
Warren, Jina Bolton, Nathan Curtis, Paul Robert Lloyd, Harry
Roberts, Nicole Sullivan, Brett Jankord, Tyler Sticka, Lincoln
Mongillo, Nicholas Gallagher and the many others who have
advanced the concepts of design systems, pattern libraries, and
style guides. Thanks for helping me and so many others think more
modularly.

To Jeffrey Zeldman, Eric Meyer, Marc Thiele, Vitaly Friedman, and
all the other conference organizers who gave me the opportunity to
stumble onto the stage to ramble on about the concepts contained
in this book.

This book would not have been possible if it weren’t for the
amazing work done by some amazing people in the web community.
I’m so incredibly fortunate to work in such an open, sharing, and
collaborative community; every day I look forward to learning new
things from you all.

And last, but certainly not least, thanks so much to my family for all
your love and amazing support over the years.

http://stuffandnonsense.co.uk/blog/about/an-extract-from-designing-atoms-and-elements

184 ATOMIC DESIGN

Resources

Chapter 1

• Scope Components, Not Pages
http://bradfrost.com/blog/post/scope-components-not-pages/

• W3C Principles of Design - Modular Design
http://www.w3.org/DesignIssues/Principles.html#Modular

• YUI Library
http://yuilibrary.com/

• jQuery U
http://jqueryui.com/

• Future Friendly Manifesto
http://futurefriendlyweb.com/

• Riding the Magic Escalator of Acquired Knowledge
http://www.uie.com/articles/magic_escalator/

• Agile Manifesto
http://www.agilemanifesto.org/

• Scrum software development
http://en.wikipedia.org/wiki/Scrum_%28software_
development%29

• Lean software development
http://en.wikipedia.org/wiki/Lean_software_development

• Principles behind the Agile Manifesto
http://www.agilemanifesto.org/principles.html

• DIY Process
http://cognition.happycog.com/article/diy-process

• For a Future Friendly Web
http://bradfrost.com/blog/web/for-a-future-friendly-web/

• Adapting Ourselves to Adaptive Content
http://karenmcgrane.com/2012/09/04/adapting-ourselves-to-
adaptive-content-video-slides-and-transcript-oh-my/

• COPE: Create Once, Publish Everywhere
http://www.programmableweb.com/news/cope-create-once-
publish-everywhere/2009/10/13

http://bradfrost.com/blog/post/scope-components-not-pages/
http://www.w3.org/DesignIssues/Principles.html#Modular
http://yuilibrary.com/
http://jqueryui.com/
http://futurefriendlyweb.com/
http://www.uie.com/articles/magic_escalator/
http://www.agilemanifesto.org/
http://en.wikipedia.org/wiki/Scrum_%28software_development%29
http://en.wikipedia.org/wiki/Lean_software_development
http://www.agilemanifesto.org/principles.html
http://cognition.happycog.com/article/diy-process
http://bradfrost.com/blog/web/for-a-future-friendly-web/
http://karenmcgrane.com/2012/09/04/adapting-ourselves-to-adaptive-content-video-slides-and-transcript-oh-my/
http://www.programmableweb.com/news/cope-create-once-publish-everywhere/2009/10/13

RESOURCES 185

• Learning JavaScript Design Patterns
http://addyosmani.com/resources/essentialjsdesignpatterns/
book/

• OOCSS
http://oocss.org/

• SMACSS
https://smacss.com/

• MindBEMding – getting your head ’round BEM syntax
http://csswizardry.com/2013/01/mindbemding-getting-your-
head-round-bem-syntax

• An extract from Designing Atoms and Elements
http://stuffandnonsense.co.uk/blog/about/an-extract-from-
designing-atoms-and-elements

• Style Tiles
http://styletil.es/

• Element Collages
http://danielmall.com/articles/rif-element-collages/

• BDConf: Stephen Hay presents Responsive Design Workflow
http://bradfrost.com/blog/mobile/bdconf-stephen-hay-
presents-responsive-design-workflow/

• Responsive Web Design
http://alistapart.com/article/responsive-web-design

• This Is Responsive
http://bradfrost.github.io/this-is-responsive/index.html

• Foundation by ZURB
http://foundation.zurb.com/

• Bootstrap
http://getbootstrap.com/

• Github
https://github.com/

• Responsive Deliverables
http://daverupert.com/2013/04/responsive-deliverables/

http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://oocss.org/
https://smacss.com/
http://csswizardry.com/2013/01/mindbemding-getting-your-head-round-bem-syntax
http://stuffandnonsense.co.uk/blog/about/an-extract-from-designing-atoms-and-elements
http://styletil.es/
http://danielmall.com/articles/rif-element-collages/
http://bradfrost.com/blog/mobile/bdconf-stephen-hay-presents-responsive-design-workflow/
http://alistapart.com/article/responsive-web-design
http://bradfrost.github.io/this-is-responsive/index.html
http://foundation.zurb.com/
http://getbootstrap.com/
https://github.com/
http://daverupert.com/2013/04/responsive-deliverables/

186 ATOMIC DESIGN

• Style Guides
http://bradfrost.com/blog/post/style-guides/

• Material Design
http://www.google.com/design/spec/material-design/
introduction.html

• Voice and Tone: Creating content for humans
http://www.slideshare.net/katekiefer/kkl-c-sforum

• Voice & Tone
http://voiceandtone.com/

• Writing for the Web
http://www.dal.ca/webteam/web_style_guide/writing_for_the_
web.html

• Front End Style Guides
http://maban.co.uk/projects/front-end-style-guides/

• Style Guides Podcast with Federico Holgado
http://styleguides.io/podcast/federico-holgado/

• Dennis Crowley: “The Hard Part Is Building The Machine That
Builds The Product”
http://techcrunch.com/2011/03/03/founder-stories-foursquare-
crowley-machine/

• Style Guide Examples on Styleguides.io
http://styleguides.io/examples.html

Chapter 2

• Systemic Design
http://us5.campaign-archive1.
com/?u=7e093c5cf4&id=ead8a72012&e=ecb25a3f93

• Josh Duck’s Periodic Table of HTML Elements
http://smm.zoomquiet.io/data/20110511083224/index.html

• HTML element reference
https://developer.mozilla.org/en-US/docs/Web/HTML/Element

• Single responsibility principle
https://en.wikipedia.org/wiki/Single_responsibility_principle

• Structure First. Content Always.
http://www.markboulton.co.uk/journal/structure-first-content-
always

http://bradfrost.com/blog/post/style-guides/
http://www.google.com/design/spec/material-design/introduction.html
http://www.slideshare.net/katekiefer/kkl-c-sforum
http://voiceandtone.com/
http://www.dal.ca/webteam/web_style_guide/writing_for_the_web.html
http://maban.co.uk/projects/front-end-style-guides/
http://styleguides.io/podcast/federico-holgado/
http://techcrunch.com/2011/03/03/founder-stories-foursquare-crowley-machine/
http://techcrunch.com/2011/03/03/founder-stories-foursquare-crowley-machine/
http://styleguides.io/examples.html
http://us5.campaign-archive1.com/?u=7e093c5cf4&id=ead8a72012&e=ecb25a3f93
http://smm.zoomquiet.io/data/20110511083224/index.html
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://en.wikipedia.org/wiki/Single_responsibility_principle
http://www.markboulton.co.uk/journal/structure-first-content-always

RESOURCES 187

• The Shape of Design
http://read.shapeofdesignbook.com/chapter01.html

• GE’s Predix Design System
https://medium.com/ge-design/ges-predix-design-system-
8236d47b0891#.uo68yjo9g

Chapter 3

• Pattern Lab
http://patternlab.io

• Dave Olsen
http://dmolsen.com

• Brian Muenzenmeyer
http://www.brianmuenzenmeyer.com/

• Pattern Lab’s documentation
http://patternlab.io/docs/

• Don’t repeat yourself
https://en.wikipedia.org/wiki/Don’t_repeat_yourself

• Mustache
https://mustache.github.io/

• Pattern Lab’s pseudo-patterns
http://patternlab.io/docs/pattern-pseudo-patterns.html

• Responsive Web Design
http://alistapart.com/article/responsive-web-design

• Container Queries: Once More Unto the Breach
http://alistapart.com/article/container-queries-once-more-
unto-the-breach

• Ish
http://bradfrost.com/demo/ish/

• Website style guide resources examples
http://styleguides.io/examples.html

• Rizzo style guide
http://rizzo.lonelyplanet.com/

• Website style guide resources tools
http://styleguides.io/tools.html

http://read.shapeofdesignbook.com/chapter01.html
https://medium.com/ge-design/ges-predix-design-system-8236d47b0891#.uo68yjo9g
http://patternlab.io
http://dmolsen.com
http://www.brianmuenzenmeyer.com/
http://patternlab.io/docs/
https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://mustache.github.io/
http://patternlab.io/docs/pattern-pseudo-patterns.html
http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/container-queries-once-more-unto-the-breach
http://bradfrost.com/demo/ish/
http://styleguides.io/examples.html
http://rizzo.lonelyplanet.com/
http://styleguides.io/tools.html

188 ATOMIC DESIGN

Chapter 4

• Content inventory
https://en.wikipedia.org/wiki/Content_inventory

• Google Slides interface inventory template
https://docs.google.com/presentation/d/1GqFmiDV_
NqKi36fXAwD3WTJL5-JV-gHL7XVD2fVeL0M/edit?usp=sharing

• The Media Object Saves Hundreds of Lines of Code
http://www.stubbornella.org/content/2010/06/25/the-media-
object-saves-hundreds-of-lines-of-code/

• Surfacing Invisible Elements
http://bradfrost.com/blog/post/surfacing-invisible-elements/

• CSS Stats
http://cssstats.com/

• Stylify Me
http://stylifyme.com/

• Multiscreen UX Design
http://store.elsevier.com/Multiscreen-UX-Design/Wolfram-
Nagel/isbn-9780128027295/

• The Post-PSD Era
http://danielmall.com/articles/the-post-psd-era/

• Consensual hallucination
https://adactio.com/journal/4443

• Waterfall model
https://en.wikipedia.org/wiki/Waterfall_model

• Development Is Design
http://bradfrost.com/blog/post/development-is-design

• Time to stop showing clients static design visuals
https://stuffandnonsense.co.uk/blog/about/time_to_stop_
showing_clients_static_design_visuals

• Mobile First
http://www.lukew.com/ff/entry.asp?933

• Content & Display Patterns
http://danielmall.com/articles/content-display-patterns/

• Jennifer Brook
http://jenniferbrook.co/about

https://en.wikipedia.org/wiki/Content_inventory
https://docs.google.com/presentation/d/1GqFmiDV_NqKi36fXAwD3WTJL5-JV-gHL7XVD2fVeL0M/edit?usp=sharing
http://www.stubbornella.org/content/2010/06/25/the-media-object-saves-hundreds-of-lines-of-code/
http://bradfrost.com/blog/post/surfacing-invisible-elements/
http://cssstats.com/
http://stylifyme.com/
http://store.elsevier.com/Multiscreen-UX-Design/Wolfram-Nagel/isbn-9780128027295/
http://danielmall.com/articles/the-post-psd-era/
https://adactio.com/journal/4443
https://en.wikipedia.org/wiki/Waterfall_model
http://bradfrost.com/blog/post/development-is-design
https://stuffandnonsense.co.uk/blog/about/time_to_stop_showing_clients_static_design_visuals
http://www.lukew.com/ff/entry.asp?933
http://danielmall.com/articles/content-display-patterns/
http://jenniferbrook.co/about

RESOURCES 189

• The 20 Second “Gut” Test
http://goodkickoffmeetings.com/2010/04/the-20-second-gut-
test/

• Style Tiles
http://styletil.es/

• Style prototype
http://sparkbox.github.io/style-prototype/

• Element Collages
http://danielmall.com/articles/rif-element-collages/

• Piles of Ideas
http://jasonsantamaria.com/articles/piles-of-ideas

• CodePen
http://codepen.io/

• Dan Mall on The Pastry Box Project
https://the-pastry-box-project.net/dan-mall/2012-september-12

Chapter 5

• Nathan Curtis on Twitter
https://twitter.com/nathanacurtis/status/656829204235972608

• A Design System isn’t a Project. It’s a Product, Serving Products.
https://medium.com/eightshapes-llc/a-design-system-
isn-t-a-project-it-s-a-product-serving-products-
74dcfffef935#.4umtnfxsx

• The Salesforce Team Model for Scaling a Design System
https://medium.com/salesforce-ux/the-salesforce-team-model-
for-scaling-a-design-system-d89c2a2d404b

• Vanilla framework
http://ubuntudesign.github.io/vanilla-framework/

• Getting Vanilla ready for v1: the roadmap
http://design.canonical.com/2016/07/getting-vanilla-ready-for-
v1-the-roadmap/

• Sass Deprecate
https://github.com/salesforce-ux/sass-deprecate

• The Way We Build
http://airbnb.design/the-way-we-build/

http://goodkickoffmeetings.com/2010/04/the-20-second-gut-test/
http://styletil.es/
http://sparkbox.github.io/style-prototype/
http://danielmall.com/articles/rif-element-collages/
http://jasonsantamaria.com/articles/piles-of-ideas
http://codepen.io/
https://the-pastry-box-project.net/dan-mall/2012-september-12
https://twitter.com/nathanacurtis/status/656829204235972608
https://medium.com/eightshapes-llc/a-design-system-isn-t-a-project-it-s-a-product-serving-products-74dcfffef935#.4umtnfxsx
https://medium.com/salesforce-ux/the-salesforce-team-model-for-scaling-a-design-system-d89c2a2d404b
http://ubuntudesign.github.io/vanilla-framework/
http://design.canonical.com/2016/07/getting-vanilla-ready-for-v1-the-roadmap/
https://github.com/salesforce-ux/sass-deprecate
http://airbnb.design/the-way-we-build/

190 ATOMIC DESIGN

• Rizzo style guide
http://rizzo.lonelyplanet.com/

• Chasing the Holy Grail
https://medium.com/@marcelosomers/chasing-the-holy-grail-
bbc0b7cce365#.ay1xeej7d

• Drupal
https://www.drupal.org

• Twig
http://twig.sensiolabs.org

• Introducing Pattern Lab Starter 8
https://www.phase2technology.com/blog/introducing-pattern-
lab-starter-8/

• Draft U.S. Web Digital Standards
https://standards.usa.gov/

• Managing Style Guides at Shyp
https://medium.com/shyp-design/managing-style-guides-at-
shyp-c217116c8126

• Style Guides with Jina Bolton
http://styleguides.io/podcast/jina-bolton

• Website style guide resources podcasts
http://styleguides.io/podcast

190 ATOMIC DESIGN

http://rizzo.lonelyplanet.com/
https://medium.com/@marcelosomers/chasing-the-holy-grail-bbc0b7cce365#.ay1xeej7d
https://www.drupal.org
http://twig.sensiolabs.org
https://www.phase2technology.com/blog/introducing-pattern-lab-starter-8/
https://standards.usa.gov/
https://medium.com/shyp-design/managing-style-guides-at-shyp-c217116c8126
http://styleguides.io/podcast/jina-bolton
http://styleguides.io/podcast

About the Author

Brad Frost is a web designer, speaker,
consultant, and musician located in
beautiful Pittsburgh, PA. He’s passionate
about creating web experiences that look
and function beautifully on a never-
ending stream of connected devices,
and loves helping others do the same.
He’s helped create several tools and resources for web designers,
including Pattern Lab (with Dave Olsen and Brian Muenzenmeyer),
Styleguides.io (with Anna Debenham), This Is Responsive, WTF
Mobile Web (with Jen Simmons), and Mobile Web Best Practices.

ABOUT THE AUTHOR 191

http://bradfrost.com/
http://patternlab.io/
http://styleguides.io/
https://bradfrost.github.io/this-is-responsive/
http://wtfmobileweb.com/
http://wtfmobileweb.com/

We’re tasked with making interfaces for more users in more
contexts using more browsers on more devices with more screen
sizes and more capabilities than ever before. That’s a daunting
task indeed. Thankfully, design systems are here to help.

Atomic Design details all that goes into creating and maintaining
robust design systems, allowing you to roll out higher quality,
more consistent UIs faster than ever before. This book
introduces a methodology for thinking of our UIs as thoughtful
hierarchies, discusses the qualities of effective pattern libraries,
and showcases techniques to transform your team’s design and
development workflow.

To boldly go beyond “pages.” That’s the universe of modern design,
and there’s no better guide to exploring it than Brad Frost. In Atomic
Design, he replaces our outdated, closed workflows with exciting new
collaborative ones, and teaches us to design not just pages but systems.
Recommended for all web and interaction designers.

- Jeffrey Zeldman, author, Designing With Web Standards

Brad is suggesting that we’d be better web designers if we thought of
what we’re building as a system. A hierarchical system that fits together
to form larger parts. Because, spoiler alert, it is and we would be.

- Chris Coyier, CSS Tricks

