
Thomas Nield

 Getting Started with

 SQL
A HANDS-ON APPROACH
FOR BEGINNERS

Thomas Nield

Boston

Getting Started with SQL
A Hands-on Approach for Beginners

978-1-491-93861-4

[LSI]

Getting Started with SQL
by Thomas Nield

Copyright © 2016 Thomas Nield. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Shannon Cutt
Production Editor: Shiny Kalapurakkel
Copyeditor: Jasmine Kwityn
Proofreader: Rachel Head

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

February 2016: First Edition

Revision History for the First Edition
2016-02-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491938614 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Getting Started with SQL, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491938614

Table of Contents

Foreword. vii

Preface. ix

1. Why Learn SQL?. 1
What Is SQL and Why Is It Marketable? 1
Who Is SQL For? 2

2. Databases. 3
What Is a Database? 3
Exploring Relational Databases 3
Why Separate Tables? 4
Choosing a Database Solution 5
Lightweight Databases 5
Centralized Databases 6

3. SQLite. 9
What Is SQLite? 9
SQLiteStudio 9
Importing and Navigating Databases 10

4. SELECT. 19
Retrieving Data with SQL 19
Expressions in SELECT Statements 23
Text Concatenation 27
Summary 28

iii

5. WHERE. 29
Filtering Records 29
Using WHERE on Numbers 30
AND, OR, and IN Statements 31
Using WHERE on Text 32
Using WHERE on Booleans 34
Handling NULL 34
Grouping Conditions 36
Summary 37

6. GROUP BY and ORDER BY. 39
Grouping Records 39
Ordering Records 41
Aggregate Functions 42
The HAVING Statement 45
Getting Distinct Records 46
Summary 46

7. CASE Statements. 47
The CASE Statement 47
Grouping CASE Statements 48
The “Zero/Null” CASE Trick 49
Summary 52

8. JOIN. 53
Stitching Tables Together 53
INNER JOIN 55
LEFT JOIN 58
Other JOIN Types 61
Joining Multiple Tables 61
Grouping JOINs 63
Summary 66

9. Database Design. 67
Planning a Database 67
The SurgeTech Conference 69

ATTENDEE 69
COMPANY 69
PRESENTATION 70
ROOM 70
PRESENTATION_ATTENDANCE 70

Primary and Foreign Keys 70

iv | Table of Contents

The Schema 71
Creating a New Database 73
CREATE TABLE 76
Setting the Foreign Keys 84
Creating Views 86
Summary 89

10. Managing Data. 91
INSERT 91

Multiple INSERTs 93
Testing the Foreign Keys 93

DELETE 94
TRUNCATE TABLE 94
UPDATE 95
DROP TABLE 95
Summary 95

11. Going Forward. 97

A. Operators and Functions. 101

B. Supplementary Topics. 107

Index. 113

Table of Contents | v

Foreword

Over the past three decades, computers have taken over the world. Twenty-five years
ago, we lived analog. We communicated using an analog POTS telephone, we tuned
in to analog FM radio stations, and we went to the library and browsed the stacks for
information. Buildings were constructed using hand-drawn blueprints; graphic artists
worked with pen, brush, and ink; musicians plucked strings and blew into horns and
recorded on analog tape; and airplanes were controlled by physical cables connecting
the yoke to the control surfaces.

But now everything is computerized and digital. Consequently, every member of
society needs to be familiar with computers. That does not mean having the deep
knowledge of a techie, but just as poets need to study a little math and physics, and
just as mathematicians need to read a little poetry, so too does everybody today need
to know something about computers.

I think that this book really helps to address the knowledge gap between techies and
laypeople, by providing an accessible and easy-to-read discussion of SQL—a core
database technology.

—Richard Hipp, Creator of SQLite

vii

Preface

Nobody needs to learn how a car engine works in order to drive a car. The whole
point of technologies like SQL is to allow you to focus on the business problem, and
not worry about how the technical details are executed. This book will give you a
practical focus on using SQL, and will steer away from unnecessary technical details
that are likely not pertinent to your immediate needs. Much of the content revolves
around hands-on exercises with real databases you can download so you see how
concepts are applied. When you finish this book you will have practical knowledge to
work with databases, as well as use them to overcome your business challenges.

How to Use This Book
This book is designed to teach the fundamentals of SQL and working with databases.
Readers who have experience using Excel spreadsheets should find this material
accessible but still challenging. Individuals who have not worked with Excel may be
more challenged. It is helpful to be familiar with concepts used in Excel, such as rows,
columns, tables, mathematical expressions (e.g., Excel formulas), and aggregate calcu‐
lations (e.g., SUM, AVG, MIN, MAX, COUNT). These concepts will still be taught
here, but some practical Excel experience will help expedite understanding.

Basic computer literacy is required, and readers should know how to navigate folders
and copy/paste files, as well as download and save files from the Web.

As you go through the material, have a computer on hand to practice the examples.
While some people can learn by just reading, it is best to practice the material at some
point to reinforce the knowledge.

Proficiency comes through repeated use and practice. In your job, it is likely that you
will use some SQL functionalities heavily and others not as much. That is OK. It is
more important to become proficient in what your job requires, and consult this
book (or Google) as a reference when you need answers about an unfamiliar topic.

ix

When working with technology, you are never expected to know everything. As a
matter of fact, technology topics are so vast in number it would be impossible. So it is
helpful to develop a degree of tunnel vision and learn only enough to fulfill the task at
hand. Otherwise, you can get overwhelmed or distracted learning irrelevant topics.
Hopefully this book will give you a foundation of knowledge, and afterward you can
continue to learn about topics that are pertinent to you.

You are always welcome to reach out to me at tmnield@outlook.com, and I will answer
any questions to the best of my ability. If you have questions about positioning your
career with technical skillsets or have a SQL question, I might be able to help. I hope
that this material not only augments your skillset and career opportunities, but also
sparks new interests that excite you like it did for me.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/thomasnield/oreilly_getting_started_with_sql.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of

x | Preface

mailto:tmnield@outlook.com
https://github.com/thomasnield/oreilly_getting_started_with_sql

the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Getting Started with SQL by Thomas
Nield (O’Reilly). Copyright 2016 Thomas Nield, 978-1-4919-3861-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

Preface | xi

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/getting-started-with-sql.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I am blessed to have amazing people surrounding me, and I realize how central they
have been in my life and everything I do. If it was not for them, this book would
probably not have happened.

First and foremost, I would like to thank my mom and dad. They have given every‐
thing to secure my future. I know for a fact that I would not have the opportunities I
have today if it was not for them. My dad worked hard to provide a better education
for my brothers and me, and my mother always pushed me forward, even when I
resisted. She taught me to never settle and always struggle through my limits.

I cannot express enough gratitude toward my leaders, managers, and colleagues at
Southwest Airlines Revenue Management. Justin Jones and Timothy Keeney have a
warrior spirit and zeal for innovation that few possess. They truly define the leader‐
ship and spirit of Southwest Airlines, but more importantly they are good guys. They
will always be my friends and they’ve made it hard to imagine a life without South‐
west Airlines.

xii | Preface

http://bit.ly/getting-started-with-sql
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Robert Haun, Brice Taylor, and Allison Russell continuously work to make our team
the forefront of innovation and continuously pursue new ideas, and I am blessed to
work in the environment they have helped create. I also have to thank Matt Louis for
bringing me on board at Revenue Management, and Steven Barsalou who made me
realize how little I really knew about SQL. Steven is the first person who came to
mind when I needed a reviewer for this book, and I am grateful he came on board
this project.

Then there is the project team I work with every day: Brian Denholm, Paul Zigler,
Bridget Green, Todd Randolph, and Chris Solomon. As a team, the feats we pull off
never cease to amaze me. Brian is the kind of project manager that can effectively
bridge technology and business jargon together, and he will not hesitate to get his
hands dirty with SQL and the occasional code review. I want to give a special thanks
to Chris Solomon for helping me with everything I do every day. He not only has a
rare talent to absorb high volumes of technical knowledge and maintain it in a busi‐
ness perspective, but he is also a nice guy that I am privileged to be friends with.
Chris is always a key player in any project, and I was thrilled when he agreed to
review this book.

I cannot forget the great people who worked at Southwest Airlines Ground Ops
Safety Regulatory Compliance, including Marc Stank, Reuben Miller, Mary Noel
Hennes, and everybody else I had the privilege of working with. I interned and con‐
tracted with that department a few years back and some of my fondest memories are
there. It was there I discovered my passion for technology, and they provided many
opportunities for me to pursue that, whether it was throwing together databases or
prototyping an iPad app.

When I announced I was publishing this book I did not expect Richard Hipp, the
founder and creator of SQLite, to reach out to me. Richard graciously stepped up to
be the technical reviewer for this book and it has been a tremendous honor to have
him on board. The technology community continues to amaze me, and the fact
Richard Hipp joined this project shows how unique and close-knit the community
really is.

Shannon Cutt has been my editor at O’Reilly for this book. This is my first book and I
was uncertain what the publishing experience would be like. But Shannon made pub‐
lishing such a pleasant experience that I am eager to write again. Thanks Shannon,
you have been awesome!

Last but not least, I want to thank Watermark Church and the volunteers at Careers
in Motion for creating the vehicle that made this book happen. I initially wrote this
“book” as a public service to help unemployed professionals in the Dallas area. It was
at their encouragement that I decided to publish it, and I want to give a special thanks
to Martha Garza for her insistence. I have learned remarkable things can happen
when you give your time to help others.

Preface | xiii

CHAPTER 1

Why Learn SQL?

What Is SQL and Why Is It Marketable?
It is an obvious statement that the business landscape is shifting rapidly. A lot of this
is enabled by technology and the explosion of business data. Companies are investing
vast amounts of capital to gather and warehouse data. But what many business lead‐
ers and managers currently struggle with is how to make sense of this data and use it.
This is where SQL, which stands for Structured Query Language, comes in. It provides
a means to access and manipulate this data in meaningful ways and provide business
insights not possible before.

Businesses are gathering data at exponential rates, and there is an equally growing
need for people who know how to analyze and manage it. Stack Overflow, the most
active programming community in the world, performed a comprehensive survey on
its members in 2015. Apple coding was the most in-demand technology and had an
average salary nearing six figures. But SQL came in in fifth place, with a salary that
was not far behind. In recent years, data has suddenly become ubiquitous—yet few
people know how to access it meaningfully, which has put SQL talent in high
demand.

1

Who Is SQL For?
One misperception about SQL is that it is an IT skill and therefore only applicable to
technology (not business) professionals. In the world as it exists today, this is hardly
the truth. Businesspeople, managers, IT professionals, and engineers can all reap ben‐
efits from learning SQL to better position their careers. SQL can open many career
paths because it enables individuals to know their businesses better through the data
that is driving them. On the business side, interest in SQL can lead to roles that are
analytical, managerial, strategic, and research- or project-based. On the IT front, it
can lead to roles in database design, database administration, systems engineering, IT
project management, and even software development.

2 | Chapter 1: Why Learn SQL?

CHAPTER 2

Databases

What Is a Database?
In the broadest definition, a database is anything that collects and organizes data. A
spreadsheet holding customer bookings is a database, and so is a plain-text file con‐
taining flight schedule data. Plain-text data itself can be stored in a variety of formats,
including XML and CSV.

Professionally, however, when one refers to a “database” they likely are referring to a
relational database management system (RDBMS). This term may sound technical
and intimidating, but an RDBMS is simply a type of database that holds one or more
tables that may have relationships to each other.

Exploring Relational Databases
A table should be a familiar concept. It has columns and rows to store data, much like
a spreadsheet. These tables can have relationships to each other, such as an ORDER
table that refers to a CUSTOMER table for customer information.

For example, suppose we have an ORDER table with a field called CUSTOMER_ID
(Figure 2-1).

Figure 2-1. An ORDER table with a CUSTOMER_ID

3

We can reasonably expect there to be another table, maybe called CUSTOMER
(Figure 2-2), which holds the customer information for each CUSTOMER_ID.

Figure 2-2. A CUSTOMER table

When we go through the ORDER table, we can use the CUSTOMER_ID to look up the cus‐
tomer information in the CUSTOMER table. This is the fundamental idea behind a “rela‐
tional database,” where tables may have fields that point to information in other
tables. This concept may sound familiar if you’ve used VLOOKUP in Excel to retrieve
information in one sheet from another sheet in a workbook.

Why Separate Tables?
But why are these tables separated and designed this way? The motivation is normal‐
ization, which is separating the different types of data into their own tables rather
than putting them in one table. If we had all information in a single table, it would be
redundant, bloated, and very difficult to maintain. Imagine if we stored customer
information in the ORDER table. Figure 2-3 shows what it would look like.

Figure 2-3. A table that is not normalized

Notice that for the Re-Barre Construction orders someone had to populate the cus‐
tomer information three times for all three orders (the name, region, street address,
city, state, and zip). This is very redundant, takes up unnecessary storage space, and is
difficult to maintain. Imagine if a customer had an address change and you had to
update all the orders to reflect that. This is why it is better to separate CUSTOMERS and
ORDERS into two separate tables. If you need to change a customer’s address, you only
need to change one record in the CUSTOMER table (Figure 2-4).

4 | Chapter 2: Databases

Figure 2-4. A normalized table

We will explore table relationships again in Chapter 8, and learn how to use the JOIN
operator to merge tables in a query so the customer information can be viewed along‐
side the order.

Choosing a Database Solution
Relational databases and SQL are not proprietary. However, there are several compa‐
nies and communities that have developed their own relational database software, all
of which use tables and leverage SQL. Some database solutions are lightweight and
simple, storing data in a single file accessible to a small number of users. Other data‐
base solutions are massive and run on a server, supporting thousands of users and
applications simultaneously. Some database solutions are free and open source, while
others require commercial licenses.

For the sake of practicality, we will divide database solutions into two categories: light‐
weight and centralized. These are not necessarily the industry vernacular, but they will
help clarify the distinction.

Lightweight Databases

If you are seeking a simple solution for one user or a small number of users (e.g., your
coworkers), a lightweight database is a good place to start. Lightweight databases have
little to no overhead, meaning they have no servers and are very nimble. Databases
are typically stored in a file you can share with others, although it starts to break
down when multiple people make edits to the file simultaneously. When you run into
this problem, you may want to consider migrating to a centralized database.

The two most common lightweight databases are SQLite and Microsoft Access.
SQLite is what we will use in this book. It is free, lightweight, and intuitive to use. It is
used in most of the devices we touch and can be found in smartphones, satellites, air‐
craft, and car systems. It has virtually no size limitation and is ideal for environments
where it is not used by more than one person (or at most a few people). Among many
other uses, SQLite is ideal to learn SQL due to its ease of installation and simplicity.

Microsoft Access has been around for a while and is inferior to SQLite in terms of
scalability and performance. But it is heavily used in business environments and

Choosing a Database Solution | 5

worth being familiar with. It has many visual tools for writing queries without using
SQL, as well as visual form designers and macro abilities. There are many jobs avail‐
able to take ownership of Microsoft Access databases and maintain them, as well as
migrating them to better database platforms such as MySQL.

Centralized Databases

If you expect tens, hundreds, or thousands of users and applications to use a database
simultaneously, lightweight databases are not going to cut it. You need a centralized
database that runs on a server and handles a high volume of traffic efficiently. There
is a wide array of centralized database solutions to choose from, including the follow‐
ing:

• MySQL
• Microsoft SQL Server
• Oracle
• PostgreSQL
• Teradata
• IBM DB2
• MariaDB

You can install some of these solutions on any computer and turn that computer into
a server. You can then connect users’ computers (also known as clients) to the server
so they can access the data. The client can send a SQL statement requesting specific
data, and the server processes the request and returns the answer. This is a classic
client–server setup. The client requests something, and the server gives it.

While you can turn any MacBook or cheap PC into a MySQL server, larger traffic vol‐
umes require more specialized computers (called server computers) optimized for
server tasks. These are typically maintained by an IT department whose members
administrate and control databases formally deemed critical to the business.

Do not be confused by the term “SQL” being used to brand data‐
base platforms such as MySQL, Microsoft SQL Server, and SQLite.
SQL is the universal language to work with data on all these plat‐
forms. They merely used “SQL” in their names for marketing.

As you enter a workplace, chances are an existing centralized database might exist
with information you need, and you will need to request access to it. While we will
not be covering centralized databases in this book, the experience between different
database solutions should largely be the same. Across all database solutions, you use

6 | Chapter 2: Databases

SQL to interact with tables in a pretty uniform way, and even the SQL editor tools are
somewhat similar. Each solution may have nuances to its implementation of SQL,
such as date functionalities, but everything in this book should be universally applica‐
ble.

If you ever do need to create a centralized database solution, I would highly recom‐
mend MySQL. It is open source, free to use, and straightforward to install and set up.
It is used by Facebook, Google, eBay, Twitter, and hundreds of other Silicon Valley
companies.

With a conceptual understanding of databases, we can now start working with them.
Although we will use SQLite in this book, keep in mind it uses SQL, so the knowledge
you gain is applicable to all database platforms.

Choosing a Database Solution | 7

CHAPTER 3

SQLite

What Is SQLite?
As discussed in the previous chapter, there are many places to put data. But often‐
times we want a quick, easy place to put data without all the hassle of a client–server
setup. We want to store data in a simple file and edit it just as easily as a Word docu‐
ment. This is an optimal situation to use SQLite.

SQLite is the most widely distributed database in the world. It is put on iPhones,
iPads, Android devices, Windows phones, thermostats, car consoles, satellites, and
many other modern devices that need to store and retrieve data easily. It is used heav‐
ily in the Windows 10 operating system as well as the Airbus A350 XWB aircraft. It
excels where simplicity and low overhead is needed. It is also great for prototyping
business databases.

But every technology has a trade-off. Because it has no server managing access to it, it
fails in multiuser environments where multiple people can simultaneously edit the
SQLite file. Still, for our training purposes, SQLite is perfect.

SQLiteStudio
There are many SQL editors you can use to work with a SQLite database. I strongly
recommend using SQLiteStudio, as it is intuitive and makes it easy to explore and
manage a database. We are going to use that application in this book. You can down‐
load it at http://sqlitestudio.pl/?act=download. Be sure to choose Windows, Mac, or
Linux for your respective OS. Then open the downloaded folder and copy it to a loca‐
tion of your choice. No installation is needed. To start SQLiteStudio, double-click
SQLiteStudio.exe (Figure 3-1). You can also create a shortcut on your desktop so you
can easily launch the application in the future.

9

http://sqlitestudio.pl/?act=download

Figure 3-1. The SQLiteStudio folder

Note that SQLiteStudio is an independent, third-party program not associated with
SQLite or its developers. SQLite is a database engine built by Richard Hipp and a tal‐
ented team of programmers. SQLiteStudio merely takes this engine and wraps a nice
user interface around it. Therefore, if you ever have issues with SQLiteStudio, you
should contact the SQLiteStudio team, not the SQLite team.

Importing and Navigating Databases
When you first start SQLiteStudio, you will probably see a dashboard with no content
(Figure 3-2). The left pane is the database navigator, and the gray area on the right is
the SQL work area where you will write SQL against the databases.

10 | Chapter 3: SQLite

Figure 3-2. The SQLiteStudio dashboard

Let’s get some databases into SQLiteStudio. Some SQLite database samples used in
this book are provided at http://bit.ly/1TLw1Gr.

Download the databases by clicking the Download ZIP button and copy the contents
to a folder of your choice. You will probably want to dedicate this folder to all the
databases you will work with in this book.

After downloading the databases, navigate in the top menu to Database → Add a
Database (Figure 3-3).

Importing and Navigating Databases | 11

http://bit.ly/1TLw1Gr

Figure 3-3. Adding a database

You will come to a dialog box prompting for a database file. Click the yellow folder
icon to select a database file and import it (Figure 3-4).

12 | Chapter 3: SQLite

Figure 3-4. Opening a database

Browse for the folder with the saved databases, and double-click the rexon_metals.db
database file to load it into SQLiteStudio (Figure 3-5).

Figure 3-5. Browsing and opening database files

Importing and Navigating Databases | 13

You will now see rexon_metals added to the database navigator (Figure 3-6). Double-
click on it to see its contents, which include three tables and two views. Take some
time to poke around and explore this database in the navigator.

Figure 3-6. Navigating a database

Notice you can click the arrows to get more detailed information on different data‐
base objects, such as tables (Figure 3-7). For example, clicking the arrow for the
CUSTOMER table can reveal information such as the columns it contains.

14 | Chapter 3: SQLite

Figure 3-7. Expanding a table to see columns

You may be wondering what “views” are. Do not worry about them for now. They are
basically prebuilt SQL queries that are used so frequently, they are conveniently
stored in the database.

If you double-click the CUSTOMER table itself, a new window will pop out in the work
area holding all kinds of information about the table (Figure 3-8). It initially opens on
the Structure tab, which provides detailed information about each column. At the
moment, the only detail you need to be concerned with is the data type for each col‐
umn.

Importing and Navigating Databases | 15

Figure 3-8. Each column in a table has a data type, such as integer or text

The CUSTOMER_ID and ZIP fields are stored as INTEGER, which is the data type for a
whole (nondecimal) number. This means these fields should only hold INTEGER val‐
ues. The rest of the columns are stored as TEXT. There are other data types that could
be used, such as DATETIME, BOOLEAN (true/false), and DECIMAL, which are not used in
this particular table.

For now, if you understand the concept of data types, then that is all you need to
observe in the Structure tab. We will explore table design in detail when we create our
own tables later.

Click the Data tab, and you will actually see the data in the table itself (Figure 3-9).
There are only five records (or rows) in this table, but SQLite could hold millions if it
needed to. You can also conveniently edit the values in this table (without using SQL)
by simply double-clicking and editing a cell, and then clicking the green checkmark
to save it.

16 | Chapter 3: SQLite

Figure 3-9. The CUSTOMER table

Take some time and get familiar with SQLiteStudio. As soon as you are satisfied that
you’ve poked around enough, close all the windows in the work area. Then, in the top
menu, navigate to Tools→Open SQL Editor. While we’ve discovered that SQLiteStu‐
dio provides many ways to view and manipulate data without using any SQL, it does
not come close to the flexibility and power that SQL offers.

Now that we know our tables and what we are working with, writing SQL will be
somewhat more intuitive. It is difficult to query databases without knowing the tables
in them first.

Importing and Navigating Databases | 17

CHAPTER 4

SELECT

When working with databases and SQL, the most common task is to request data
from one or more tables and display it. The SELECT statement accomplishes this. But
the SELECT can do far more than simply retrieve and display data. As we will learn in
coming chapters, we can transform this data in meaningful ways and build powerful
summaries from millions of records.

But first, we will learn how to SELECT columns from a single table as well as compose
expressions in them.

Retrieving Data with SQL
If you have not done so already, click on Tools→Open SQL Editor in the top menu,
and make sure the rexon_metals database is open, as mentioned in the previous
chapter. Your SQLiteStudio workspace should look something like Figure 4-1. Notice
that the SQL workspace is now divided into two panes, a SQL Editor pane and a
Query Results pane.

19

Figure 4-1. The SQL workspace

The SQL Editor pane is where you will write your SQL, and the Query Results pane
will display the results of your SQL.

Let’s write our first SQL statement. The most common SQL operation is a SELECT
statement, which pulls data from a table and then displays the results. Click on the
SQL Editor pane and write the following statement:

SELECT * FROM CUSTOMER;

Click the blue triangle button or hit F9 to execute the SQL.

You just ran your first query, and the results should be displayed in the bottom pane
(Figure 4-2).

20 | Chapter 4: SELECT

Figure 4-2. Running a SELECT query

Let’s break down exactly what happened. A SELECT statement allows you to choose
which columns to pull from a table. So the first part of the SQL shown here should be
read as “Select all columns,” where * is a placeholder to specify all columns:

SELECT * FROM CUSTOMER;

And you are getting these columns from the CUSTOMER table:

SELECT * FROM CUSTOMER;

When you execute this SELECT statement, it brings back all the columns from the
CUSTOMER table and displays them to you (Figure 4-3).

Retrieving Data with SQL | 21

Figure 4-3. Selecting all records from the CUSTOMER table

You do not have to pull all columns in a SELECT statement. You can also pick and
choose only the columns you are interested in. The following query will only pull the
CUSTOMER_ID and NAME columns:

SELECT CUSTOMER_ID, NAME FROM CUSTOMER;

And the output will only display those two columns (Figure 4-4).

Figure 4-4. Selecting only two columns from a table

A single SQL statement can optionally end with a semicolon (;), as
shown in the previous examples. However, the semicolon is neces‐
sary to run multiple SQL statements at once, which is helpful when
writing data, as covered in Chapter 10.

Being able to pick and choose columns may not seem interesting at the moment, but
it allows us to hone in on what we are interested in. Reducing scope to just certain
columns will assist with GROUP BY aggregation tasks as well, as we’ll see in Chapter 6.

22 | Chapter 4: SELECT

Expressions in SELECT Statements
The SELECT statement can do far more than simply select columns. You can also do
calculations on one or more columns and include them in your query result.

Let’s work with another table called PRODUCT. First, do a SELECT all to see the data
(Figure 4-5):

SELECT * FROM PRODUCT;

Figure 4-5. The PRODUCT table

Suppose we wanted to generate a calculated column called TAXED_PRICE that is 7%
higher than PRICE. We could use a SELECT query to dynamically calculate this for us
(Figure 4-6):

SELECT
PRODUCT_ID,
DESCRIPTION,
PRICE,
PRICE * 1.07 AS TAXED_PRICE
FROM PRODUCT;

Expressions in SELECT Statements | 23

Figure 4-6. Using expressions to calculate a TAXED_PRICE column

Notice in the SELECT statement that we can spread our SQL across
multiple lines to make it more legible. The software will ignore
extraneous whitespace and separate lines, so we can use them to
make our SQL easier to read.

Notice how the TAXED_PRICE column was dynamically calculated in the SELECT query.
This column is not stored in the table, but rather calculated and displayed to us every
time we run this query. This is a powerful feature of SQL, which allows us to keep the
stored data simple and use queries to layer calculations on top of it.

Let’s take a look at our TAXED_PRICE column and break down how it was created. We
first see the PRICE is multiplied by 1.07 to calculate the taxed amount. We generate
this TAXED_PRICE value for every record:

SELECT
PRODUCT_ID,
DESCRIPTION,
PRICE,
PRICE * 1.07 AS TAXED_PRICE
FROM PRODUCT

Notice too that we gave this calculated value a name using an AS statement (this is
known as an alias):

24 | Chapter 4: SELECT

SELECT
PRODUCT_ID,
DESCRIPTION,
PRICE,
PRICE * 1.07 AS TAXED_PRICE
FROM PRODUCT

We can use aliases to give names to expressions. We can also use aliases to apply a
new name to an existing column within the query. For example, we can alias the
PRICE column to UNTAXED_PRICE (Figure 4-7). This does not actually change the
name of the column in the table, but it gives it a new name within the scope of our
SELECT statement:

SELECT
PRODUCT_ID,
DESCRIPTION,
PRICE AS UNTAXED_PRICE,
PRICE * 1.07 AS TAXED_PRICE
FROM PRODUCT

Figure 4-7. Aliasing the PRICE column to UNTAXED_PRICE

When giving names to anything in SQL (whether it is an alias, a
column name, a table name, or any other entity), always use an
underscore (_) as a placeholder for spaces. You will run into errors
otherwise.

If we were to distribute the results of this SQL statement as a report to our workplace,
we would probably want to touch up the rounding on the TAXED_PRICE. Having more
than two decimal places may not be desirable. Every database platform has built-in

Expressions in SELECT Statements | 25

functions to assist with these kinds of operations, and SQLite provides a round()
function that accepts two arguments in parentheses separated by a comma: the num‐
ber to be rounded, and the number of decimal places to round to. To round the
TAXED_PRICE to two decimal places, we can pass the multiplication expression PRICE
* 1.07 as the first argument, and a 2 as the second:

SELECT
PRODUCT_ID,
DESCRIPTION,
PRICE,
round(PRICE * 1.07, 2) AS TAXED_PRICE
FROM PRODUCT;

Run the statement and you will notice it rounds the TAXED_PRICE, which displays
much more nicely with two decimal places (Figure 4-8).

Figure 4-8. Using the round() function to limit decimal places for TAXED_PRICE

Here is a short summary of the mathematical operators you can use in SQL (we will
see these used throughout the book):

Operator Description Example

+ Adds two numbers STOCK + NEW_SHIPMENT

- Subtracts two numbers STOCK - DEFECTS

* Multiplies two numbers PRICE * 1.07

/ Divides two numbers STOCK / PALLET_SIZE

% Divides two numbers, but returns the remainder STOCK % PALLET_SIZE

26 | Chapter 4: SELECT

Text Concatenation
Expressions do not have to work only with numbers. You can also use expressions
with text and other data types. A helpful operator to use with text is concatenation,
which merges two or more pieces of data together. The concatenate operator is
specified by a double pipe (||), and you put the data values to concatenate on both
sides of it.

For instance, you can concatenate the CITY and STATE fields from the CUSTOMER table
as well as put a comma and space between them to create a LOCATION value
(Figure 4-9):

SELECT NAME,
CITY || ', ' || STATE AS LOCATION
FROM CUSTOMER;

Figure 4-9. Concatenating CITY and STATE

You can even concatenate several fields into a single SHIP_ADDRESS value
(Figure 4-10):

SELECT NAME,
STREET_ADDRESS || ' ' || CITY || ', ' || STATE || ' ' || ZIP AS SHIP_ADDRESS
FROM CUSTOMER;

Figure 4-10. Concatenating several fields to create a SHIP_ADDRESS

Text Concatenation | 27

Concatenation should work with any data type (numbers, dates, etc.) and treat it as
text when merging. The ZIP field shown here is a number, but it was implicitly con‐
verted to text during concatenation.

More text operations will be covered in the next chapter, but concatenation is defi‐
nitely an important one.

Many database platforms use double pipes (||) to concatenate, but
MySQL and some others require using a CONCAT() function.

Summary
In this chapter, we covered how to use the SELECT statement, the most common SQL
operation. It retrieves and transforms data from a table without affecting the table
itself. We also learned how to select columns and write expressions. Within expres‐
sions, we can use operators and functions to do tasks such as rounding, math, and
concatenation.

In the next chapter, we will learn about the WHERE statement, which will allow us to
filter records based on criteria we specify.

28 | Chapter 4: SELECT

CHAPTER 5

WHERE

Over the next few chapters, we will be adding more functionalities to the SELECT
statement. A very common task when working with data is filtering for records based
on criteria, which can be done with a WHERE statement.

We will be learning more functions and using them in the WHERE clause, but we can
also use them in SELECT statements, as discussed in the previous chapter. For the most
part, expressions and functions can be used in any part of a SQL statement.

Filtering Records
We are going to open another database called weather_stations. Add this database
to your database navigator (refer to Chapter 3 if you’ve forgotten how to do this).
Double-click on the database and you will see there is a single table called STA
TION_DATA. This contains weather-related sample data gathered from various weather
stations.

Execute a SELECT on all columns to see the data inside:

SELECT * FROM station_data;

There is a lot of data here: about 28,000 records (Figure 5-1). We are not going to
glean a lot of interesting information by scrolling through these records one by one.
We will need to learn some more SQL features to morph this data into something
meaningful. We will start by learning the WHERE statement, which we can use to filter
down records based on a criterion.

29

Figure 5-1. The weather_stations database

Table names and columns can be defined in uppercase or lower‐
case. SQL commands such as SELECT, FROM, and WHERE can be
uppercase or lowercase as well.

Using WHERE on Numbers
Let’s say we are interested in station_data records for only the year 2010. Using a
WHERE is pretty straightforward for a simple criterion like this. With this query, you
should only get back records where the year field equals 2010 (Figure 5-2):

SELECT * FROM station_data
WHERE year = 2010;

30 | Chapter 5: WHERE

Figure 5-2. Records for the year 2010

Conversely, you can use != or <> to get everything but 2010. For example:

SELECT * FROM station_data
WHERE year != 2010

Or:

SELECT * FROM station_data
WHERE year <> 2010

These two syntaxes do the same thing. SQLite and most platforms now support both.
However, Microsoft Access and IBM DB2 only support <>.

We can also qualify inclusive ranges using a BETWEEN statement, as shown here
(“inclusive” means that 2005 and 2010 are included in the range):

SELECT * FROM station_data
WHERE year BETWEEN 2005 and 2010

AND, OR, and IN Statements
A BETWEEN can alternatively be expressed using greater than or equal to and less than
or equal to expressions and an AND statement. It is a little more verbose, but it demon‐
strates we can use two conditions with an AND. In this case, the year must be greater
than or equal to 2005 and less than or equal to 2010:

SELECT * FROM station_data
WHERE year >= 2005 AND year <= 2010

If we wanted everything between 2005 and 2010 exclusively—i.e., not including those
two years—we would just get rid of the = characters. Only 2006, 2007, 2008, and 2009
would then qualify:

AND, OR, and IN Statements | 31

SELECT * FROM station_data
WHERE year > 2005 AND year < 2010

We also have the option of using OR. In an OR statement, at least one of the criteria
must be true for the record to qualify. If we wanted only records with months 3, 6, 9,
or 12, we could use an OR to accomplish that:

SELECT * FROM station_data
WHERE MONTH = 3
OR MONTH = 6
OR MONTH = 9
OR MONTH = 12

This is a little verbose. A more efficient way to accomplish this is using an IN state‐
ment to provide valid list of values:

SELECT * FROM station_data
WHERE MONTH IN (3,6,9,12)

If we wanted everything except 3, 6, 9, and 12, we could use NOT IN:

SELECT * FROM station_data
WHERE MONTH NOT IN (3,6,9,12)

You can use other math expressions in your WHERE statements too. Earlier, we were
trying to filter on months 3, 6, 9, and 12. If you wanted only months divisible by 3
(the “quarter” months), you could use the modulus operator (%). The modulus is simi‐
lar to the division operator (/), but it returns the remainder instead of the quotient. A
remainder of 0 means there is no remainder at all, so you can leverage this logic by
looking for a remainder of 0 with modulus 3.

In English, this means “give me all months where dividing by 3 gives me a remainder
of 0”:

SELECT * FROM station_data
WHERE MONTH % 3 = 0

Oracle does not support the modulus operator. It instead uses the
MOD() function.

Using WHERE on Text
We’ve covered several examples of how to qualify number fields in WHERE statements.
The rules for qualifying text fields follow the same structure, although there are sub‐
tle differences. You can use =, AND, OR, and IN statements with text. However, when
using text, you must wrap literals (or text values you specify) in single quotes. For
example, if you wanted to filter for a specific report_code, you could run this query:

32 | Chapter 5: WHERE

SELECT * FROM station_data
WHERE report_code = '513A63'

Notice that because the report_code field is text (not a number), we need to put sin‐
gle quotes around '513A63' to qualify it. If we do not do this, the SQL software will
get confused and think 513A63 is a column rather than a text value. This will cause an
error and the query will fail.

This single-quote rule applies to all text operations, including this IN operation:

SELECT * FROM station_data
WHERE report_code IN ('513A63','1F8A7B','EF616A')

There are other helpful text operations and functions you can use in WHERE and
SELECT statements. For example, the length() function will count the number of
characters for a given value. So, if we were assigned quality control and needed to
ensure every report_code was six characters in length, we would want to make sure
no records come back when running this query:

SELECT * FROM station_data
WHERE length(report_code) != 6

Another common operation is to use wildcards with a LIKE expression, where % is
any number of characters and _ is any single character. Any other character is inter‐
preted literally. So, if you wanted to find all report codes that start with the letter “A,”
you would run this statement to find “A” followed by any characters:

SELECT * FROM station_data
WHERE report_code LIKE 'A%'

If you wanted to find all report codes that have a “B” as the first character and a “C”
as the third character, you would specify an underscore (_) for the second position,
and follow with any number of characters after the “C”:

SELECT * FROM station_data
WHERE report_code LIKE 'B_C%'

Do not be confused by the % being used for two different purposes.
Earlier we used it to perform a modulus operation, but in a LIKE
statement it is a wildcard in a text pattern. Like some other symbols
and characters in SQL, the context in which it is used defines its
functionality.

There are many other handy text functions, such as INSTR, SUBSTR, and REPLACE. In
the interest of brevity, we will stop covering text functions here, but you can refer to
“APPENDIX A6 – Common Core Functions” on page 103 and “APPENDIX A8 –
Date and Time Functions” on page 104 for more coverage on these functions.

Using WHERE on Text | 33

Text functions such as LIKE, SUBSTR, and INSTR can start to become
tedious and verbose when qualifying complex text patterns. I
highly recommend researching regular expressions when you find
yourself experiencing this. They are not beginner material, but they
are handy once you hit that intermediate need.

Using WHERE on Booleans
Booleans are true/false values. In the database world, typically false is expressed as 0
and true is expressed as 1. Some database platforms (like MySQL) allow you to
implicitly use the words true and false to qualify, as shown here:

SELECT * FROM station_data
WHERE tornado = true AND hail = true;

SQLite, however, does not support this. It expects you to explicitly use 1 for true and
0 for false. If you wanted all records where there was tornado and hail, you would run
this statement:

SELECT * FROM station_data
WHERE tornado = 1 AND hail = 1;

If you are looking for just true values, you do not even have to use the = 1 expression.
Because the fields are already Boolean (behind the scenes, every WHERE condition
boils down to a Boolean expression), they inherently qualify by themselves. Hence,
you can achieve the same results by running the following query:

SELECT * FROM station_data
WHERE tornado AND hail;

However, qualifying for false conditions needs to be explicit. To get all records with
no tornado but with hail, run this query:

SELECT * FROM station_data
WHERE tornado = 0 AND hail = 1;

You can also use the NOT keyword to qualify tornado as false:

SELECT * FROM station_data
WHERE NOT tornado AND hail;

Handling NULL
You may have noticed that some columns, such as station_pressure and
snow_depth, have null values (Figure 5-3). A null is a value that has no value. It is the
complete absence of any content. It is a vacuous state. In layman’s terms, it is blank.

34 | Chapter 5: WHERE

Figure 5-3. The station_data table has NULL values

Null values cannot be determined with an =. You need to use the IS NULL or IS NOT
NULL statements to identify null values. So, to get all records with no recorded
snow_depth, you could run this query:

SELECT * FROM station_data
WHERE snow_depth IS NULL;

Often, null values are not desirable to have. The station_number column should be
designed so it never allows nulls, or else we could have orphan data that belongs to no
station. It might make sense to have null values for snow_depth or precipitation,
though, not because it was a sunny day (in this case, it is better to record the values as
0), but rather because some stations might not have the necessary instruments to take
those measurements. It might be misleading to set those values to 0 (which implies
data was recorded), so those measurements should be left null.

This shows that nulls can be ambiguous and it can be difficult to determine their
business meaning. It is important that nullable columns (columns that are allowed to
have null values) have documented what a null value means from a business perspec‐
tive. Otherwise, nulls should be banned from those table columns.

Do not confuse nulls with empty text, which is two single quotes
with nothing in them (i.e., ''). This also applies to whitespace text
(i.e., ' '). These will be treated as values and never will be consid‐
ered null. A null is definitely not the same as 0 either, because 0 is a
value, whereas null is an absence of a value.

Nulls can be very annoying to handle when composing WHERE statements. If you
wanted to query all records where precipitation is less than 0.5, you could write
this statement:

SELECT * FROM station_data
WHERE precipitation <= 0.5;

Handling NULL | 35

But have you considered the null values? What if for this query you wanted nulls to
be included? Because null is not 0 or any number, it will not qualify. Nulls rarely qual‐
ify with anything and almost always get filtered out in a WHERE unless you explicitly
handle them. So you have to use an OR to include nulls:

SELECT * FROM station_data
WHERE precipitation IS NULL OR precipitation <= 0.5;

A more elegant way of handling null values is to use the coalesce() function, which
will turn a possibly null value into a specified default value if it is null. Otherwise, it
will leave the value as is. The first argument is the possibly null value, and the second
is the value to use if it is null. So if we wanted all nulls to be treated as 0 within our
condition, we could coalesce() the precipitation field to convert null to 0:

SELECT * FROM station_data
WHERE coalesce(precipitation, 0) <= 0.5;

Like any function, a coalesce() can be used in the SELECT statement too, and not just
the WHERE. This is helpful if you want to pretty up a report and not have null values
displayed, but rather have some placeholder—for example, 0, “N/A” or “None”—
which is more meaningful to most people:

SELECT report_code, coalesce(precipitation, 0) as rainfall
FROM station_data;

Grouping Conditions
When you start chaining AND and OR together, it is good to group them deliberately.
You need to make sure that you organize each set of conditions between each OR in a
way that groups related conditions. Say you were looking for sleet or snow condi‐
tions. For sleet to happen, there must be rain and a temperature less than or equal to
32 degrees Fahrenheit. You can test for that sleet condition or a snow depth greater
than 0, as shown here:

SELECT * FROM station_data
WHERE rain = 1 AND temperature <= 32
OR snow_depth > 0;

But there is one possible problem here. While this technically works, there is a degree
of ambiguity that we were lucky SQLite interpreted correctly. The reason is due to the
unclear question of “What conditions belong to the AND and what conditions belong
to the OR?” The SQL interpreter could derail quickly and incorrectly interpret that we
are looking for rain AND another condition where either the temperature is below 32
OR the snow depth is greater than 0. The semantics are not clear, and in more compli‐
cated SQL this could confuse not only people but also the machine.

This is why it is better to explicitly group conditions in parentheses:

36 | Chapter 5: WHERE

SELECT * FROM station_data
WHERE (rain = 1 AND temperature <= 32)
OR snow_depth > 0

Here, we group up the sleet expression within parentheses so it is calculated as a sin‐
gle unit, and temperature is not mixed up with the OR operator and accidentally
mangled with the snow_depth. Grouping with parentheses in WHERE statements not
only makes the semantics clearer, but also the execution safer. This is much like the
order of operations (PEMDAS) you probably remember from your middle school
math days. Anything in parentheses gets calculated first. When you start writing
complicated WHERE conditions, this practice becomes even more critical.

Summary
In this chapter, we learned to effectively filter out records in a SELECT statement using
a WHERE clause. We also leveraged new functions and expression operators that can be
used in almost any part of the SQL statement. Finally, we covered how to deliberately
and safely chain multiple conditions together in a single WHERE statement.

Hopefully SQL is already proving to be useful. You can quickly and easily filter data
on very explicit conditions, in a way that is difficult to achieve in everyday tools like
Excel.

Despite all we have covered, we have only just gotten started. The next chapter will
cover aggregating data, which will add even more value to your SQL repertoire. It is
one thing to narrow down your records and filter on specific criteria. It is another to
crunch down millions of records into a few that summarize the data.

We covered a few functions in this chapter, but there are dozens
more that you can research and use as needed. We will learn a few
more throughout this book. “APPENDIX A6 – Common Core
Functions” on page 103 and “APPENDIX A8 – Date and Time
Functions” on page 104 cover several more of these functions, and
you can always see a full list of SQLite functions at https://
www.sqlite.org/lang_corefunc.html.

Summary | 37

https://www.sqlite.org/lang_corefunc.html
https://www.sqlite.org/lang_corefunc.html

CHAPTER 6

GROUP BY and ORDER BY

Aggregating data (also referred to as rolling up, summarizing, or grouping data) is
creating some sort of total from a number of records. Sum, min, max, count, and
average are common aggregate operations. In SQL you can group these totals on any
specified columns, allowing you to control the scope of these aggregations easily.

Grouping Records
First, perform the simplest aggregation: count the number of records in a table. Open
the SQL editor and get a count of records for station data:

SELECT COUNT(*) AS record_count FROM station_data;

The COUNT(*) means to count the records. We can also use this in combination with
other SQL operations, like WHERE. To count the number of records where a tornado
was present, input the following:

SELECT COUNT(*) AS record_count FROM station_data
WHERE tornado = 1;

We identified 3,000 records with tornadoes present. But what if we wanted to separate
the count by year (Figure 6-1)? We can do that too with this query:

SELECT year, COUNT(*) AS record_count FROM station_data
WHERE tornado = 1
GROUP BY year;

39

Figure 6-1. Getting a tornado count by year

This data suddenly becomes more meaningful. We now see the tornado sighting
count by year. Let’s break down this query to see how this happened.

First, we select the year, then we select the COUNT(*) from the records, and we filter
only for records where tornado is true:

SELECT year, COUNT(*) AS record_count FROM station_data
WHERE tornado = 1
GROUP BY year;

However, we also specify that we are grouping on year. This is what effectively allows
us to count the number of records by year. The last line, highlighted in bold, performs
this grouping:

SELECT year, COUNT(*) AS record_count FROM station_data
WHERE tornado = 1
GROUP BY year;

We can slice this data on more than one field. If we wanted a count by year and
month, we could group on the month field as well (Figure 6-2):

SELECT year, month, COUNT(*) AS record_count FROM station_data
WHERE tornado = 1
GROUP BY year, month

40 | Chapter 6: GROUP BY and ORDER BY

Figure 6-2. Tornado count by year and month

Alternatively, we can use ordinal positions instead of specifying the columns in the
GROUP BY. The ordinal positions correspond to each item’s numeric position in the
SELECT statement. So, instead of writing GROUP BY year, month, we could instead
make it GROUP BY 1, 2 (which is especially helpful if our SELECT has long column
names or expressions, and we do not want to rewrite them in the GROUP BY):

SELECT year, month, COUNT(*) AS record_count FROM station_data
WHERE tornado = 1
GROUP BY 1, 2

Note that not all platforms support ordinal positions. With Oracle and SQL Server,
for example, you will have to rewrite the entire column name or expression in the
GROUP BY.

Ordering Records
Notice that the month column is not in a natural sort we would expect. This is a good
time to bring up the ORDER BY operator, which you can put at the end of a SQL state‐
ment (after any WHERE and GROUP BY). If you wanted to sort by year, and then month,
you could just add this command:

Ordering Records | 41

SELECT year, month, COUNT(*) AS record_count FROM station_data
WHERE tornado = 1
GROUP BY year, month
ORDER BY year, month

However, you are probably more interested in recent data and would like it at the top.
By default, sorting is done with the ASC operator, which orders the data in ascending
order. If you want to sort in descending order instead, apply the DESC operator to the
ordering of year to make more recent records appear at the top of the results:

SELECT year, month, COUNT(*) AS record_count FROM station_data
WHERE tornado = 1
GROUP BY year, month
ORDER BY year DESC, month

Aggregate Functions
We already used the COUNT(*) function to count records. But there are other aggrega‐
tion functions, including SUM(), MIN(), MAX(), and AVG(). We can use aggregation
functions on a specific column to perform some sort of calculation on it.

But first let’s look at another way to use COUNT(). The COUNT() function can be used
for a purpose other than simply counting records. If you specify a column instead of
an asterisk, it will count the number of non-null values in that column. For instance,
we can take a count of snow_depth recordings, which will count the number of non-
null values (Figure 6-3):

SELECT COUNT(snow_depth) as recorded_snow_depth_count
FROM STATION_DATA

Figure 6-3. Count of non-null snow depth recordings

Taking a count of non-null values in a column can be useful, so take note that
COUNT() can fulfill that purpose as well when applied to a column.

42 | Chapter 6: GROUP BY and ORDER BY

Aggregate functions such as COUNT(), SUM(), AVG(), MIN(), and
MAX() will never include null values in their calculations. Only
non- null values will be considered.

Let’s move on to other aggregation tasks. If you wanted to find the average tempera‐
ture for each month since 2000, you could filter for years 2000 and later, group by
month, and perform an average on temp (Figure 6-4):

SELECT month, AVG(temp) as avg_temp
FROM station_data
WHERE year >= 2000
GROUP BY month

Figure 6-4. Average temperature by month since the year 2000

As always, you can use functions on the aggregated values and perform tasks such as
rounding to make them look nicer (Figure 6-5):

SELECT month, round(AVG(temp),2) as avg_temp
FROM station_data
WHERE year >= 2000
GROUP BY month

Aggregate Functions | 43

Figure 6-5. Rounding the average temperature by month

SUM() is another common aggregate operation. To find the sum of snow depth by
year since 2000, run this query:

SELECT year, SUM(snow_depth) as total_snow
FROM station_data
WHERE year >= 2000
GROUP BY year

There is no limitation on how many aggregate operations you can use in a single
query. Here we find the total_snow and total_precipitation for each year since
2000 in a single query, as well as the max_precipitation:

SELECT year,
SUM(snow_depth) as total_snow,
SUM(precipitation) as total_precipitation,
MAX(precipitation) as max_precipitation
FROM station_data
WHERE year >= 2000
GROUP BY year

It may not be apparent yet, but you can achieve some very specific aggregations by
leveraging the WHERE. If you wanted the total precipitation by year only when a tor‐
nado was present, you would just have to filter on tornado being true. This will only
include tornado-related precipitation in the totals:

44 | Chapter 6: GROUP BY and ORDER BY

SELECT year,
SUM(precipitation) as tornado_precipitation
FROM station_data
WHERE tornado = 1
GROUP BY year

The HAVING Statement
Suppose you wanted to filter out records based on an aggregated value. While your
first instinct might be to use a WHERE statement, this actually will not work because the
WHERE filters records, and does not filter aggregations. For example, if you try to use a
WHERE to filter results where total_precipitation is greater than 30, this will error
out:

SELECT year,
SUM(precipitation) as total_precipitation
FROM station_data
WHERE total_precipitation > 30
GROUP BY year

Why does this not work? You cannot filter on aggregated fields using WHERE. You have
to use the HAVING keyword to accomplish this. The way aggregation works is that the
software processes record by record, finding which ones it wants to keep based on the
WHERE condition. After that, it crunches the records down on the GROUP BY and per‐
forms any aggregate functions, such as SUM(). If we wanted to filter on the SUM()
value, we would need the filter to take place after it is calculated. This is where HAVING
can be applied:

SELECT year,
SUM(precipitation) as total_precipitation
FROM station_data
GROUP BY year
HAVING total_precipitation > 30

HAVING is the aggregated equivalent to WHERE. The WHERE keyword filters individual
records, but HAVING filters aggregations.

Note that some platforms, including Oracle, do not support aliases in the HAVING
statement (just like the GROUP BY). This means you must specify the aggregate func‐
tion again in the HAVING statement. If you were running the preceding query on an
Oracle database, you would have to write it like this:

SELECT year,
SUM(precipitation) as total_precipitation
FROM station_data
GROUP BY year
HAVING SUM(precipitation) > 30

The HAVING Statement | 45

Getting Distinct Records
It is not uncommon to want a set of distinct results from a query. We know there are
28,000 records in our station_data table. But suppose we want to get a distinct list
of the station_number values? If we run this query, we will get duplicates:

SELECT station_number FROM station_data

If we want a distinct list of station numbers without any duplicates, we can use the
DISTINCT keyword:

SELECT DISTINCT station_number FROM station_data

You can also get distinct results for more than one column. If you need the distinct
station_number and year sets, just include both of those columns in the SELECT
statement:

SELECT DISTINCT station_number, year FROM station_data

Summary
In this chapter, we learned how to aggregate and sort data using GROUP BY and ORDER
BY. We also leveraged the SUM(), MAX(), MIN(), AVG(), and COUNT() aggregate func‐
tions to crunch thousands of records into a few meaningful totaled records. Because
we cannot use WHERE to filter aggregated fields, we used the HAVING keyword to
accomplish that. We also leveraged the DISTINCT operator to get distinct results in
our queries and eliminate duplicates.

I hope by now you see the flexibility SQL offers to quickly develop meaningful
reports based on thousands or millions of records. Before moving on, I would recom‐
mend experimenting with everything you’ve learned so far and trying out the SELECT,
WHERE, and GROUP BY in your queries. Ask yourself business questions such as “Has
the temperature been getting warmer every January for the past 20 years?” or “How
many times has hail been present versus not present during a tornado?” Try to create
SQL queries on the weather data to answer these questions.

Get comfortable with what you have learned so far, but do not fret about memorizing
every SQL functionality. That will come with time as you repeatedly use and practice
SQL. You’ll gain more knowledge in the coming chapters, and it’s OK to refer to Goo‐
gle or this guide if you forget how to compose things.

You can get the short, complete list of SQLite aggregate functions
in “APPENDIX A7 – Aggregate Functions” on page 104 or at
https://www.sqlite.org/lang_aggfunc.html.

46 | Chapter 6: GROUP BY and ORDER BY

https://www.sqlite.org/lang_aggfunc.html

CHAPTER 7

CASE Statements

We are almost ready to learn the truly defining feature of SQL, the JOIN operator. But
before we do that, we should spend a short chapter covering a very handy operator
called CASE. This command allows us to swap a column value for another value based
on one or more conditions.

The CASE Statement
A CASE statement allows us to map one or more conditions to a corresponding value
for each condition. You start a CASE statement with the word CASE and conclude it
with an END. Between those keywords, you specify each condition with a WHEN [condi
tion] THEN [value], where the [condition] and the corresponding [value] are
supplied by you. After specifying the condition–value pairs, you can have a catch-all
value to default to if none of the conditions were met, which is specified in the ELSE.
For example, we could categorize wind_speed into wind_severity categories
(Figure 7-1), where any speed greater than 40 is 'HIGH', 30 to 40 is 'MODERATE', and
anything less is 'LOW':

SELECT report_code, year, month, day, wind_speed,

CASE
 WHEN wind_speed >= 40 THEN 'HIGH'
 WHEN wind_speed >= 30 AND wind_speed < 40 THEN 'MODERATE'
 ELSE 'LOW'
END as wind_severity

FROM station_data

47

Figure 7-1. Categorizing wind severity into HIGH, MODERATE, and LOW

We can actually omit the AND wind_speed < 40 condition. Here is why: the machine
reads a CASE statement from top to bottom, and the first condition it finds true is the
one it uses (and it will stop evaluating subsequent conditions). So if we have a record
with a wind_speed of 43, we can be certain it will be evaluated as 'HIGH'. Although it
is greater than 30, it will not be assigned 'MODERATE' because it will not get to that
point. Knowing this allows us to create a slightly more efficient query:

SELECT report_code, year, month, day, wind_speed,

CASE
 WHEN wind_speed >= 40 THEN 'HIGH'
 WHEN wind_speed >= 30 THEN 'MODERATE'
 ELSE 'LOW'
END as wind_severity

FROM station_data

Grouping CASE Statements
When you create CASE statements and group them, you can create some very power‐
ful transformations. Converting values based on one or more conditions before
aggregating them gives us even more possibilities to slice data in interesting ways.
Elaborating on our previous example, we can group on year and wind_severity and
get a count of records for each one as shown here (also notice we use GROUP BY with

48 | Chapter 7: CASE Statements

ordinal positions so we do not have to rewrite the wind_severity case expression in
the GROUP BY):

SELECT year,

CASE
 WHEN wind_speed >= 40 THEN 'HIGH'
 WHEN wind_speed >= 30 THEN 'MODERATE'
 ELSE 'LOW'
END as wind_severity,

COUNT(*) as record_count

FROM station_data
GROUP BY 1, 2

The “Zero/Null” CASE Trick
You can do some clever tricks with the CASE statement. One simple but helpful pat‐
tern is the “zero/null” CASE trick. This allows you to apply different “filters” for differ‐
ent aggregate values, all in a single SELECT query. You could never accomplish this in
a WHERE because the WHERE applies a filter to everything. But you can use a CASE to
create a different filter condition for each aggregate value.

Say you wanted to aggregate precipitation into two sums, tornado_precipitation
and non_tornado_precipitation, and GROUP BY year and month. The logic is pri‐
marily dependent on two fields: precipitation and tornado. But how exactly do you
code this?

If you give it some thought, you will realize you cannot do this with a WHERE state‐
ment unless you do two separate queries (one for tornado being true and the other
false):

Tornado precipitation
SELECT year, month,
SUM(precipitation) as tornado_precipitation
FROM station_data
WHERE tornado = 1
GROUP BY year, month

Non-tornado precipitation
SELECT year, month,
SUM(precipitation) as non_tornado_precipitation
FROM station_data
WHERE tornado = 0
GROUP BY year, month

The “Zero/Null” CASE Trick | 49

But it is possible to do this in a single query using a CASE statement. You can move the
tornado conditions from the WHERE to a CASE, and make the value 0 if the condition is
false. Then you can SUM those CASE statements (Figure 7-2):

SELECT year, month,

SUM(CASE WHEN tornado = 1 THEN precipitation ELSE 0 END) as tornado_precipitation,

SUM(CASE WHEN tornado = 0 THEN precipitation ELSE 0 END) as
 non_tornado_precipitation

FROM station_data
GROUP BY year, month

Figure 7-2. Getting tornado and non-tornado precipitation by year and month

The CASE statement can do an impressive amount of work, especially in complex
aggregation tasks. By leveraging a condition to make a value 0 if the condition is not
met, we effectively ignore that value and exclude it from the SUM (because adding 0
has no impact).

You could also do this with MIN or MAX operations, and use a null instead of 0 to make
sure values with certain conditions are never considered. You can find the maximum
precipitation when tornadoes were present and when they were not (Figure 7-3) as
follows:

50 | Chapter 7: CASE Statements

SELECT year,

MAX(CASE WHEN tornado = 0 THEN precipitation ELSE NULL END) as
 max_non_tornado_precipitation,

MAX(CASE WHEN tornado = 1 THEN precipitation ELSE NULL END) as
 max_tornado_precipitation

FROM station_data
GROUP BY year

Figure 7-3. Maximum tornado and non-tornado precipitations by year

Just like with the WHERE statement, you can use any Boolean expressions in a CASE
statement, including functions and AND, OR, and NOT statements. The following query
will find the average temperatures by month when rain/hail was present versus not
present after the year 2000:

SELECT month,

AVG(CASE WHEN rain OR hail THEN temperature ELSE null END)
AS avg_precipitation_temp,

AVG(CASE WHEN NOT (rain OR hail) THEN temperature ELSE null END)
AS avg_non_precipitation_temp

FROM STATION_DATA
WHERE year > 2000
GROUP BY month

The “Zero/Null” CASE Trick | 51

The zero/null CASE trick is a great use of the CASE statement. It offers many possibili‐
ties to perform several aggregations with different criteria and therefore is worth
knowing.

Summary
We dedicated a chapter to learning about CASE statements because they offer a lot of
flexibility. We can swap values in a column with another set of values based on condi‐
tions we provide. When we aggregate CASE statements, we bring more possibilities to
slice data in interesting ways and pack more information into a single query.

Hopefully by now you have a solid foundation and are ready to learn the defining
part of SQL: the JOIN. Take a break. Down a few espressos. After you learn the JOIN,
you can truly call yourself a SQL developer.

52 | Chapter 7: CASE Statements

CHAPTER 8

JOIN

Stitching Tables Together
Joining is the defining functionality of SQL and sets it apart from other data technol‐
ogies. Be sure you are somewhat comfortable with the material we’ve covered so far,
and take your time practicing and reviewing before moving on.

Let’s rewind back to the beginning of this book, when we were discussing relational
databases. Remember how “normalized” databases often have tables with fields that
point to other tables? For example, consider this CUSTOMER_ORDER table, which has a
CUSTOMER_ID field (Figure 8-1).

Figure 8-1. The CUSTOMER_ORDER table has a CUSTOMER_ID field

This CUSTOMER_ID field gives us a key to look up in the table CUSTOMER. Knowing this,
it should be no surprise that the CUSTOMER table also has a CUSTOMER_ID field
(Figure 8-2).

53

Figure 8-2. The CUSTOMER table has a CUSTOMER_ID key field that can be used to
get customer information

We can retrieve customer information for an order from this table, very much like a
VLOOKUP in Excel.

This is an example of a relationship between the CUSTOMER_ORDER table and the
CUSTOMER table. We can say that CUSTOMER is a parent to CUSTOMER_ORDER. Because
CUSTOMER_ORDER depends on CUSTOMER for information, it is a child of CUSTOMER. Con‐
versely, CUSTOMER cannot be a child of CUSTOMER_ORDER because it does not rely on it
for any information. The diagram in Figure 8-3 shows this relationship; the arrow
shows that CUSTOMER supplies customer information to CUSTOMER_ORDER via the
CUSTOMER_ID.

Figure 8-3. CUSTOMER is the parent to CUSTOMER_ORDER, because
CUSTOMER_ORDER depends on it for CUSTOMER information

The other aspect to consider in a relationship is how many records in the child can be
tied to a single record of the parent. Take the CUSTOMER and CUSTOMER_ORDER tables
and you will see it is a one-to-many relationship, where a single customer record can
line up with multiple orders. Let’s take a look at Figure 8-4 to see a specific example:
the customer “Re-Barre Construction” with CUSTOMER_ID 3 is tied to three orders.

54 | Chapter 8: JOIN

Figure 8-4. A one-to-many relationship between CUSTOMER and
CUSTOMER_ORDER

One-to-many is the most common type of relationship because it accommodates
most business needs, such as a single customer having multiple orders. Business data
in a well-designed database should strive for a one-to-many pattern. Less common
are the one-to-one and many-to-many relationships (sometimes referred to as a Carte‐
sian product). These are worth researching later, but in the interest of focusing the
scope of this book, we will steer clear of them.

INNER JOIN
Understanding table relationships, we can consider that it might be nice to stitch two
tables together, so we can see CUSTOMER and CUSTOMER_ORDER information alongside
each other. Otherwise, we will have to manually perform tons of lookups with
CUSTOMER_ID, which can be quite tedious. We can avoid that with JOIN operators, and
we will start by learning the INNER JOIN.

The INNER JOIN allows us to merge two tables together. But if we are going to merge
tables, we need to define a commonality between the two so records from both tables
line up. We need to define one or more fields they have in common and join on them.
If we are going to query the CUSTOMER_ORDER table and join it to CUSTOMER to bring in
customer information, we need to define the commonality on CUSTOMER_ID.

Open up the rexon_metals database and open a new SQL editor window. We are
going to execute our first INNER JOIN:

INNER JOIN | 55

SELECT ORDER_ID,
CUSTOMER.CUSTOMER_ID,
ORDER_DATE,
SHIP_DATE,
NAME,
STREET_ADDRESS,
CITY,
STATE,
ZIP,
PRODUCT_ID,
ORDER_QTY

FROM CUSTOMER INNER JOIN CUSTOMER_ORDER
ON CUSTOMER.CUSTOMER_ID = CUSTOMER_ORDER.CUSTOMER_ID

The first thing you may notice is we were able to query fields from both CUSTOMER
and CUSTOMER_ORDER. It is almost like we took those two tables and temporarily
merged them into a single table, which we queried off of. In effect, that is exactly what
we did!

Let’s break down how this was accomplished. First, we select the fields we want from
the CUSTOMER and CUSTOMER_ORDER tables:

SELECT CUSTOMER.CUSTOMER_ID,
NAME,
STREET_ADDRESS,
CITY,
STATE,
ZIP,
ORDER_DATE,
SHIP_DATE,
ORDER_ID,
PRODUCT_ID,
ORDER_QTY

FROM CUSTOMER INNER JOIN CUSTOMER_ORDER
ON CUSTOMER.CUSTOMER_ID = CUSTOMER_ORDER.CUSTOMER_ID

In this case, we want to show customer address information for each order. Also
notice that because CUSTOMER_ID is in both tables, we had to explicitly choose one
(although it should not matter which). In this case, we chose the CUSTOMER_ID in
CUSTOMER using an explicit syntax, CUSTOMER.CUSTOMER_ID.

Finally, the important part that temporarily merges two tables into one. The FROM
statement is where we execute our INNER JOIN. We specify that we are pulling from
CUSTOMER and inner joining it with CUSTOMER_ORDER, and that the commonality is on
the CUSTOMER_ID fields (which have to be equal to line up):

56 | Chapter 8: JOIN

SELECT CUSTOMER.CUSTOMER_ID,
NAME,
STREET_ADDRESS,
CITY,
STATE,
ZIP,
ORDER_DATE,
SHIP_DATE,
ORDER_ID,
PRODUCT_ID,
ORDER_QTY

FROM CUSTOMER INNER JOIN CUSTOMER_ORDER
ON CUSTOMER.CUSTOMER_ID = CUSTOMER_ORDER.CUSTOMER_ID

If you have worked with Excel, think of this as a VLOOKUP on steroids, where
instead of looking up CUSTOMER_ID and getting one value from another table, we are
getting the entire matching record. This enables us to select any number of fields
from the other table.

Now take a look at the results (Figure 8-5). Thanks to the INNER JOIN, this query
gives us a view that includes the customer details with each order.

Figure 8-5. CUSTOMER inner joined with CUSTOMER_ORDER

Joins truly give us the best of both worlds. We store data efficiently through normal‐
ization, but can use joins to merge tables together on common fields to create more
descriptive views of the data.

There is one behavior with INNER JOIN to be aware of. Take a moment to look at the
results of the preceding query. We can see that we have three “Re-Barre Construction”
orders, as well as an order from “LITE Industrial” and another from “Marsh Lane
Metal Works.” But are we missing anybody?

If you go look at the CUSTOMER table, you will see there are five customers. Our INNER
JOIN query captured only three. “Rex Tooling Inc” and “Prairie Construction” are
nowhere to be found in our query results. So what exactly happened? There are no
orders for Rex Tooling Inc and Prairie Construction, and because of this the INNER
JOIN excluded them from the query. It will only show records that inclusively exist in
both tables (Figure 8-6).

INNER JOIN | 57

Figure 8-6. A visualized inner join between CUSTOMER and CUSTOMER_ORDER
(note the two customers getting omitted, as they have no orders to join to)

With an INNER JOIN, any records that do not have a common joined value in both
tables will be excluded. If we want to include all records from the CUSTOMER table, we
can accomplish this with a LEFT JOIN.

LEFT JOIN
Those two customers, Rex Tooling Inc and Prairie Construction, were excluded from
the INNER JOIN on CUSTOMER_ID because they had no orders to join on. But suppose
we did want to include them anyway. Often, we may want to join tables and see, for
example, all customers, even if they had no orders.

If you are comfortable with the INNER JOIN, the left outer join is not much different.
But there is one very subtle difference. Modify your query from before and replace
the INNER JOIN with LEFT JOIN, the keywords for a left outer join. As shown in
Figure 8-7, the table specified on the “left” side of the LEFT JOIN operator (CUSTOMER)
will have all its records included, even if they do not have any child records in the
“right” table (CUSTOMER_ORDER).

58 | Chapter 8: JOIN

Figure 8-7. The LEFT JOIN will include all records on the “left” table, even if they have
nothing to join to on the “right” table (which will be null)

Running this, we have similar results to what we got from the INNER JOIN query ear‐
lier, but we have two additional records for the customers that have no orders
(Figure 8-8). For those two customers, notice all the fields that come from CUS
TOMER_ORDER are null, because there were no orders to join to. Instead of omitting
them like the INNER JOIN did, the LEFT JOIN just made them null (Figure 8-9).

Figure 8-8. CUSTOMER left joined with CUSTOMER_ORDER (note the null
CUSTOMER_ORDER fields mean no orders were found for those two customers)

LEFT JOIN | 59

Figure 8-9. CUSTOMER left joined with CUSTOMER_ORDER (note that “Rex Tooling”
and “Prairie Construction” joined to NULL, as they have no orders to join to)

It is also common to use LEFT JOIN to check for “orphaned” child records that have
no parent, or conversely a parent that has no children (e.g., orders that have no cus‐
tomers, or customers that have no orders). You can use a WHERE statement to check
for null values that are a result of the LEFT JOIN. Modifying our previous example, we
can filter for customers that have no orders by filtering any field from the right table
that is null:

SELECT
CUSTOMER.CUSTOMER_ID,
NAME AS CUSTOMER_NAME

FROM CUSTOMER LEFT JOIN CUSTOMER_ORDER
ON CUSTOMER.CUSTOMER_ID = CUSTOMER_ORDER.CUSTOMER_ID

WHERE ORDER_ID IS NULL

Sure enough, you will only see Rex Tooling Inc and Prairie Construction listed, as
they have no orders.

60 | Chapter 8: JOIN

Other JOIN Types
There is a RIGHT JOIN operator, which performs a right outer join that is almost iden‐
tical to the left outer join. It flips the direction of the join and includes all records
from the right table. However, the RIGHT JOIN is rarely used and should be avoided.
You should stick to convention and prefer left outer joins with LEFT JOIN, and put
the “all records” table on the left side of the join operator.

There also is a full outer join operator called OUTER JOIN that includes all records
from both tables. It does a LEFT JOIN and a RIGHT JOIN simultaneously, and can have
null records in both tables. It can be helpful to find orphaned records in both direc‐
tions simultaneously in a single query, but it also is seldom used.

RIGHT JOIN and OUTER JOIN are not supported in SQLite due to
their highly niche nature. But most database solutions feature
them.

Joining Multiple Tables
Relational databases can be fairly complex in terms of relationships between tables. A
given table can be the child of more than one parent table, and a table can be the par‐
ent to one table but a child to another. So how does this all work?

We have observed the relationship between CUSTOMER and CUSTOMER_ORDER. But there
is another table we can include that will make our orders more meaningful: the
PRODUCT table. Notice that the CUSTOMER_ORDER table has a PRODUCT_ID column,
which corresponds to a product in the PRODUCT table.

We can supply not only CUSTOMER information to the CUSTOMER_ORDER table, but also
PRODUCT information using PRODUCT_ID (Figure 8-10).

Other JOIN Types | 61

Figure 8-10. Joining multiple tables

We can use these two relationships to execute a query that displays orders with cus‐
tomer information and product information simultaneously. All we do is define the
two joins between CUSTOMER_ORDER and CUSTOMER, and CUSTOMER_ORDER and PRODUCT
(Figure 8-11). If you start to get confused, just compare the following query to the
diagram in Figure 8-10, and you will see the joins are constructed strictly on these
relationships:

SELECT
ORDER_ID,
CUSTOMER.CUSTOMER_ID,
NAME AS CUSTOMER_NAME,
STREET_ADDRESS,
CITY,
STATE,
ZIP,
ORDER_DATE,
PRODUCT_ID,
DESCRIPTION,
ORDER_QTY

FROM CUSTOMER

INNER JOIN CUSTOMER_ORDER
ON CUSTOMER_ORDER.CUSTOMER_ID = CUSTOMER.CUSTOMER_ID

INNER JOIN PRODUCT
ON CUSTOMER_ORDER.PRODUCT_ID = PRODUCT.PRODUCT_ID

62 | Chapter 8: JOIN

Figure 8-11. Joining ORDER, CUSTOMER, and PRODUCT fields together

These orders are much more descriptive now that we’ve leveraged CUSTOMER_ID and
PRODUCT_ID to bring in customer and product information. As a matter of fact, now
that we’ve merged these three tables, we can use fields from all three tables to create
expressions. If we want to find the revenue for each order, we can multiply ORDER_QTY
and PRICE, even though those fields exist in two separate tables:

SELECT
ORDER_ID,
CUSTOMER.CUSTOMER_ID,
NAME AS CUSTOMER_NAME,
STREET_ADDRESS,
CITY,
STATE,
ZIP,
ORDER_DATE,
PRODUCT_ID,
DESCRIPTION,
ORDER_QTY,
ORDER_QTY * PRICE as REVENUE

FROM CUSTOMER

INNER JOIN CUSTOMER_ORDER
ON CUSTOMER.CUSTOMER_ID = CUSTOMER_ORDER.CUSTOMER_ID

INNER JOIN PRODUCT
ON CUSTOMER_ORDER.PRODUCT_ID = PRODUCT.PRODUCT_ID

Now we have the revenue for each order, even though the needed columns came from
two separate tables.

Grouping JOINs
Let’s keep going with this example. We have the orders with their revenue, thanks to
the join we built. But suppose we want to find the total revenue by customer? We still
need to use all three tables and merge them together with our current join setup,
because we need the revenue we just calculated. But also we need to do a GROUP BY.

This is legitimate and perfectly doable. Because we want to aggregate by customer, we
need to group on CUSTOMER_ID and CUSTOMER_NAME. Then we need to SUM the

Grouping JOINs | 63

ORDER_QTY * PRICE expression to get total revenue (Figure 8-12). To focus our GROUP
BY scope, we omit all other fields:

SELECT
CUSTOMER.CUSTOMER_ID,
NAME AS CUSTOMER_NAME,
sum(ORDER_QTY * PRICE) as TOTAL_REVENUE

FROM CUSTOMER_ORDER

INNER JOIN CUSTOMER
ON CUSTOMER.CUSTOMER_ID = CUSTOMER_ORDER.CUSTOMER_ID

INNER JOIN PRODUCT
ON CUSTOMER_ORDER.PRODUCT_ID = PRODUCT.PRODUCT_ID

GROUP BY 1,2

Figure 8-12. Calculating TOTAL_REVENUE by joining and aggregating three tables

Because we may want to see all customers, including ones that have no orders, we can
use LEFT JOIN instead of INNER JOIN for all our join operations (Figure 8-13):

SELECT
CUSTOMER.CUSTOMER_ID,
NAME AS CUSTOMER_NAME,
sum(ORDER_QTY * PRICE) as TOTAL_REVENUE

FROM CUSTOMER

LEFT JOIN CUSTOMER_ORDER
ON CUSTOMER.CUSTOMER_ID = CUSTOMER_ORDER.CUSTOMER_ID

LEFT JOIN PRODUCT
ON CUSTOMER_ORDER.PRODUCT_ID = PRODUCT.PRODUCT_ID

GROUP BY 1,2

64 | Chapter 8: JOIN

Figure 8-13. Using a LEFT JOIN to include all customers and their TOTAL_REVENUE

We have to LEFT JOIN both table pairs, because mixing LEFT JOIN
and INNER JOIN would cause the INNER JOIN to win, resulting in
the two customers without orders getting excluded. This is because
null values cannot be inner joined on and will always get filtered
out. A LEFT JOIN tolerates null values.

Rex Tooling Inc and Prairie Construction are now present even though they have no
orders. But we may want the values to default to 0 instead of null if there are no sales.
We can accomplish this simply with the coalesce() function we learned about in
Chapter 5 to turn nulls into zeros (Figure 8-14):

SELECT
CUSTOMER.CUSTOMER_ID,
NAME AS CUSTOMER_NAME,
coalesce(sum(ORDER_QTY * PRICE), 0) as TOTAL_REVENUE

FROM CUSTOMER

LEFT JOIN CUSTOMER_ORDER
ON CUSTOMER.CUSTOMER_ID = CUSTOMER_ORDER.CUSTOMER_ID

LEFT JOIN PRODUCT
ON CUSTOMER_ORDER.PRODUCT_ID = PRODUCT.PRODUCT_ID

GROUP BY 1,2

Figure 8-14. Coalescing null TOTAL_REVENUE values to 0

Grouping JOINs | 65

Summary
Joins are the most challenging topic in SQL, but they are also the most rewarding.
Joins allow us to take data scattered across multiple tables and stitch it together into
something more meaningful and descriptive. We can take two or more tables and
join them together into a larger table that has more context. In the next chapter, we
will learn more about joins and how they are naturally defined by table relationships.

66 | Chapter 8: JOIN

CHAPTER 9

Database Design

Planning a Database
So far in this book, we have only learned how to be consumers of data with the
SELECT statement. We have done analysis operations that read data and transform it
in interesting ways, but none of this physically changes the data in the tables. A
SELECT statement is a read-only operation. Sometimes, though, we will want to
CREATE new tables, as well as INSERT, UPDATE, and DELETE records.

When you create your own tables to support your business, it should not be done
lightly. You need to plan carefully because bad database design is sure to cause regrets
down the road. There are critical questions that should drive your design:

Design questions
• What are the business requirements?
• What tables will I need to fulfill those requirements?
• What columns will each table contain?
• How will the tables be normalized?
• What will their parent/child relationships be?

It might be a good idea to draft a diagram showing the tables and how they are
related. But design is not the only factor to consider. Populating data should be
part of the planning process too. If the data is not maintainable and kept up to
date, then the design has already failed. This factor is often overlooked and can
easily cause a database project to fail.

67

Data questions
• How much data will be populated into these tables?
• Who/what will populate the data into these tables?
• Where will the data come from?
• Do we need processes to automatically populate the tables?

Data inception has to happen somewhere. Depending on the nature of the data, it
can be created within your organization or received from an external party. If you
need to store a high volume of data that updates regularly, chances are a human
cannot do this task manually. You will need a process written in Java, Python, or
another coding language to do that.

Although security and administration are beyond the scope of this book, central‐
ized databases usually are concerned with these areas. Administrating privileges
and security is a full-time job in itself and often done by database administrators
(DBAs). For centralized databases, security factors should be considered.

Security questions
• Who should have access to this database?
• Who should have access to which tables? Read-only access? Write access?
• Is this database critical to business operations?
• What backup plans do we have in the event of disaster/failure?
• Should changes to tables be logged?
• If the database is used for websites or web applications, is it secure?

Security is often a tough topic to address. Excessive security creates bureaucracy
and obstructs nimbleness, but insufficient security will invite calamity. Like with
any complex issue, a balance between the two extremes has to be found. But
security should become a high priority when the database is used for a website.
Connecting anything to the Web makes it more vulnerable to leaks and malicious
attacks.

One of the most common malicious hacks is SQL injection. If a
web developer has failed to implement security measures in a
website, you can type a carefully crafted SELECT statement
right inside a web browser, and get the query results displayed
right back to you! 130 million credit card numbers were stolen
this way in 2009.

SQLite has few security or administrative features, as these features would be
overkill in a lightweight database. If your SQLite databases need to be secured,

68 | Chapter 9: Database Design

protect the database files the same way you would any other file. Either hide
them, copy them to a backup, or distribute copies to your coworkers so they do
not have access to the “master copy.”

With all these considerations in mind, let’s design our first database.

The SurgeTech Conference
You are a staff member for the SurgeTech conference, a gathering of tech startup
companies seeking publicity and investors. The organizer has tasked you with creat‐
ing a database to manage the attendees, companies, presentations, rooms, and pre‐
sentation attendance. How should this database be designed?

First, review the different entities and start thinking about how they will be structured
into tables. This may seem like a large number of business asks to capture, but any
complex problem can be broken down into simple components.

ATTENDEE
The attendees are registered guests (including some VIPs) who are checking out the
tech startups. Each attendee’s ID, name, phone number, email, and VIP status will
need to be tracked.

Taking all this information, we may design the ATTENDEE table with these columns:

COMPANY
The startup companies need to be tracked as well. The company ID, company name,
company description, and primary contact (who should be listed as an attendee) for
each must be tracked:

The SurgeTech Conference | 69

PRESENTATION
Some companies will schedule to do a presentation for a specific slot of time (with a
start time and end time). The company leading the presentation as well as a room
number must also be booked for each presentation slot:

ROOM
There will be rooms available for the presentations, each with a room ID number, a
floor number, and a seating capacity:

PRESENTATION_ATTENDANCE
If attendees are interested in hearing a company’s presentation, they can acquire a
ticket (with a ticket ID) and be allowed in. This will help keep track of who attended
what presentations. To implement this, the PRESENTATION_ATTENDANCE table will track
the ticket IDs and pair the presentations with the attendees through their respective
IDs to show who was where:

Primary and Foreign Keys
You should always strive to have a primary key on any table. A primary key is a spe‐
cial field (or combination of fields) that provides a unique identity to each record. A
primary key often defines a relationship and is frequently joined on. The ATTENDEE

70 | Chapter 9: Database Design

table has an ATTENDEE_ID field as its primary key, COMPANY has COMPANY_ID, and so
on. While you do not need to designate a field as a primary key to join on it, it allows
the database software to execute queries much more efficiently. It also acts as a con‐
straint to ensure data integrity. No duplicates are allowed on the primary key, which
means you cannot have two ATTENDEE records both with an ATTENDEE_ID of 2. The
database will forbid this from happening and throw an error.

To focus our scope in this book, we will not compose a primary key
off more than one field. But be aware that multiple fields can act as
a primary key, and you can never have duplicate combinations of
those fields. For example, if you specified your primary key on the
fields REPORT_ID and APPROVER_ID, you can never have two records
with the same combination of REPORT_ID and APPROVER_ID.

Do not confuse the primary key with a foreign key. The primary key exists in the par‐
ent table, but the foreign key exists in the child table. The foreign key in a child table
points to the primary key in its parent table. For example, the ATTENDEE_ID in the
ATTENDEE table is a primary key, but the ATTENDEE_ID in the
PRESENTATION_ATTENDANCE table is a foreign key. The two are joined together for a
one-to-many relationship. Unlike a primary key, a foreign key does not enforce
uniqueness, as it is the “many” in a “one-to-many” relationship.

The primary key and foreign key do not have to share the same field name. The
BOOKED_COMPANY_ID in the PRESENTATION table is a foreign key pointing to the
COMPANY_ID in its parent table COMPANY. The field name can be different on the for‐
eign key to make it more descriptive of its usage. In this case, BOOKED_COMPANY_ID is
more descriptive than just COMPANY_ID. The semantics are subjective but still legiti‐
mate as long as the business wording is clear.

The Schema
Applying our knowledge of primary keys and foreign keys, we can establish the rela‐
tionships between these five tables and draw a database schema as shown in
Figure 9-1. A database schema is a diagram showing tables, their columns, and their
relationships. All the primary keys and foreign keys are connected by arrows. The
non-tipped side of the arrow ties to a primary key, while the tipped side points to a
foreign key. These arrows visualize how each parent table supplies data to a child
table.

The Schema | 71

Figure 9-1. The database schema for the SurgeTech conference, with all tables and rela‐
tionships

It can be overwhelming to look at these tables and relationships all at once. But all
complex structures can be broken down into simple pieces. Chances are you will
never write a SELECT query that uses all the tables, and you probably will only SELECT
from two (maybe three) tables. Therefore, the secret to observing a schema is to focus
only on two or three tables and their relationships at a time. While you analyze your
drafted design, you can ensure the tables are efficiently normalized and primary/
foreign keys are used effectively (Figure 9-2).

72 | Chapter 9: Database Design

Figure 9-2. Focusing on just two tables and their relationships (here we can easily see the
PRIMARY_CONTACT_ATTENDEE_ID supplies name and contact information from
the ATTENDEE table)

If you can successfully visualize different SELECT queries and joins you would typi‐
cally use on the data, the database schema is probably sound.

Creating a New Database
With a well-planned design, it is now time to actually create this database. We are
going to use SQLiteStudio’s tools to create the tables and components. But along the
way, SQLiteStudio will show us the SQL it uses to create and modify our tables.

First, navigate to Database→Add a Database (Figure 9-3).

Creating a New Database | 73

Figure 9-3. Adding a database

Click the green “plus” button circled in Figure 9-4 to create a new database.

Figure 9-4. Creating a database

74 | Chapter 9: Database Design

Browse to the folder you would like to save the database to. In the “File name” field,
provide a name for the database file. It usually is good practice to end the name with
the file extension .db. In this case, we might name it surgetech_conference.db
(Figure 9-5).

Figure 9-5. Selecting a location to create a database

Click Save, then OK. You should now see the new database in your navigator
(Figure 9-6).

Figure 9-6. Our new surgetech_conference database

This database is empty, so next we will add some tables to it.

Creating a New Database | 75

CREATE TABLE
When we create a table in SQL, we use a CREATE TABLE statement. However, I am an
advocate for using tools that make tasks easier. We are going to use SQLiteStudio’s
visual tools to create the table, and when we are done it will generate and display the
CREATE TABLE statement it built for us.

Right-click on the Tables item in the navigator and click Create a table, as shown in
Figure 9-7.

Figure 9-7. Creating a table

You will then come to the table Structure tab. Here we add, modify, and remove col‐
umns from our table (Figure 9-8).

76 | Chapter 9: Database Design

Figure 9-8. The table Structure tab, which we can use to add, modify, and remove col‐
umns from a table

We can also define various constraints to ensure data entered into the columns con‐
forms to rules we specify. We also supply a name for this table in the “Table name”
field. Type in COMPANY for this table name. Also note there is a button to save your
edits and another to add a new column.

Click the Add Column button, and you will see a dialog to define a new column and
its attributes. Name this column COMPANY_ID and make its data type “INTEGER,”
as shown in Figure 9-9.

CREATE TABLE | 77

Figure 9-9. Defining a new COMPANY_ID column that holds integers; it also is config‐
ured to be the primary key and will automatically populate a value via “Autoincrement”
for each inserted record

This is the COMPANY_ID field, and we need to define this as the primary key for the
COMPANY table. Typically, the easiest way to assign key values is to do it sequentially for
each new record. The first record will have a COMPANY_ID of 1, then the second record
will have 2, then 3, and so on. When we INSERT records in the next chapter, this is a
pain to do manually. But we can configure SQLite to automatically assign an ID for
each record we insert. Simply check Primary Key, then click Configure, then select
Autoincrement and click Apply (Figure 9-9).

Finally, click OK in the Column window and you will see our first column defined
(Figure 9-10).

78 | Chapter 9: Database Design

Figure 9-10. Our first column is defined; notice the key symbol indicating this column is
the primary key

We have now defined our first column, and because it was the primary key column, it
took some extra work. The rest of the columns will be a little easier to set up.

Click on the Add Column button again to create another column (Figure 9-11). Label
this column NAME and make it a VARCHAR type, which is for text that can be of
varying lengths. Specify the maximum number of characters to be 30. Because we
likely never want this field to be null, check the “Not NULL” constraint. If any records
are added or modified with NAME set to null, then the database will reject the edits.

Figure 9-11. Creating a “NAME” column with type VARCHAR, a max character length
of 30, and a “Not NULL” constraint

CREATE TABLE | 79

Click OK and then create two more columns, DESCRIPTION and PRIMARY_CON‐
TACT_ATTENDEE_ID, with the configurations shown in Figure 9-12. Note that PRI‐
MARY_CONTACT_ATTENDEE_ID should be a foreign key, but we have not defined
that yet. We will come back to configure this after we have created its parent, the
ATTENDEE table.

Figure 9-12. Creating the remaining two columns

Finally, click the Save Table button. You will be presented with a CREATE TABLE state‐
ment that SQLiteStudio has built for you, and will execute on your approval
(Figure 9-13).

80 | Chapter 9: Database Design

Figure 9-13. Click the Save Table button in the top toolbar, and SQLiteStudio will
present the CREATE TABLE statement it is about to execute based on our inputted defi‐
nitions

How cool is that? SQLiteStudio wrote SQL for you based on all the table definitions
you built. Before you click OK, let’s take a quick look at the CREATE TABLE statement
to see how it works:

CREATE TABLE COMPANY (
 COMPANY_ID INTEGER PRIMARY KEY AUTOINCREMENT,
 NAME VARCHAR(30) NOT NULL,
 DESCRIPTION VARCHAR(60),
 PRIMARY_CONTACT_ID INTEGER NOT NULL
);

If you inspect the SQL query, you will see the CREATE TABLE statement declares a new
table named COMPANY. After that, everything in parentheses defines the table columns.
Each table column is defined by a name, followed by its type, and then any con‐
straints or rules such as PRIMARY KEY, AUTOINCREMENT, or NOT NULL.

You could literally copy this statement and execute it in the SQL editor, but just click
OK and it will execute the statement for you. After that, you should see your new
table in the navigator (Figure 9-14).

CREATE TABLE | 81

Figure 9-14. The COMPANY table in the navigator

The AUTOINCREMENT constraint in SQLite is actually not necessary.
We use it here for practice because it is necessary for other plat‐
forms, including MySQL. In SQLite, making a column of type
INTEGER a primary key will automatically make it handle its own
ID assignment. As a matter of fact, it is actually more efficient in
SQLite to not use AUTOINCREMENT and let the primary key implicitly
do it.

Create the remaining four tables in the same manner. The needed CREATE TABLE
statements are shown here (you can choose to build the tables using the Structure tab
or just execute the CREATE TABLE statements verbatim in the SQL editor):

CREATE TABLE ROOM (
 ROOM_ID INTEGER PRIMARY KEY AUTOINCREMENT,
 FLOOR_NUMBER INTEGER NOT NULL,
 SEAT_CAPACITY INTEGER NOT NULL
);

CREATE TABLE PRESENTATION (
 PRESENTATION_ID INTEGER PRIMARY KEY AUTOINCREMENT,
 BOOKED_COMPANY_ID INTEGER NOT NULL,
 BOOKED_ROOM_ID INTEGER NOT NULL,
 START_TIME TIME,
 END_TIME TIME
);

82 | Chapter 9: Database Design

CREATE TABLE ATTENDEE (
 ATTENDEE_ID INTEGER PRIMARY KEY AUTOINCREMENT,
 FIRST_NAME VARCHAR (30) NOT NULL,
 LAST_NAME VARCHAR (30) NOT NULL,
 PHONE INTEGER,
 EMAIL VARCHAR (30),
 VIP BOOLEAN DEFAULT (0)
);

CREATE TABLE PRESENTATION_ATTENDANCE (
 TICKET_ID INTEGER PRIMARY KEY AUTOINCREMENT,
 PRESENTATION_ID INTEGER,
 ATTENDEE_ID INTEGER
);

Note that the ATTENDEE table has a VIP field which is a Boolean (true/false) value. By
default, if a record does not specify a value for a column, the value will default to null.
It might be a good idea to default this particular field to false (0) if a value is never
provided. The preceding SQL snippet reflects this, but you can also accomplish this
in the column builder as shown in Figure 9-15.

Figure 9-15. Setting a default value for a column

By now, you should have all five of your tables created with all constraints defined,
except the foreign keys (Figure 9-16).

CREATE TABLE | 83

Figure 9-16. All tables have been built

Most database solutions enforce values in a column only by the
specified data type. SQLite does not. In SQLite, you can put a TEXT
value in an INTEGER column. Other database solutions will disallow
this. While this seems counterintuitive, the creators of SQLite made
it this way for technical reasons beyond the scope of this book.

Setting the Foreign Keys
There is one last task remaining to make our tables airtight. We have defined the pri‐
mary keys but not the foreign keys. Remember that the foreign key in a child table is
tied to the primary key of a parent table. Logically, we should never have a foreign key
value that does not have a corresponding primary key value.

For example, we should never have a PRESENTATION record with a
BOOKED_COMPANY_ID value that does not exist in the COMPANY table’s COMPANY_ID col‐
umn. If there is a BOOKED_COMPANY_ID value of 5, there had better be a record in
COMPANY with a COMPANY_ID of 5 as well. Otherwise, it is an orphaned record. We can
enforce this by setting up foreign key constraints.

Open up the PRESENTATION table and double-click the BOOKED_COMPANY_ID column to
modify it (Figure 9-17). Check Foreign Key and then click Configure. Set the foreign
table to CUSTOMER and the foreign column to CUSTOMER_ID. This will constrain
BOOKED_COMPANY_ID to only the values in the CUSTOMER_ID column in the CUSTOMER
table. Click Apply, then OK.

84 | Chapter 9: Database Design

Figure 9-17. Making BOOKED_COMPANY_ID a foreign key to COMPANY_ID in the
COMPANY table

Click the Commit Changes button on the Structure tab, and a series of SQL state‐
ments will be generated to implement the foreign key. You can look at the SQL if you
are curious, but it will only make you appreciate all the work that SQLiteStudio has
done for you. Then click OK to commit the change.

Setting the Foreign Keys | 85

Using foreign keys keeps data tight and prevents deviant data from undermining the
relationships. We should define foreign key constraints for all relationships in this
database so no orphan records ever occur.

At this point, you can create foreign keys for all of the following parent–child rela‐
tionships by repeating the same procedure:

Create foreign key for [Table].[Field] Off parent primary key [Table].[Field]

PRESENTATION.BOOKED_ROOM_ID ROOM.ROOM_ID

PRESENTATION_ATTENDANCE.PRESENTATION_ID PRESENTATION.PRESENTATION_ID

PRESENTATION_ATTENDANCE.ATTENDEE_ID ATTENDEE.ATTENDEE_ID

COMPANY.PRIMARY_CONTACT_ATTENDEE_ID ATTENDEE.ATTENDEE_ID

Now we have ensured every child record has a parent record, and no orphans will
ever be allowed into the database.

If you ever use SQLite outside SQLiteStudio, note that the foreign
key constraint enforcement might have to be turned on first.
SQLiteStudio has it enabled by default, but other SQLite environ‐
ments may not.

Creating Views
It is not uncommon to store frequently used SELECT queries in a database. When you
save a query in a database, it is called a view. A view behaves much like a table. You
can run SELECT statements against it and join it to other views and tables. But the data
is completely derived from a SELECT query you specify, so in many cases you cannot
modify the data (nor would it make sense to).

Suppose we run a SELECT query very often to give us a more descriptive view of the
PRESENTATION table, which pulls in the booked company and booked room informa‐
tion:

SELECT
COMPANY.NAME as BOOKED_COMPANY,
ROOM.ROOM_ID as ROOM_NUMBER,
ROOM.FLOOR_NUMBER as FLOOR,
ROOM.SEAT_CAPACITY as SEATS,
START_TIME,
END_TIME

FROM PRESENTATION

86 | Chapter 9: Database Design

INNER JOIN COMPANY
ON PRESENTATION.BOOKED_COMPANY_ID = COMPANY.COMPANY_ID

INNER JOIN ROOM
ON PRESENTATION.BOOKED_ROOM_ID = ROOM.ROOM_ID

Now suppose we want to store this query in the database so it can easily be called. We
can do that by right-clicking the Views item in the navigator, then clicking Create a
view (Figure 9-18).

Figure 9-18. Creating a view

You will then be taken to a view designer window (Figure 9-19). Navigate to the
Query tab. Here you will paste your SELECT statement. In the “View name” field,
name this view PRESENTATION_VW (with “VW” an abbreviation for “VIEW”),
and click the green checkmark to save it. Before it executes the SQL query to create
the view, SQLiteStudio will present it for review. As you can observe, the SQL syntax
to create a view is fairly simple. It is CREATE VIEW [view_name] AS [a SELECT
query].

Creating Views | 87

Figure 9-19. Creating a view off a SELECT query

When you click OK, you should now see the view in your navigator under “Views”
(Figure 9-20). Double-click on it and in the Query tab you will see the query it is
using, and the Data tab will have the query results.

Figure 9-20. Although there is no data yet, the SELECT query has been saved as a view
called PRESENTATION_VW

The Data tab will be blank, until the queried tables are populated with data.

Note also that we can query from a view just like it was a table (and apply filters, do
join operations, and do anything else you could do in a SELECT with a table):

SELECT * FROM PRESENTATION_VW
WHERE SEAT_CAPACITY >= 30

88 | Chapter 9: Database Design

Summary
In this chapter, we dived into creating our own databases and learned how to design
them efficiently. We studied table relationships, which help us clearly define how
tables are joined. We also explored some of the various column constraints (including
PRIMARY KEY, FOREIGN KEY, NOT NULL, AUTOINCREMENT, and DEFAULT) to keep data
consistent and ensure it follows rules we define.

In the next chapter, we will actually populate and modify data in this database. We
will witness our design at work and appreciate the time we put into planning it. A
good design with well-defined constraints will make a resilient database.

One topic this chapter did not cover is indexes. Indexes are useful
for tables with a large number of records but have performance
issues with SELECT statements. “APPENDIX B2 – Improving Per‐
formance with Indexes” on page 108 discusses indexes and when
and when not to use them.

Summary | 89

CHAPTER 10

Managing Data

In the previous chapter, we learned not only how to create a database but how to do it
well. Well-considered table design, column constraints, and relationships will really
shine once we start putting data into the tables. With our strong table design and the
well-thought-out relationships between them, we will be able to join efficiently and
easily. When a piece of data needs to be changed (e.g., a customer address), we only
need to change it in one place rather than several. When a bad piece of data comes in,
hopefully we have set enough sensible constraints to prevent it from entering the
database.

In this chapter, we will learn how to INSERT, DELETE, and UPDATE records. Fortunately,
writing operations like these is much simpler than writing SELECT statements.

These SQL write operations do not have to be done by a human. Software (written in
Java, Python, or other coding languages) will often generate and execute SQL state‐
ments to read and write data the same way a human would, but much more effi‐
ciently. Although this is beyond the scope of this book, coding languages will be
touched on in the next chapter if that is pertinent to you.

INSERT
In a relational database, data only exists if the database first receives records. The
INSERT statement does just that and inserts a record into the database. You can pick
what fields to populate in the record, and the rest of the fields will be null or use a
default value.

First, we will INSERT an ATTENDEE record into the SurgeTech database we created in
the last chapter. An INSERT to add yourself to the database should look something like
this. Execute the following statement with your name:

91

INSERT INTO ATTENDEE (FIRST_NAME, LAST_NAME)
VALUES ('Thomas','Nield')

Let’s break this statement down:

INSERT INTO ATTENDEE (FIRST_NAME, LAST_NAME)
VALUES ('Thomas','Nield')

To start, we declare that we are inserting a record into the ATTENDEE table, and the
fields we are choosing to populate are FIRST_NAME and LAST_NAME:

INSERT INTO ATTENDEE (FIRST_NAME, LAST_NAME)
VALUES ('Thomas','Nield')

Then we specify the values for each of these fields. Note that we specify the values in
the same order we declared the fields in: 'Thomas' corresponds to FIRST_NAME, and
'Nield' to LAST_NAME.

Run SELECT * FROM ATTENDEE to see if our INSERT made it in. Sure enough, the
record now exists (Figure 10-1).

Figure 10-1. Our newly inserted record in the ATTENDEE table

There are a number of observations to make here. We did not populate all the col‐
umns in our INSERT, but due to the rules we created in the previous chapter, some of
the columns were assigned a default value.

The ATTENDEE_ID gave itself a value of 1 due to our PRIMARY KEY and AUTOINCREMENT
rule. If we were to INSERT another record, it would automatically be assigned an
ATTENDEE_ID of 2, then 3, and so on. On an INSERT, you should avoid populating the
ATTENDEE_ID field yourself and let it assign its own ID.

Again, the AUTOINCREMENT constraint in SQLite is actually not nec‐
essary. It is needed for MySQL and other platforms, though, hence
why we are doing it for practice. In SQLite, simply making a col‐
umn of type INTEGER a primary key will automatically assign IDs to
new records.

PHONE and EMAIL were not specified in our INSERT, so they were left null. If either of
these columns had a NOT NULL constraint and no default value policy, our INSERT

92 | Chapter 10: Managing Data

would have failed. But in our design, we have allowed these two fields to be null in
case our attendees prefer to be off the grid.

The VIP status was not specified in our INSERT either, but we gave this field a default
value of false (0). So instead of making it null, SQLite resorted to using the default
value we specified.

Hopefully by now, you are already appreciating that the design is working efficiently.
Because of the policies we set, the columns resorted to default values when they were
not provided with any.

Multiple INSERTs
If you have a lot of records to INSERT, you do not have to do it one at a time. You can
specify multiple records in a single INSERT command. Simply repeat the clause fol‐
lowing VALUES and separate each entry with a comma:

INSERT INTO ATTENDEE (FIRST_NAME, LAST_NAME, PHONE, EMAIL, VIP)
VALUES
('Jon', 'Skeeter',4802185842,'john.skeeter@rex.net', 1),
('Sam','Scala',2156783401,'sam.scala@gmail.com', 0),
('Brittany','Fisher',5932857296,'brittany.fisher@outlook.com', 0)

Doing multiple inserts in this manner is far more efficient, especially if you have
thousands of records. If a process written in Java or Python is populating a table, it
should use this syntax to insert large amounts of records rather than executing one
INSERT at a time. Otherwise, the process can run very slowly.

You can also INSERT records using the results from a SELECT query. This is helpful if
you need to migrate data from one table to another. Just make sure the SELECT fields
line up with the INSERT fields and have the same order and data types:

INSERT INTO ATTENDEE (FIRST_NAME, LAST_NAME, PHONE, EMAIL)
SELECT FIRST_NAME, LAST_NAME, PHONE, EMAIL
FROM SOME_OTHER_TABLE

Testing the Foreign Keys
Let’s take an opportunity to witness another policy of our design at work: the foreign
keys.

Right now, we should only have four attendees with ATTENDEE_ID assignments of 1, 2,
3, and 4. But test this functionality by inserting a COMPANY record with a PRI
MARY_CONTACT_ID value of 5:

INSERT INTO COMPANY (NAME, DESCRIPTION, PRIMARY_CONTACT_ID)
VALUES ('RexApp Solutions', 'A mobile app delivery service', 5)

INSERT | 93

This query should have failed and an error should be displayed at the bottom of the
window (Figure 10-2).

Figure 10-2. The foreign key constraint successfully raised an error

This is good because it means our foreign key constraint has worked: it kept an
orphan record out. The INSERT needs to have a PRIMARY_CONTACT_ID that is existent.
So, if we change it to 3 (Sam Scala), the INSERT should now work correctly:

INSERT INTO COMPANY (NAME, DESCRIPTION, PRIMARY_CONTACT_ID)
VALUES ('RexApp Solutions', 'A mobile app delivery service', 3)

DELETE
The DELETE statement is dangerously simple. It deletes all records in a table:

DELETE FROM ATTENDEE

However, you can conditionally delete records with a WHERE statement. If we wanted
to remove all records that have no contact information, we could filter to records
where PHONE and EMAIL are null:

DELETE FROM ATTENDEE
WHERE PHONE IS NULL
AND EMAIL IS NULL

Because it is perilously easy to make mistakes with a DELETE statement, it is a good
practice to replace the DELETE with a SELECT * first. Executing that query gives us a
preview of what records will be deleted:

SELECT * FROM ATTENDEE
WHERE PHONE IS NULL
AND EMAIL IS NULL

TRUNCATE TABLE
In the previous section, we looked at a means to delete all records from a table:

DELETE FROM ATTENDEE

Although not used in SQLite, on some database platforms (like MySQL) the preferred
way to delete all records from a table is to use TRUNCATE TABLE:

TRUNCATE TABLE ATTENDEE

94 | Chapter 10: Managing Data

Using this command will allow the database engine to reset the autoincrements for
any primary keys as well as any other constraint behaviors. It also allows it to make
some optimizations behind the scenes to reset the table.

While SQLite does not support TRUNCATE TABLE, it does allow some similar optimiza‐
tions when you run a DELETE without a WHERE.

UPDATE
Finally, we come to the UPDATE command. The UPDATE modifies existing records. If
we wanted to update the EMAIL values for all records to be uppercase, we could do
that with this statement using the UPPER() function:

UPDATE ATTENDEE SET EMAIL = UPPER(EMAIL)

We can also update multiple fields at once. Just separate each expression after the SET
keyword with a comma. To update both the FIRST_NAME and LAST_NAME fields to
uppercase, run this command:

UPDATE ATTENDEE SET FIRST_NAME = UPPER(FIRST_NAME),
LAST_NAME = UPPER(LAST_NAME)

Like with DELETE, we can use a WHERE to conditionally apply updates to records. Exe‐
cute the following query to set the VIP field to true where the ATTENDEE_ID is 3 or 4:

UPDATE ATTENDEE SET VIP = 1
WHERE ATTENDEE_ID IN (3,4)

DROP TABLE
There may be times where you want to remove a table altogether from the database.
Just type DROP TABLE followed by the name of the table you want to delete (this is a
dangerous statement as well because it deletes the table permanently, so be careful
and certain about what you are doing):

DROP TABLE MY_UNWANTED_TABLE

Summary
At this point, you have the tools you need to go out and create your own database and
manage its data. You may have questions on how to do all of this efficiently or pro‐
vide practical means for users to input and update data, because chances are you can‐
not teach all of them SQL and they will want a graphical user interface. Or maybe you
want to know how to pump large amounts of data into a database automatically or
synchronize it with another data source. This will be lightly addressed in the final
chapter.

UPDATE | 95

CHAPTER 11

Going Forward

If you have gotten to this chapter and covered all the material to this point, congrats!
You have learned an adaptable and marketable skillset that can be applied to the fields
of business, information technology, and engineering. With consistent practice and
usage, you should feel comfortable positioning yourself professionally with SQL and
database design.

When it comes to understanding and using technology, everyone has a different level
of ambition. You may very well have read this book and see this material as not cen‐
tral to your career goals, but rather complementary. This may be the case if you are an
interdepartmental manager of sorts and just want to understand IT a little better. You
may feel this book has given all the insight you need, which is perfectly acceptable.
Only you can define your career goals and prioritize what maximizes your value!

But perhaps SQL has really clicked with you, and you have questions on how you can
do more. Maybe you want to have a deeper knowledge of SQL and business intelli‐
gence. Or maybe you want to create software and graphical user interfaces that inter‐
act with a database. After reading this material, you may feel you are not done and
have unanswered questions on how to create full business solutions. If this is you, I
encourage you to keep researching and pursuing whatever knowledge you need to
fulfill your goals.

If you want to learn more detailed functionalities in SQL, there are plenty of books
and resources available. You can expand your SQL knowledge with more advanced
functionalities like subqueries and triggers. If you want a deep understanding of
SQLite, check out Using SQLite by Jay A. Kreibich (O’Reilly). You can also pursue
learning another database platform like MySQL in greater detail. But whatever you
do, do not hesitate to use the Internet as a resource. It has an infinite number of tuto‐
rials, guides, walkthroughs, and documentation to help you expand your knowledge.

97

While SQL alone can increase your opportunities, you can become very adaptable by
learning another relevant technology or two. If you are eager to expand your skillsets,
then consider learning and integrating another topic. This will open dozens of career
paths. Integrating a few technology skillsets can make you even more marketable
than just specializing in one skillset.

Python is a great programming language that is accessible to beginners, and yet is
powerful enough to be used by professional programmers and security testing hack‐
ers alike. You can use Python to process data into databases or write applications and
processes that support a business. It is an adaptable programming language and pairs
well with database development. A great resource to get started with Python is Al
Sweigart’s popular book Automate the Boring Stuff with Python (No Starch Press).

R can be used for business intelligence programming. R is a statistics programming
language used to perform deep machine learning and analysis on data. I have noticed
it is preferred by the business/science/math crowd because it focuses on those areas
very well. It has endless functionalities to analyze anything from DNA sequences to
business market trends. It does a great job applying classic statistical models like lin‐
ear regression. I have not used many resources on R, but I have heard Coursera offers
some great online courses on it.

Python’s adaptability is catching up with R, as it now features libraries for data min‐
ing. Both technologies are free and open source. When a SELECT statement does not
provide enough functionality for a specific question you have about your data,
Python and R are powerful tools to glean that information.

If you are interested in full-blown software development and not just casual scripting,
languages such as Java, Apple’s Swift, or Microsoft’s C# are great to pick up. With
these languages you can make commercial-grade business software solutions and
mobile apps. Full-blown programming can take many hours to master, and it is chal‐
lenging. But if you become good at it, the work and opportunities are endless. If you
decide to pursue Java, Herbert Schildt’s Java: A Beginner’s Guide (McGraw Hill Profes‐
sional) is a good book to start with.

These definitely are not the only career paths you can take. Technology needs are so
niche nowadays, you may adapt yourself into a role that never has been done before.
Just be sure to focus on learning material that is pertinent to your immediate needs.
On top of books, there are also great websites like Pluralsight and W3Schools to gain
foundational knowledge in whatever topics you choose to pursue. And never under‐
estimate Google when you have a specific question. Chances are if you have a ques‐
tion or problem, someone else has probably had it too and the answer was posted
online.

If you cannot find an answer to your question, there is a great Q&A site called Stack
Overflow filled with professionals and enthusiasts in all areas of technology. You can

98 | Chapter 11: Going Forward

https://www.coursera.org/
https://www.pluralsight.com/
http://www.w3schools.com/
http://stackoverflow.com/
http://stackoverflow.com/

post a well-defined, researched question and get answers from other members for
free. The most productive answerers often work for Google, Oracle, Microsoft, and
other big technology companies. Some of them have written books or are Silicon Val‐
ley celebrities in the technology community. These people provide expertise simply
because they are passionate about what they do.

Finally, you are more than welcome to email me if you have any questions, concerns,
or comments. If you have feedback on this book or have more general questions, I
can try my best to help with that. Please email me at tmnield@outlook.com—I look
forward to hearing from you.

Happy querying!

Going Forward | 99

mailto:tmnield@outlook.com

APPENDIX A

Operators and Functions

This appendix covers common operations and functions used in SQLite as a conve‐
nient reference. While this book does not cover all the functionalities of SQLite, the
functionalities likely to have an immediate need can be found here. The primary goal
is to showcase universal SQL concepts that apply to most platforms, not to teach the
nuances of the SQLite platform in detail.

A comprehensive coverage of SQLite’s features can be found at https://www.sqlite.org/
docs.html.

Appendix A1 – Literal Expression Queries
You can test operators and functions easily without querying any tables at all. You
simply SELECT an expression of literals as in the following query, which will calculate
a single value of 12:

SELECT 5 + 7

Any functions and literals, including text strings, can be tested in this manner as well.
This query will check if the word 'TONY' is in the string 'TONY STARK', and it should
return 1:

SELECT INSTR('TONY STARK', 'TONY')

This is a great way to test operators and functions without using any tables. This
appendix will show many examples with this approach, and you can use it for your
own experimentation.

101

https://www.sqlite.org/docs.html
https://www.sqlite.org/docs.html

Appendix A2 – Mathematical Operators
SQLite has a small set of basic math operators. More advanced tasks are usually done
with functions, but here are the five core mathematical operators.

Assume x = 7 and y = 3

Operator Description Example Result

+ Adds two numbers x + y 10

- Subtracts two numbers x - y 4

* Multiplies two numbers x * y 21

/ Divides two numbers x / y 2

% Divides two numbers, but returns the remainder x % y 1

Appendix A3 – Comparison Operators
Comparison operators yield a true (1) or false (0) value based on a comparative evalu‐
ation.

Assume x = 5 and y = 10

Operator Description Example Result

= and == Checks if two values are equal x = y 0 (false)

!= and <> Checks if two values are not equal x != y 1 (true)

> Checks if value on left is greater than value on right x > y 0 (false)

< Checks if value on left is less than value on right x < y 1 (true)

>= Checks if value on left is greater than or equal to value on right x >= y 0 (false)

<= Checks if value on left is less than or equal to value on right x <= y 1 (true)

APPENDIX A4 – Logical Operators
Logical operators allow you combine Boolean expressions as well as perform more
conditional operations.

Assume x = true (1) and y = false (0)

Assume a = 4 and b = 10

Operator Description Example Result

AND Checks for all Boolean expressions to be true x AND y 0 (false)

OR Checks for any Boolean expression to be true x OR y 1 (true)

BETWEEN Checks if a value inclusively falls inside a range a BETWEEN 1 and b 1 (true)

102 | Appendix A: Operators and Functions

Operator Description Example Result

IN Checks if a value is in a list of values a IN (1,5,6,7) 0 (false)

NOT Negates and flips a Boolean expression’s value a NOT IN (1,5,6,7) 1 (true)

IS NULL Checks if a value is null a IS NULL 0 (false)

IS NOT NULL Checks if a value is not null a IS NOT NULL 1 (true)

APPENDIX A5 – Text Operators
Text has a limited set of operators, as most text processing tasks are done with func‐
tions. There are a few, though. Keep in mind also that regular expressions are beyond
the scope of this book, but they are worth studying if you ever work heavily with text
patterns.

Assume city = ‘Dallas’ and state = ‘TX’

Operator Description Example Result

|| Concatenates one or more values together into text city || ', ' || state Dallas, TX

LIKE Allows wildcards _ and % to look for text patterns state LIKE 'D_l%' 1 (true)

REGEXP Matches a text pattern using a regular expression state REGEXP '[A-Z]{2}' 1 (true)

A special note to programmers: REGEXP is not implemented out of
the box for SQLite, so you may have to compile or implement it
when using SQLite for your app or program.

APPENDIX A6 – Common Core Functions
SQLite has many core functions built in. While this is not a comprehensive list, these
are the most commonly used ones. A full list of functions and their documentation
can be found at http://www.sqlite.org/lang_corefunc.html.

Assume x = –5, y = 2, and z is NULL

Operator Description Example Result

abs() Calculates the absolute value of a number abs(x) 5

coalesce() Converts a possible null value into a default value if it is null coalesce(z, y) 2

instr() Checks if a text string contains another text string; if so it
returns the index for the found position, and otherwise it
returns 0

instr('HTX','TX') 2

length() Provides the number of characters in a string length('Dallas') 6

trim() Removes extraneous spaces on both sides of a string trim(' TX ') TX

Operators and Functions | 103

http://www.sqlite.org/lang_corefunc.html

Operator Description Example Result

ltrim() Removes extraneous spaces on the left side of a string ltrim(' TX') TX

rtrim() Removes extraneous spaces on the right side of a string rtrim('LA ') LA

random() Returns a pseudorandom number from the range

–9223372036854775808 to +9223372036854775807

random() 7328249

round() Rounds a decimal to a specified number of decimal places round(182.245, 2) 182.24

replace() Replaces a substring of text in a string with another string replace('Tom

Nield','Tom',

'Thomas')

Thomas
Nield

substr() Extracts a range of characters from a string with their numeric
positions

substr('DOG',2,3) OG

lower() Turns all letters in a string to lowercase lower('DoG') dog

upper() Turns all letters in a string to uppercase upper('DoG') DOG

APPENDIX A7 – Aggregate Functions
SQLite has a set of aggregate functions you can use with a GROUP BY statement to get a
scoped aggregation in some form.

X = a column you specify the aggregation on

Function Description

avg(X) Calculates the average of all values in that column (omits null values).

count(X) Counts the number of non-null values in that column.

count(*) Counts the number of records.

max(X) Calculates the maximum value in that column (omits null values).

min(X) Calculates the minimum value in that column (omits null values).

sum(X) Calculates the sum of the values in that column (omits null values).

group_concat(X) Concatenates all non-null values in that column. You can also provide a second argument specifying
a separator, like commas.

APPENDIX A8 – Date and Time Functions
Functionality for dates and times in SQL varies greatly between database platforms.
Therefore, this book does not cover this topic outside this appendix. You will need to
learn the date/time syntax for your specific database platform. Some platforms, such
as MySQL, make working with date/time values very intuitive, while others can be
less intuitive.

104 | Appendix A: Operators and Functions

For SQLite, date and time functions cannot be comprehensively covered here as that
would be beyond the scope of this book. But the most common date and time tasks
will be covered in this section. Full documentation of SQLite date and time handling
can be found at the SQLite website (http://www.sqlite.org/lang_datefunc.html).

Date Functions
When working with dates, it is simplest to store them in the string format YYYY-
MM-DD as most database platforms inherently understand this format (technically
called the ISO8601 format). A four-digit year comes first, following by a two-digit
month, and a two-digit day, each separated by a dash (e.g., 2015-06-17). If you format
your date strings like this, you will never have to do any explicit conversions.

When running a query, any string in the 'YYYY-MM-DD' date format will be inter‐
preted as a date. This means you can do chronological tasks like comparing one date
to another date:

SELECT '2015-05-14' > '2015-01-12'

If you do not use this ISO8601 format, SQLite will compare them as text strings and
check if the first text comes before the second text alphabetically. This obviously is
not desirable as you want dates to be evaluated, compared, and treated as dates.

Conveniently, you can get today’s date by passing a 'now' string to the DATE() func‐
tion:

SELECT DATE('now')

SQLite also allows you to pass any number of modifier arguments to the DATE() func‐
tion. For instance, you can get yesterday’s date by passing '-1 day' as an argument:

SELECT DATE('now','-1 day')

You can pass also pass a date string to the DATE() function, and add any number of
modifiers to transform the date. This example will add three months and subtract one
day from 2015-12-07:

SELECT DATE('2015-12-07','+3 month','-1 day')

There are several advanced date transformations you can perform. Refer to the
SQLite date functions link at the beginning of this section to get a comprehensive
overview of these functionalities.

Time Functions
Time also has a typical format, which is HH:MM:SS (this also is ISO8601 standard).
HH is a two-digit military format of hours, MM is a two-digit format of minutes, and
SS is a two-digit format of seconds . The separator is a colon. If you format times like

Operators and Functions | 105

http://www.sqlite.org/lang_datefunc.html

this, the strings will always be interpreted as time values. This string represents a time
value of 4:31 PM and 15 seconds:

SELECT '16:31:15'

You can omit the seconds value if you are not concerned with it. SQLite will infer the
seconds value to be 00:

SELECT '16:31'

Just like with dates, you can do all kinds of operations with times, like comparing one
time value to another:

SELECT '16:31' < '08:31'

The 'now' string also works with the TIME() function to get the current time:

SELECT TIME('now')

Also like with dates, you can use the TIME() function to perform transformations
such as adding or subtracting hours, minutes, and seconds:

SELECT TIME('16:31','+1 minute')

Date/Time Functions
You can have a date that also has a time value. Reasonably, the standard string format
is the date and time formats concatenated together, separated by a space: ‘YYYY-
MM-DD HH:MM:SS’. SQLite will recognize a string in this format to be a date/time
value:

SELECT '2015-12-13 16:04:11'

All the rules from the DATE() and TIME() functions can apply to the DATETIME()
function. You can use 'now', transformations, and any other chronological opera‐
tions we have learned. For instance, you can subtract a day from a date/time value
and add three hours:

SELECT DATETIME('2015-12-13 16:04:11','-1 day','+3 hour')

There are several other functions and features for working with dates and time in
SQLite, including converting dates into alternative formats and compensating for
times zones. There is also support for Unix time and the Julian day number system.
As said earlier, go to http://www.sqlite.org/lang_datefunc.html to get a comprehensive
list of these functionalities.

106 | Appendix A: Operators and Functions

http://www.sqlite.org/lang_datefunc.html

APPENDIX B

Supplementary Topics

There are some database and SQL tasks that, at the time of writing, did not fit into the
mission of this book. The intention was to get your feet wet with SQL and not inun‐
date you with every functionality available. But there are some topics that arguably do
not fit into the core mission of this book, yet do not deserve to be omitted either.
These are given mention here to help you progress in your proficiency.

APPENDIX B1 – Further Topics of Interest
This is a beginner’s book on SQL. Therefore, the scope and focus is limited to founda‐
tional topics. However, if you finished this book and are interested in expanding your
database and SQL repertoire, here are some suggested topics you can explore and
research:

Topic Description

UNION and UNION
ALL

Append the results of two or more queries into a single result set.

Subqueries Query off other queries just like they were tables.

Indexes Improve the SELECT performance of a table with large amounts of data (addressed briefly in
“APPENDIX B2 – Improving Performance with Indexes” on page 108).

Transactions Perform multiple UPDATE/DELETE/INSERT statements as one fail-safe batch (addressed briefly in
“Appendix B3 – Transactions” on page 109).

Triggers React to UPDATE/DELETE/INSERT statements and perform tasks like logging and advanced data
validation.

Regular expressions Use a universal syntax to match advanced text patterns easily—basically, LIKE wildcards on
steroids.

Database
administration

Fine-tune production databases for large corporate environments.

107

You will probably encounter dozens of other topics, especially as you explore the
nuances of different database platforms. But these should provide plenty of leads to
expand your database knowledge beyond this book.

APPENDIX B2 – Improving Performance with Indexes
As your database grows, the performance can start to slow down with SELECT queries.
The machine has to process each record to find ones that match your WHERE condi‐
tion, and obviously having more records will slow this process down.

A common way to improve performance significantly is to use indexes, a mechanism
that enables faster lookups in a way very similar to an index in a book. An index
speeds up SELECT performance, but it slows down INSERT, UPDATE, and DELETE state‐
ments. It will also make the database file larger. These are factors you have to balance
in your decision to use them. You should not think about creating indexes when you
first design a database. Do it later, when you find you are having performance issues.

You specify an index on one or more columns, and you want these columns to be the
ones you frequently qualify on. For example, if you frequently query the PRODUCT
table and use a WHERE statement on the price column, you can apply an index on that
column as shown here:

CREATE INDEX price_index ON PRODUCT(price);

We name the index price_index and we apply it on the PRODUCT table, and in paren‐
theses we specify it on the price column. SQLite will keep a map of which records
have which price values. This will significantly speed up performance when we qual‐
ify on price. But obviously, when we modify records it has to update this index, so
this overhead will slow down INSERT, UPDATE, and DELETE operations.

You will notice in the SQLiteStudio database navigator that the table contains all the
index objects you have created (see Figure B-1).

108 | Appendix B: Supplementary Topics

Figure B-1. The price_index was added to the PRODUCT table’s indexes

You can also create a UNIQUE index for a column that never has duplicate values, and
SQLite will make special optimizations for that case:

CREATE UNIQUE INDEX name_index ON CUSTOMER(name);

In addition, you can use composite indexes if two or more fields are frequently quali‐
fied together, but that is beyond the scope of this book.

To remove an index, just run a DROP INDEX statement on the index’s name:

DROP INDEX price_index;

Again, indexes should only be used for very large tables that have noticeable perfor‐
mance issues with SELECT statements. You should avoid using indexes on small tables
as the overhead will actually slow performance down (meaning this example was
demonstrational, not something you should actually do to the PRODUCT table). You
should also avoid using indexes on tables that update heavily and frequently.

Appendix B3 – Transactions
There may be situations where you will want to execute multiple INSERT, UPDATE, or
DELETE statements as a batch, but you want all of them to complete successfully, and if
one fails you want all of them to fail. This is known as atomicity, which means these
actions must all happen successfully or none of them happen at all.

Supplementary Topics | 109

A good example where this kind of behavior is needed is financial transactions, like
bank account transfers or payment services like PayPal. When you take money from
one account and put it in another, you have to make sure both operations happen
successfully.

Take these two INSERT statements that move $187.56 from one account and put it in
another:

INSERT INTO ACCOUNT_ACTIVITY (ACCOUNT_ID,AMOUNT) VALUES (1563,-187.56);

INSERT INTO ACCOUNT_ACTIVITY (ACCOUNT_ID,AMOUNT) VALUES (3067,187.56);

What happens if the first INSERT succeeds but the second one fails? Well, that $187.56
has effectively disappeared. You have two upset customers and a possible auditing
mess. So how do you ensure that in the event of failure, that money returns back to
the customer giving it and everything is restored to the way it was?

The answer is to leverage a transaction. With a transaction you can make this transfer
atomic and do a ROLLBACK if anything fails and a COMMIT if everything succeeds.

First, call the BEGIN or BEGIN TRANSACTION command (these are the same command):

BEGIN TRANSACTION;

Now any INSERT, UPDATE, and DELETE statements will be recorded so they can be
undone if necessary. Perform the two INSERTs. The actions will be performed while
being recorded in “transaction mode”:

INSERT INTO ACCOUNT_ACTIVITY (ACCOUNT_ID,AMOUNT) VALUES (1563,-187.56);

INSERT INTO ACCOUNT_ACTIVITY (ACCOUNT_ID,AMOUNT) VALUES (3067,187.56);

If everything goes well and no errors occurred, you can call COMMIT or its alias, END
TRANSACTION, to finalize the INSERTs. The transfer has then happened successfully.

Now let’s start another transaction so we can do another transfer:

BEGIN TRANSACTION;

However, this time we are going to break it. Say we do another transfer between these
two accounts:

INSERT INTO ACCOUNT_ACTIVITY (ACCOUNT_ID,AMOUNT) VALUES (1563,-121.36);

INSERT INTO ACCOUNT_ACTIVITY (ACCOUNT_ID,AMOUNT) VALUES (121.36);

The first statement will succeed, but the second SQL statement was messed up and
will error out. It is missing the ACCOUNT_ID value, and now we have $121.36 in limbo.

Fortunately, we are in “transaction mode.” We can basically hit a rewind button and
call ROLLBACK. This will undo everything since the last COMMIT or BEGIN TRANSACTION

110 | Appendix B: Supplementary Topics

we called. The first INSERT will be undone and the $121.36 will be back in the 1563
account.

In the event that a database connection goes down, a bad SQL statement is composed,
or a validation rule train-wrecks a series of updates, transactions are a way to ensure
data does not get corrupted in your database. You will especially want to use them
with automated processes or large jobs requiring you INSERT, UPDATE, and DELETE a
high volume of fragile records.

Supplementary Topics | 111

Index

Symbols
!= (inequality) operator, 31, 102
% (percent sign)

modulus operator, 32
wildcard character, 33

' ' (quotation marks, single), enclosing literals,
32

() (parentheses), grouping with, 36
; (semicolon), ending SQL statements, 22
< (less than) operator, 31, 102
<= (less than or equal to) operator, 31, 36, 102
<> (inequality) operator, 31, 102
= (equals) sign

= (equals) operator, 30, 32
= and == operators, 102

> (greater than) operator, 31, 36, 102
>= (greater than or equal to) operator, 31, 102
_ (underscore)

in SQL names, 25
wildcard character, 33

|| (concatenation) operator, 27, 103

A
Access, 5
aggregate functions, 42-45, 104

null values and, 43
aggregating data, 39

filtering different aggregate values using
zero/null CASE trick, 49

filtering out records based on aggregated
value, 45

aliases, 24
in HAVING statement, 45

AND statement, 31

AS statement, 24
ASC operator, 42
atomicity, 109
AUTOINCREMENT constraint, 78, 92
AVG() function, 43

B
BEGIN TRANSACTION command, 110
BETWEEN statement, 31
boolean expressions

in CASE statements, 51
logical operators with, 102

Boolean values, 83

C
CASE statement, 47-52

grouping, 48
zero/null trick, 49-52

case, SQL commands, 30
centralized databases, 6
child relationships, 54
clients, 6
coalesce() function, 65
columns

aliasing, 25
choosing for SELECT statement, 21

COMMIT statement, 110
comparison operators, 102
concatenation operator (||), 27
constraints, 77

foreign key, setting up, 84
COUNT() function, 39

counting non-null values in a column, 42
CREATE INDEX statement, 108

113

CREATE TABLE statement, 76-84
CREATE VIEW AS statement, 87

D
data questions (database design), 67
data types, 16
Database Navigator (SQLiteStudio), 10
database schemas, 71
databases, 3-7

centralized, 6
choosing a database solution, 5
creating a new database, 73-89

CREATE TABLE, 76-84
selecting a location, 75
setting foreign keys, 84
views, 86

defined, 3
designing, 67-73

example, SurgeTech conference, 69-70
planning a database, 67
primary and foreign keys, 70
schema, 71

lightweight, 5
relational databases, exploring, 3
separate tables, reasons for, 4

date and time functions, 104
DELETE statement, 94
DESC operator, 42
design questions (databases), 67
DISTINCT operator, 46
DROP INDEX statement, 109
DROP TABLE statement, 95
duplicates, eliminating from results, 46

E
editors (SQL)

SQLiteStudio, 9
ELSE clauses in CASE statements, 47
END keyword, ending CASE statements, 47
END TRANSACTION command, 110
expressions

in SELECT statements, 23
using with data types other than numbers,

27

F
foreign keys, 71

setting, 84

testing, 93
FROM statement, INNER JOIN in, 56
functions

aggregate, 42-45, 45, 104
built-in functions in SQLite, 25
common core functions in SQLite, 103
date and time, 104

G
GROUP BY operator, 39-41

aliases and, 45
grouping JOINs, 63
ORDER BY operator and, 41
using ordinal positions, 41, 49

grouping records, 39

H
HAVING statement, 45

I
IN statement, 32

using on text, 33
indexes, 108
INNER JOIN operator, 55

LEFT JOIN and, 65
records excluded in, 57

INSERT statement, 91
multiple INSERTs with one command, 93
testing foreign keys, 93
transaction mode, 110

INTEGER type, 16
IS NULL operator, 60

J
Java, learning more about, 98
joins, 53-66

grouping, 63
INNER JOIN, 55
joining multiple tables, 61
left outer join, 58
RIGHT JOIN and OUTER JOIN, 61

L
LEFT JOIN operator, 58, 64

null values, inclusion of, 65
left outer joins, 58
lightweight databases, 5
literals, 32

114 | Index

literal expression queries, 101
logical operators, 102

M
mathematical operators, 26, 102
MAX() function, 44, 50
Microsoft Access, 5
MIN() function, 50
modulus operator (%), 32
MySQL, 7

N
names in SQL

underscore(_) in, 25
using aliases, 24

non-null values, counting in a column, 42
normalization, 4
NOT IN statement, 32
Not NULL constraint, 79
null values

aggregate functions and, 43
and Boolean values in tables, 83
converting to zeros with coalesce(), 65
in LEFT JOINs versus INNER JOINs, 65
resulting from LEFT JOIN, checking for, 60
zero/null CASE trick, 49-52

O
one-to-many relationships, 54
operators

comparison, 102
concatenation, 27
logical, 102
mathematical, 26, 102
text, 103

OR statement, 32
ORDER BY operator, 41
order of operations, 37
ordinal positions, 41, 49
OUTER JOIN operator, 61

P
parent-child relationships, 54
performance, improving with indexes, 108
PRIMARY KEY constraint, 81, 92
primary keys, 70

defining in SQLiteStudio, 78
in SQLite, 82

programming languages, resources for, 98
Python, learning more about, 98

Q
Query Results pane (SQLiteEditor), 19

R
R language, learning more about, 98
relational database management system

(RDBMS), 3
relational databases, 3
relationships between tables, 54

and joining multiple tables, 61
in the database schema, 71

RIGHT JOIN operator, 61
ROLLBACK command, 110
rolling up data, 39
round() function, 26, 43

S
schemas (database), 71
security questions (database design), 68
SELECT statement, 19-28

DISTINCT operator, 46
executing before DELETEs, 94
expressions in, 23
inserting records using results from, 93
literal expression queries, 101
specifying columns for, 21
spreading across multiple lines, 24
storing frequently used SELECT queries in a

database, 86
text concatenation in, 27
writing and executing in SQLiteStudio, 20

semicolon (;), ending SQL statements, 22
servers, 6
SET keyword, 95
software development, 98
spaces in SQL names, underscore(_) as place‐

holder, 25
SQL

database solutions, 5
marketability of, 1
resources for further learning, 97
uses of, 2

SQL injection, 68
SQL Work Area (SQLiteStudio), 10
SQLite, 5, 9-17

Index | 115

advantages and limitations of, 9
aggregate functions, 104
common core functions, 103
date and time functions, 105
functions in, 25
operators, 101
security, 68

SQLiteStudio, 9
creating tables, 76-84
importing and navigating databases, 10
SQL Editor and Query Results panes, 19

SUM() function, 44
filtering on value of, 45
summing CASE statements, 50

T
tables

CREATE TABLE statement, 76-84
examining in SQLiteStudio, 14
in relational databases, 3
in the database schema, 71
joining, 53

(see also joins)
relationships between, 54
separation in relational databases, 4

text
concatenating, 27
operators for, 103
using WHERE on, 32

TEXT type, 16
THEN keyword, 47
time functions, 105
topics of interest, 107
transactions, 109
TRUNCATE TABLE statement, 94

U
unique index, creating, 109
UPDATE statement, 95
UPPER() function, 95

V
VALUES keyword, 91

in multiple INSERTs, 93
VARCHAR type, 79
views, creating, 86

W
websites for further learning, 98
WHEN keyword, 47
WHERE statement, 29-37

AND operator, 31
checking for null values from LEFT JOIN,

60
conditionally applying updates with, 95
conditionally deleting records with, 94
filtering aggregations and, 45, 49
filtering records, 29
grouping conditions with parentheses, 37
IN operator, 32
OR operator, 32
ORDER BY operator, 41
using on numbers, 30
using on text, 32

whitespace in SQL, 24

Z
Zero/Null CASE trick, 49-52

116 | Index

About the Author
Thomas Nield has a business analyst background and works in revenue management
at Southwest Airlines. Early in his career, he became fascinated with technology and
bought dozens of books to master programming in Java, C#, and database design. He
is passionate about sharing what he learns and enabling others with new skillsets,
even if they do not work in IT. He enjoys making technical content relatable and rele‐
vant to those unfamiliar with or intimidated by it.

Colophon
The animal on the cover of Getting Started with SQL is a Natterjack toad (Epidalea
calamita). It is part of the Bufonidae family and can be found in sand dune systems,
heathlands, and coastlines with low coverings of grass throughout western European.

An identifying feature of natterjack toads is the yellow line that runs down the middle
of their backs. Adults range in length from 50–70 mm, with females being larger than
males. Overall coloring is either brown, cream, or green, and they are covered in
warts, like their toad brethren. Another distinguishing feature is its shorter hind legs,
which make it more of a runner than a hopper or walker, as other toads are.

Like more common toads, the natterjack diet consists of many invertebrate insects
such as beetles, spiders, and worms. They are nocturnal hunters, so meals are swal‐
lowed whole at night. Those in sand dune systems are also known to eat small crusta‐
ceans, such as freshwater shrimp. Natterjacks release toxins from their skin, which
make them unlikely to be made into meals themselves, but birds such as grey herons,
as well as grass snakes are able to consume them without issue.

As with hunting, the natterjack’s mating rituals are nocturnal. Males have a dinstinct,
loud mating call that signals females to head to nearby warm, shallow waters (because
natterjacks are terrible swimmers). This usually occurs between the months of April
and July, with females spawning 1,500–7,500 eggs. The eggs turn into tadpoles about
a week after fertilization, which then turn into toadlets 3–8 weeks later.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Johnson’s Natural History. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface
	How to Use This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Why Learn SQL?
	What Is SQL and Why Is It Marketable?
	Who Is SQL For?

	Chapter 2. Databases
	What Is a Database?
	Exploring Relational Databases
	Why Separate Tables?
	Choosing a Database Solution
	
	

	Chapter 3. SQLite
	What Is SQLite?
	SQLiteStudio
	Importing and Navigating Databases

	Chapter 4. SELECT
	Retrieving Data with SQL
	Expressions in SELECT Statements
	Text Concatenation
	Summary

	Chapter 5. WHERE
	Filtering Records
	Using WHERE on Numbers
	AND, OR, and IN Statements
	Using WHERE on Text
	Using WHERE on Booleans
	Handling NULL
	Grouping Conditions
	Summary

	Chapter 6. GROUP BY and ORDER BY
	Grouping Records
	Ordering Records
	Aggregate Functions
	The HAVING Statement
	Getting Distinct Records
	Summary

	Chapter 7. CASE Statements
	The CASE Statement
	Grouping CASE Statements
	The “Zero/Null” CASE Trick
	Summary

	Chapter 8. JOIN
	Stitching Tables Together
	INNER JOIN
	LEFT JOIN
	Other JOIN Types
	Joining Multiple Tables
	Grouping JOINs
	Summary

	Chapter 9. Database Design
	Planning a Database
	The SurgeTech Conference
	ATTENDEE
	COMPANY
	PRESENTATION
	ROOM
	PRESENTATION_ATTENDANCE

	Primary and Foreign Keys
	The Schema
	Creating a New Database
	CREATE TABLE
	Setting the Foreign Keys
	Creating Views
	Summary

	Chapter 10. Managing Data
	INSERT
	Multiple INSERTs
	Testing the Foreign Keys

	DELETE
	TRUNCATE TABLE
	UPDATE
	DROP TABLE
	Summary

	Chapter 11. Going Forward
	Appendix A. Operators and Functions
	Appendix A1 – Literal Expression Queries
	Appendix A2 – Mathematical Operators
	Appendix A3 – Comparison Operators
	APPENDIX A4 – Logical Operators
	APPENDIX A5 – Text Operators
	APPENDIX A6 – Common Core Functions
	APPENDIX A7 – Aggregate Functions
	APPENDIX A8 – Date and Time Functions
	Date Functions
	Time Functions
	Date/Time Functions

	Appendix B. Supplementary Topics
	APPENDIX B1 – Further Topics of Interest
	APPENDIX B2 – Improving Performance with Indexes
	Appendix B3 – Transactions

	Index
	About the Author

