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This book is written for the general reader who wishes to gain a basic but
working understanding of the mathematics of Einstein's theory of relativity, one
of the cornerstones of modern physics.
I must have been eleven or twelve years old when I treated myself to a
paperback layperson's introduction to the theory. I enjoyed maths and science
at school, vaguely knew that relativity was a difficult but important theory, and
was curious to find out more. Being a popular guide, there was very little
mathematics in the text, but there were a sprinkling of simple equations from
the special theory of relativity (as we'll see, Einstein proposed two theories:
special relativity and general relativity). These formulations described
relativistic phenomena such as time dilation and length contraction - nice,
straightforward equations that even I could understand. I remember wondering
what all the fuss was about if those equations were all there were to relativity.
The complexity of Einstein's theory had obviously been exaggerated. I read and
enjoyed the book and mentally ticked off the theory as something else I had
mastered, like long division or factorisation.
I was hopelessly wrong, of course. I'd made the mistake of confusing popular
science with the real thing, and believing I'd grasped the theory of relativity
when in reality I'd barely scratched its surface. It took me a long time to realise
that those equations, though perfectly valid, were but a tiny part of a much
larger, more complex and wider ranging description of the physical world.
Although my formal education in maths and physics ended some time ago, I've
continued to enjoy dabbling around in the subjects. During the winter of 2010-
11, with time on my hands, I came across the excellent series of YouTube
general relativity lectures by Professor Leonard Susskind [30] of Stanford
University. Much of what the professor said went over my head, but after
watching the series, I found myself intrigued with the language of spacetime,
gravitation, metrics, tensors and black holes. For the second time in my life I
resolved to try to teach myself relativity. This time around I was more aware
of the size and shape of the challenge. Plus, of course, I now had access to the
resources of the internet (and more pocket money for textbooks!). My goal was
to move beyond the popular expositions of relativity and get to grips with the
underlying mathematics, the beating heart of the theory (to paraphrase Euclid,
there is no royal road to relativity – you have to do the maths). And so my



adventure began. For the next twelve months I was obsessed, with almost
every spare moment, at home and at work, spent poring over books and
websites. It was hard work but great fun, and fortunately my partner was
supremely patient with my new infatuation.
Thus also began my quest for my ‘ideal’ relativity textbook. There are of
course various maths-lite popular guides, such as the one I'd read as a boy.
Plus there are technically demanding undergraduate and higher-level textbooks.
The popularisations may be entertaining, but by excluding the maths they can
only give a cursory understanding of the subject. The mathematically rigorous
texts, on the other hand, are unreadable for the non-specialist. I was looking for
something in-between, a Goldilocks volume pitched just at my level, neither
too easy nor too difficult. I didn't want to take a degree in physics, but I did
want to get to grips with the essential mathematics of relativity.
I never found my ideal volume but instead had to make use of many different
sources, winkling out bits of useful information here and there, struggling to fit
the different pieces of the jigsaw into a coherent whole. Along the way, it
dawned on me that if I were looking for a self-contained, introductory,
mathematical text on relativity, others might be as well; after all, it is one of
the most important theories in physics. The book I had in mind would assume
little prior mathematical knowledge (even less than my own patchy sixth-
form/high school maths if it were to be suitable for the general reader). It
would therefore need to begin with a crash course in foundation maths. To give
the kind of meaningful mathematical understanding I sought, it would try
wherever possible to give the relevant derivations in full, even at the risk of
stating what appears to be the blindingly obvious to the more mathematically
savvy reader. And it would contain numerous fully worked problems, because
in my experience, seeing how the mathematics is used in practice is the best
way to understand it. Oh, and it would be written in a user-friendly style with
lots of helpful diagrams and pictures. And - given the high cost of many
textbooks - it would be inexpensive verging on the downright cheap.
What you see in front of you is my attempt to write such a book, the accessible
teach-yourself study aid I would have liked to have got my hands on when I
first seriously started to learn Einstein's theory - an introduction to the
mathematics of relativity for the enthusiastic layperson. By ‘layperson’ I mean
someone with a minimal mathematical background, though obviously there are
no penalties if yours exceeds that - just skip what you know. ‘Enthusiastic’



suggests this may not be an easy journey, but one that demands some degree of
commitment and effort from the reader. Physicists may believe that the
language of Nature is mathematics, but in the case of general relativity she
might have made that language a touch easier to learn for the average Homo
sapiens. Even at our basic level, if we really want to understand what's going
on in spacetime, we need to tackle the delights of things such as tensors,
geodesics and, of course, the Einstein field equations.
There's no escaping the fact that it's not easy learning a technically demanding
subject such as relativity on your own. Away from college or university, the
self-studier ploughs a lonely furrow, with no structured coursework, lectures
or interaction with tutors and fellow students. However, the pursuit of
education and understanding for its own sake is an admirable goal and
deserves every encouragement. We should all have the chance to appreciate -
in the words of Matthew Arnold - ‘the best that has been said and thought in the
world.’ This book tries to offer a helping hand to such intrepid seekers of truth.
In a world overflowing with trivia, irrationality and nonsense, relativity is the
genuine article, a challenging but fundamentally important scientific theory.
I would suggest that for most readers the best way to approach this book is as
an ultra-relaxed marathon rather than a sprint. We cover a lot of material, from
elementary mathematics to tensor calculus, so give yourself plenty of time to
thoroughly understand what's being presented. You're bound to get stuck sooner
or later. Indeed, you will probably grind to a halt more than once - I know I
did. Try not to be discouraged. Remember, Einstein was a genius, yet it took
even him ten years to formulate general relativity. Personally, I found that if I
hit a brick wall, instead of struggling on, it helped to put the book I was
studying to one side and take a break. Time for reflection, working on
something else, maybe a good night's sleep were often all that was necessary
for comprehension to dawn. If you are still baffled, you could seek
enlightenment via one of the excellent online physics/maths forums (three are
listed in the bibliography - [20], [25] and [26]). Of course, the ideal is to
finish the book, but if you don't, at least try to have fun getting through as much
as you can. Thankfully, you don't need to be a genius to appreciate the wonders
of relativity or to ponder the strange, mysterious world that the theory so
accurately describes.

I've made every effort to ensure that there are no errors in this book.



However, mistakes can happen. A current list of errata can be found at
http://amostincomprehensiblething.wordpress.com. If you find an error
that does not appear on that list, please e-mail it to
incomprehensiblething@gmail.com.
Comments, feedback? Email the author at the same address.
Finally, apologies that much of the mathematics in the text is in the form of
non-scalable images. I originally wrote the book using LyX, a maths-
friendly (and much more) document processor based on LaTeX. LyX
produces beautiful pdf documents with great looking mathematics (see the
paperback print edition), but trying to convert it to a Kindle/EPUB file
was fiendishly difficult. Given my non-existent coding skills, the best
solution I came up with was to export LyX to XHTML, with the equations
converted to images. Where possible, I then converted the simpler
equations to html by hand, but the majority remain as images. Maybe one
day, if LyX improves its exporting capabilities, I'll be able to bring out
another edition with all the maths as beautiful flowing text.



The most incomprehensible thing about the world is that it is at all
comprehensible.

ALBERT EINSTEIN
During the first few years of the twentieth century, Albert Einstein (Figure 0.1)
revolutionised our understanding of the physical world. In 1905 he proposed
his special theory of relativity, which fatally undermined long-standing
scientific and common sense assumptions about the nature of space and time.
Simultaneity, for example: the new theory meant that two events happening at
the same time for one observer might well occur at different times for another.
Henceforth, space and time could no longer be regarded as separate and
absolute quantities. Instead they merged - the theory and all available evidence
demanded they merge - into a new single entity called spacetime. Furthermore,
matter and energy were also joined, in the shape of one of the most famous
equations in physics: E = mc².

Figure 0.1:
Albert Einstein (1879–1955) - photographed in 1921.

This was radical stuff, but much more was to come. Special relativity deals
with the motion of objects and of light in the absence of gravity. For over two



hundred years Newtonian gravitation had proved itself a theory of astonishing
accuracy. And it still is, allowing the precise calculation of the motion of a
falling cup or an orbiting planet. But though of immense practical use,
Newton's theory isn't compatible with special relativity (Newtonian gravity is
instantaneous; special relativity imposes a natural speed limit - the speed of
light). It took Einstein a further ten years to reconcile gravity and special
relativity. That synthesis, his general theory of relativity, was published in
1916. General relativity explains gravity as an effect of the bending of
spacetime in the vicinity of a massive object. The general theory describes
phenomena as diverse as non-Newtonian deviations in planetary orbits,
gravitational time dilation, and gravitational bending and redshift of light. It
has been used to predict the existence and properties of black holes and is at
the heart of modern cosmology -- the study of the history and structure of the
universe. Necessarily, given the appropriate conditions, general relativity is
smart enough to reduce to both special relativity and Newtonian theory.
Special and general relativity can be summarised as follows:

The speed of light in a vacuum has the same value for all uniformly
moving observers.
Mass and energy curve spacetime.
Mathematically, spacetime can be represented by a curved space that is
locally flat.
An equation called a metric describes the curvature of such a space. The
metric will vary from region to region depending how the space curves.
Light and free particles follow paths, called geodesics, through spacetime
determined by how the spacetime is curved.
In the appropriate circumstances general relativity should approximate
both to special relativity and to Newtonian gravitation.
The laws of physics must take the same form in all coordinate systems.

Or, more succinctly, the famous quotation from physicist John Archibald
Wheeler (1911–2008) states that:

‘Matter tells space how to curve.
Space tells matter how to move.’

The astrophysicist Kim Griest [12] asserted the fundamental importance of
general relativity when he wrote:



‘Most physicists don't study general relativity [GR] because it only
differs from Newton's gravity theory and from special relativity in a
few cases. But GR is Nature's choice - whenever GR differs from
Newton, GR has been shown to be right. It is how Nature actually
works, and requires a radical rethinking of physical reality.’

In short, relativity is a triumph of human reason, and as such deserves the
widest possible audience. However, to really understand even the basics of the
theory we have to tackle some quite challenging mathematics, and that is what
we are going to attempt to do.
Chapter 1 sets the ball rolling by introducing the necessary foundation
mathematics needed to progress through the rest of the book, from the basic
definition of a function, through calculus and simple vectors, to our first metric
tensor. For those with little mathematical background this chapter will be a
baptism of fire. Emerging from the flames, we advance invigorated into
Chapter 2. I don't see how it's possible to get to grips with relativity without
understanding at least some of the physics it supplanted. To that end, this
chapter comprises a brisk discussion of Newtonian mechanics, with more time
spent, deservedly I trust, on Newton's wonderful theory of gravitation,
including a neat little detour on how to plot the orbit of a hypothetical planet
around the Sun. In Chapter 3 we move on to special relativity and the strange
world of Minkowski spacetime, including the counter-intuitive phenomena of
time-dilation and length contraction. After developing our spacetime intuition
with the geometrical assistance of spacetime diagrams we progress to a more
algebraic approach using the Lorentz transformations. We end this chapter by
looking at how special relativity reformulates the laws of mechanics.
The next three chapters develop the mathematics that underpins general
relativity. First, a brief introduction to the concept of the manifold and the all
important metric tensor . Next we look at vectors, one-forms and tensors in
order to ease us into the mathematics of curvature, including connection
coefficients, parallel transport of vectors, geodesics and the Riemann
curvature tensor. Chapter 7 pulls these various strands together to take us to the
star of the show: the Einstein field equations. On the way we meet the
equivalence principle (Einstein's ‘happiest thought’), geodesics in spacetime
and the energy-momentum tensor. In Chapter 8 we see how, given appropriate
non-relativistic conditions, the equations of general relativity approximate to
the ultra-successful formulations of Newtonian mechanics. The next chapter



introduces the Schwarzschild solution, the first and most important exact
solution to the Einstein field equations. This solution provides a good
approximation to the gravitational field of slowly rotating bodies such as the
Sun and Earth. We derive the Schwarzschild solution and use it to discuss the
four classical tests of general relativity. The Schwarzschild solution can be
used to predict and describe the simplest type of black hole, which we do in
Chapter 10. Here we investigate the weird nature of time and distance as
experienced by an observer unfortunate enough to fall into a black hole,
compared to how that same journey appears to a distant observer.
The final chapter is a brief introduction to relativistic cosmology. We start
with four key observed properties of the universe, including the cosmological
principle - the assumption that on a very large scale the universe looks the
same to all observers, wherever they are. The Robertson-Walker metric and
the Friedmann equations together establish the theoretical framework that then
allows us to discuss several simple cosmological models and gain insight into
the history and evolution of our own universe.
Note, in this book, you are going to (pun alert) see a lot of c, the symbol that
denotes the speed of light in a vacuum and which (approximately) equals
300,000,000 metres per second. Be aware that in relativity life is often made
simpler by defining c as being equal to 1. We sort of do this ourselves when
we start using spacetime diagrams in special relativity. This is perfectly
legitimate, all we are doing is playing around with units of measurement. Some
authors then take this practice a step further and go on to omit c from their
equations. For example, the Lorentz factor (3.4.1), which in this book is given
by

would become (assuming c = 1)

To the learner, it's not obvious that these two equations mean the same thing
(which they do). There's scope for confusion here, which is the reason I
include c in all the relevant equations in this book.
Also note that whenever we refer to ‘light’ we aren't of course only referring



to the narrow range of the electromagnetic spectrum visible to the human eye,
but to all electromagnetic radiation, such as gamma rays, X-rays, visible light,
radio waves, etc.



Do not worry about your difficulties in mathematics. I can assure you
mine are still greater.
ALBERT EINSTEIN



In order to make sense of what follows, we need to introduce some essential
maths. There's quite a lot of it, and those with a limited mathematical
background may find this chapter somewhat of a challenge. Furthermore, lack
of space permits only a brief discussion of a wide range of topics. So although
I've tried to include as much information as seems necessary, you may need to
forage elsewhere for additional insights and support (see, for example, [21]
and [24]). But take heart. With enthusiasm and perseverance we can now begin
to familiarise ourselves with a broad sweep of fundamental mathematical
ideas. By the end of this chapter we'll have met functions, exponents,
coordinate systems, calculus, vectors, matrices and more, including our very
first metric tensor, the central object of study in relativity.



I'll discuss most of the mathematics and physics used in this book as we go
along. However, rather than clutter up the text with explanations of basic terms
and symbols, I thought it best to gather them together here, in a somewhat
indigestible dollop, at the start of the first chapter. This is a reference section -
you aren't expected to learn all this stuff straight off. Some we'll define and
discuss in greater detail later, so don't worry if they make no sense at the
moment. A few are for background interest only. Others you really need to
know from the outset: you won't get far using even the most elementary
mathematics if you don't know what a decimal number is or the meaning of the
equals = or divided by / symbols.

Constant: a number, term or expression that doesn't change. If y = x + 7
then 7 is a constant. The area of a circle equals πr2 where r is the radius
(a variable), and π (pi) is a constant.
Cube: the cube of a number is the number multiplied by itself twice, eg 3
cubed = 33 = 3 × 3 × 3 = 27.
Decimal: a number containing a decimal point, eg 1.2, 20.07, 0.9134.
Denominator: see fraction.
Factor: a number or expression that divides exactly into another number
or expression. 1,2 and 5 are factors of 10; x and (2x + 3) are factors of
2x2 + 3x because x multiplied by (2x + 3) = 2x2 + 3x.
Fraction: a number such as 1/2, 2/3, 17/2. Can also be written with a
horizontal line, eg . The number above the line (called the
numerator) is divided by the number below the line (called the
denominator).
Infinity: symbol . Something larger than any real number.
Integer: a negative or positive whole number (including zero) such as -34,
-5, 0, 1, 17, 1021.
Irrational number: a real number that is not rational, eg π, Euler's number
e.
Negative number: a real number less than zero, eg -19, -2.5, -0.04. The
product of (ie the result of multiplying) a positive number and a negative



number is negative, eg 3 × -7 = -21. The product of two negative numbers
is positive, eg -3 × -7 = 21.
Numerator: see fraction.
Positive number: a number greater than zero, eg 1, 56, 1007.
Product: the result of multiplying together two or more numbers or things,
eg the product of 4 and 5 is 20.
Quotient: the result of dividing one number by another. The quotient of 14
and 7 is 2 as 14/7 = 2.
Rational number: a number that can be made by dividing one integer by
another, eg 1/2, 5/7, 12/108. Integers, 12 for example, are also rational
because 12/1 = 12.
Real number: the normal numbers we use, including decimals, fractions,
integers, negative numbers, positive numbers, irrational numbers, etc.
They are called real because they aren't complex numbers (strange things
that involve the square root of -1). Apart from a single mention of the
‘most beautiful theorem in mathematics’ we don't use complex numbers in
this book.
Square: the square of a number is the number multiplied by itself, eg 5
squared = 52 = 25.
Square root: the square root of a number is a number that when multiplied
by itself gives the original number. The square root of 36 is 6. The square
root symbol is , so .
Variable: a quantity that may change, eg the circumference of a circle
equals 2πr where π (pi) is a constant and r, the radius, is a variable.

= is equal to, eg 6 = 6.
≈ is approximately equal to, eg π ≈ 3.14.
~ is very approximately equal to, eg 2 ~ 5.
≠ is not equal to, eg 12 - 3 ≠ 7.
+ plus, eg 13 + 56 = 69.
- minus, eg 13 - 3 = 10.
× times or multiplied by, eg 2 × 13 = 26. Another way of saying the same thing
is that 26 is the product of 2 and 13.



÷ or / divided by, eg 7 ÷ 2 = 3.5 or 7/2 = 3.5.
± plus or minus, eg 5 ± 2 = 7 or 3.
< is less than, eg 5 < 10.

 is much less than, eg 0.12  1,000,000.
> is greater than, eg 6.3 > 5.9.

 is much greater than, eg 30,000  0.5.
 is less than or equal to.
 is greater than or equal to.

∝ is proportional to, eg if y = 7x then y ∝ x. In other words, if x is doubled
then so is y.

 the square root of, eg  .
! factorial, eg 6! = 6 × 5 × 4 × 3 × 2 × 1 = 720.

 implies that, eg x = 5  3x = 15.
 infinity - think of a big number. Infinity is bigger than that.

 absolute value, eg  .

B a two or three dimensional vector.

 Cartesian unit basis vectors.
 a unit vector in the radial direction.

 a four-vector.
 a one-form.

Δx a small increment of x

 derivative, eg if y = x2 then  .

 partial derivative, eg if z = x2 + xy2 then  .

 integral, eg  .



Quantity Name Symbol In terms of other SI
units

length metre m
mass kilogram kg
time second s

angle radian rad
frequency Hertz Hz 1/s or s-1

force newton N kg m/s2 or kg m s-2

energy, work joule J N m or kg m2 s-2

area square metre m2

volume cubic metre m3

speed, velocity metre per second m/s or m s-1

acceleration metre per second
squared m/s2 or m s-2

Celsius temperature degree Celsius °C
thermodynamic

temperature kelvin K

density kilogram per cubic
metre kg/m3 or kg m-3

Table 1.1:
SI base units and derived units used in this book.

The standard units used in physics and other sciences are the Système
Internationale or SI units. These are the units used throughout this book (see
Table 1.1). Occasionally, hopefully to add clarity, I've also used non-SI units
such as hours or miles, which are still in common use in the UK and US. The
convention is that rates of something or other tend to be written in exponential
(see Section 1.8.1) form. So, velocity, for example, in metres per second is
written as m s-1 not m per s or m/s. Similarly, acceleration, in metres per



second per second is written as m s-2 not m/s2.
Two temperature scales are used in physics: kelvin and Celsius (which used to
be known as the centigrade scale). 1 K has the same magnitude as 1°C, so an
increase in temperature of 1 K is the same as an increase of 1°C. Absolute
zero, the lowest temperature theoretically attainable, occurs at 0 K on the
Kelvin scale and at -273.15°C on the Celsius scale. So, water freezes at 0°C =
273.15 K, and a pleasantly warm summer's day in the UK registering 20°C
would equal 293.15 K.



Units can be prefixed to produce a multiple of the original unit (Table 1.2). For
example: a kilometre = 1000 m = 1 km; a nanosecond equals a billionth of a
second = 0.000000001 s = 1 ns. Multiples of the kilogram are named as if the
gram were the base unit, even though it isn't.

Multiple Prefix Symbol

109 giga G

106 mega M

103 kilo k

102 hecto h

101 deca da

10-1 deci d

10-2 centi c

10-3 milli m

10-6 micro μ

10-9 nano n
Table 1.2:

Standard SI prefixes.



The physical constants used in this book are given in Table 1.3.

Name of constant Symbol SI value
gravitational constant G 6.673 × 10-11 N m2 kg-2

speed of light in a vacuum c 2.998 × 108 m s-1

Planck's constant h 6.63 × 10-34 J s
mass of the Sun 1.99 × 1030 kg
radius of the Sun 6.96 × 108 m
mass of the Earth 5.97 × 1024 kg
radius of the Earth 6.37 × 106 m

light-year ly 9.461 × 1015 m
parsec pc 3.086 × 1016 m

Table 1.3:
Constants.



In mathematics we come across collections of symbols, numbers, etc called
expressions, equations and functions.

Expressions are mathematical phrases containing numbers, variables (t,
x, y, z, etc) and operators (+, -, ÷, ×, etc). For example 3z + 7, 2x2 - y
and 23xy2 -13 are all expressions.
Equations are statements that say two mathematical expressions are equal
to each other. For example, we can combine two of the above expressions
to obtain the equation 3z + 7 = 2x2 - y. Expressions by themselves are
meaningless. Equations are of fundamental importance because they tell
us the relationship between different quantities.
Functions are equations of the form y = (various expressions), where
when we evaluate the right-hand side of the equation we end up with
exactly one value of y. If we get two or more values of y then the equation
is not a function.

The equation y = 3x + 7, for example, is a function because any value of x will
only give one value of y. The equation y2 = x is not a function because there
can be two solutions of y for one value of x. For example, if x = 9 y can equal
3 or -3 because (3)2 = 9 and (-3)2 = 9.
For example, the function y = 3x tells us that we need to multiply x by three to
find the corresponding value of y. So if we let x equal the whole numbers from
0 to 5, the values of y are as follows:

 

x 0 1 2 3 4 5
y 0 3 6 9 12 15

Another simple function is y = x2. Here are the values of y when we let x equal
the whole numbers from -3 to +3. Don't forget that a negative number
multiplied by a negative number gives a positive number, so -3 × -3 = 9.

 



x -3 -2 -1 0 1 2 3
y 9 4 1 0 1 4 9

Here's a function containing five variables:

If we were given the values of t, u, v, s we could then solve for q. For
example, if t = 6, u = 2, v = 0.3, s = 9 then

A function is often denoted by the letter f, so you might read in a textbook that
the ‘function f’ does this, that or the other. You will also often see functions
written as y = y(x) or y = f(x) or y = g(x) etc All three mean the same thing:
that y is a function of x. In these examples, because the value of y only depends
on x, we say y is a function of one variable.
Alternatively, if y is a function of several variables, we can write y = y(a, b, c)
or y = f(a, b, c) meaning y is a function of a, b, c. In these examples, y is a
function of three variables. A few more examples:

If u = x2 + 5x, we say u = u(x) or u = f(x), ie u is a function of x.
If q = sin t (trigonometric functions are discussed in Section 1.7), we say
q = q(t) or q = f(t), ie q is a function of t.
If w = 4r + p2 - b, we say w = w(r, p, b) or w = f(r, p, b), ie w is a
function of r, p, b.



Now we can recognise when a thing is a function, we need to acquire at least a
basic sense of its underlying structure. Whenever we meet a function for the
first time, we should ask ourselves a few simple questions along the lines of:
how does the function change if the variables change; does it ever equal zero;
does it give a meaningful answer for all variable values? By attempting to
answer these questions, we'll develop a deeper feel of what the function's
about. Here's a list of some of the more obvious properties of a few elementary
functions.
Function 1. y = 2x.

y becomes bigger as x becomes bigger.
y is proportional to x, ie y ∝ x (for example, if we double x, we double
y)
When x = 0 then y = 0.
There's a value of y for every value of x.

Function 2. y = x2.

y becomes bigger as x becomes bigger.
Because y is a function of x2, y also becomes larger as x negatively
increases (remember, a minus times a minus gives a plus). For example,
when x = -1 then y = 1, when x = -5 then y = 25, when x = -10 then y =
100.
Because y is a function of x2, y grows much faster than x and is not
proportional to x.
When x = 0 then y = 0.
There's a value of y for every value of x.

Function 3. y = 1/x.

y becomes smaller as x becomes bigger.
y never equals zero.
When x = 0, the function becomes impossible to calculate. Dividing by
zero is undefined, not possible in other words.
Therefore, there's a value of y for every value of x, except when x = 0.



Now let's take a real example from special relativity. Equation (3.4.1)

is the Lorentz factor, denoted by the Greek letter gamma γ, and is used
extensively as part of a set of equations known as the Lorentz transformations.
c is the speed of light and is a constant; v is the relative velocity between two
inertial frames of reference and is always less than c, ie v < c. So we can now
say that γ is a function of v or, more succinctly, γ = f(v). Just by examining this
function, and without knowing anything about what it actually means, we can
observe that:

If v = 0 then (v/c)2 = 0, , and therefore γ = 1.
As v increases then γ will also increase. However, for ‘ordinary’
velocities (a car travelling at 70 miles per hour, for example) the value of
(v/c)2 will be very small (because the speed of light is a lot faster than 70
miles per hour) and γ will only be a tiny bit more than 1. Only as v
approaches c will γ start to significantly increase.
γ cannot equal zero because the numerator (the top bit of the fraction) is a
non-zero constant, ie equals 1.

A more thorough way of understanding a function is to graph or plot it. At the
time of writing there are available several 2D/3D online (GraphFunc Online
[11], for example) and free downloadable function plotters (Winplot for
Windows [32], for example) that, as well as being fun to play with, will
improve your insight into how functions behave.



Figure 1.1:
Graphs of four simple functions.

Figure 1.1 shows the graphs of four simple functions. The first three are
curves, plotted using the functions of one variable that we looked at in the
previous section: y = 2x, y = x2 and y = 1/x. The graphs nicely illustrate the
properties we listed. For example, the first two functions are both valid at x =
0, meaning the functions have values at this point. This isn't the case for the
function y = 1/x, where the curve doesn't pass through x = 0. Instead, the curve
approaches the y axis (ie, the line where x = 0) but never actually meets it.
There's also a function of two variables - the fourth example z = x2 + y2.
Functions of two variables typically don't produce curves but surfaces in three-
dimensional space, in this case a sort of ‘bag-shaped’ surface.

The first function y = 2x gives a straight line. The gradient or slope of this line
is found by dividing its change in height by its change in horizontal distance.
We don't need to take a ruler to the graph to work this out. The general
equation of any straight line is given by

where a is the gradient and b is a constant (zero in the case of y = 2x). So the
gradient of y = 2x is 2. Similarly, the functions y = 0.7x - 12, y = -4x + 3 and y



= 37x are all equations of straight lines and have gradients of 0.7, -4 and 37
respectively.
We need to wait until we look at differential calculus to see how to find the
changing gradient of a curve, such as y = x2.



Simplifying and rearranging equations can often make them easier to solve. For
example, say we are given the equation

which gives y in terms of x and t. That's fine if we know x and t and want to
solve for y, but what if we know the values of x and y and want to solve for t.
In that case, we need to rearrange the equation to give t in terms of y and x:

Alternatively, if we knew the values of y and wanted to solve for x, we could
rearrange to give x in terms of y and t:

A simple example: average speed equals distance travelled divided by time
taken. If we call speed s, distance d and time t, we can write

If it takes us 2 hours to drive the 120 miles from London to Birmingham, for
example, we could calculate our average speed as

If we only knew the speed and time, we could rearrange (1.6.4) to find the
distance. To do this we need to end up with d by itself on the left-hand side of
the equation.
The rule is:



What we do to one side of the equation we must do to the other side of the
equation.

Step by step, we multiply both sides of (1.6.4) by t to give

On the right-hand side, we have a fraction with t on the top and bottom, so we
can cancel the t's to give

which we can rearrange to give

Now we can find the distance d if we already know the speed s and the time t.
For example, if we drive at 70mph for 2 hours, we travel a distance of

Returning to (1.6.1)

which we want to rearrange so t is on the left-hand side. We first want to have
the term containing t (ie the 2x/t term) by itself on one side of the equation, so
we subtract 17 from both sides to give

Next we want to bring t to the top (at present we have 2x divided by t on the
right-hand side) so we multiply both sides by t to give

and divide both sides by (y - 17) to give

The (y - 17) terms cancel on the left-hand side to give what we want, the
equation in terms of t



Another two important rules for simplifying equations are known as:

multiplying out the brackets, and
collecting like terms.

Problem 1.1.  Simplify and if possible solve the equation

First, multiply out the brackets

Next, multiply both sides by 2 to get rid of the 2 on the bottom of the right-
hand side fraction

Collect the terms

If we need to multiply two brackets of the form

we use the

FOIL (First, Outside, Inside, Last) method, ie

Multiply the first terms (= ac), the outside terms (= ad), the inside terms (=
bc), the last terms (= bd) to give



Problem 1.2.  Multiply the following (a) (3 + 4)(9 - 2), (b) (x - 3)(5 + x2),
(c) (z + 10)(z - 10)
(a)

(b)

(c)

Problem 1.3.  Solve

It might be tempting to rush in and multiply out the brackets, but such a step
would be unnecessarily complicated. Pause and note that it's possible to
take easy square roots of both sides (remember, what we do to one side of
the equation we must do to the other)

Taking the left-hand side as +7, multiply both sides by x

If we take , we obtain another solution, ie x = -4/5.



Figure 1.2:
A right-angled triangle.

Trigonometric functions are functions of angles. Figure 1.2 shows a right-
angled triangle (ie a triangle with one angle of 90°) with another angle denoted
by the Greek letter theta θ. The sides of the a right-angled triangle are called
the adjacent side (next to θ), the opposite side (opposite to θ) and the
hypotenuse (opposite the right-angle).
For any right-angled triangle, the ratios of the various sides are constant for
any particular value of θ. The basic trigonometric functions are:

these ratios being the same for any shape or size of right-angled triangle. So,
for example, if we measured a right-angled triangle to have sides a = 4, b = 3
and c = 5, the above trigonometric functions would equal sin θ = 3/5 = 0.6, cos
θ = 4/5 = 0.8 and tan θ = 3/4 = 0.75. Conversely, if we know the angle θ, plus
the length of one of the sides, we can calculate the length of the remaining side.
So, if we know the opposite side has a length of 8 and we know that θ = 25°,
we can look up sin 25° on a calculator (it equals 0.4226) and find the length of



the hypotenuse thus:

The trigonometric functions can also be defined for angles that are greater than
90°. Things then become a bit more complicated because the sign of the
function changes as shown in Figure 1.3.

Figure 1.3:
The four quadrants.

For example, θ = 140° is in Quadrant 2, and therefore sin θ = 0.643 is
positive, but cos θ = -0.766 and tan θ = -0.839 are both negative.



Figure 1.4:
An angle of 1 radian.

Degrees are OK for simple calculations, but for more advanced work we need
to measure angles in radians, the standard unit of angular measure. An angle
measures 1 radian (see Figure 1.4) when the arc length AB equals the circle's
radius r. In general, an angle in radians equals the ratio between the length of
an arc and its radius. As the circumference of a circle equals 2πr, an angle of
360° equals 2πr/r equals 2π radians.
Radians allow us to use real numbers in the trigonometric functions, rather than
degrees, which are an arbitrary angular measurement. The use of real numbers
in trigonometric functions is essential in more advanced mathematics, calculus
for example, hence the need to use radians. Figure 1.5 shows the graphs of the
three basic trigonometric functions y = sin x, y = cos x and y = tan x with the x
axes in radians.

Figure 1.5:
Graphs of basic trigonometric functions.



An identity is a relationship between two equations that is always true. For
example, x2 - y2 = (x + y)(x - y) is true for all values of x and y. There are
many trigonometric identities, probably the most frequently used being the
Pythagorean trigonometric identity

that expresses Pythagoras' theorem (1.14.1) in terms of trigonometric functions.



If we multiply 3 by itself 4 times we get

A more concise way of writing this is to say

where 3 is the base and the superscript 4 is called the power or exponent.
The usual way to describe this is to say we are ‘raising 3 to the power of 4’, or
simply ‘3 to the 4’. Another example would be

which we would describe as ‘10 to the power of 6’, or ‘10 to the 6’. In general
terms, this process of raising something to the power of something is called
exponentiation, which we can write as  where x is the base and p the power
or exponent.
These are the basic rules for manipulating powers:

x0 = 1 (where x ≠ 0), eg 120 = 1, 0.0980 = 1.
x1 = x, eg 451 = 45, 5.61 = 5.6.
xp × xq = xp + q, eg 23 × 25 = 8 × 32 = 256 = 23 + 5 = 28.
xp/xq (where x ≠ 0) = xp - q, eg 38/32 = 6561/9 = 729 = 38 - 2 = 36.
(xp)q = xpq, eg (52)3 = 15,625 = 52 × 3 = 56.
(xy)p = xpyp, eg (3 × 7)2 = 212 = 441 = 32 × 72 = 9 × 49.
x-p = 1/xp, eg 8-2 = 1/82 = 1/64 = 0.015625.

 (where q is a positive integer). For example, 
, because 3 × 3 × 3 = 27.

 (where p and q are positive integers). For example, 
.

A logarithm (log or logs for short) goes in the opposite direction to a power



by asking the question: what power produced this number? So, if 2x = 32, we
are asking, ‘what is the logarithm of 32 to base 2?’ We know the answer: it's 5,
because 25 = 32, so we say the logarithm of 32 to base 2 is 5.
In general terms, if , then we say the logarithm of a to base x equals p,
or

For example, 104 = 10,000, so we say the logarithm of 10,000 to base 10
equals 4, or

We can take logarithms of any positive number, not just whole ones. So, as
103.4321 = 2704.581 we say the logarithm of 2704.581 to base 10 equals
3.4321, or

Logarithms to base 10 are called common logarithms. Older readers may
remember, many years ago - after the dinosaurs, but before calculators and
computers were widely available - doing numerical calculations laboriously
by hand using tables of common logarithms and anti-logarithms.
The properties of logarithms are based on the aforementioned rules for
working with powers. Assuming that a > 0 and b > 0 we can say:

logx(ab) = logxa + logxb, eg log10(1000 × 100) = log10(100,000) = 5 =
log10(1000) + log10(100) = 3 + 2.
logx(1/a) = -logxa, eg log3(1/27) = -log327 = -3.
logx(a/b) = logxa - logxb, eg log2(128/8) = log2(16) = 4 = log2(128) -
log2(8) = 7 - 3.
logx(ay) = ylogxa, eg log5(253) = log515,625 = 6 = 3 × log525 = 3 × 2.

There is a fundamentally important mathematical constant e that is
approximately equal to 2.71828. Like that other famous constant π (pi), e is an
irrational number, meaning it cannot be written in the form a/b (ie as a



fraction) where a and b are both whole numbers. e is sometimes known as the
exponential constant or Euler's number after the great Swiss mathematician
Leonhard Euler (1707–1783).

Figure 1.6:
.

Logarithms to base e are called natural logarithms, which are written as ln(x)
or loge(x) or (if it's obvious that base e is being used) log(x). In other words,
natural logarithms are defined by eln(x) = x or, equivalently, ln(e(x)) = x. Natural
logarithms are of great importance and pop up all over the place in
mathematics and the sciences. We'll be meeting them later in this book. Figure
1.6 shows the graph of y = ln(x).
Although e has many interesting properties and applications, one
straightforward way to understand it is in terms of compound interest. Say we
invest £1.00 in an exceedingly generous bank that pays 100% interest per
annum. If the bank calculated and credited the interest at the end of one year,
our investment would then be worth 1 + 1 = £2.00. But what if the bank credits
the interest more frequently than once a year? If interest is calculated and
added every six months, at the end of that period the balance would equal 

 and at the end of one year the total amount would be 

. Calculated three times a year, the final balance

would be . In general, if interest is



calculated n times a year, the balance x after one year is given by



Table 1.4 shows the value of x after one year for different values of n.

 

n

1 2
2 2.25
3 2.37037
4 2.44141
5 2.48832
10 2.59374
100 2.70481
1000 2.71692

100,000 2.71827
1,000,000 2.71828
10,000,000 2.71828

Table 1.4:

Value of  for increasing values of n.

We can see that as n increases, the value of the function 
appears to settle down to a number approximately equal to 2.71828. It can be
shown that as n becomes infinitely large, it does indeed equal the constant e.
The mathematically succinct way of saying this introduces the important idea
of a limit and we say

where  means the limit of what follows (ie ) as n approaches

infinity (symbol ). In other words, e approaches the value of  as n
approaches infinity.



A brief digression. Not relevant to the subject matter of this book, but well
worth mentioning in passing whilst we are on the subject of Euler's number is
Euler's identity

which connects the five most important constants of mathematics and has been
called the ‘most beautiful theorem in mathematics.’ All the numbers we use in
this book are real numbers, which can be thought of as points on a line. Real
numbers are fine for most practical purposes, but they do not allows solutions
to equations resembling x2 = -1. Complex numbers - which are written in the
form a + bi (where a and b are real) and can be thought of as a point on a
plane, the complex plane - are the solution to this problem. Real numbers are
themselves a subset of complex numbers, where i, the imaginary unit, is
defined by .

Figure 1.7:
.

The exponential function f(x) = ex, often written as exp x (see Figure 1.7)
arises whenever a quantity grows or decays at a rate proportional to its size:
radioactive decay, population growth and continuous interest, for example. The
exponential function is defined, using the concept of a limit, as





Coordinate systems are used to uniquely define the position of a point or
other geometric or physical object. An everyday use of a coordinate system is
the grid reference used to locate places on a map. So far we've used basic x, y,
z coordinates to plot the graphs of various functions: x, y in two dimensions, x,
y, z in three.
To be useful, a coordinate system must define a point's position using a unique
set of numbers. There are an infinite number of possible ways of doing this,
meaning there are an infinite number of possible coordinate systems. That said,
some coordinate systems are definitely more useful than others and for the next
few chapters, until we encounter the coordinate free-for-all that is differential
geometry, we'll be using one of three common coordinate systems: Cartesian,
plane polar and spherical. Although the choice of coordinate system is
arbitrary, we can make our lives significantly easier by using the simplest
possible system for a given situation. For example, we could use three
dimensional x, y, z coordinates to plot the location of points on the Earth's
surface, but this method would be horribly complicated compared to the
conventional use of longitude and latitude coordinates.

Figure 1.8:



Three-dimensional Cartesian coordinates.

The x, y and x, y, z coordinates we've used so far, where the axes (singular -
axis, as in ‘the x axis’) intersect at right angles, are known as the Cartesian or
rectangular coordinate system, with the point O where the axes intersect
called the origin. Figure 1.8 shows a three-dimensional Cartesian coordinate
system.

A plane is a flat two-dimensional surface, so Cartesian coordinates in two
dimensions are often known as the Cartesian plane.
We define the position of a point, P for example, in terms of its x, y and z
coordinates. ie P's perpendicular distance from the x, y and z axes. So if P's
position is at x = 2, y = 3, z =4 we say (2,3,4) are the coordinates of P. The
coordinates of various points on the Cartesian plane are shown in Figure 1.9.

Figure 1.9:
Points on the Cartesian plane.



Figure 1.10:
Plane polar coordinates.

Although Cartesian coordinates are a nice, simple coordinate system, they
aren't so suitable when circular, cylindrical, or spherical symmetry is present.
In those circumstances, in two dimensions, plane polar coordinates are a
better choice, where the position of a point on the plane is given in terms of the
distance r from a fixed point and an angle θ from a fixed direction (see Figure
1.10). So, if point P was a distance r = 6 from the origin, and the angle θ =
120°, the coordinates of P would be (6, 120°).
It's easy enough to convert from plane polar to Cartesian coordinates by
superimposing the axes (see Figure 1.11). Using the simple trigonometric
functions, we can now see that

and

and it is straightforward to go the other way and convert from Cartesian to
plane polar coordinates:



Figure 1.11:
Converting from polar to Cartesian coordinates.

Figure 1.12:
Spherical coordinates.

In three dimensions, the position of a point P in space can be defined using
spherical coordinates (r, θ, ϕ) as shown in Figure 1.12.
To go from spherical coordinates to Cartesian coordinates we see that



and therefore

In summary:



If I'm driving at a constant velocity, say 60 km per hour, the distance I travel is
changing in a constant manner, ie every hour I cover 60 km. We can say the
rate of change of the distance I travel with respect to time is constant.
However, if my car is moving with constant acceleration, its velocity is
changing in a constant manner, but the distance I travel is not changing
constantly - because I'm accelerating. We can say the rate of change of the
distance I travel, with respect to time, is not constant.

Differential calculus is concerned with the precise mathematical description
of such rates of change. In other words, how quickly a variable (distance,
velocity, x, y, z, etc) is changing with respect to another variable (time, x, y, z,
etc). If you see things like dx, dy, dt or ∂x, ∂y, ∂z, etc, then you are dealing
with differential calculus.

The other main branch of the subject is called integral calculus (using the
symbol ), which is more or less the opposite of differential calculus.
For example, say we have a function that tells us the acceleration of an object
after a certain time. If we can integrate that function we obtain a new function
that tells us the velocity of the object after a certain time. If we integrated the
second function, we'd get a third function that tells us the distance covered
after a certain time. But we can also do that sequence of calculations in
reverse, by starting with the function that tells us distance covered after a
certain time. We can differentiate that function to find the object's velocity and
differentiate again to find its acceleration.
In order to differentiate or integrate a function (assuming that this is possible -
sometimes it isn't) we use various rules of calculus, that vary in their
complexity. Most of the ones needed in this book are detailed below. There is
also the wonderful invention of online calculus calculators (the WolframAlpha
Calculus and Analysis Calculator [33], for example) that hugely simplify the
process of differentiation, integration and other calculations, bearing in mind
the apposite warning: ‘garbage in, garbage out’.



Figure 1.13:
Varying gradients of the curve y = x3 - 2x2.

Figure 1.13 shows the curve of the function y = x3 - 2x2. The slope of this
curve changes continuously and has been indicated at four points A, B, C, D by
tangents (the straight lines) of the curve passing through those points. Those
tangents show the rate of change of the function at that particular point. We use
the Greek letter Delta Δ to denote a small bit or increment of a variable, so the
gradient or slope of the tangent passing through A equals Δy/Δx (just as the
gradient of a hill can be found by dividing the vertical height gain by the
horizontal distance).
Differential calculus allows us to find the exact slope of a curve, in other
words a function's rate of change, at any particular point. We are assuming that
the function is differentiable in the first place and that the gradient doesn't go
shooting off to infinity. Figure 1.14 shows the curve of the function y = x2. The
gradient at A is, roughly, given by Δy/Δx. The closer we move point B along
the curve towards A, the more accurately Δy/Δx equals the gradient of the
curve at A.



Figure 1.14:
Defining the derivative with the difference quotient.

The slope of AB is equal to

where  is the value of y at B, and f(x) is the value of y at A. The
quotient

is known as the difference quotient, or the Newton quotient, and its limit
defines the derivative of a function. The limit refers to the value of the
difference quotient as we make Δx smaller and smaller and smaller as it
approaches, but never quite equals, zero. In other words, we shrink the triangle
ABC until it gives us the exact gradient of the tangent to the curve at A.

This limit is known as the derivative and is the heart of differential calculus.
In this example, where y = x2, the derivative could be denoted by



which gets across the idea of a ratio of two infinitesimal quantities, dy and dx.

There are several alternative ways of denoting the derivative, including:  for
a general function f, and also by using prime notation (the little mark  or ' is
called the prime symbol) where we would write  or y', where y = f(x).
Using the limit concept we define the derivative of a function as

where  means the limit of  as Δx approaches zero.

Problem 1.4.  If y = x2 use the difference quotient to show that the
derivative .
We can simplify the difference quotient (1.10.1)

by substituting h for Δx

which, as y = x2, we can write as

which, as  , becomes



This example is a special case of the rule that if  then 
, ie for y = x2, k = 2, so .



Some common derivatives are shown in Table 1.5

f(x)
k (constant) 0

x 1

xk kxk - 1

sin x cos x
cos x -sin x

ekx kekx

ln x 1/x

ax, (a > 0) ax ln a
Table 1.5:

Common derivatives.

Problem 1.5.  From Figure 1.13, find the gradient of the curve at point D if
x = 2.5 at D.
The function is y = x3 - 2x2. Differentiating this function (using the third rule
from Table 1.5) gives

Substituting x = 2.5

The gradient of the curve at D equals 8.75.

Problem 1.6.  Differentiate (a) , (b) , (c) 
.

(a) Using the first, second and third rules from Table 1.5

(b) Rewriting the function



Using the third and fourth rules from Table 1.5

(c) Using the sixth rule from Table 1.5

The derivative (rate of change) of the exponential function is the exponential
function itself. In fact,  is the only function which is its own derivative.

We use this rule when differentiating a product of two or more functions. For
two functions the product rule is

For three functions the product rule is

Problem 1.7.  Differentiate the function y = x(x2 + 1).
let y = uv, u = x, v = x2 + 1,

therefore  and ,

and .

This example is easy enough to check by noting that y = x(x2 + 1) = x3 + x,

and therefore , which is the same answer.

This rule is used if a function is a function of another function. So, if y is a



function of u and u is a function of x, then the derivative of y with respect to x
is equal to the derivative of y with respect to u multiplied by the derivative of
u with respect to x, ie

Problem 1.8.  Differentiate the function  (a) using the chain
rule, and (b) using an online calculus calculator.
(a) Let u = 1 + x2, then .

Then  and .
Using (1.10.4)

(b) Using the WolframAlpha Calculus and Analysis Calculator [33], type
‘derivative of (1+x^2)^100’ (omit the quotes) into the input box to obtain



Figure 1.15:
Curves of constant y and x for z = x2 + y2.

We've seen how to differentiate a function of one variable to find its rate of
change, ie the gradient of the function's curve at any particular point. Now we
need to look at how to differentiate functions of more than one variable. We
mentioned earlier that functions of two variables typically don't produce
curves but surfaces in three-dimensional space. One such function is shown in
Figure 1.15. Any one point on the surface of z = x2 + y2 will have an infinite
number of curves passing through it, each with a different gradient. How to
make sense of all those different rates of change? The answer is partial
derivatives.
Taking partial derivatives involves using the same rules as for ordinary
differentiation, but allowing one variable to change whilst keeping all the other
variables fixed, ie treating those variables as constants. The notation is a little
different to ordinary differentiation because we use the symbol ∂, derived from
the Greek letter delta, to indicate partial derivatives.
We can formally define the partial derivative by first recalling that we defined
the ordinary derivative (1.10.2) as



where Δx denotes a small increment of x. For a function of two variables f(x,
y), we first take partial derivatives with respect to x by keeping y constant and
say

We next take partial derivatives with respect to y by keeping x constant and
say

This is actually a lot more straightforward than it looks. In order to take partial
derivatives of the function z = x2 + y2, for example, we first treat y as a
constant and differentiate with respect to x to obtain

Note, that as we've treated y as a constant and the derivative of a constant is
zero, y doesn't appear in this particular partial derivative. Next we treat x as a
constant and take partial derivatives with respect to y to obtain

Figure 1.15 helps us visualise what the partial derivatives are telling us.
Equation (1.10.7) gives us the slope (ie z's rate of change) at any point on a
surface curve of constant y (such as the x axis), point A for example.
Equation (1.10.8) gives us the rate of change at any point on a surface curve of
constant x (such as the y axis), point B for example. So, if the value of x at A
were (picking a number out of thin air) 12, we could find the rate of change of
z with respect to x at A by plugging 12 into (1.10.7), ie



The procedure is the same for functions of more than two variables, which are
of course much harder to visualise. For example, taking partial derivatives of
the function z = wx2 + 3wxy + x2 + 5y + y3 we obtain

The partial derivatives of a function f(x, y) give us the function's rate of change
along the x and y axes. We used the example of z = x2 + y2, so the partial
derivatives tell us how z changes if we keep x constant or if we keep y
constant. But what happens if we allow both x and y to change? How does this
affect z? We describe how a function changes in an arbitrary direction using
something called the total differential.
If we have a function f(x, y) and change it ever so slightly by changing x by Δx
and y by Δy, we can see the change in f(x, y) is given by

We now add and subtract the quantity  to the right-hand side:

Then multiply and divide by Δx and Δy:

which, on closer examination, is the same as saying



But the quantities in brackets are very similar to our earlier (1.10.5)

and (1.10.6) definitions of partial derivatives  and . If we make the
quantities Δx and Δy infinitesimally small, (1.10.9) becomes

which is the total differential df of the function f(x, y). The total differential
tells us the infinitesimal change in a function caused by infinitesimal changes in
the function's variables.
For a function of four variables f(w, x, y, z) the total differential would be

Problem 1.9.  Find the total differential of z = 5x2 + 6xy + 3y2.
To go through all the steps, we start by taking partial derivatives:

and put them together to get the total differential

We can refine the total differential in the case where a function's variables are
themselves functions of a variable. For example, in our earlier function f(w, x,
y, z) the total differential (1.10.10) was

But, say all the variables depended on time t. We could then, effectively,
divide by dt to obtain the new relationship



which is called the total derivative of f with respect to t.

If we find the derivative of a derivative of a function f we have found the
second derivative of f. The second derivative tells us the rate of change of the

first derivative, and can be denoted by  or . For example, the first
derivative of the function y = 5x3 - 2x + 7 is

We differentiate again to find the second derivative

We can also use the prime notation, so the second derivative of a function f(x)
is denoted by .
With partial derivatives, the notation tells us the order in which the second
derivatives were taken. So, for a function of two variables f(x, y), if we take
partial derivatives first with respect to x and then with respect to y, there's a
choice of notation:

All mean the same thing and are known as second order partial derivatives.

Problem 1.10.  Calculate the second order partial derivatives for 
.



The importance of integral calculus from our point of view is that, in the
course of this book, we are going to come across equations scattered with
various d something or others (dx, dy, dϕ, etc), which we want to solve to find
x, y, ϕ, etc. We do this by the process of integration, which due to an important
result known as the fundamental theorem of calculus is the reverse of
differentiation. For example, we know how to find the derivative of the
function y = 2x2 + x - 1, it's

But what if we want to go in the opposite direction and ask what function or
functions could have 4x + 1 as a derivative or, in other words, we want to
solve the equation dy = (4x + 1)dx. We do this by finding the indefinite
integral (also known as the integral or antiderivative) of 4x + 1. We already
know one answer, the original function y = 2x2 + x - 1. The correct notation for
this procedure is

where the symbol  denotes the integral. Notice that we haven't been able to
obtain our exact original function y = 2x2 + x - 1. This is because as the
derivative of a constant is zero, there are an infinite number of functions that
could have 4x + 1 as a derivative, eg y = 2x2 + x + 231, y = 2x2 + x - 1102, y =
2x2 + x + 12, etc. We therefore need to include a constant C, known as the



constant of integration in our answer.
More generally, we can say

where F(x) is the indefinite integral or antiderivative of f(x), the quantity being
integrated, which is known as the integrand (ie the expression after the 
symbol).



Some common integrals (which you can see are the opposite of the derivatives
in Table 1.5) are shown in Table 1.6.

f(x)
k (constant) kx + C

x

xk, (k ≠ -1)

1/x  (†)
sin x -cos x + C
cos x sin x + C

ekx, (k ≠ 0) +C
ln x x(ln(x) - 1) + C

ax, (a > 0, a ≠ 1)
Table 1.6:

Common integrals.

(†)  means the absolute value of x, ie the positive value of x, so if x = -3,
then , and if x = 7, then , etc.

Problem 1.11.  Calculate the following indefinite integrals: 

(a) , (b) , (c) .
(a) Using the first, second and third rules from Table 1.6

(b) Using the fourth and fifth rules from Table 1.6

(c) Using the last rule from Table 1.6



Recalling that , we can check the answers by taking
the derivative of f(x), which must take us back to the integrand f(x). For
example, where

which is the original f(x) in example (a).

An indefinite integral is a function (eg ), a
machine for producing numbers, but is not itself a number. Only when we
substitute numbers for the x's and other variables do we turn an indefinite
integral into an actual number. When we do this, we change an indefinite
integral into a definite integral.
The fundamental theorem of calculus relates the indefinite and definite
integrals as follows:

The number a is called the lower limit, and b is called the upper limit. All
that (1.10.12) means is that we first find F(x), the indefinite integral of f(x).
We next feed a into F(x) to obtain F(a) and similarly feed b into F(x) to obtain
F(b). Finally, subtracting F(a) from F(b) provides the required answer. An
example should make this clearer.

Problem 1.12.  Evaluate the definite integral .
We first find the indefinite integral

Next we feed in a = 0 to find F(a)



Do the same with b = 2 to find F(b)

and subtract F(a) from F(b) to give the answer

Notice how the constant of integration C cancels out in the final line.

When evaluating a definite integral we often use the convenient square bracket
notation

to keep track of the upper and lower limits. Note, there is no mention of the
constants of integration as they cancel each other. We could then evaluate
Problem 1.12 on one line as

Another way to understand the definite integral  in Problem 1.12
is that it tells us the area under the curve of y = x2 + 1 between x = 0 and x = 2,
as shown in Figure 1.16, ie the shaded area equals 14/3 = 4.667.



Figure 1.16:
Area under the curve y = x2 + 1.

It's worth pointing out that the definite integral is actually founded on the notion
of an infinite sum, hence the symbol  based on the old-fashioned elongated S
(standing for summation). Figure 1.17 shows the curve of an arbitrary function
f(x). We wish to find the area under the curve between x = a and x = b. We can
divide the area into n strips of equal width . Treating each strip as a
rectangle, the area of each strip is equal to the rectangle's height multiplied by
its width, ie to . The total area under the curve is approximately
equal to the sum of the areas of the strips. As we increase n, we increase the
number of strips, but decrease the width of each strip. As we make n infinitely
large, the width of each strip becomes infinitely small and the area under the
curve becomes exactly equal to the sum of the areas of the strips. The definite
integral can then be defined as

where the Greek letter Sigma  denotes the sum of all the different areas 
 from i = 1 to i = n.



Figure 1.17:
Area under the curve.

Problem 1.13.  An object with initial velocity u and initial displacement 
moves with uniform linear acceleration a. After time t its velocity is v(t)
and it has moved a distance x(t). Show that after time t = T, (a) the object's
velocity is given by , and (b) the object's displacement is
given by .
(a) Acceleration equals rate of change of velocity with respect to time, ie

Using the fundamental theorem of calculus equation (1.10.12)

we can write

and using the square bracket notation

gives



and

which is often simply written as

(b) Velocity equals rate of change of distance with respect to time, ie

which we can rewrite using the fundamental theorem of calculus (1.10.12)

into which we can substitute 1.10.13 (letting t = T) to give

giving

Incidentally, (1.10.13) and (1.10.14) are two of a well known set of equations
that go by various names including the constant acceleration formulae, the
equations of uniform motion, the SUVAT equations (after the variables s, u, v,
a, t), or the kinematic equations. They are often written in a slightly more
simplified form than what we've used, using total displacement ,



giving

Plus there's a couple of others:

and

Sometimes an algebraic substitution can transform the given integral into an
easier one. This rule is useful if the integrand can be expressed as a multiple of
another function u and its derivative , multiplied by a constant multiple of u.

Problem 1.14.  Find .
Substitute  .

We can now express  as .

The constant multiple is , giving

.

The integral of  is , so

.
Substitute back for  gives



This rule is used when integrating the product of two functions

Problem 1.15.  Find  (a) using integration by parts, and (b) using
an online calculus calculator.
(a) Let v = x and .

Therefore,  and u = sin x
giving

(b) Using the WolframAlpha Calculus and Analysis Calculator [33], type
‘integrate x cos x dx’ (omit the quotes) into the input box to obtain

A Taylor series is a very useful tool that provides a way of expressing a
suitable function as a power series calculated from the function's derivatives.
In other words, if we have a difficult function, we can approximate it in a more
user-friendly form as a series, with as many terms as we care to include.
Taylor series can be calculated by hand or, more easily, by using a suitable
online calculus calculator ([33], for example).
A Taylor series of a suitable function f(x) is centred on a particular point a and
is given by



where the primes  indicate first, second, third, etc derivatives and the 
notation denotes the factorial of n, ie the product of all positive integers less
than or equal to n. So, for example, 3! = 3 × 2 × 1 = 6.
The most straightforward Taylor series are those centred on zero (ie, a = 0)
and are known as Maclaurin series. If you've lost your calculator, for
example, you can calculate sin x to whatever degree of accuracy you like by
using the Maclaurin series

The three dots symbol ... (called an ellipsis) shows that the pattern continues,
in this case to infinity. Another common example is the Maclaurin series for
the exponential function 

Or, final example, the function , which can be expressed as



It is often useful to define equations in terms of another variable, called a
parameter. For example, the function y = x2 can be expressed in terms of a
parameter t by letting x = t and y = t2. We could then find the values of x and y
for certain values of t. For example, if , then x and y would be given
as

 

t 0 1 2 3 4
x 0 1 2 3 4
y 0 1 4 9 16

As another example, the equation of a unit circle x2 + y2 = 1 can be expressed
using the parameter θ as x = cos θ and y = sin θ.
We saw earlier in Section 1.5.1 that if we graph a function of two variables
(we used the example of z = x2 + y2) we obtain a surface in three-dimensional
space. If we graph parametric equations of x, y, z using just one parameter (t
for example) we get a curve, not a surface. You could think of this curve as a
length of sinuous wire bending through space, or the path of a moving object.
Some online function graphers allow you to input parametric equations and it's
instructive to play around with these plotters generating different curves.



Figure 1.18:
Parametric curve.

Figure 1.18 shows a helix defined by the parametric equations x = 3cos (3t), y
= 3sin (3t) and z = t.
It's important to understand the concept of parameterised curves as we'll be
meeting them later when looking at things such as four-velocity, contravariant
vectors and geodesics through spacetime.
Parametric equations are especially useful when describing the motion of a
particle or object where we let the parameter t equal time. If we do this, using
Cartesian coordinates for example, and can express the position of the object
in terms of three functions x = f(t), y = f(t), z = f(t), we can plug in a value of t
and find the object's position at that time.
By differentiating the functions x = f(t), y = f(t), z = f(t) with respect to time we
can also find the velocity of the object in the three x, y, z directions.

Problem 1.16.  A ball is thrown with a horizontal velocity of 5 m s-1 off the
top of a 50 m tall vertical cliff. Assuming that the acceleration due to gravity
is 10 m s-2 - (a) how long will the ball take to hit the ground? (b) What will
be the ball's position after 2 seconds, expressed in Cartesian (x, y)
coordinates, with the origin at the base of the cliff? (c) Sketch a curve
showing the ball's path through space. (d) Find the ball's velocity in the x



and y directions after 3 seconds? Ignore air resistance.
To solve this problem, we need Newton's first law of motion - ‘an object
will remain at rest or in uniform motion in a straight line unless acted upon
by an external force’ (Section 2.4.1), which tells us the ball's velocity in the
horizontal direction is constant (ignoring air resistance). This might appear
counter-intuitive because the ball is also accelerating vertically downwards
due to gravity. Nonetheless, if we could separate out the ball's horizontal
and vertical motion, the former would be a constant velocity of 5 m s-1, the
latter would be a constant acceleration of 10 m s-2. We start by using the
distance equation of uniform motion (1.10.15) given in Section 1.10.2.3

Where s equals distance, u equals initial velocity, a equals acceleration and
t equals time. We need to change this equation into a parametric equation
using Cartesian (x, y) coordinates. To do this, first consider the motion of
the ball in the y direction.
At the moment the ball is thrown t = 0 the initial velocity in the y direction is
zero; the acceleration a = -10 (because the acceleration due to gravity is in
the opposite direction to increasing y), and the distance s = 0 = y - 50
(because when distance s = 0 then y = 50), so

In the x direction, the initial velocity is , the only acceleration is
downwards in the y direction, so

(a) The ball will hit the ground when y = 0, from (1.11.1)



ie the ball will hit the ground after 3.16s.
(b) After t = 2 seconds, from (1.11.1)

And from (1.11.2)

(c) We can calculate the movement of the ball every 0.5t as follows

 

t 0 0.5 1.0 1.5 2.0 2.5 3.0 3.16
x 0 2.5 5.0 7.5 10.0 12.5 15.0 15.8
y 50 48.7 45.0 38.7 30.0 18.7 5.0 0

The plot of these points, showing the path of the ball over the cliff, is given
in Figure 1.19.

Figure 1.19:
Path of the ball over the cliff.



(d) We differentiate 1.11.1 with respect to time to find the ball's velocity in
the y direction

Plugging in t = 3 we get .
And we differentiate 1.11.2 with respect to time to find the ball's velocity in
the x direction

so, in the x direction, the velocity is a constant .
Note that just as we had a minus sign in front of the acceleration (a = -10)

we also have a minus sign in front of the velocity  in the y
direction. The minus sign is there for the same reason in both cases - we
have the origin of our Cartesian coordinate system at the base of the cliff,
and therefore y is getting smaller as acceleration and velocity increase. For
an observer on the ground, the velocity of the ball in the y direction would
obviously be increasing as it falls and, at t = 3, would be a straightforward
30 m s-1.



A matrix (plural - matrices) is a means of organising data in columns and
rows. Formally, we say that matrices are rectangular arrays of symbols or
numbers enclosed in parentheses. An m × n matrix has m rows and n columns.
This, for example, is a 3 × 4 matrix

This is a 4 × 1 matrix

this is a 3 × 3 matrix

and this is a 1 × 3 matrix

If m = n then the matrix is square. The entries in a matrix are called elements
and labelled according to their row and column number. So, in the matrix

element  and .

We can multiply two matrices together to give another matrix providing the
matrix on the left has as many columns as the matrix on the right has rows.



Matrix multiplication is not usually commutative, meaning the order in which
the operation is carried out is important. Here's an example of how to multiply
two matrices, A and B, where

and

then

The rule is to multiply each row in the first matrix by each column in the
second matrix. If we multiply the first row by the second column, the result
goes in the intersection of the first row and second column of the answer
matrix. In general, if we multiply the ith row by the jth column, the answer goes
in the intersection of the ith row and the jth column of the answer matrix (see
Figure 1.20).



Figure 1.20:
Matrix multiplication.

Problem 1.17.  Find the product AB of the following matrices:



The identity matrix  is an n × n (ie it's square) matrix where each element of
the main diagonal equals 1 and all other elements = 0, for example

The identity matrix can be thought of as being ‘equivalent’ to 1 because for any
n × m matrix A,  and .
We can also define the identity matrix using a strange looking function called
the Kronecker delta , which has only two values, 1 and 0, such that

We can then say

So if we have a 3 × 3 matrix , for example, when   and 
(ie ), but when   and , which is the
same as saying

To have an inverse, a matrix must be square. The inverse of a matrix A is a
matrix X such that



where I is the identity matrix.

A symmetric matrix must be square and can informally be defined as a matrix
that is symmetrical about main diagonal. For example, these are both
symmetrical matrices:

The most important matrices we come across in this book are those used to
represent objects called metric tensors (or metrics), functions that defines the
distance between two points in a particular space. The metric tensors we'll be
encountering are all examples of diagonal matrices, where the off-diagonal
elements equal zero. For example, the Minkowski metric (3.5.2) used in
special relativity can be represented as

Note that the symbol for the metric is enclosed in square brackets , telling us
we are referring to the entire metric tensor matrix and not to any particular
metric tensor component such as , etc.



The formal definition of a vector is something that is an element of a vector
space. Basically, if you have a group of things which you can add and subtract,
or multiply by an ordinary number and still end up with another thing of the
same type, then those things are vectors.

Figure 1.21:
Addition of vectors.

Simple vectors can be used to represent physical quantities with magnitude and
direction, such as velocity or force. We can physically draw these vectors as
directed line segments - a line with an arrow at one end pointing in the
direction of the vector's direction. A wind map, for example, uses lots of little
arrows, each representing the strength and direction of the wind at various
points. Figure 1.21 shows the travels of a little person walking at a constant
speed. He first walks 4 km due north, then 3 km east. This motion is
represented by vector A (which is 4 units long) and vector B (which is 3 units
long). We add A to B by joining the tail of A to the head of B to form vector
C and we can say

If we measured the length of C (with a ruler, or we could use Pythagoras'
theorem - 1.14.1) we would find it to be 5 units long, so our traveller would



have ended up at the same point if he had walked 5 km at in the direction
shown by vector C. The length of a vector is known as its magnitude (denoted
by the symbol ), so we say ,  and .
Note the notation: in this book we use a bold typeface to show ordinary two or
three-dimensional vectors (A, B, C) and show four-dimensional vectors,
which we'll meet later, with a little arrow on top of the letter ( , , ).

In contrast to vector quantities, such as velocity, there are also things called
scalar quantities, which have magnitude but no direction. Speed is an example
of a scalar quantity, referring only to how fast an object is moving. Velocity, as
we've seen, is a vector quantity that refers not only to how fast something is
moving but in which direction it is moving as well. If we say a car is travelling
at 70 mph, we are describing its speed. If we say a car is travelling at 70 mph
in a northerly direction, we are describing its velocity. Temperature and mass
are other examples of scalar quantities - neither has a meaningful sense of
direction.

A vector consists of the product of its components and objects known as basis
vectors, which define the components' direction. In two dimensions, we need
two basis vectors, in three dimension, we need three etc. If you think of a
vector as an arrow just hanging there in space, we can describe its position
using any coordinate system we like - Cartesian, plane polar, spherical, etc.
For now, we'll use nice, simple Cartesian coordinates, which are the simplest
to work with because the basis vectors are constant.



Figure 1.22:
Components and basis vectors in Cartesian coordinates.

In Cartesian coordinates (see Figure 1.22), a three-dimensional vector V
consists of the product of its components  and a set of basis vectors 

 (the little hat means each basis vector is one unit long) pointing
along the x, y, z axes respectively (another way of saying this is that the basis
vectors are tangent to the coordinate axes), and we can write

Note that the x, y, z subscripts allow us to identify the three different
components . With Cartesian vectors, the convention is to use
subscript indices for both the components and basis vectors.

The magnitude of V (the distance OP) is given (using Pythagoras' theorem -
1.14.1) by

Problem 1.18.  Find the magnitude of vector .



Using (1.13.2) we say

Figure 1.23:
Position vector  of point P.

A particularly useful type of vector is the position vector or radius vector r
from the origin O to the point (x, y, z), which is used to define the position of a
point or particle (see Figure 1.23). The position vector has magnitude

Sometimes we use a unit radial vector , which is simply a radius vector of
length 1.
There are several ways of multiplying vectors. The two commonest are the
scalar product (or dot product) and the cross product. We are only interested
in the scalar product which, given the Cartesian components of two vectors, is



equal to

and is a scalar (an ordinary number, with no direction) not a vector.

Problem 1.19.  Find the scalar product  where 
and .
Using (1.13.4) we say

You will often see the same equation or law written in either vector or scalar
form. For example, Newton's second law (2.4.1) can be written as a vector
equation

where F is the force vector and a is the acceleration vector. Because F and a
are vectors, they can be broken down into their respective components, eg 

. Sometimes we aren't interested in the direction of a
vector, just in its magnitude. We can then write the same law as a scalar
equation (2.4.2)

where F and a are the magnitudes of the vectors F and a.

Imagine a room filled with moving air. The air might move faster near an open
window or above a hot radiator and slower in the corners or behind a
bookcase. Say we could measure the velocity of the air at every point in the
room and we could express that velocity in terms of the x, y, z Cartesian
coordinates of the room. The velocity V is a vector quantity (it has magnitude
and direction) and we can write



meaning V is a function of x, y, z. Specifically, the components  are
each functions of x, y, z.

We have described a vector field, where every point in the room has a vector
associated with it that tells us the speed and direction of the air at that point.
Let's just dream up a function for our vector field, ie

so at the position x = 1, y = 2, z = 3

Similarly, at the position x = 0, y = 0, z = 0

meaning the velocity of the air at x = 0, y = 0, z = 0 equals zero.

Figure 1.24:
An example of a vector field.



An example of a vector field is shown in Figure 1.24. The little arrows
indicate the direction and magnitude of vectors at a selection of points.

The nabla symbol ∇ is known as the differential operator

and only has meaning when it acts on something (hence the empty slots after the
above ). The differential operator is used in three important operations
known as divergence (div), gradient (grad) and curl. We aren't interested in
curl but will be looking at the gradient in this section and divergence in the
next. (Nabla is from the Greek word for a Phoenician harp, which nineteenth
century mathematicians thought the inverted Delta symbol ∇ resembled.)

Starting with a scalar field ϕ, we can find an important vector field known as
the gradient or grad, denoted by ∇ϕ. For example, assume that the air
temperature T varies from point to point inside a room. The temperature may
be higher near a radiator for example, or colder near an open window. Say we
describe the position of any point in the room using three Cartesian coordinates
x, y, z using units of metres (m). Now assume that we've cleverly worked out
an equation that gives us the temperature for any point x, y, z, giving us a
function T(x, y, z). T is just a number (unlike a vector, it has no direction), is an
example of a scalar quantity, and we have described a scalar field. The Greek
letter phi ϕ is often used to indicate a scalar field.
In ordinary Euclidean space, for a point in a scalar field ϕ, the gradient is a
vector that points in the direction of greatest increase of ϕ. Using Cartesian
coordinates, the gradient is given by

or, more succinctly,



In other words, the gradient of scalar field is a vector field. The magnitude of
the gradient tells us how fast ϕ is changing in that direction.

Problem 1.20.  Returning to our room, the temperature T in degrees Celsius
(°C) is given by the equation T = x2 + 3y - zx. What is the gradient at the
point x = 10, y = 3, z = 5.
From (1.13.6) (changing ϕ to T)

Taking partial derivatives gives ,
so

For x = 10, y = 3, z = 5

The magnitude of the gradient is (using 1.13.2)

The physical interpretation of this answer is that, at the point x = 10, y = 3, z
= 5, the vector that points in the direction of greatest increase of temperature
has components (15, 3, -10) and a magnitude of 18.3. If we are using metre
units for our coordinate axes we can therefore say that the temperature at this
point is changing at 18°C m-1.



Figure 1.25:
Divergence of a vector field.

We can imagine a vector field as representing the flow of some fluid. The
divergence of that vector field (see Figure 1.25) is a measure of the net flow of
fluid at a particular point. If more fluid is entering than leaving, the point is a
source (think of a running tap as a source of water) and the divergence is
positive. If more fluid is leaving than entering, the point is a sink (think of
water flowing down a drain) and the divergence is negative. If the same
amount of fluid is entering as leaving there is zero divergence.
For a Cartesian vector field

the divergence is given by

Problem 1.21.  If , find 
 (or div V) at the point (1, 3, 2).



For the point (1, 3, 2)

= -4, ie the point is a sink.

If V is the gradient of a scalar field ϕ, ie , then

where

the  and  symbols denoting a widely used operator known as the
Laplacian or Laplace operator, which tells us the divergence of the gradient
of a scalar field.



Figure 1.26:
Euclid in Raphael's School of Athens.

Euclid (Figure 1.26) was an outstanding Greek mathematician who lived and
taught at Alexandria about 300 BC. Euclidean geometry is the familiar
geometry we are taught in school when learning about triangles, lines, points
and angles, etc. Described at length in his thirteen book treatise The Elements,
we usually take Euclid's assumptions for granted when doing geometrical
calculations in our everyday world.
Some of the key results from Euclidean geometry include:

The internal angles of a triangle add up to 180°.
Two straight lines that are initially parallel remain parallel when
extended (known as Euclid's fifth postulate or the parallel postulate).
The area of a circle is given by πr2, where r is the radius.
Pythagoras' theorem - the length of the hypotenuse (the longest side - see
Figure 1.2) of a right angled triangle is given by



where c is the hypotenuse and a and b are the other two sides.

We can define the type of space where Euclidean geometry works as
Euclidean space, which may be two-dimensional (a flat tabletop for example),
three-dimensional (a working approximation to the ‘ordinary’ space we live
in), or even of higher dimensions. This may seem a statement of the obvious,
but as we'll see, Euclidean space is just one of many possible spaces. Curved
surfaces, for example, are not Euclidean. On the surface of a sphere, lines of
longitude start off parallel on the equator but meet at the poles. Also, the
internal angles of a triangle on a sphere can all equal 90°.
In relativity we deal with two types of four-dimensional non-Euclidean space:

the flat spacetime of special relativity (where Euclid's parallel postulate
holds), and
the curved spacetime of general relativity.

Returning to Euclidean space, Pythagoras' theorem can also be used in three-
dimensions to calculate the corner to opposite corner length of a rectangular
cuboid (a cardboard box, for example). So, in Figure 1.27 the length of
diagonal l is given by



Figure 1.27:
A rectangular cuboid, eg a cardboard box.

Using Cartesian coordinates in three dimensions allows us to write (1.14.2) to
give the distance l between any two points  and  as

or, alternatively, in terms of the intervals Δl, Δx, Δy, Δz 

which is the Euclidean distance function.

Equation (1.14.4), by giving the distance between two points in a space,
actually defines that space to be Euclidean. If (1.14.4) applies for any interval,
then we must be working in a Euclidean space.
This is our introduction to a concept central to the mathematics of curved
spaces - the metric.
The metric is a function that defines the distance between two points in a
particular space. Once we know the metric of a space, we (theoretically, at
least) know everything about the geometry of that space - that's why the metric
is of fundamental importance.
Because of the nature of Euclidean space, the distance function (1.14.3) is



constant, it doesn't change no matter where you are in that space. That means
you can plug in any values of the separations ,  and 
and end up with the right answer, the distance between the points  and

. That isn't the same for other spaces, where the distance function isn't
constant. To get over this problem we express distances in terms of
infinitesimally small displacements, dl, dx, dy, etc, which we met when
looking at differential calculus. These tiny displacements are called the
coordinate differentials, and when we use them to describe the distance
between two infinitesimally close points in a space we call the distance
function a line element. The Euclidean line element, in Cartesian coordinates,
therefore becomes

which is saying exactly the same as (1.14.3) only in coordinate differential
form.

Notice that there is 1 × dx2 term, 1 × dy2 term and 1 × dz2 term in (1.14.5).
These 1's are the metric coefficients. We can arrange them into a 3 × 3 matrix
(3 × 3 because we are dealing with three-dimensional space) that is known as
the metric or metric tensor

As previously mentioned, we enclose  in brackets  to remind us we are
referring specifically to the entire metric matrix and not to any particular
metric component.
The matrix in (1.14.6) tells us how to multiply the differentials dx, dy, dz. We
can see this by writing the matrix as a table



and seeing that dx × dx = 1, dy × dy = 1, dz × dz = 1 and all the other products
of dx, dy, dz equal zero.
The indices i, j after the g identify, by reference to rows and columns, the
metric coefficients. So , etc.
We saw in Section 1.9 that we can use different coordinate systems to define
points on a plane or in space. Although the metric will be different for each
coordinate system, the distance between any two points will obviously not
change as all we are doing is using different coordinate systems to describe the
same distance.

Problem 1.22.  Find the line element and metric for Euclidean two-
dimensional space using polar coordinates.
Equations (1.9.1) tell us how the polar angle θ and radius r are defined in
terms of Cartesian (x, y) coordinates

Using the rule for differentiating products (1.10.3) plus the total differential
equation (1.10.10) we find

As there is no z coordinate, we use a simplified version of (1.14.5)



We know from the Pythagorean trigonometric identity (1.7.1) that 
, so we can rewrite (1.14.7) as the line element for

Euclidean two-dimensional space using polar coordinates

giving a metric tensor of

Problem 1.23.  Find the line element, metric and inverse metric for
Euclidean three-dimensional space using spherical coordinates.
Equation (1.9.2) tells us how the spherical polar angles θ, ϕ and radius r are
defined in terms of Cartesian coordinates (x, y, z) by

Using the rule for differentiating products (1.10.3) plus the total differential
equation (1.10.10) we find

We use (1.14.5)

and square the (1.14.9) terms and again use the Pythagorean trigonometric
identity (1.7.1) to eventually find the line element for Euclidean three-
dimensional space using spherical coordinates



meaning the metric can be written as

and the inverse metric is

As previously mentioned, all the metric tensors we encounter in this book
are in the form of nice, simple diagonal matrices (ie where the off-diagonal
elements equal zero). Finding the inverse of such a metric simply involves
replacing each of the diagonal matrix elements with its reciprocal, as shown
above. Note that from (1.12.2) AX = I, multiplying (1.14.11) by (1.14.12)
gives the identity matrix



We've seen that when using Cartesian coordinates, a three-dimensional vector
V consists of the product of its components  plus a set of basis
vectors  each of which points along the direction of a coordinate axis,
and can be written as (1.13.1)

The x, y, z subscripts are indices, allowing us to identify the three different
components . Similarly, the x, y, z subscripts let us identify the
basis vectors . A more concise way of writing V would be

where the index i can take values of 1, 2 or 3. So the components of V would
then be written as  and , and the basis vectors as 

 and .  In other words,

The expression  is an example of index notation, and we'll be using an
awful lot of it throughout this book. The advantage of index notation is that it
allows us to write complicated vector expressions and equations in a concise
and convenient form. This will be especially useful when we come to four-
dimensional vectors and vector-like objects in special and general relativity.
So far we've been using nice, simple Cartesian vectors with subscript indices
for both the components and basis vectors. Shortly, life becomes more
complicated as we need to introduce two more general types of vector called
contravariant vectors and covariant vectors. (also known as one-forms).
We'll define these things later. For now, we note that the position of the index
allows us to tell them apart: contravariant vectors have an upper index (also
called a superscript or upstairs index, eg ), and covariant vectors/one forms
have a lower (also called a subscript or downstairs index, eg ). To
remember the difference between contravariant and covariant, think ‘co’ for
covariant, which rhymes with ‘low’ - where the index goes.
Just as with Cartesian vectors, both contravariant and covariant vectors consist
of components and basis vectors. However, we often aren't explicitly



concerned about labelling basis vectors. The indices then only refer to the
components of the vector in the particular coordinate system we are using. For
example, say we have a vector A in spherical polar coordinates (where
position is expressed in terms of the three coordinates r, θ, ϕ) that has
components r = 4, θ =2, ϕ = 3. Generically, we could call this vector ,
where the index b refers to any of the components r, θ, ϕ. We would then refer
to the individual components of A as , , . More
succinctly, we can also refer to the three components of A as ,
where the indices 1, 2, 3 refer to the coordinates r, θ, ϕ.
We'll shortly find that spacetime has four coordinates (ct, x, y, z). The
convention is to use a Greek index (α, β, μ, etc) to refer to spacetime
coordinates, the index taking a value of 0, 1, 2, 3 where 0 refers to the time
coordinate, and 1, 2, 3 refer to the three spatial coordinates.

The Einstein summation convention means that when an index occurs twice
in the same expression, the expression is implicitly summed over all possible
values for that index. Returning to Cartesian vectors, for example, we've seen
that the scalar product of the vectors A and B is given by (1.13.4)

In index notation we would write

 being a lot easier to write than . The index i to
which the Einstein summation convention applies is known as a dummy or
summation index. Another example of a dummy index (α in this case), using a
four-dimensional contravariant vector  and covariant vector  , is

Tensors, which we'll look at in more detail later, can have more than one
index, eg , etc. Here's an example of two tensors  and 
being summed over for k = 1, 2, 3:

The index k occurs twice in the left-hand term, is summed over and is therefore
a dummy index. Notice that the index j only occurs once in a any given term



and is not summed over. This type of index is known as a free index. Another
example of free indices occurs with the Kronecker delta (1.12.1), which has
only two values, 1 and 0, such that

and which we earlier used to define the 3 × 3 identity matrix. However, in
some circumstances we can also write the Kronecker delta as . The index ν
now appears twice, can be summed over and is a dummy index. The Greek
letter ν implies four-dimensional spacetime, and so ν = 0, 1, 2 or 3 and we
would write

because, from the definition of the Kronecker delta, when  (which it
always does of course) then  and there are four possible values of ν.
We earlier met the gradient of a scalar field (1.13.7)

In index notation this can be written as

where the index i can take values of 1, 2 or 3.
In a nutshell, here are the rules of index notation:

The convention is to use a Greek index (α, β, μ, etc) to refer to spacetime
coordinates.
The index labels are not important. Subject to rules 3 and 4, indices can
be renamed without loss of meaning. For example,  can be rewritten as

 or  etc.
Free indices only appear as either superscript or subscript, never as both,
and they must occur exactly once in every term. So  is OK (a
is the free index).  is wrong, as is .
Dummy indices appear twice in a term, either as subscripts in Cartesian



vectors/tensors, or once as superscript and once as subscript in the more
general vectors/tensors we tend to use in this book. To avoid confusion
dummy indices must never have the same label as free indices.

Problem 1.24.  Which of these are valid expressions or equations expressed
using the Einstein summation convention? Write out the correct equations
assuming three-dimensions, with indices running from 1 to 3.
(a) 
(b) 
(c) 
(d) 
(e) 
(f) 
(g) 

 

(a) Valid:

.
(b) Valid:

.
(c) Valid:

,

,

.
(d) Invalid because the terms have different free indices. For example the
first term has two free indices i and j, while the second term has free indices
j and k.
(e) Valid:

.
(f) Valid:



,

,

.
(g) Invalid because an index cannot appear more than twice in a term.



I seem to have been only like a boy playing on the sea-shore, and
diverting myself in now and then finding a smoother pebble or a

prettier shell than ordinary, whilst the great ocean of truth lay all
undiscovered before me.

ISAAC NEWTON



Figure 2.1:
Isaac Newton (1642–1727) - Godfrey Kneller's 1689 portrait of Newton, age 46.

Before Isaac Newton (Figure 2.1) there was little in the way of coherent,
evidence-based theory explaining the motion of objects on Earth and in the
heavens. Apart from supernatural influences such as sorcery and spirits, the
prevailing ‘rational’ explanation as to why things moved was that of Aristotle
and involved the idea of objects moving because they sought their ‘proper
place’ in the cosmos. Newton's genius was to invent a new science of
mechanics - a precise description of how things move - based on the concept
of forces, which push or pull objects according to mathematically formulated
laws.
What is a force? Before answering that question we need to realise that the
natural state of any object not subject to a force is either at rest or in uniform
motion (ie moving at a constant speed in a constant direction). This is Galileo's
principle of inertia and is also a statement of Newton's first law. It's true
because - well, because apparently that's just the way the universe is. Of



course, if we shove an object on Earth, kick a brick for example, it will hardly
move at all. But if we could eliminate the frictional forces between the brick
and the ground, and the brick and the surrounding air, it would carry on
moving, forever if nothing got in its way.

A force is something - think push or pull - that when applied to an object
at rest or in uniform motion causes that object to accelerate. The object
will continue to accelerate for as long as the force is applied. As we will
see with Newton's second law, the acceleration is inversely proportional
to the object's mass.

Newtonian mechanics is based on Newton's three laws of motion, his law of
universal gravitation and certain implicit assumptions about the nature of space
and time. After Newton, a huge range of physical phenomena became
explicable in terms of these laws. For the first time the motion of cannonballs,
pendulums, comets and planets could be accurately explained and predicted.
Engineers could calculate the stresses involved in building ever more complex
machines and buildings, paving the way for the Industrial Revolution. As the
poet Alexander Pope proclaimed:

‘Nature and Nature's laws lay hid in night,
God said, let Newton be! and all was light.’

Newton's equations are still perfectly satisfactory for describing most
situations in our ordinary, everyday world. The navigational calculations used
in NASA's Apollo programme, for example, were all based on the Newtonian
theory of gravity.



Newton assumed that both space and time were absolute and universal.
Absolute means space and time are unaffected by physical phenomena and
would remain unchanged if no phenomena were occurring. Universal means
they are the same for all observers, no matter where they are or how they are
moving. Space and time are therefore simply the backdrop or stage on which
things happen. Geometrically, Newtonian space is an endless expanse of
Euclidean three-dimensional space. Newtonian time can be likened to a
uniformly flowing invisible stream.
Effectively, this means space and time are reasonably straightforward concepts
when doing Newtonian mechanics. We need to use spatial and temporal
measurements in our calculations, but we don't need to worry about the
underlying structure of space and time. Make the most of these simplicities
because we most certainly cannot ignore space and time when we start
discussing relativity.



If you are on board a train that is travelling with a constant velocity and you
decide to have a game of table tennis or pool you don't need to make any
allowance whatsoever for the motion of the train whilst playing (we are
assuming that the rails are smooth, so the train isn't bumping about).

Figure 2.2:
Galileo Galilei (1564–1642) - portrait of Galileo by Giusto Sustermans.

The Italian astronomer and physicist Galilei Galileo (Figure 2.2) referred to
this phenomenon in his ship thought experiment. This quote is from Galileo's
Dialogue Concerning the Two Chief World Systems (1632):

‘Shut yourself up with some friends in the main cabin below decks on
some large ship, and have with you there some flies, butterflies, and
other small flying animals. Have a large bowl of water with some fish
in it; hang up a bottle that empties drop by drop into a wide vessel
beneath it.
With the ship standing still, observe carefully how the little animals
fly with equal speed to all sides of the cabin. The fish swim
indifferently in all directions; the drops fall into the vessel beneath;



and, in throwing something to your friend, you need throw it no more
strongly in one direction than another, the distances being equal;
jumping with your feet together, you pass equal spaces in every
direction.
When you have observed all these things carefully (though doubtless
when the ship is standing still everything must happen in this way),
have the ship proceed with any speed you like, so long as the motion is
uniform and not fluctuating this way and that. You will discover not
the least change in all the effects named, nor could you tell from any
of them whether the ship was moving or standing still. In jumping, you
will pass on the floor the same spaces as before, nor will you make
larger jumps toward the stern than toward the prow even though the
ship is moving quite rapidly, despite the fact that during the time that
you are in the air the floor under you will be going in a direction
opposite to your jump. In throwing something to your companion, you
will need no more force to get it to him whether he is in the direction
of the bow or the stern, with yourself situated opposite.
The droplets will fall as before into the vessel beneath without
dropping toward the stern, although while the drops are in the air the
ship runs many spans. The fish in their water will swim toward the
front of their bowl with no more effort than toward the back, and will
go with equal ease to bait placed anywhere around the edges of the
bowl. Finally the butterflies and flies will continue their flights
indifferently toward every side, nor will it ever happen that they are
concentrated toward the stern, as if tired out from keeping up with the
course of the ship, from which they will have been separated during
long intervals by keeping themselves in the air.’

Both the train and the ship are examples of what are known as inertial frames
or inertial frames of reference. Any inertial frame, Newtonian or relativistic,
is one where objects move in straight lines unless acted on by an external
force. This definition, as we'll see shortly, is the same as saying objects in
inertial frames obey Newton's first law.

The distinguishing feature of a Newtonian inertial frame is that it treats
gravity as just another force. For Newtonian mechanics, if we ignore friction
and air resistance, the Earth's surface (and thus our hypothetical train and ship)
are good approximations to inertial frames. Everything on the Earth's surface is



acted upon by gravity, but if this force is taken into account what remains is (a
good approximation to) an inertial frame. We saw an example of this in
Problem (1.16) where we threw a ball off a cliff and calculated its position
knowing that, because of Newton's first law (and the implicit assumption we
are working in an inertial frame), we could treat its horizontal velocity as
constant. In Newtonian celestial mechanics, we can use the ‘fixed’ stars as a
frame of reference, assume that the Solar System is an inertial frame and work
out the various movements (ie accelerations) of the planets using Newton's
laws of motion and gravitational law.
The Earth and Solar System aren't exactly inertial because they are rotating and
are therefore accelerating. In the case of the Earth, we can visualise the effects
of the Earth's rotation by imagining we had an infinitely smooth table in our
laboratory. Place a ball on the table and hit it lightly so it very slowly moves
across the table at a uniform velocity (here we are again assuming that we can
magic away friction and air resistance). If we were in a strict inertial frame the
ball would move in a straight line across the table. Instead, because of the
Earth's rotation, it curves ever so slightly across the surface of the table, an
effect easily demonstrated using a device known as a Foucault pendulum.
Apparent forces, which are not caused by any physical interaction but are due
to an observer using a non-inertial reference frame, are known as inertial or,
somewhat misleadingly, fictitious forces - the force that pushes you to the
back of your seat in an accelerating car, or throws you from side to side in a
sharply turning vehicle, for example. A uniformly rotating reference frame,
such as the Earth, produces two inertial forces, known as the centrifugal and
Coriolis force. However, discounting these (relatively small) inertial forces,
the Earth approximates to a Newtonian inertial frame. Because inertial forces
result from the acceleration of a reference frame, they are (in accordance with
Newton's second law (2.4.1), which we meet shortly) proportional to the mass
of the object acted upon.
Galileo realised that anyone sealed up in the hold of his imaginary ship would
have no way of knowing whether the vessel was stationary or moving with a
uniform velocity. Galileo, and later Newton, extended that observation to all
inertial reference frames, with what is now known as the Galilean relativity
principle, which states that if you are in an inertial frame and have no
communication with the outside world, there is no experiment in Newtonian
mechanics that will tell you whether your frame is stationary or moving with a



uniform velocity. More formally, Galilean relativity can be expressed in terms
of there being no preferred frame of reference for describing the laws of
mechanics.
Two other important properties of inertial frames are:

Any frame that moves with constant velocity relative to an inertial frame
must itself be an inertial frame.
A frame that is accelerating or rotating (rotation is a form of acceleration
as it involves constantly changing velocity) relative to an inertial frame
cannot itself be an inertial frame.

We've spent some time looking at inertial frames because they are fundamental
to both Newtonian and relativistic physics. For now, we continue with our
discussion of Newtonian mechanics.



Newtonian mechanics is built on the foundation of his three laws of motion.

States that an object will remain at rest or in uniform motion in a straight line
unless acted upon by an external force. Because inertia is the property of a
body to resist any change in its state of rest or uniform motion, this law is also
known as the law of inertia. In this sense, the mass of a body is a measure of
its inertia and is called the inertial mass of the body. We've already met this
law in Problem (1.16) where we threw a ball off a cliff and calculated its
position by knowing that, due to Newton's first law, its horizontal velocity is
constant.

States that if a net force acts on an object, it will cause an acceleration of that
object. The relationship between an object's mass m, its acceleration a and the
applied force F is given by the vector equation

or, as a scalar equation,

The first (vector) form of this law is also saying that the force equals the rate
of change of momentum p of the object, where momentum equals the mass of
the object multiplied by its velocity (p = mv), so another way of stating the
same law is

The SI unit of force is the newton, symbol N, which is the force required to
give a mass of 1 kg an acceleration of 1 m s-2.



Problem 2.1.  A 20 kg object has an acceleration of 5 m s-2. What is the
force acting on the object?
Using (2.4.2) F = ma

Problem 2.2.  A 900 kg car goes from 10 m s-1 to 20 m s-1 in 5 s. What
force is acting on it?
We need one of the equations of uniform motion (1.10.15) v = u + at, which
we rearrange to give

and can then substitute into (2.4.2) F = ma

States that when one object exerts a force on another object, the second object
exerts an equal force in the opposite direction on the first object. Another
formulation of this law is that for every action there is an equal and opposite
reaction, hence the alternative name for this law as the action-reaction law.
This law applies irrespective of the motion of the two objects, ie it applies if
the objects are stationary, moving with uniform velocity or accelerating. Here
are some examples of Newton's third law:

If you press a stone with your finger, the stone also presses back onto
your finger with an equal and opposite force.
If a car is accelerating, its wheels exert a force on the road, which also
exerts an equal and opposite force on the wheels. From Newton's second
law, the road's force on the car accelerates the car. The car's force on the
road also accelerates the Earth, but only by an infinitesimal amount
because the mass of the car is a tiny fraction of the mass of the Earth.
If a small car and a massive truck have a head-on collision, the force



exerted by the car on the truck will be the same as the force exerted by the
truck on the car. However, as the mass of the car is much less than the
mass of the truck, the deceleration of the car will be much greater than the
deceleration of the truck.
Drop a pencil and it falls to the ground because the Earth exerts a
gravitational force on it. The pencil will also exert an equal and opposite
force on the Earth. Although the forces are equal, the resulting
accelerations will be very different, ie the Earth's acceleration toward the
pencil will be much less than the pencil's acceleration toward the Earth.
Therefore, the Earth's displacement toward the pencil will be much less
than the pencil's displacement toward the Earth.



Newton's law of universal gravitation - his famous inverse square law - states
that point masses  and , distance r apart, attract each other with a force
equal to

where the quantities  and  represent the gravitational mass of each body,
and G is the gravitational constant (6.673 × 10-11 N m2 kg-2). We can also
write the law as a vector equation, where the force  exerts on  is

where  is a unit vector in the radial direction from  to , and the minus
sign indicates that gravity is a force of attraction (ie acts in the opposite
direction to the unit vector). Although the law refers to point masses, it can be
shown that spherically symmetric objects behave gravitationally as if all their
mass is concentrated at a central point. Most sizeable celestial objects are
approximately spherically symmetric, and therefore obey Newton's
gravitational law.
In order to appreciate the power of this law, it is useful to introduce a little
historical context. We start our whistle-stop tour of the quest to understand
celestial motion with Nicolaus Copernicus (1473–1543), the Renaissance
astronomer, who proposed the heliocentric (and heretical - the Catholic
Church weren't at all happy) theory that the Sun, not the Earth, was the centre
of the universe. However, proving that the planets orbited the Sun was no easy
task. We next introduce an eccentric Danish nobleman called Tycho Brahe
(1546–1601) who built an observatory on an island in the strait between
Denmark and Sweden and proceeded to make detailed observations of the
movements of the planets. Tycho - who actually didn't believe the Earth
orbited the Sun - accumulated an enormous amount of accurate astronomical
measurements. After falling out with the King of Denmark, Tycho moved to



Prague, was appointed Imperial Mathematician by the Austrian Emperor
Rudolph and, with a team of assistants, proceeded to try to make sense of all
his data. One of those assistants - Johannes Kepler (1571–1630) - was
appointed Imperial Mathematician after Tycho's death. It was Kepler who
eventually proposed what are now known as Kepler's laws of planetary
motion. These are:

The planets move in elliptical orbits, with the Sun at one focus. (You can
draw an ellipse using two pins, a loop of string and a pen - see Figure
2.3. Each pin is a focus - the plural is foci - of the ellipse.)
A line that connects a planet to the Sun sweeps out equal areas in equal
times.
The square of the period (the period is the time for one complete orbit) of
any planet is proportional to the cube of the semi-major axis (ie the
longest radius) of its orbit.

Figure 2.3:
Foci of an ellipse.

Kepler's laws are observational laws. They accurately correlate to Tycho's
detailed measurements but contain no underlying mathematical explanation as



to how or why gravity behaves as it does. Fast forward to Newton's law of
universal gravitation, which is also an observational law, with no underlying
explanation as to why things move under the influence of gravity, but does
answer the how question - namely, objects attract each other according to the
inverse square law. Furthermore, it can be shown that all three of Kepler's
laws are a consequence of Newton's law of gravitation, ie Kepler's laws can
be mathematically derived from Newton's. Thanks to Newton, there was at last
a rigorous theory of planetary motion. Although an approximation to Einstein's
general theory of relativity, this law remains an extremely accurate description
of non-relativistic situations, our Solar System for example.
Because general relativity is a theory of gravitation it's worth spending a little
time taking a closer look at the towering scientific achievement it replaced -
Newton's inverse square law - which has been called ‘the greatest
generalization achieved by the human mind’ (Feynman [7]). First, we'll look at
how Newton derived his gravitational law, then we'll explore, through
somewhat lengthy calculations, how the law can be used to plot the motion of
an orbiting planet.

We start with Galileo, who discovered that a falling body accelerates
uniformly, ie its speed increases at a constant rate. Furthermore, he found that
all falling bodies accelerate at the same rate (ignoring air resistance),
something Galileo may have discovered by dropping objects off the Leaning
Tower of Pisa. He also found that this uniform acceleration is the same in the
vertical direction whether you drop the object or throw it horizontally. Drop a
stone and it will fall 5m in the first second. Fire a bullet horizontally from a
height of 5m and it will (again, ignoring the effects of air resistance) takes the
same time (1 second) to fall to the ground as a bullet simply dropped from the
same height.



Figure 2.4:
Newton's falling cannonball.

Then came Newton, who wondered what would happen if you fired a very fast
cannonball from the top of a very tall mountain. Figure 2.4 illustrates Newton's
thought experiment, showing the various paths such a cannonball will follow
depending on its initial speed.
After 1 second the cannonball would have fallen 5 m But, of course, because
of the curvature of the Earth, the ground curves away downwards from a
horizontal line. This means that if you fire the cannonball fast enough, after 1
second it will eventually have travelled sufficient distance so that the surface
of the Earth has also fallen away 5 m from the horizontal. What does that
mean? It means the cannonball though still falling is moving so fast that it
cannot catch up with the ‘falling’ curvature of the ground's surface, ie it is now
orbiting the Earth.



What is the minimum speed the cannonball needs for it to go into orbit? We can
find out using Pythagoras’ theorem (1.14.1) as shown in Figure 2.5, where v is
the distance the cannonball needs to travel in 1 second.

Figure 2.5:
Cannonball in orbit.

The radius of the Earth is 6400 km = 6,400,000 m. From Pythagoras’
theorem (1.14.1) we can therefore say that

25 m is a lot smaller than R = 6,400,000 m, so we'll ignore it, giving

So the cannonball needs to travel 8000 m in 1 second (or about 5 miles per
second or about 18,000 mph) in order to enter into a low Earth orbit.
Newton, being a genius, and possibly after watching an apple fall from a tree,
then looked at the Moon and wondered if that was also ‘falling’ around the
Earth attracted by the same gravitational force that was acting on his imaginary
cannonball. He therefore needed to determine by how much the Moon ‘falls’
beneath the horizontal in 1 second. If the answer was 5m then obviously the



gravitational force acting on the Moon is the same as that acting on an object
falling on Earth. By careful observation Newton determined that the Moon
actually ‘falls’ not 5 m, but 1.37 mm (0.00137 m or about one sixteenth of an
inch) below a straight line trajectory in 1 second. So the Moon's acceleration
towards the Earth is much smaller than the cannonball's. Newton suggested this
was because the force acting on the Moon was much less than on the
cannonball. But how much less?
Assuming that both the cannonball and the Moon are accelerating towards the
centre of the Earth, the ratio of the Moon’s acceleration to the cannonball’s is
1.37/5000, which is approximately equal to 1/3600.
The radius of the Moon's orbit (384,000 km) is about 60 times the radius of the
cannonball's (which is more or less equal to the radius of the Earth). 1/(60)2 =
1/3600, which led Newton to assert his famous inverse square law, that the
force of gravitational attraction between two bodies is inversely proportional
to the square of the distance separating them. Or, as we have seen in (2.5.1)

Incidentally, the minimum speed the cannonball needs to be fired at in order to
escape the Earth's (or any other spherical body's) gravitational field is known
as the escape speed  and is given by

where M is the mass and R is the radius of the Earth, planet, star, etc (and air
resistance and the planet's rotation is ignored). An object launched from the
surface of the Earth with an initial speed  will not fall back, or even go into
orbit, but will ‘slip the surly bonds of Earth’, as the poet John Gillespie
Magee, Jr. wrote, and leave our planet forever. Escape speed refers to the
initial speed of a non-propelled object such as our hypothetical simple
cannonball. The concept of escape speed does not apply to powered craft such
as a rocket, which could escape the Earth's gravitational pull at a snail's pace
provided it had sufficient fuel. If the rocket turns off its engines, it will then
need to be travelling at the escape speed in order to leave the Earth's orbit.
Note, the term is escape speed not velocity, because it refers to an object fired



in any direction (as long as it doesn't hit the planet of course). The escape
speed of an object on the surface of the Earth is about 11.2 km s-1, much faster
than any cannonball, or even rifle bullet.
Also, note that the escape speed does not depend on the mass of the object
trying to do the escaping.

If an object is freely falling in a gravitational field, Newton's second
law (2.4.1) tells us that the object must be subject to a force, the magnitude and
direction of which is given by

The magnitude and direction of the force on the freely falling object is also
given by Newton's law of gravitation (2.5.2)

Experiment shows that the inertial mass M equals the gravitational mass m to
an accuracy of at least one part in 1011. We can therefore say

where M is the mass of the gravitating body, Earth for example, and the minus
sign indicating the acceleration decreases as r increases. We have shown the
fundamental result that the acceleration of a body due to gravity does not
depend on the mass of that body: feathers fall as fast as bricks (ignoring, of
course, the effects of air resistance). Equation (2.5.4) is the vector description
of gravitational acceleration. In scalar form we can write (2.5.4) as



Problem 2.3.  Calculate the acceleration due to gravity (a) on the surface of
the Earth, and (b) 100 km above the surface of the Earth.
(a) Assume that the mass of the Earth is 5.98 × 1024 kg, the radius of the
Earth is 6,378,100 m, and the gravitational constant 6.673 × 10-11 N m2 kg-2.
Gravitational acceleration is given by (2.5.5)

where G is the gravitational constant, M is the mass of the gravitating body
(Earth in this case), and r is the distance from the centre of M to the
accelerating body.

(b) For 100 km above the surface of the Earth we need to increase the radius
by 100,000 m, and

As already noted, Newton's laws of motion and his law of universal
gravitation can be used to derive all of Kepler's laws. The mathematics is hard
going, and we won't pursue it here. Nevertheless, it is instructive to see how
Newtonian mechanics can be used in a quantitative manner to accurately
predict the motions of the planets. The orbital path we end up with will be an
ellipse, though we won't formally have proved that. However, even without a
rigorous mathematical proof, it's still rather magical to take a couple of simple
equations and use them to produce an accurate graphical representation of a
planet's journey around the Sun. This example is from Feynman [8]. Our plan is
to numerically calculate the planet's changing position, based on its velocity
and acceleration, as derived from Newton's law of universal gravitation and
second law. We assume, for the sake of simplicity, that the Sun is stationary.



Figure 2.6:
Force of gravity on a planet.

First, we consider the gravitational forces on a planet at a distance r from the
Sun, as shown in Figure 2.6. Newton's law of universal gravitation tells us
there is a force F directed toward the Sun with a magnitude

where  is the mass of the Sun and  is the mass of the planet. The force F
can be resolved into horizontal and vertical components  and  and,
because we are dealing with similar triangles, we can say

and therefore, using (2.5.6),

the minus sign showing that increasing  corresponds to decreasing x.
Similarly, with regard to the  component of F , we can say

Pythagoras also tells us



We also know, from Newton's second law, that when any force acts on an
object the component of that force in the x direction will equal the mass of the
object multiplied by the change in velocity (ie the acceleration ) of the
object in the x direction. Similarly, we find acceleration  in the y direction.
Therefore, we can say

which tells us the acceleration of the planet in the x direction, and

which tells us the acceleration of the planet in the y direction. We can also
assume, for simplicity's sake, that the constant , so

and



Figure 2.7:
Planet's position and velocity components.

We assume that the initial position of the planet at time t = 0.00 is at x = 0.500
and y = 0.000. We also assume that the initial velocity in the x direction 

 and in the y direction  as shown in Figure 2.7. Different
initial assumptions would give us different orbital curves, not all of which
would be stable closed orbits.
Our aim is to calculate the planet's position, velocity and acceleration a at
regular time intervals (denoted by the Greek letter epsilon ε). Obviously, the
smaller we make the time interval ε, the more accurate will be our predicted
orbital curve. Given the planet's position, we can find its instantaneous
acceleration using (2.5.7), (2.5.8) and (2.5.9). We'll do this at time t = 0.0, 0.1,
0.2, 0.3, etc, meaning we are using time intervals of ε = 0.1. Velocity is a little
more tricky as, for the best approximation, we need to find an average velocity
at a time midway between known position times. We therefore calculate the
velocity at t = 0.05, 0.15, 0.25, 0.35, etc (ie at ) and to do this we use
the following equation to find the approximate average velocity for the period 

 to .

As you can see, all we are doing is multiplying the acceleration at time t by the
time interval ε to give us the change in velocity in that time interval. We then
add that change in velocity to the velocity at  to get a reasonable
approximation for the velocity at time .
For our initial calculation of velocity at t = 0.05 we use a slightly amended
version of (2.5.10)

We calculate the approximate position of the planet at  by adding the
previous position at t to the change in position found by multiplying the time
interval ε by the velocity at , using the equation



A spreadsheet is ideal for this type of laborious but repetitive calculation. We
start with the initial values at t = 0.00

 

Using (2.5.7), (2.5.8) and (2.5.9) we find

 

We now calculate the velocities  and  using (2.5.11)

Next we find the planet's position at t = 0.1 using (2.5.12)

And repeat the above calculations





The first few results, from t = 0.00 to t = 0.45 are shown in Table 2.1.

x
0.000 0.500 0.000 -4.000 0.000 1.630 0.000 0.500 8.000
0.050 -0.200 1.630
0.100 0.480 -3.685 0.163 -1.251 0.507 7.677
0.150 -0.568 1.505
0.200 0.423 -2.897 0.313 -2.146 0.527 6.847
0.250 -0.858 1.290
0.300 0.337 -1.958 0.443 -2.569 0.556 5.805
0.350 -1.054 1.033
0.400 0.232 -1.112 0.546 -2.617 0.593 4.794
0.450 -1.165 0.772

Table 2.1:
Calculation of planetary motion from t = 0.00 to t = 0.45.

The results for a complete orbit, from t = 0.00 to t = 4.10, are shown in
Table A.1 in the Appendix. A plot of the x and y coordinates from Table A.1 is
shown in Figure 2.8. The curve shows the movement of the planet around the
Sun. Each little square marker shows the planet's position at successive ε = 0.1
time intervals.



Figure 2.8:
Calculated orbit of a planet around the Sun.

Although we haven't rigorously proved it, the orbit does indeed describe an
ellipse, with the Sun at one focus. Notice also how the planet moves faster
when nearer the Sun, which correlates to Kepler's second law - a line that
connects a planet to the Sun sweeps out equal areas in equal times. By plotting
orbits with different periods we could also show Kepler's third law - the
square of the period of any planet is proportional to the cube of the semi-major
axis of its orbit.
And this method doesn't just work for one planet. As long as we know their
initial positions, we can calculate the gravitational interactions between the
planets (and the Sun) and predict their orbital motion. Feynman [8] finishes his
chapter on Newton's laws of dynamics by saying,

‘We began this chapter not knowing how to calculate even the motion
of a mass on a spring. Now, armed with the tremendous power of
Newton's laws, we can not only calculate such simple motions, but
also, given only a machine to handle the arithmetic, even the
tremendously complex motions of the planets, to as high a degree of
precision as we wish!’



The gravitational field g(r) at any point r in space is defined as the
gravitational force felt by a unit mass placed at point r. It is a vector field
because the gravitational force is moving the unit mass inwards in a radial
direction, and is found by taking the vector equation of Newton's law of
universal gravitation (2.5.2)

and substituting 1 (a unit mass) for one of the two masses to give

where M is the mass of the gravitating body, Earth for example.
We can plot (2.5.14) to show the gravitational field around a uniform spherical
mass (see Figure 2.9).

Figure 2.9:
Gravitational field around a spherical mass.

We met the idea of the divergence of a vector field (remember sources and
sinks) in Section 1.13.3. It can be shown that the divergence of the



gravitational field at any point is given by

where ρ (the Greek letter rho) is the mass density at that point. Evidently, if the
point is in empty space, ρ = 0, and the divergence .

Figure 2.10:
Earth's gravity as measured by the GRACE mission. Red shows the strongest, blue the

weakest gravitational field.

Because the Earth isn't a uniformly dense, perfect sphere, precisely calculating
its gravitational field is not straightforward. Since its launch in 2002, the
NASA/German Aerospace Centre GRACE (Gravity Recovery and Climate
Experiment) mission has been accurately mapping the Earth's gravitational
field (see Figure 2.10). According to the NASA website, ‘the gravity
variations that GRACE studies include: changes due to surface and deep
currents in the ocean; run-off and ground water storage on land masses;
exchanges between ice sheets or glaciers and the oceans; and variations of
mass within the Earth.’



Figure 2.11:
Tidal forces.

Forces associated with the variation of a gravitational field are known as tidal
forces. We can illustrate the effects of these forces by imagining an observer
in a huge room suspended above a planet, as shown in Figure 2.11. Notice how
the gravitational field varies both vertically and horizontally throughout the
room. Travelling the length of the room would be a decidedly odd experience
as the direction of the gravitational field would vary from straight down to
almost horizontal.
Another way to visualise tidal forces is to imagine dropping a handful of small
pebbles down a very deep mineshaft. We assume that the pebbles are
sufficiently small that we can ignore any mutually attractive gravitational
forces between them, and that they start their descent neatly grouped together
into a round ball. As they fall, tidal forces stretch the ball vertically and
squeeze it horizontally as shown in Figure 2.12.



Figure 2.12:
Tidal forces on pebbles falling down a very deep mineshaft.

Gravitational field variation in a room-sized volume on Earth is extremely
small. Even ascending 100 km above the Earth's surface only results in a
decrease in gravitational acceleration of 9.81 - 9.51 = 0.30 m s-2 (Problem
2.3). The most noticeable tidal effects on the Earth are, of course, the ocean's
tides, caused primarily by variations in the Moon's gravitational field.
However, in the vicinity of a sufficiently dense mass, such as a black hole,
tidal forces can be enormous, as we'll see in Chapter 10.

If a force acting on an object makes the object move in the direction of the
force, the force is said to do work on the object. Work equals force multiplied
by the distance through which the force acts. The SI unit of work (and energy)
is the joule, symbol J, which is the work done (or energy expended) in
applying a force of 1 newton through a distance of 1 metre. We can speak of
positive and negative work depending on the direction of the force and object.
If I lift a brick off the floor I am doing positive work on the brick (the force I
exert is in the same direction as the movement of the brick). Gravity, on the
other hand, is doing negative work on the brick (the gravitational force pulling
the brick down is in the opposite direction to the upward movement of the
brick). However, if I then drop the brick, gravity is doing positive work on the



brick (ie the gravitational force is in the same direction as the movement of the
falling brick). Gravity is an example of a conservative force, where the work
done by the force in moving an object from one point to another depends only
on the initial and final position of the object, and is independent of the path
taken. The negative work done by gravity as I raise the brick off the floor is
therefore exactly equal to the positive work done by gravity as the brick falls
back down to the floor. Another example of a conservative force is the force
exerted by a (perfect) spring. Friction, on the other hand, is an example of a
non-conservative force.

There are two types of mechanical energy: potential energy and kinetic
energy. Potential energy is stored energy, the energy an object has because of
its position or configuration; a stretched spring, for example, has potential
energy. We give an object potential energy by performing work on it against a
conservative force. Gravitational potential energy is the energy an object
possesses because of its position in a gravitational field. We can give an
object gravitational potential energy by lifting it against the force of gravity. If
we then release the object it will fall, and the potential energy will be
converted to kinetic energy (the energy an object possesses due to its motion).
The concept of potential energy is only meaningful in a conservative force
field. In such a field, the work done against a conservative force, such as
gravity, is stored as potential energy, which is recoverable. If I throw a ball
upwards, the work done by gravity is negative, and the gravitational field
transforms the kinetic energy of the ball to potential energy. When the ball
starts to fall, the work done by gravity is positive and the gravitational field
transforms the potential energy of the ball to kinetic energy. Whether the ball is
rising or falling, its change in potential energy  is equal to the negative
of the work done on it  by the force of gravity, which we can write as 

.
Potential energy is a relative not an absolute quantity. It's the difference in
potential energy that matters not the absolute value at a given point. My raised
brick has a certain potential energy with reference to the floor, but a greater
potential energy with reference to the ground (if I'm on top of a multi-story
building). We choose a zero reference point convenient for the particular
problem we are trying to solve. This is where things can become confusing,
because when looking at potential energy far away from the Earth's surface the
convention is that the potential energy of an object in a gravitational field is



taken to be zero when r equals infinity. This makes sense because the
gravitational force approaches zero as r approaches infinity. However, it does
mean, somewhat strangely, that the object's potential energy will then decrease
negatively as it approaches the gravitational source (a quantity that decreases
from zero must be decreasing negatively). Remember, it's the difference in
potential energy that's important. Following this convention, the gravitational
potential energy of an object is then defined as the negative of work done in
bringing the object to that point from infinity.

We know that gravitational force is given by (2.5.1) .
Recalling that work equals force multiplied by distance, the work done by the
force of gravity in moving an object through a gravitational field from infinity
to a separation r is given by

where  and  are the masses of the gravitating object (a planet, for
example) and the object being moved through the gravitational field. The minus
sign is necessary because the gravitational force increases as r decreases.
Because potential energy is the negative of the work done by gravity, the
potential energy of an object in a gravitational field is

More generally, we can say that if we move an object through the planet's
gravitational field, from a distance  outwards to a distance  (both distances
measured from the planet's centre) we do work on the object equal to

and the change in gravitational potential energy is



This equation is true for any change in distance  to .
If that change in distance h is very small compared to the planet's radius we
can use the force (ma) times distance (h) approximation

Note that we are now assuming that the object's potential energy equals zero on
the planet's surface, not at infinity. Near the surface of the Earth, the
acceleration due to gravity is g = 9.81 m s-2, and the above equation becomes

Problem 2.4.  A 2 kg rock is thrown vertically into the air. What
gravitational potential energy does it possess at its highest point 3m above
the ground?
Using (2.5.20),  mgh = 2 × 9.81 × 3 = 58.86J.
Although the calculation would be more complicated (involving the
gravitational constant and the radius and mass of the earth), we would of
course obtain the same result using equation (2.5.19).

The gravitational potential ϕ at a point in a gravitational field is defined as the
work done in bringing a unit mass to that point from infinity. In other words, ϕ
is the gravitational potential energy of a unit mass in a gravitational field.
Using (2.5.17)  and letting one of the masses equal 1 kg we
can therefore define the gravitational potential field, which is a scalar field, as

To be precise, 2.5.21 is only true for a point at a distance r from a point mass



M or at a distance r from the centre of and outside a uniform sphere of mass
M. So if the sphere has radius R, then 2.5.21 is true if r ≥ R.
For a point inside a uniform spherical mass, ie for r < R, things become a bit
more complicated, but it can be shown that the gravitational potential is given
by

Substitute r = R into (2.5.22) and we get back to (2.5.21).

Equation (1.13.3) tells us that the magnitude  of the position vector r is given
by

In Cartesian coordinates we can therefore rewrite the gravitational potential
field (2.5.21) as

Recall from Section 1.13.2 that the gradient (denoted by ∇) of a scalar field ϕ
is given by (1.13.6)

We can apply the differential operator ∇ once to find the gradient of the
gravitational potential field:

We can find the partial derivatives by hand or, more easily, using a suitable
online calculus calculator. For example, using the WolframAlpha Calculus and



Analysis Calculator [33], type ‘d/dx (1/(x^2 + y^2 + z^2) (̂1/2)), d/dy (1/(x^2
+ y^2 + z^2) (̂1/2)), d/dz (1/(x^2 + y^2 + z^2) (̂1/2))’ (omit the quotes) into the
input box to obtain

As , then  and we can
write (2.5.24) as

By definition, . The (x, y, z) term here denotes an ordinary
Cartesian vector (Cartesian because we're using derivatives with respect to x,
y and z). The basis vectors are implied (ie we're smart enough to know they're
really there) so we don't bother to show them. Sometimes angled brackets are
used to denote a Cartesian vector, eg .
So we can rewrite (2.5.25) as

and cancel to give

But the right-hand side of (2.5.26) equals the gravitational field (2.5.14)



So we have found an equation that relates the gravitational potential field (ϕ -
potential energy per unit mass, a scalar quantity) to the gravitational field (g -
force per unit mass, a vector quantity):

We've seen that the divergence of the gravitational field is given by (2.5.15)

where ρ is the mass density at that point. If we substitute (2.5.27) into this
equation we obtain

or, in terms of Cartesian coordinates,

which is known as Poisson's equation. If we have a chunk of matter (a planet
for example) then Poisson's equation tells us the relationship between the
gravitational potential ϕ at a point within that chunk and the mass density ρ at
that point. Lambourne ([17]) refers to Poisson's equation as providing, ‘The
essential summary of Newtonian gravitation in terms of a differential equation
... It is entirely equivalent to Newton's inverse square law, but has the
advantage that it is a differential equation for a scalar quantity that may be
straightforward to solve.’

Along with (2.5.27) , Poisson's equation is one of the fundamental
field equations of Newtonian gravitation and one we'll be returning to when
looking at the Newtonian limit of general relativity.



Note that if the point is outside of the mass, then ρ = 0 and Poisson's equation
becomes

known as Laplace's equation. For example, if we consider the Earth's
gravitational field, every point inside the Earth will be described by 

 , and every point outside the Earth will be described by 
.

Problem 2.5.  Prove that the divergence of the gradient of the gravitational
potential field in empty space equals zero.
In other words, we need to prove that , where . Recalling
the terminology from Section 1.13.3, we say we want to find the
Laplacian (1.13.9) of , ie we need to apply the differential
operator ∇ twice. As we did above, we can rewrite ϕ in Cartesian
coordinates as

Equation (2.5.24) gives us the result of applying ∇ once:

Then, we can apply the differential operator ∇ a second time:

And then, by hand or using a suitable online calculus calculator ([33], for
example), find the partial derivatives, giving

and then (almost magically, as the x, y, z terms on the top line cancel out) we
obtain





Common sense is the collection of prejudices acquired by age
eighteen.

ALBERT EINSTEIN



First, let's note what we don't see in Newton's equations. The dog that doesn't
bark is c, the speed of light. In contrast, as will become clear, c is absolutely
central to Einstein's theory of special relativity. Furthermore, Newtonian
mechanics assumes time and space to be unrelated absolutes. Special relativity
(which applies only in the absence of gravity) unites these two quantities into a
single fluid entity called spacetime. Both time and spatial distance in
spacetime are no longer absolute, depending instead on an observer's relative
velocity. Special relativity insists, however, that the laws of physics are
independent of the uniform motion of any observer.
Foster and Nightingale [9] summarise the importance of special relativity,
stating the theory:

‘Gives a satisfactory description of all physical phenomena (when
allied with quantum theory), with the exception of gravitation. It is of
importance in the realm of high relative velocities, and is checked out
by experiments performed every day, particularly in high-energy
physics.’

Our key to understanding special relativity is seeing how events in spacetime
are measured in different frames of reference. What do we mean by frames of
reference?
Say, for example, I am on a train and have wired up two light bulbs - one at
one end of the train and one at the other. The bulbs are connected so that when
I flick a switch they both come on simultaneously. Using a ruler, I can measure
the distance between the light bulbs and I can flick my switch and watch both
bulbs light up. My description of what's happening regarding the light bulbs
consists of two simple quantities: their distance apart and the time interval
(zero, according to my observation) between them coming on. Now imagine a
trackside observer with highly sophisticated equipment for measuring these
two same quantities. If the train is moving relative to this observer will her
measurements be the same as mine, ie will she record the same distance
separating the bulbs, and the same zero time interval between them lighting up,
as I do? No, says the theory of special relativity, she most definitely won't.
That discrepancy between the measurements in two reference frames is what
we are attempting to understand.



Spacetime diagrams are a useful, geometrical tool for visualising some of the
basic properties of special relativity. We can then build on these insights by
moving to a more algebraic approach, introducing the Lorentz transformations
and working towards an understanding of how special relativity reformulates
the laws of mechanics. But first we need to introduce a few essential concepts.
These are:

time
spacetime
events
frames of reference
inertial frames
coordinate transformations
the Galilean transformations
the two postulates of special relativity.



We've seen that Newtonian mechanics assumes time to be independent of
physical phenomena and the same for all observers. As we'll find out, this is
not the case for special relativity, which forces us to abandon many of our
cherished ‘common sense’ ideas about the meaning of time. Simultaneity, for
example, is no longer always absolute - two events separated in space may
occur at the same time for one observer but at different times for another.
When we speak about time in special relativity we aren't of course only talking
about the reading of a clock. Instead we are referring to a deeper, more
fundamental idea of time in the sense of the intrinsic rate of natural processes.
Muons, a type of tiny sub-atomic particle, are produced in great numbers by
cosmic ray interaction with the top of the Earth's atmosphere at a height of
about 10 km. They have such a small lifetime (about two millionths of a
second) that few should survive their journey to the Earth's surface. The reason
that most do survive is because, travelling at close to the speed of light, they
are affected by relativistic time dilation - the muon's ‘internal clock’ (whatever
that is) runs more slowly in other words. In terms of time, and the merest scrap
of existence that is the muon, you really can't get much more intrinsic than that!

In Newtonian mechanics, events are described using three-dimensional
Euclidean space plus an independent scale of absolute time. In both special
and general relativity space and time are fused together into a single four-
dimensional entity (or continuum) known as spacetime. Spacetime in special
relativity is flat (parallel lines do not meet). It is therefore easiest to describe
it using Cartesian (x, y, z) coordinates plus a time (t) coordinate. Although we
are using Cartesian coordinates, we have now moved away from the familiar
Euclidean space we've been using so far. Yes, spacetime is flat (parallel lines
never meet, for example), but it isn't Euclidean for the simple reason that
distances between points in spacetime are described using a non-Euclidean
metric. In contrast, the spacetime of general relativity is curved, not flat.



Figure 3.1:
Hermann Minkowski (1864 -1909).

The spacetime of special relativity is called Minkowski space or Minkowski
spacetime, after the German mathematician Hermann Minkowski (Figure 3.1),
Einstein's mathematics professor at Zurich polytechnic, who in 1908
introduced spacetime to the world in a public lecture with the famous line:

‘The views of space and time which I wish to lay before you have
sprung from the soil of experimental physics, and therein lies their
strength. They are radical. Henceforth space by itself, and time by
itself, are doomed to fade away into mere shadows, and only a kind of
union of the two will preserve an independent reality.’

We are interested in things that happen in spacetime called events. An event is
something that happens instantaneously at a single point in spacetime, such as a
light flashing, or a point on a moving object passing another point. All events
in spacetime are defined using the four coordinates t, x, y, z.
Imagine a particle moving through spacetime. We can think of the particle's
progress as a succession of events. If we link all those events together we



would have a line representing the particle's progress through spacetime. That
line is called the particle's world-line.

Special relativity addresses how observers moving relative to each other
measure events in spacetime. The coordinate system from which each observer
takes measurements is called a frame of reference or frame. We are using
nice, simple Cartesian (x, y, z) coordinates, so we could imagine our frames of
reference to be a series of infinitely large Cartesian coordinate systems zipping
about through spacetime. Let's call one of those frames S. We can determine
the spatial position of any event in S by using the (x, y, z) coordinates. But we
also need describe the time an event happens. We therefore imagine that our
frame S is full of an infinite number of regularly spaced clocks, all of which
are synchronised and run at the same rate. To find when an event happened we
simply consult the clock adjacent to it.
This may seem an odd, laboured sort of way to measure time. Why not just
imagine an observer sitting in a comfy chair, seeing a distant event and noting
the time by consulting an adjacent super-precise clock or wristwatch. The
trouble with that scenario is that it doesn't tell us when the event happened,
only when the observer saw the event happen, which isn't necessarily the same
thing. Alpha Centauri, the nearest star to Earth, is 4.4 light-years distant. If it
blew up today we wouldn't know for 4.4 years. In order to understand
spacetime we have to assume that we know exactly when events happen. That's
the reason we fill our reference frame with synchronised clocks.
It's often helpful to dispense with the notion of a human observer physically
making measurements in a reference frame. Instead we can define a reference
frame as simply a coordinate system, where each event is located in spacetime
by three spatial (x, y, z) coordinates and one time t coordinate.

Special relativity is particularly concerned with uniformly moving frames of
reference, known as inertial frames. We've already met inertial frames when
looking at Newtonian mechanics (Section 2.3) and saw that objects in them
obey Newton's first law, ie the object will remain at rest or in uniform motion
in a straight line unless acted upon by an external force. Inertial frames in



special relativity are known as Lorentz frames.
So are Lorentz frames the same as Newtonian inertial frames? Only in the
sense that they are both uniformly moving frames where objects obey Newton's
first law. They differ fundamentally in how they deal with gravity - special
relativity and Lorentz frames are concerned with the behaviour of objects and
light rays in the absence of gravitation. Newtonian inertial frames, on the other
hand, can include gravity, treating it as just another force. Lorentz frames can
only be precisely constructed in flat spacetime, in other words, spacetime that
isn't curved by the proximity of mass-energy. One reason for this is because
gravitational time dilation (the phenomenon that clocks run slower in a
gravitational field - see Section 9.4.2) makes it impossible to globally
synchronise clocks. See the Section ‘Non-existence of Lorentz frame at rest on
Earth’ in Schutz [28] for a more detailed discussion of this topic.
However, although an exact global inertial frame cannot be constructed in a
gravitational field, for many purposes a local frame of reference on Earth is a
useful approximation to an inertial frame.
Later, when discussing general relativity and the equivalence principle, we'll
see that a freely falling frame in a gravitational field is a actually a locally
inertial frame.

We need to compare the measurements of observers in relative motion. Say we
have an observer O measuring the time and space coordinates of an event, such
as a light flashing on and off, in frame S. Let's just be clear what we mean here.
The flashing light is just an event happening in spacetime. We could describe
that event using an infinite number of reference frames, but we have chosen one
that we call S. The observer in frame S uses his Cartesian coordinates and
synchronised clocks to measure the event and define its position by assigning it
four spacetime coordinates t, x, y, z. Another observer O' (the little mark is
called a prime, so we say, ‘O prime’) in a different frame S' that is moving
with a constant velocity relative to S, measures the same event with his
Cartesian coordinates and synchronised clocks, and assigns it four coordinates
t', x', y', z'. Unless the frames coincide, t, x, y, z will not equal t', x', y', z'. But,
because they are both nice, simple Cartesian coordinate systems, we would
expect there to be a reasonably straightforward set of equations allowing us to



relate the coordinates t, x, y, z to the coordinates t', x', y', z'. This set of
equations is known as a coordinate transformation.
So, what is the correct coordinate transformation for two observers in uniform
relative motion? Before special relativity the answer would have been a
wonderfully simple set of equations known as the Galilean transformations,
which we now look at.

Figure 3.2:
Two frames of reference in standard configuration.

Two frames, S and S', can of course be orientated in an infinite number of
ways. To make our lives easier, we arrange our frames in what is known as
standard configuration (see Figure 3.2), where:

The x, y, z axes of frame S are parallel to the x', y', z' axes of frame S'.
The origin of frame S' moves along the x axis of frame S with velocity v
as measured in S.
The origins of frames S and S' coincide when time t = 0 in frame S and
when time t' = 0 in frame S'.

Using the standard configuration is just a convenient way of setting up any two
Cartesian coordinate-based moving frames.
As the origins of the two frames coincide when t = t' = 0 the distance travelled
by the origin of frame S' is equal to vt. Therefore, if the event happens at



distance x in the S frame it will happen at distance x' = x - vt in the S' frame.
The Galilean transformations are therefore given by

Problem 3.1.  A penny is on a railway track 60m past the end of a station
platform. A train passes through the station towards the penny at a constant
velocity of 100 km/hour. A passenger on the train zeros his stopwatch
exactly when the rear of the train passes the end of the platform. How far
from the rear of the train will the penny be after (a) 1 second, and (b) 10
seconds?
The railway track is the S frame, with its origin at the end of the platform.
The penny's position is therefore at x = 60. The train is the S' frame with its
origin at the rear of the train and travelling at v = 100 km/hour. We need to
find x' - the distance from the rear of the train to the penny when t' = t = 1,
and t' = t = 10. We can ignore all other coordinates.
(a) First, we convert v to metres per second:

Using (3.2.1):

The penny is 32.2m in front of the rear of the train after 1 second.
(b)

The penny is 218m behind the rear of the train after ten seconds, ie the rear



of the train has passed the penny.
Note that the times will be the same for an observer on the platform because
of the Galilean assumption that  t' = t.

Now let's assume that an object is moving with a velocity u with respect to
frame S. What is w, the object's velocity with respect to frame S'?
You may be able to guess the answer. If I'm driving a car at 70 mph and the car
chasing me is doing 80 mph, then that car has a relative velocity w to me of w =
80 - 70 = 10 mph. If the car behind me is only doing 50 mph, then it has a
relative velocity of w = 50 - 70 = -20 mph, in effect it is moving backwards
away from me, hence the minus sign.
We can formalise these calculations using the Galilean transformation
equations (3.2.1)

x = ut, so we can write

and the velocity of the object with respect to frame S' is given by

or

which is the well known law of Galilean addition of velocities.
This is the common sense assumption that says, for example, that if I'm on bike
pedalling at 15 mph relative to an observer standing by the road, and I throw a
ball straight ahead of me at a velocity of 50 mph, the velocity of the ball with
respect to the stationary observer equals 15 + 50 = 65 mph.
The Galilean transformations and consequent law of addition of velocities
work beautifully in our everyday world of trains, bikes and balls, none of
which travel at anything near the speed of light. But what if I'm again cycling at



15 mph and I now shine a torch straight ahead of me. What is the velocity of
the light beam with respect to the roadside observer. The Galilean addition of
velocities law tells us the answer is the speed of light plus 15 mph.
‘NO, IT'S NOT’, said Einstein. In fact he said that no matter how fast you are
travelling, any inertial observer (ie an observer in an inertial frame) would
measure the same value c for the speed of light, where c = 3 × 108 m s-1 in a
vacuum. In short, Einstein suggested that the speed of light with respect to any
inertial frame is independent of the motion of the light source.
Abandoning long established Galilean assumptions about coordinate
transformations and the addition of velocities means abandoning many of our
most cherished notions concerning the nature of time and space. Einstein was
prepared to take such a drastic step because the alternative hypothesis, that the
speed of light was not constant, was less tenable. In particular, he was relying
on the work of Scottish physicist James Clerk Maxwell, who in 1865
published A Dynamical Theory of the Electromagnetic Field. This paper set
out the four fundamental and eminently successful equations governing the
behaviour of electric and magnetic fields. These are known as Maxwell's
equations and are seen as one of the crowning triumphs of nineteenth century
physics.
Maxwell proposed that light is an electromagnetic phenomenon with a speed
that is both constant in all directions and independent of the motion of the light
source. But this result is inconsistent with the Galilean transformation
equations, which insist that velocity is not an invariant quantity. In other
words, Maxwell's equations are not invariant under the Galilean
transformations. Maxwell, like many physicists of his day, thought the solution
might lie with an invisible, unknown stuff called the ether, which fills all
space and is the medium through which light travels, much as sound waves
travel through air or ripples through water.
According to this theory, light would travel with its correct, Maxwell
equation-derived speed only with respect to the stationary ether, known as the
ether frame. Observers moving with respect to the ether could then use the
Galilean transformations to find the speed of light relative to them. It was a
clever solution except (a) no one could find any trace of the ether (and never
have done), and (b) sophisticated attempts (the most famous being the
Michelson-Morley experiment in 1887) to confirm that light travels with



different speeds depending on the relative velocity of the observer all returned
a constant result for the speed of light.
Plus there was another problem, which seems to have troubled Einstein the
most. This was to do with the idea of Galilean relativity (see Section 2.3),
which states there is no preferred frame of reference for describing the laws of
mechanics. Einstein trusted this principle to such an extent that he eventually
extended it to cover all the laws of physics and used it as one of the
foundations of special relativity. Unfortunately, the notion of a stationary ether
was incompatible with Galilean relativity. This is because if light only
travelled with its ‘correct’ speed c with respect to the ether frame, then this
frame would constitute an absolute frame of reference. An absolute frame is a
preferred frame. An inertial observer would then, by using the Galilean
transformations, be able to calculate (assuming that they could ever get the
experiments to work!) the relative velocity of their own frame of reference.
Inertial frames could then be distinguished from each other, and bye-bye
Galilean relativity.
Either Maxwell's theory or the Galilean transformations had to be wrong.
Although various physicists tried to ‘fix’ Maxwell's equations, Einstein
eventually came to the conclusion that the problem lay with the Galilean
transformations. These, he showed, were actually special ‘low velocity
solutions’ for a more general set of coordinate transformation equations called
the Lorentz transformations.
Einstein's solution - the theory of special relativity - was to reject the need for
an ether and accept Maxwell's constant speed of light at face value. The latter
requirement meant reformulating the ‘common sense’ assumptions about time
and space that subtly underpin the Galilean transformations.

Einstein based his theory of special relativity on two postulates, or
fundamental assumptions, about the way the universe works.

The principle of relativity - the laws of physics are the same in any
inertial frame of reference, regardless of position or velocity.
The constancy of the speed of light in a vacuum - the speed of light in
vacuum has the same value c = 3 × 108 m s-1 in all inertial frames of



reference.

The first postulate, the extension of Galilean relativity to all the laws of
physics, isn't too hard to accept and understand. The second postulate is the
bombshell. This is the one whose implications fly against our everyday
assumptions about time and space.
We begin our exploration of special relativity by looking at spacetime
diagrams.



How do we visualise four-dimensional spacetime? We don't, but we do take
heart from the words [14] of British theoretical physicist and cosmologist
Stephen Hawking, who wrote:

‘It is impossible to imagine a four-dimensional space. I personally
find it hard enough to visualise three-dimensional space! However, it
is easy to draw diagrams of two-dimensional spaces, such as the
surface of the Earth.’

And so we make much use of spacetime diagrams (also known as Minkowski
diagrams), where instead of an x and y axis there is (usually) a vertical time
axis and a horizontal spatial x axis.
Special relativity is predicated on the assumption that light travels at a constant
speed for any inertial observer. We therefore need to be able to draw the path
of a light ray on our spacetime diagram. Such a ray could start at any point on
the x axis and travel either towards increasing or decreasing values of x (we
can imagine physically standing on a particular point of the x axis and shining a
beam of light either to our right or to our left along the axis).
The snag with trying to draw the path of a light ray on a spacetime diagram is,
because light travels very, very fast, if we used SI units of seconds and metres
for our two axes, a line representing that path would be as near to horizontal as
makes no difference.
To get around this problem, we multiply the time in seconds by the speed of
light in metres per second and use this quantity ct as the units for the vertical
time axis. One unit of ct is the speed of light (3 × 108 m s-1) multiplied by the
time t (3 × 10-8 s) that it takes light to travel 1 metre, which equals 1.
By using ct units of time we have defined the speed of light c as being equal to
1 and can now draw the path of a light ray as a line with a slope of 45°,
pointing either to the left or to the right depending on its direction of travel.
Remember that the t in ct still refers to the SI time unit of seconds. But one unit
of ct doesn't refer to 1 second but to 3 × 10-8 seconds, a much smaller quantity.
As distance equals speed multiplied by time, using ct units of time effectively



means we are measuring time in metres.
To summarise these new ‘natural’ units and how we convert them to standard
SI units:

meaning we have defined the speed of light as being equal to 1.

Using the metre as a unit of both time and distance is a convenient and common
practice in relativity.
A single point in Minkowski space is called an event and has four components
ct, x, y, z. In index notation (see Section 1.15) we can describe the components
of an event as  where , 

.  is also sometimes called the particle's four-position. A line
in Minkowski space represents a particle's movement through spacetime - a bit
like how a vapour trail shows the path of a jet aeroplane - and is called the
particle's world-line.



Figure 3.3:
A simple spacetime diagram for an observer in frame S.

Figure 3.3 shows a two-dimensional slice of spacetime for an observer O in an
inertial frame of reference S. A single point in this space is an event,
something that happens instantaneously at a certain value of x. For example the
point (3,2) describes a point in spacetime with time coordinate ct = 3 and
spatial coordinate x = 2.

(Remember, we are using metre units of time, so if ct = 3, then t = 3/(3 × 108)
= 10-8 seconds.)
Because we are using ct time units, a 45° straight line shows the path of a light
ray. We can draw an infinite number of such lines, each representing a light ray
starting at a different value of x when ct = 0. An object travelling at a constant
velocity less than c will have a straight world-line at an angle greater than 45°
to the x axis.
If an object is travelling with a constant velocity v then that velocity will equal
distance travelled divided by time taken and is given by

The object will have a straight world-line with an angle θ to the ct axis, where



Substituting (3.3.1) into (3.3.2) gives

Something travelling with a constant velocity significantly slower than light
will be shown by a straight line very close to the vertical ct axis.

Problem 3.2.  The world-line of a particle moving with constant velocity
makes an angle of 10° with the ct axis. How fast is the particle travelling?
Equation (3.3.3) tells us that

therefore

The particle is travelling at .

Problem 3.3.  What angle would the world-line of a rifle bullet travelling
with a velocity of 1000 m s-1 make with the ct axis?
Let the rifle bullet's world-line make an angle θ with the ct axis. The time t
taken for the bullet to travel 1 metre equals 1/1000 = 10-3 s. Equation (3.3.3)
tells us

If we know the tangent we can find the angle by using an inverse tan
calculator:

Which is a very small angle. To visualise how small, think of a right angled
triangle with an adjacent side of 300,000 m = 300 km ≈ 186 miles and an
opposite side of 1 metre! And that's for an object - a rifle bullet - that in our



everyday world is moving very fast indeed.

How would we show another inertial frame S' belonging to a second observer
O'? First, we make life simpler for ourselves and assume that both frames are
in standard configuration (see Section 3.2.7) and that frame S' is moving with a
constant velocity v relative to frame S.
We can start by drawing the ct' time axis for frame S'. But how do we draw
this axis in our diagram?
First, because we are using frames in standard configuration, we know that the
origins of frames S and S' coincide when time ct = 0 in frame S and when time
ct' = 0 in frame S'. Therefore, the ct' axis must pass through the origin of frame
S.
Second, consider every possible event that can happen in frame S' when the
spatial coordinate x' equals zero. All these points, joined together, will form
the ct' axis. But the point x' = 0 is moving along the ct' axis with a velocity v
(it must be as the frame S' is moving with that velocity). We can therefore
draw the ct' axis as the world-line of the moving point x' = 0. Equation (3.3.1)
tells us that the ct' axis will make an angle θ with the vertical ct axis of frame
S, as shown in Figure 3.4.



Figure 3.4:
The ct' time axis of a second frame S'.

We now need to draw the x' axis of frame S'. This axis can be drawn by
connecting all the events with the time coordinate ct' = 0. But how to do this?
As with the ct' axis, we know the x' axis must pass through the origin of frame
S because we are in standard configuration.

Figure 3.5:
The path of a reflected light ray.

Recall that one the postulates of special relativity is that the speed of light c is
the same for all inertial observers. This means that any light ray will always be
drawn with a 45° slope for any inertial frame. Figure 3.5 shows the spacetime
diagram of observer O' (with axes ct' and x'). The broken line represents a
light ray emitted at x' = 0, ct' = -a, striking a mirror at x' = a, ct' = 0 and
reflected back to x' = 0, ct' = a. We call the point (or event) P where x' = a, ct'
= 0. As a varies, so will the position of point P. In fact, because of the
constancy of the speed of light, point P (where ct' always equals zero) traces
out the x' axis for different values of a.



Figure 3.6:
The x' axis of a second frame S'.

We use this property of point P to define the position of the x' axis in
Figure 3.6. This time we are back to showing the reference frame S of
observer O, who records a light ray (the broken line) emitted at point Q (x' =
0, ct' = -a) striking a mirror at point P (x' = a, ct' = 0) and reflected back to
point R (x' = 0, ct' = a). The broken lines from points Q and R must be at 45°
to the x axis. Where these lines intersect must be at point P, the position of the
mirror at x' = a, ct' = 0. Therefore, a straight line drawn through P and the
origin must define the x' axis.
The triangle ORP is an isosceles triangle (two sides of equal length, and
therefore two equal angles) bisected by a line at 45° to the x axis and passing
through O. Therefore, the x' axis must make the same angle with the x axis as
the ct' axis makes with the ct axis, ie .
We can therefore say that the equation of the x' axis is

and the equation of the ct' axis is



Figure 3.7:
Spacetime diagram for observer O.

Figure 3.7 shows the frames S and S' from the point of view of O (who is
observing from frame S) where frame S' (on which O' is sitting) is moving to
the right.
The same physical situation is shown in Figure 3.8, but this time from the point
of view of O', who sees O moving to the left.

Figure 3.8:
Spacetime diagram for observer O'.



Now, this might seem a little confusing. We have an inertial frame S with
coordinate axes x and ct, and we have another inertial frame S' (moving with
uniform velocity v relative to S) with its own coordinate axes x' and ct', all
drawn on the same diagram. How do we now describe the coordinates of a
particular event?
It's straightforward. All we need do is construct coordinate lines parallel to the
respective axes. Take, for example, event A shown in Figure 3.9. We read off
A's coordinates with respect to the x and ct axes normally, as we would on any
Cartesian grid. These are  and  respectively. We then construct a line
passing through A and parallel to the x' axis. Where this line crosses the ct'
axis gives us the ct' coordinate - . Similarly, we then construct a line
passing through A and parallel to the ct' axis. Where this line crosses the x'
axis give us the x' coordinate - .

Figure 3.9:
Reading the coordinates of an event.

It's here worth noting the obvious point that the x' and x axes do not coincide.
They would if we were using the Galilean transformations (3.2.1), which are
of course based on Galilean/Newtonian assumptions of absolute time and
space. In that case we would still draw a sloping t' axis (where t' = t), but the
x' and x axes would be on the same line (where x' = x - vt). The second
postulate (the constancy of the speed of light) necessitates a sloping x' axis and



destroys all assumptions of absolute time and space.
Depending on the accuracy of our drawing and assuming that we knew how to
calibrate the ct' and x' axes, we could estimate the coordinates of event A as
measured by the observers on frames S and S'. Taking measurements from
graphs isn't of course very accurate. Later, we discuss the Lorentz
transformations, which allow us to algebraically calculate the measurements of
observers in different inertial frames, including calibrating the ct' and x' axes.

Figure 3.10:
Relativity of simultaneity.

We can now demonstrate the surprising result that the simultaneity of events
can depend on the observer's reference frame. Figure 3.10 shows four events -
A, B, C, D. In what order do they happen?
Observer O in inertial frame S will see the events happening (as time ct
increases) separately in the order A, C, D, B. However, observer O' in inertial
frame S' will use the ct' axis to record his time and will first see A and D
occurring simultaneously and then see C and B occurring simultaneously. Just
by the fact that the two observers don't share a common time axis, two events
that are simultaneous for one observer cannot be simultaneous for the other.

This phenomenon is known as the relativity of simultaneity. If two events



occur at the same time at the same point in space, all observers agree they
occurred simultaneously. If the events are separated in space then whether they
are simultaneous or not depends on the reference frame of the observer.
We can also see from Figure 3.10 that not only will the two observers disagree
about which events are simultaneous, but in the case of C and D they will also
not even see the events occurring in the same order. Now this result is even
stranger than the relativity of simultaneity because it appears to overthrow the
fundamental notion of causality. Event X can only cause event Y if X occurs
before Y. Say that X is the event of me dropping a book and Y is the event of
the book hitting the floor. If an observer cannot agree with me which event
happened first we could end up with the bizarre situation of them seeing the
book hitting the floor before I've dropped it!
Fortunately, one of the consequences of special relativity is that, in an
observer's inertial frame, no information signal or material object can travel
faster than light. What that means is that although observers may disagree about
the order of two events, they will not disagree about the order of two events
that can be linked by a light signal.
(The ‘in an observer's inertial frame’ condition is crucial. In an expanding
universe, as we'll see when we look at cosmology, galaxies can move away
from us at the speed greater than that of light. However, this motion is not in
any observer's inertial frame as it is space itself that is expanding.)



Figure 3.11:
The lightcone.

In Figure 3.11 we have introduced the lightcone, formed by rotating the light
rays (the two dotted lines) passing through A around the ct axis (the y axis
shows the lightcone occupies two spatial dimensions: x and y). Assuming that
all four events still lie directly above the x axis, we now see that the only event
(out of B, C and D) that could be linked to A by a signal not moving faster than
the speed of light is C. This is because only C is ‘inside’ the lightcone. In other
words, because no signal can travel faster than light, the only event that could
be caused by A is C. Events, such as A and C, that lie within each other's
lightcones are said to be causally related. If two events are causally related in
one inertial frame they are causally related in all inertial frames.
If any event, such as B, is inside A's lightcone, it is possible to draw a ct' axis
through A (an event at the origin) and B. This means there is some inertial
frame where A and B occur at the same place but at different times.
Conversely, only a signal travelling faster that light (a line at less than 45° to
the x axis) could link events A to B, A to D and C to D. So these events are not
causally related. As there is no possible causal link between C and D, for any
frame of reference, my book will never hit the floor before it is dropped.
If any event, such as C, is outside A's lightcone, it is possible to draw an x'
axis through A (an event at the origin) and C. This means there is some inertial
frame where A and C occur at the same time but at different places.



Figure 3.12:
Past, present and future events.

The lightcone (see Figure 3.12) is a very useful concept in relativity, showing
in three dimensions (one of time, two of space) the location of those events that
may have a causal relationship with an event occurring now at the origin. The
sides of the lightcone are formed from light rays passing through the origin.
The cone below the origin, represents past events that may have caused the
event at the origin. The cone above the origin contains events that may have
been caused by the event at the origin. A plane passing through the origin and
the x and y axes represents the present.

Observers O and O' will describe the position of the four events A, B, C, D
shown in Figure 3.10 using different coordinate values. However, they will
agree on the spacetime separation between any of the two events, where the
separation or interval ∆s2 is given by

This theorem is known as the invariance of the interval and we'll prove it,
using the Lorentz transformations, in Section 3.4.9. We say the interval is



invariant because any two different inertial observers will calculate ∆s2 and
obtain the same answer.

Because the interval ∆s2 may be positive, negative or zero in value, it's best to
think of it as a single symbol rather than the square of something. We don't
really want to go down the road of taking square roots of negative numbers.

Problem 3.4.  Two events occur at  and 
 . What is their spacetime interval?

Δct = 5 - 3 = 2 m, Δx = 5 - 7 = -2 m.
The spacetime interval (3.3.6) is given by

Depending on the values of ct, x, y, z the spacetime separation ∆s2 may be
positive, negative or zero.

Figure 3.13:
Spacetime separations.

Figure 3.13 illustrates the three ways that an event A at the origin may be
related to other events in spacetime:



Time-like interval - where , describes events within A's
lightcone. These events are causally related to A, and there will be some
inertial frame where A and C occur at the same place but at different
times.
Space-like interval - where , describes events outside A's
lightcone. These events are not causally related to A, and there will be
some inertial frame where A and C occur at the same time but at different
places.
Light-like interval - where , describes events on A's lightcone.
These events are causally related to A, but they can only be linked to A by
a light signal.

Schutz [28] refers to the invariance of the interval as ‘probably the most
important theorem of special relativity.’
On our spacetime diagram, where we ignore the y and z axes, (3.3.6) reduces
to

this being the equation observers O and O' would use to describe the
separation of any of the four events A, B, C, D in Figure 3.10.

Now we've learned that the interval ∆s2 is invariant for any inertial observer,
we can see how to calibrate the x' and ct' axes of frame S' on a spacetime
diagram. Consider the following equations:

Both these define curves known as hyperbolae (singular - hyperbola) on the
spacetime diagram of observer O. These are shown in Figure 3.14.



Figure 3.14:
Invariant hyperbolae.

(A hyperbola is a type of conic section: one of the family of curves you get if
you slice through a cone. The other conic sections are the circle, ellipse and
parabola, which we met when drawing simple functions in Section 1.5.1.)
There is an obvious similarity between the two equations (3.3.8) and (3.3.9),
and the spacetime interval (3.3.7) . Recalling that space-
like intervals are where  and time-like intervals are where ,
we can see that if we let  we have defined a space-like interval,
and if we let  we have defined a time-like interval. What this means
is that each hyperbola shown in Figure 3.14 joins up all the events that have an
equal spacetime separation from an event at the origin. The two hyperbolae
passing through x = -a and x = a join all the events with a space-like interval
-a2; the hyperbolae passing through ct = -b and ct = b join up all the events
with a time-like interval b2.



Figure 3.15:
Calibrating the ct' and x' axes.

Figure 3.15 shows a frame S' moving with uniform relative motion with
respect to a frame S. We are trying to calibrate the ct' and x' axes of frame S'.
Consider the invariant hyperbola c2t2 - x2 = b2 passing through events A and B.
Event A is on the ct axis, and therefore x = 0. If we let event A occur at ct = 1,
then b2, the time-like separation of A from the origin, must also equal 1.
Because the hyperbola joins up every event with the same spacetime interval,
event B on the ct' axis (where x' = 0) must also occur when ct' = 1.

Similarly, the invariant hyperbola c2t2 - x2 = -a2, passing through events C and
D, connects events with the same space-like separation of -a2. If we let C
occur at x = 1, then ct = 0 and -a2 must equal -1. Event D, on the same
invariant hyperbola, must also occur at x' = 1 (where ct' = 0).
Notice that D appears to be further from the origin than C, even though they
have the same spacetime interval. Similarly, B and A have the same spacetime
separation from the origin even though B looks to be further away. These
confusions arise from the fact that we are trying to represent non-Euclidean
spacetime on a flat Euclidean surface. What do we mean by non-Euclidean?
We mean the distance between any two points is not given by the Euclidean
line element ds2 = dt2 + dx2, but by the non-Euclidean line element ds2 = dt2 -
dx2. The minus sign makes all the difference.



We can use invariant hyperbolae to illustrate two important physical
implications of the invariance of the interval: time dilation and length
contraction.

Figure 3.16:
Time dilation.

Figure 3.16 shows an invariant hyperbola passing through the ct axis at ct = 1,
and the ct' axis at ct' = 1. The horizontal dotted line passing through events A
and C is a line of simultaneity for observer O, meaning all events on that line
have the same time value of ct = 1. The sloping dotted line passing through B
and D (actually a tangent to the hyperbola at B) is a line of simultaneity for
observer O', meaning all events on that line have the same time value of ct' =
1. What do the two observers measure?

Observer O' measures event C occurring at a time ct' < 1 on his ct' axis.
However, observer O measures the same event occurring at time ct = 1 on
his ct axis. From the point of view of O, the clocks on frame S' belonging
to O' are running slow. The black arrow TD is the time dilation observed
by O.
Observer O measures event D occurring at a time ct < 1 on his ct axis.
However, observer O' measures the same event occurring at time ct = 1



on his ct' axis. From the point of view of O', the clocks on frame S
belonging to O are running slow. The black arrow TD' is the time dilation
observed by O'.

The remarkable result that both observers measure each other's clocks to be
running slow! This effect is known as time dilation.

Figure 3.17:
Length contraction.

Figure 3.17 shows an invariant hyperbola passing through the x axis at x = 1,
and the x' axis at x' = 1. The vertical dotted line passing through events B and
C is a line that has a constant value of x = 1 for observer O. The sloping dotted
line (actually a tangent to the hyperbola at D) passing through A and D is
parallel to the ct' axis, and therefore has a constant value of x' = 1 for observer
O'. What do the two observers measure?

Observer O' measures distance OD as x' = 1 on his x' axis. Point A will
also have the same value x' = 1 for O' because it is on the line AD.
However, observer O measures the same distance as OA < 1 on his x
axis. From the point of view of O, the distance OD = 1 has contracted to
OD < 1. The black arrow LC is the length contraction observed by O.



Observer O measures distance OC as x = 1 on his x axis. Point B will
also have the same value x = 1 for O because it is on the line BC.
However, observer O' measures the same distance as OB < 1 on his x'
axis. From the point of view of O', the distance OC = 1 has contracted to
OC < 1. The black arrow LC' is the length contraction observed by O'.

Both observers measure moving objects to shrink in the direction of motion, a
phenomenon known as length contraction or Lorentz contraction.
It's essential to realise that both time dilation and length contraction are
genuine, observable effects, not an optical illusion caused by faulty clocks,
dodgy rulers, or the time it takes light to travel from a moving event to an
observer. An astronaut in a rocket flying past the Earth near the speed of light
would see (if she didn't blink) the planet squashed along her direction of travel
(see Figure 3.18).

Figure 3.18:
A squashed Earth means you are moving close to the speed of light.

Of course, we don't notice these phenomena in our everyday world because we
don't travel at relative speeds anything near the speed of light. As Michio Kaku
[16] whimsically expresses it:

‘For everyday velocities, Newton's laws are perfectly fine. This is the
fundamental reason why it took over two hundred years to discover
the first correction to Newton's laws. But now imagine the speed of



light is only 20 miles per hour. If a car were to go down the street, it
might look compressed in the direction of motion, being squeezed like
an accordion down to perhaps 1 inch in length, for example, although
its height would remain the same. Because the passengers in the car
are compressed down to 1 inch, we might expect them to yell and
scream as their bones are crushed. In fact, the passengers see nothing
wrong, since everything inside the car, including the atoms in their
bodies, is squeezed as well.
As the car slows down to a stop, it would slowly expand from about 1
inch to about 10 feet, and the passengers would walk out as if nothing
happened. Who is really compressed? You or the car? According to
relativity, you cannot tell, since the concept of length has no absolute
meaning.’



Having gained some insight into the strange nature of spacetime from looking at
spacetime diagrams, we need to develop a precise algebraic formulation of
how coordinates change for different inertial observers. We do this using a set
of equations called the Lorentz transformations, first derived by the Dutch
physicist Hendrik Lorentz (1853-1929).
Let's reiterate the point of what we are now doing. An event t, x, y, z in
spacetime is described by an observer O sitting on an inertial frame S using his
coordinate system. Another observer O' in an inertial frame S' describes the
same event as t', x', y', z' using his coordinate system. The fundamental
question is: how are the coordinates t, x, y, z and t', x', y', z' related? As usual,
we are assuming that both frames are in standard configuration.
We've seen that if we assume the validity of the second postulate (the speed of
light c is constant for all inertial observers) we cannot use the Galilean
transformations to compare one set of coordinates to another. Instead we use
the Lorentz transformations. We'll derive the Lorentz transformations later (in
Section 3.4.1). For now we'll simply give them.

We start with the Lorentz factor, denoted by the Greek letter gamma γ, where

v is the relative velocity of the two frames and c is, as ever, the speed of light.
We can see by the structure of this equation that if v is equal to or greater than
c, we end up with the square root of zero or of a negative number. The
expression for γ then becomes meaningless, suggesting that c is the maximum
possible speed in nature. We are therefore only considering situations where v
is less than c.
Now we see that, providing v ≠ 0, the Lorentz factor will always be greater

than 1 (because v < c, and therefore ). For normal everyday
speeds it will be very, very close to 1 because . Figure 3.19 shows
how the Lorentz factor changes with velocity v.



Figure 3.19:
Lorentz factor as a function of velocity.



Some values of the Lorentz factor for various values of v/c are:

 

γ
0.000 1.000
0.100 1.005
0.300 1.048
0.500 1.155
0.700 1.400
0.900 2.294
0.990 7.089
0.999 22.366

Problem 3.5.  What is the value of γ for two inertial frames moving with a
relative velocity of 1000 m s-1?
Using (3.4.1)

This velocity, incidentally, is the assumed velocity of a rifle bullet we used
in Problem (3.3). As you can see, the Lorentz factor for two frames moving
with a relative velocity equal to the speed of a rifle bullet is still
exceedingly close to 1.

The Lorentz factor plugs into the Lorentz transformations to give the values of
the coordinates t', x', y', z'.
The Lorentz transformations are:



The inverse Lorentz transformations (to give the values of the coordinates t, x,
y, z) are:

Note that when  the Lorentz transformations approximate to the Galilean
transformations (3.2.1):

In Section 3.3.3 we drew the coordinates ct' and x' of a second inertial frame
S' on the spacetime diagram of frame S. A useful way of looking at the Lorentz
transformations is that they allow us to calibrate the axes of a second frame on
a spacetime diagram.

Problem 3.6.  An observer in frame S records an event X occurring at
coordinates (ct = 3m, x = 4m, y = 0m, z = 0m). Another observer O' in frame
S' is moving with velocity v = 3c/4 in the positive x direction. What are the
coordinates of event X as described by O'?
We first need to calculate the Lorentz factor (3.4.1), which equals



Using the Lorentz transformations (3.4.2) we can find the t', x', y', z'
coordinates. We are using ct units of time, so we need to multiply 

 by c to give

Recall that because we are using ct units of time, all coordinates are
expressed in units of distance, ie metres (m).

We can now derive the Lorentz transformations. Remember, we are trying to
find the relationship between the coordinates of an event in two inertial frames
S and S', with S' moving with a velocity v with respect to S. As usual, we are
assuming that both frames are in standard configuration (so we can ignore the y
and z coordinates and concentrate on the t and x coordinates.
We first assume that general equations relating the t and x coordinates in the S
frame to the t' and x' coordinates in the S' frame will be of the form

the dots represent higher powers of x and t. The  and  terms are unknown
constants.
Newton's first law holds in all inertial frames, meaning the frames cannot be
accelerating, and therefore we assume a linear relationship and omit the
squared and higher powered terms to give



We now need to find the unknown constants .
Because the frames are in standard configuration we know that when the
origins coincide t' = t = 0 and x' = x = 0. Therefore it must be that 
and we can now say

After time t, the origin of frame S' (given by x' = 0) will have moved a
distance x = vt in frame S. We can therefore rewrite (3.4.5) as

which can be rewritten as

Next we divide (3.4.5) by (3.4.4) and substitute the above value of  to give

After time t', the origin of frame S (given by x = 0) will be at x' = -vt' in frame
S'. We can therefore rewrite (3.4.6) as

where we can cancel t', t and v to find , which we can substitute into
(3.4.6) and then divide top and bottom of the right-hand side of (3.4.6) by t to
get



Now recall that one of the postulates of special relativity is that the speed of
light in a vacuum has the same value c in all inertial frames of reference. This
means that if a beam of light is emitted in the positive direction along the x axis
from the origin (ct = 0, x = 0) it will have a speed of c = x'/t' as well as c =
x/t, which we can substitute into (3.4.7) to get

which rearranges to

giving (because we know )

We can now rewrite (3.4.4)  to give

Looking at (3.4.5) , we recall that  and 
 and we can say

We now need to write (3.4.8) and (3.4.9) in terms of t and x. In effect this
means we have changed from being an observer on frame S looking at frame
S', to being an observer on frame S' looking at frame S. Frame S is therefore
now moving away from us along the negative x' axis so we need to replace v
by -v to get



We are almost there. We now substitute (3.4.10) and (3.4.11) into (3.4.9) to
get

Bingo! We have now shown that the constant  is the Lorentz factor (3.4.1) γ
and can substitute this into (3.4.8), (3.4.9), (3.4.10) and (3.4.11) to obtain the
Lorentz transformations (3.4.2) and inverse Lorentz transformations (3.4.3).

Another way of expressing the Lorentz transformations is in matrix form:

where the 4 × 4 matrix on the right-hand side is known as the Lorentz
transformation matrix. Recalling the rule for matrix multiplication (from
Section 1.12.1) we see that

and dividing by c gives



which is the Lorentz transformation for t'. Similarly, we find x', y' and z' by
multiplying the two right-hand side matrices. We'll be looking at
transformation matrices in greater detail when we discuss vectors and tensors
in general relativity.
We can write (3.4.12) in a more compact form, using index notation (see
Section 1.15) as

where  represents the column vector on the left-hand side of (3.4.12), 
is the Lorentz transformation matrix, and  is the column vector to the right
of that matrix.  is the Greek letter Lambda, by the way. The indices μ and ν
(the Greek letters mu and nu) take the values 0 to 3, so the components of 
are

and the components of  are

The components of the transformation matrix are

where the μ index refers to the  row and the ν index refers to  column.
So, for example, , , , etc.

The quantity  is known as the four-position (our first example of a four-
vector) as it describes an event or position in spacetime using the four
components ct, x, y, z.
Strictly speaking, the brackets in (3.4.13) mean we are referring to matrices.



(From now on we won't bother to use this clunky bracket notation for single
index vectors.) We can rewrite this equation in terms of the components of
these matrices as

using the Einstein summation convention (see Section 1.15). For example, if 
, then (3.4.14) becomes

We'll be making much use of this shorthand index notation from now on.

In Section 3.3.3 we used the constancy of the speed of light c to construct the
coordinate lines ct' and x' of a second inertial frame S' on the spacetime
diagram of frame S. We can now describe these axes algebraically using the
Lorentz transformations.
The Lorentz transformations for ct' is ((3.4.2) multiplied by c)

We want to find the equation of the x' axis, which is the line where ct' = 0.
Equation (3.4.15) then becomes

giving



which is the equation of the x' axis.
Similarly, the Lorentz transformation for x' is

We want to find the equation of the ct' axis, which is the line where x' = 0. We
can therefore write

giving

Multiplying by c gives

which is the equation of the ct' axis.
Thankfully, (3.4.16) and (3.4.17) are the same line equations as (3.3.4) and
(3.3.5) that we earlier showed geometrically.

Figure 3.20:
Finding the coordinate lines for a second observer using the Lorentz transformations.



Figure 3.20 shows the lines  and , which are the
equations of the x' and ct' axes of frame S'.

The Lorentz transformations (3.4.2) and (3.4.3) tell us how events (ie single
points in spacetime) transform from one frame to another. If we have two
events in spacetime there will be a difference between the corresponding time
and spatial coordinates. As we've already noted, these differences Δt, Δy, Δx,
Δz are called intervals.
For example, if we had two events (t, x) = (1, 3) and (t', x') = (5, 4) then the
time interval , and the spatial interval .
It is often useful to see how spacetime intervals transform. We derive the
interval transformation rules as follows.
For two events labelled 1 and 2, the Lorentz transformations (3.4.2) are

and

If we find  and  etc we get these transformation rules for
intervals



where , ,  and .
Similarly, using the inverse Lorentz transformations (3.4.3), we find

In Section 3.3.9, when examining the properties of invariant hyperbolae, we
mentioned the counter-intuitive phenomenon of time dilation. We now take a
closer look at time dilation using the Lorentz transformations.
Up to now we've been using coordinate time, which refers to the time
measured by a distant observer using that observer's own clock. As we've
seen, each inertial frame has its own coordinate time (the different time axes
on a spacetime diagram). Coordinate time varies from observer to observer.
But what about the time measured by an observer using their own clock? That
is an invariant measure of time known as proper time, which we can use to
calculate time dilation.



Figure 3.21:
Particle moving in the laboratory frame S.

Say we are in a laboratory investigating sub-atomic particles that are moving
with a constant velocity v in the positive x direction - see Figure 3.21. We
assume that the particle we are studying is short lived and is created at a point
in spacetime we can call event 1 before decaying at another point labelled
event 2.
We are the observers O in what we can refer to as the laboratory frame S. If, in
the laboratory frame, event 1 occurs at  and event 2 at  then we
measure the lifetime of the particle to be  (which we'll call ΔT)
and the distance the particle travels to be .
But there is another obvious frame of reference to consider and that is for an
observer O' in the frame S' moving with the particle. This is called the
particle's rest frame.
You can visualise this scenario by imagining you are driving a car, and there’s
a bag of shopping next to you on the passenger seat. The bag of shopping is
equivalent to the particle, you are the observer O', and the car is the bag's rest
frame S'. People standing by the road will see the bag of shopping zooming
past them at 70mph or whatever. But for you, the bag is stationary, quietly
keeping you company on your way back home from the supermarket.



Figure 3.22:
Particle in its rest frame S'.

Figure 3.22 shows the particle in its rest frame S'. Just as the bag of shopping
is stationary relative to you, the driver, so according to observer O' the
particle doesn't move spatially between being created and decaying. If, in the
rest frame, event 1 occurs at  and event 2 at  then observer O'
will measure the lifetime of the particle to be . As the particle
doesn't move in its rest frame .
In special relativity, proper time is the time measured by an observer in their
own rest frame. Think of ‘proper’ in terms of a time that is the ‘property’ of the
observer, not as a synonym for ‘correct’. Proper time is denoted by the Greek
letter tau . In our example, we could imagine an accurate clock strapped to the
particle. That's hard to visualise, so it's probably more helpful to think about
the particle's natural ‘internal clock’, the unknown mechanism that eventually
says to the particle (just as it says to all decrepit living things), ‘Time's up I'm
afraid.’ The time recorded by that internal clock is the particle's proper time.
For our particle, the proper time interval between event 1 and event 2 is
therefore given by

So now we have two measures of the particle's lifetime: the coordinate time 



 we measured using our instruments in the laboratory and,
the proper time  as measured by the particle's own
internal clock. We can relate the two using the interval transformation rules
(3.4.22)

Knowing , we obtain

or, in terms of proper time,

Another way of seeing what is going on here is that a process that takes a
certain proper time (  - measured by definition in its own rest frame) has a
longer duration (ΔT) measured by another observer moving relative to the rest
frame, ie moving clocks run slow.
This is the phenomenon of time dilation that we met earlier in Section 3.3.9.

Problem 3.7.  A muon lives, on average, for  in its own rest
frame. If a muon is travelling with speed v = 0.995c relative to an observer
on Earth, what is its lifetime as measured by that observer?
First, we calculate the Lorentz factor (3.4.1), which equals

Time dilation, given by (3.4.24) is



Problem 3.8.  An astronaut travelling in a rocket at 0.9c measures her heart
rate at 70 beats per minute. What will her heart rate be as measured by an
observer back on Earth?
The proper time interval  between heartbeats equals

Time dilation, given by (3.4.24), is

Figure 3.23 is a simplified version of the spacetime diagram we used in
Section 3.3.9, but where we now stipulate that frame S' is moving at 0.6c.



Figure 3.23:
Time dilation with frame S' moving at 0.6c.

The black arrow TD is the time dilation ΔT observed by O of event B = 1 as
measured by O' along his ct' axis. How do we calculate the length of the black
arrow TD?
Using (3.4.24), where the proper time of event B measured by O' is 
we find

We've already used spacetime diagrams to explore the phenomenon of length
contraction. We now take a closer look at length contraction using the Lorentz
transformations.



Figure 3.24:
Rod in a laboratory frame.

Figure 3.24 shows a rod moving lengthways along the x axis with velocity v in
an inertial laboratory frame S. The length L of the rod can be measured by
assuming that one end of the rod corresponds to an event 1 ( ), and the other
end to an event 2 ( ). In other words, we are measuring the distances x at
the same time ct, meaning . The length of the rod will then be given by



Figure 3.25:
Rod in its rest frame.

Now, just as we did for time dilation, consider the rod in a rest frame S',
where the rod is lying stationary along the x' axis, as shown in Figure 3.25. We
know that events 1 and 2 will still occur at the ends of the rod, but we don't
know the time these events occur. If, in the rest frame, event 1 occurs at 
and event 2 at  then observer O' will measure the length of the rod 
(known as the rod's proper length) to be

We don't know  and , therefore we don't know . But that
isn't a problem as we can use the interval transformation (3.4.21), which
doesn't include 

Substituting our expressions for L,  and  we obtain

or



Figure 3.26 shows the same spacetime diagram we used in Section 3.3.9, but
where we now stipulate that frame S' is moving at 0.6c.

Figure 3.26:
Length contraction with frame S' moving at 0.6c.

Recall that the black arrow LC is the length contraction L observed by O of a
length OD = 1 as measured by O' along his x' axis. How do we calculate the
length of the black arrow LC?

Using (3.4.27), where  we find

The same calculation would give us the same result for the length of the black
arrow LC' representing the length contraction L observed by O' of a length OC



= 1 measured by O along his x axis.

We saw when looking at spacetime diagrams that the simultaneity of events can
depend on the observer's reference frame. We can show this algebraically
using the interval transformation rule (3.4.20)

If two events occur simultaneously in frame S, then  and the above
equation becomes

As long as they don't occur at the same point (ie ) then we can say

where L is the distance Δx. This equation is an algebraic formulation of the
relativity of simultaneity. We can see that for very low speeds, where  ,
then .

Figure 3.27:
Velocity transformation.

Figure 3.27 shows two inertial frames in standard configuration with an object
moving with velocity  along the x axis of frame S. What velocity v' will the



object be moving according to an observer in frame S'?
We've met the Galilean answer to this earlier (3.2.2) in the context of me
driving a car at 70mph and being followed by another vehicle doing 80mph.
According to the Galilean transformations, the car behind me has a relative
velocity to my vehicle of 80 - 70 = 10mph. For the example shown in 3.27 the
Galilean answer would be

In the above car example, , v = 70mph and v' = 10mph.
Now let's tackle the problem using the Lorentz transformations.
We can use the two interval transformation rules 3.4.20

and 3.4.21

to describe two events that occur on the x axis of frame S. If we divide the
second equation by the first we obtain

Next we divide the top and bottom expressions on the right-hand side by Δt to
give

If we bring the two events on the x axis closer and closer together, eventually -
as Δx and Δt approach 0 - the quantities  and  become the
instantaneous velocities  and  of an object moving through the two events.
Equation (3.4.29) then becomes



What does this equation tell us?
First, if  and v are very small compared to the speed of light, then 

 and (3.4.30) reduces to the Galilean velocity (3.4.28) 
that we met at the start of this section.
Second, let's consider what happens if the object is now a light ray moving in
the opposite direction to frame S' (ie ) as shown in Figure 3.28. How
fast does an observer on frame S' measure the light ray?

Figure 3.28:
Light ray moving in opposite direction to frame S'.

Now, this is the sixty four thousand dollar question, because the second
postulate of special relativity states that the speed of light in vacuum has the
same value c = 3 × 108 m s-1 in all inertial frames of reference. So we know
that according to the second postulate the answer should be -c. But what does
the velocity transformation (3.4.30) give us?
We start by plugging in  to get

and juggle this around a bit to get



and then

and thus

which is exactly as required by the second postulate. And as expected, we can
also see that  is independent of the relative motion  of frames S and
S'.

Problem 3.9.  Two rockets A and B are moving in opposite directions, A at
0.75c, B at 0.85c with respect to an observer on Earth (see Figure 3.29).
How fast does an observer on rocket A measure B to be travelling?

Figure 3.29:
Two rockets.

We let frame S be Earth, frame S' be rocket A travelling at v = 0.75c, and 
 be the velocity of rocket B. We plug these values into (3.4.30)

to solve for , the velocity of B relative to A.



the minus sign indicates that rocket B is moving in the opposite direction to
rocket A.

We mentioned when looking at spacetime diagrams in Section 3.3.5 that the
separation of two events in spacetime is the same for all inertial observers.
We'll now prove that theorem.
In Section 1.14 we saw that the separation between two points  and 

 in three-dimensional Euclidean space is given by 1.14.4

where  and .
Recall from Section 1.14.1 that 1.14.4 actually defines the geometry of the
space, in the sense that if 1.14.4 is true for every interval, then the space must
be Euclidean. This means that we can describe the two points  and 

 using any other Cartesian coordinate system, for example

and we would find that

The distance between any two points in Euclidean space is the same
irrespective of the coordinate system used to describe the points.
Similarly, as we have seen, there is an invariant interval in four-dimensional
spacetime. It is similar to 1.14.4 except it includes both positive and negative
signs. The spacetime interval ∆s2 is given by (3.3.6)

Crucially, this spacetime separation is invariant under Lorentz transformations,
which means it is true for all inertial reference frames.



We can prove 3.3.6 using the interval transformation rules from Section 3.4.4

, ,  ,

, , , .
Meaning we only need to show that

where  and .
The algebra is more straightforward if we write the interval transformation
rules in terms of  and  to give

, ,  ,

, , , 
and we see that

because

We have therefore shown (eventually!) that



And, as noted, because in the standard configuration we are using, y = y' and z
= z' we have also shown that

meaning we have proven the invariance of the spacetime interval under Lorentz
transformations.
The importance of this proof is as follows. Say we have observers O and O'
travelling in inertial frames S and S' and measuring two events in spacetime.
The observers will not agree on the time and distance separating the events,
but they will agree on the spacetime separation of the events, ie they will agree
that

ie

Recall from Section 3.4.5 that proper time is the time measured by an observer
in their own rest frame, ie the time between two events as measured in a frame
where the events are in the same position. Equation (3.4.25)

relates the proper time  between two such events and the coordinate time
ΔT of another observer who is in uniform motion relative to the events. We
used the example of a short-lived particle, where proper time  is the
lifetime of the particle measured in its own rest frame, and the coordinate time
ΔT is the lifetime of the particle measured by an observer in a laboratory
frame.
The invariance of the interval gives us a means of expressing proper time in
terms of the spacetime interval ∆s2.
First, consider the particle's rest frame. The spacetime interval between any
two positions of the particle in such a frame is given by



But as proper time , by definition, is the time measured by an observer in
their own rest frame, we can say , and therefore

However, the spacetime separation of events is an invariant quantity, ie is
measured the same for all inertial observers. We can therefore say that
(3.4.31) tells us not only the proper time between events occurring at the same
position, but also applies to time separated events measured from any frame, ie

Problem 3.10.  You fancy a holiday on your favourite planet in the
Andromeda galaxy, but you don't want to age more than 1 year on the
journey there. If the planet is 2 million light-years away, approximately how
fast do you need to travel for you to age just 1 year on your trip?
We assume that there is an inertial frame all the way from the Earth to your
destination, ie special relativity applies. We'll call this frame the Earth
frame. Your spaceship is moving with constant velocity through the Earth
frame so (3.4.32) tells us your proper time, which we want to equal 1 year:

Now assume that c = 1 (so our final velocity will be expressed as a fraction
of c) to give

which we can rearrange to give



The  term is actually the square of your velocity measured by
an observer in the Earth frame, so we can say

We can now assume that your velocity is going to have to be very close to
the speed of light, ie v ≈ c = 1, so we say

Therefore, (3.4.33) becomes

or

As you are travelling very close to the speed of light, we assume that Δt
equals the time it takes a ray of light to make the trip as measured in the
Earth frame, ie we assume that  million light years. We want  to
equal 1, so (3.4.34) becomes

Meaning, you need a very fast spaceship to only age 1 year on the journey.



As we saw when looking at Euclidean geometry in Section 1.14.1, the metric
is a function that defines the distance between two points in a particular space.
Once we know the metric of a space, we know (theoretically, at least)
everything about the geometry of the space, which is why the metric is of
fundamental importance.
To refresh our memory, recall that the Euclidean metric (1.14.6) is

We've just met one form of the function that defines the distance between two
points in spacetime - it's the spacetime interval ∆s2 given by (3.3.6)

If we make the intervals Δs, Δt, Δx, Δy and Δz infinitesimally small, we end
up with coordinate differentials ds, dt, dx, dy, dz (we met these in Section
1.14.1), which we can use to define the Minkowski line element

Just as we did when defining the Euclidean metric, we use the metric
coefficients of the Minkowski line element to define the Minkowski metric,
which is denoted by  (η is the Greek letter eta).

Looking at 3.5.1, we can see there are 1 × c2dt2, -1 × dx2, -1 × dy2 and -1 × dz2

terms, so the metric coefficients are +1, -1, -1, -1, which we can arrange into a
4 × 4 matrix

This matrix simply tells us how to multiply the differentials dt, dx, dy, dz to
obtain the line element (3.5.1). We can see this by writing the matrix as a table



and seeing that dt × dt = 1, dx × dx = -1, dy × dy = -1, dz × dz = -1 with all the
other products of dt, dx, dy, dz equalling zero.
The indices μν after the η symbol identify the elements of the matrix by
reference to its rows and columns. The convention is that the metric
coefficients run from 0 to 3. So , ,  and , etc.
We can rewrite the Minkowski line element (3.5.1) more concisely using index
notation and the Einstein summation convention as

where  and  are the coordinate differentials dt, dx, dy, dz. Using similar
notation we can rewrite the spacetime interval ∆s2 (3.3.6) as

where  and  represent the four spacetime components ct, x, y, z.
In Section 3.4.10 we saw that proper time could be expressed in terms of the
spacetime separation

Using index notation we can therefore express proper time in terms of the
metric tensor as

and using the line element (3.5.3)



The configuration of the plus and minus signs in the metric tensor is called the
metric signature. In this book we use the metric signature + - - -. Some
textbooks use the opposite metric signature - + + +, meaning they would write
the Minkowski metric as

It doesn't matter which convention is used as long as you are consistent with
the signs when doing calculations.
All the above has assumed we are using Cartesian coordinates. Of course, we
can describe events in spacetime using any coordinate system, it's just that
Cartesian coordinates are often the most straightforward. In spherical
coordinates (see Section 1.9.3) the Minkowski line element is given by



We first need to mention a fundamental concept in physics known as the
conservation laws. Briefly, these state that certain properties of an isolated
physical system will be conserved no matter how that system changes. The
conservation of energy and the conservation of momentum are the two
conservation laws that we'll encounter.
A pendulum is a good example of the conservation of a form of energy known
as mechanical energy. When the ball of the pendulum is at its highest point it is
momentarily stationary and has maximum potential energy and zero kinetic
energy. When the ball is swinging through its lowest point, it has zero potential
energy and maximum kinetic energy. But at all points through the swing of the
pendulum the sum of the potential and kinetic energies is constant, ie the
mechanical energy is conserved.

A quantity is an invariant in special relativity if it has either the same value or
the same form in all inertial frames. Invariants with the ‘same value’ refer to
invariant physical quantities (we've seen several already) including:

The speed of light in a vacuum c.
The spacetime separation (3.3.6) .
The proper time (3.4.32) .

Another very useful invariant physical quantity is rest mass m, which is the
mass of an object or particle in its rest frame. Whenever we refer to mass from
now on we'll be referring to rest mass, also known as invariant or proper
mass.
The relationships between various invariant physical quantities can be
described using equations. If these equations are invariant (ie have the ‘same
form’ in all inertial frames) they are called form-invariant or covariant
(confusingly, this is not the same usage of covariant as in the ‘covariant
vectors’ we meet later). We know that the assumption that the laws of physics
must take the same form in all inertial frames (the principle of relativity) is one



of the postulates of special relativity. We'll now look at some form-invariant
laws of mechanics.

We saw in Section 1.11 how parametric equations using a single parameter
can be used to define a curve through space such as the path of a ball (we used
the example of a ball thrown over a cliff in Cartesian (x, y) coordinates using
the variable (t - time) as a parameter).
The path of a particle moving in ordinary three-dimensional Euclidean space
can be described using three functions of t (time), one for x, one for y and one
for z. The three functions x = f(t), y = f(t), z = f(t) are called parametric
equations and give a vector whose components represent the object’s spatial
velocity (or three-velocity) in the x, y, z directions. The spatial velocity of the

particle is a tangent vector to the path and has components . Spatial
velocities do not transform using the Lorentz transformations.
However, there is a type of velocity vector in special relativity that is form-
invariant, and this is called the four-velocity.
Consider the velocity of a particle moving along a world-line in four-
dimensional spacetime. As we have seen, a clock fastened to the particle will
measure the particle's proper time ( , which we know is invariant), and
therefore it makes sense to use  as the parameter along the path. The four-
velocity of a particle is the rate of change of its four-position with respect to
proper time. As with three-velocity, the four-velocity is a tangent vector to the
particle's world-line and is defined as

Four-velocity, having a time component as well as three spatial components, is
a type of four-vector, a crucial form-invariant quantity in special relativity.
We'll be looking at four-vectors in much greater detail later.
To determine the components of the four-velocity recall that (3.4.24) gives us
coordinate time ΔT in relation to proper time 



As we are using ct units of time we can rewrite this as

Taking the derivative with respect to proper time gives

We can use the chain rule (1.10.4) to find the spatial components of 

 is the particle's ordinary spatial velocity, which is a vector v with

components . The particle's four-velocity is
therefore given by

In special relativity the scalar product of two four-vectors  and  is defined
using the Minkowski metric as

and which is invariant under Lorentz transformations.
So the scalar product of the four-velocity is given by

But as



we find that

which is obviously an invariant.

In Newtonian mechanics, the momentum (which we'll call ) of a
particle equals the particle's mass m multiplied by its ordinary spatial velocity
v:

with spatial velocity having the components . Providing no external
forces act on a Newtonian system (where speeds are much less than the speed
of light) momentum is conserved. For example, if a particle of mass 
moving with velocity  collides with a particle of mass  moving with
velocity , and after the collision the particle of mass  moves with
velocity  and the particle of mass  moves with velocity  then

In special relativity velocities transform in complicated ways between
different inertial frames, and therefore we can't use the Newtonian
conservation of momentum law (3.6.5). Instead we need to introduce the notion
of relativistic momentum. To do this we use proper time  instead of
coordinate time t and define relativistic momentum p as

Because (3.4.25) gives us coordinate time ΔT in relation to proper time 

we can express p in terms of coordinate time as



which will happily transform between different inertial frames using the
Lorentz transformations. Importantly, this means that unlike Newtonian
momentum relativistic momentum is conserved in all inertial frames. Notice
that at slow speeds   and the relativistic momentum
p approximates to the Newtonian momentum .

The kinetic energy of a particle is the energy it possesses due to its motion. In
Newtonian mechanics, the kinetic energy ( ) of a particle of mass
m moving with speed v is defined as the work done to accelerate the particle
from rest to that speed v. Work done W equals force F multiplied by the
distance through which the force acts, ie . Therefore, the work
done

Newton's second law relates force to mass and acceleration

so we can say that work done is given by

Acceleration is the rate of change of velocity with respect to time  and we
can substitute this into the above equation to give

and using the chain rule  we can write



where  is the velocity of the particle at distance , and  is the velocity at
distance . We then integrate to find

and because we define kinetic energy as the work done to accelerate the
particle from rest to its final velocity v, we know that  and that the
kinetic energy is equal to

Because Newtonian momentum p = mv, we can rewrite (3.6.8) as

where (implied but not stated)  and  are the particle's initial momentum (=
0) and final momentum . But this now gives us a means to find the
relativistic kinetic energy  by substituting relativistic momentum
(3.6.7) instead of Newtonian momentum in (3.6.10)

We can evaluate this integral by first using integration by parts (1.10.17)

We then need to use integration by substitution (1.10.16) on the second term.
First, factor out the constant m to give

Let  



The integral of  is , giving

Substitute back for 

which means we can now write

Next, multiply top and bottom of the right-hand term by  to get
everything over a common denominator

Let , and we know that the particle is accelerating from rest, therefore 
, so we finally arrive at the equation for relativistic kinetic energy of a

particle of mass m moving with speed v:



where γ is the Lorentz factor (3.4.1).
This looks very different to (3.6.9), the equation for Newtonian kinetic energy.
However, using Taylor's theorem (Section 1.10.3) it is possible to expand the
Lorentz factor

on to infinity. Therefore

In Newtonian systems we can assume that , and therefore ignore the

squares and higher terms of  giving

So at slow speeds the relativistic kinetic energy approximates to the
Newtonian kinetic energy.

If we rearrange the equation for relativistic kinetic energy (3.6.11) we can
write



and now we have an equation that gives the total relativistic energy E of a
particle in an inertial frame. Total relativistic energy consists of the particle's
relativistic kinetic energy plus the second term mc2, which is the particle's
mass energy . It can be shown theoretically and has been verified
experimentally that, providing no external forces act, total relativistic energy is
conserved in all inertial frames, irrespective of whether mass or kinetic energy
are conserved. In high-speed particle collisions, for example, mass, kinetic
energy, even the total number of particles may not be conserved, but the total
relativistic energy of the system will be.

If the particle is at rest (ie v = 0) the Lorentz factor  reduces to 1
and

This is Einstein's famous mass-energy equation, which states that mass and
energy are in some sense equivalent, and that even when at rest a particle will
still have energy due to its mass. Obviously, c2 is a big number, so a small
amount of mass yields a large amount of energy.

Problem 3.11.  Calculate the increase in mass if two 7 kg lumps of clay,
each travelling at 1000mph, collide. Assume an inelastic head-on collision.
Total relativistic energy is given by (3.6.12)

From the conservation of total relativistic energy .

v = 1000 miles per hour = 447 m s-1



.
An inelastic head-on collision means the velocity after impact is zero.
Let the mass of each total lump of clay before collision be m, and mass of
the combined lumps after collision be M, then

Therefore, the increase in mass

An exceedingly small amount!

If we multiply the four-velocity (3.6.1) by the rest mass m of a particle we get
another four-vector that goes by the name of four-momentum.

If we recall the definition of the four-velocity (3.6.2)

and then multiply by m we get

But recall (3.6.12)  is the equation for total relativistic energy, and
from (3.6.7)  is the equation for relativistic momentum. We can then



see that  is the total relativistic energy divided by the speed of light, and
can rewrite (3.6.15) as

Four-momentum provides a complete description of the total relativistic
energy (its time component) and relativistic momentum (its spatial
components) of a particle. Schutz [28] summarises this by saying the four-
momentum of a particle ‘is a vector where the components in some frame give
the particle energy and momentum relative to that frame.’ As we'll see later,
the all important energy-momentum tensor, the right-hand side of the Einstein
field equations and the source of spacetime curvature, is actually a measure of
the rate of flow per unit area of four-momentum.

Newton's second law of motion (2.4.3) says that the force acting on a body
equals the body's rate of change of momentum

We can extend this to special relativity and define the four-force as the rate of
change of four-momentum

which we use in Section 7.4 to show how free particles move in curved
spacetime.

The scalar product of the four-velocity (3.6.4) is given by

So, as four-momentum (3.6.14) is given by , we can write



But the scalar product of four-momentum  can also be found
directly using (3.6.3)

Combining these two expressions for the scalar product of four-momentum we
get

which rearranges to give

For a particle in its rest frame (ie its momentum is zero), this reduces to

which as we saw earlier (3.6.13) when looking at total relativistic energy is
the famous mass-energy equation. Light (and other electromagnetic radiation)
can be thought of as a stream of photons, a type of elementary particle. A
photon, which has zero ‘rest mass’, does have energy and momentum. So if we
let m = 0 in (3.6.18) we get

which describes the energy-momentum relation for a photon.

Problem 3.12.  The energy of a photon is given by , where h =
6.63 × 10-34 J s is Planck's constant, and λ (the Greek letter lambda) is the
wavelength. A photon of blue light has a wavelength of 400 × 10-9 m. What
is its momentum?

 and  therefore





If only I had the theorems! Then I should find the proofs easily
enough.

BERNHARD RIEMANN



Newtonian gravity is incompatible with special relativity because, in Newton's
theory, the gravitational force acts instantaneously across any distance. Special
relativity does not allow this, instead imposing a natural speed limit - the
speed of light. In order to reconcile relativity and gravity, we now need to
move from the (flat) Minkowski space of special relativity to the curved
spacetime of general relativity. Einstein's great insights in formulating his
theory of general relativity were that:

matter and energy curve spacetime, and
spacetime can be modelled using a mathematical structure known as a
pseudo-Riemannian manifold.

Gravity in general relativity therefore ceases to be regarded as a force, but
rather as a property of the geometry of spacetime.
To get across this idea of the geometry of a curved space, Misner et al [23] use
the example of an ant crawling over the skin of an apple. Determined to walk
in as straight a line as possible, the ant carefully measures all its paces to be of
equal length. The ant, if it ventures too close to the top of the apple, even
though it is trying to walk in a straight line, will find itself being drawn into the
dimple where the stalk is. An imaginative ant might say there's a force
attracting it towards the base of the stalk. There isn't a force of course. The
ant's path is determined not by a force, but by the curvature - the geometry - of
the surface of the apple. Misner et al imagine a physics student watching the
ant's progress, then taking a knife, carefully removing the track of apple peel
along which the ant has walked and laying it on the face of his book. After
observing that the track ‘ran as straight as a laser beam ... No more economical
path could the ant have taken to cover the 10 cm from start to end of that strip
of skin’, the student reflects that the ant's path forms ‘a beautiful geodesic’.
The (flat) Minkowski space of special relativity is to be found in deep space,
far from the influence of any gravitational fields. In flat spacetime free
particles move in straight lines. In the vicinity of massive (in the general sense
of something with mass) objects - planets or stars for example - spacetime is
curved. Free particles, including light, will not then move in straight lines, but
will instead move along the ‘straightest possible’ paths dictated by the



geometry of curved spacetime, just as the ant follows the straightest possible
path dictated by the surface of the apple. These paths are known as geodesics,
which we can loosely define as the straightest or shortest distance between
two points in a curved space. Geodesics on the surface of a sphere, for
example, are parts of a great circle, ie a circle with the same diameter as the
sphere and whose centre is the centre point of the sphere, the equator for
example, or any line of longitude. If the mathematical structure of spacetime is
known - ie how it curves - then the geodesics of moving particles (and planets
and stars) can be calculated and tested against observation.
In order to describe curved spaces mathematically we use the concept of a
manifold, loosely defined as a smoothly curved space that is locally flat. A
circle, for example, is a one-dimensional manifold: make it big enough and a
small segment looks like a straight line. The surface of a sphere is a two-
dimensional manifold: small pieces of it look flat. Spacetime, a four-
dimensional manifold, is also locally flat, and in small enough regions reduces
to the spacetime of special relativity.
We say a manifold is n-dimensional, because each point on the manifold can
be specified by n dimensions or coordinates. The line and circle are one-
dimensional manifolds: any point on them can be described using just one
coordinate (distance along the line for the line, polar angle for the circle, for
example). The plane is a two-dimensional manifold, as is the surface of a
sphere: any point on the surface can be described using the spherical polar
coordinates θ and ϕ. Spacetime, as we have seen, is four-dimensional: one
time coordinate plus three spatial coordinates are needed to specify a point in
spacetime.
Not all spatial structures are manifolds. A one-dimensional line emerging from
a plane isn't a manifold, nor are two cones apex to apex on top of each other.
Because bits of these objects are not locally Euclidean they are not classified
as manifolds.



In order to be able to model the spacetime of general relativity, a manifold
must also have these two additional properties:

It must be differentiable. This will become abundantly clear when we
look at the transformation properties of tensors, which involve hoards of
partial derivatives.
It must be endowed with a symmetric metric tensor (denoted by 

) which, as in special relativity, defines the separation of
nearby points on the manifold. The form of the metric will change through
the manifold according to how spacetime in that region curves. In deep
space, for example, far from the influence of matter and energy, spacetime
will approximate the Minkowski space of special relativity and 

. Near a non-rotating black hole,  will approximate the
Schwarzschild metric (see Chapter 9 for details). The metric completely
defines the curvature of a manifold and is therefore of fundamental
importance in relativity.

A manifold that is differentiable and possesses a symmetric metric tensor is
known as a Riemannian manifold, after the German mathematician Bernhard
Riemann (Figure 4.1).

Figure 4.1:



Bernhard Riemann (1826 – 1866).

Riemann discovered that the metric contains all the information we need to
describe the curvature of the manifold. If we know the metric, we know the
space. That is why the metric is crucial to general relativity.
An n-dimensional Riemannian manifold has a line element given by:

where  is the metric and  and  are the coordinate differentials we met
in Section 1.14.1. Equation 4.2.1 may look complicated, but all it means is that
the metric  determines the coefficients of the line element. We saw a simple
example of this in Section 1.14.1 when we met the three-dimensional
Euclidean line element (1.14.5) in Cartesian coordinates

where the Euclidean metric (1.14.6) is

and tells us there is 1 × dx2, 1 × dy2 and 1 × dz2 in the above Euclidean line
element.
And we've also seen the Minkowski line element (3.5.1) in Cartesian
coordinates given by

where the Minkowski metric (3.5.2) is

which tells us there is 1 × c2dt2, -1 × dx2, -1 × dy2 and -1 × dz2 in the above
Minkowski line element. Recall that the symbol  refers specifically to the
Minkowski metric.



Incidentally, we know these metrics describe flat space because their metric
coefficients are ±1. However, if we were to choose a weird coordinate system
we might well end up with a complicated metric whose coefficients do not
equal ±1. How do we then tell whether that metric defines a flat space? The
answer (to get ahead of ourselves a little, we'll be discussing this in the next
section) is the Riemann curvature tensor (6.6.1), the absolute acid test for
determining whether a manifold is flat or curved. If the Riemann curvature
tensor is zero for all points in a particular space then that space is flat. If the
tensor does not equal zero at a point, then the space is curved at that point.
When we think of a circle or the surface of a sphere we consider them as
existing in our everyday Euclidean space. We can draw a circle on a piece of
graph paper, or place a sphere (a ball for example) on a table. We might then
compare the curvature of the circle to the straight lines drawn on the graph
paper, or compare the roundness of the sphere to the flatness of the table. In
mathematical terms we say the circle and sphere are exhibiting extrinsic
curvature because their curvature is seen in relation to an external space of
higher dimension - two dimensions for the paper, three for the table. However,
not all manifolds can be thought of as being embedded in an external space in
this manner. Often we need to examine a manifold on its own terms, so to
speak, without reference to a space of higher dimension. This type of curvature
is known as intrinsic curvature. We understand intrinsically curved manifolds
by examining them directly, using the metric and mathematical tools derived
from the metric to analyse their internal structure. In the context of general
relativity, we are only interested in the intrinsic curvature of spacetime.
Place a cylinder of rolled up paper on a table and we can see it has extrinsic
curvature compared to the flat surface of the table. However, intrinsically the
cylinder is flat - the sum of the internal angles of a triangle drawn on its
surface equal 180°. This isn't surprising, as we could unroll our cylinder and
end up with a flat sheet of paper.
Like the cylinder, our ball on the table has an extrinsically curved surface.
However, the ball's surface is also intrinsically curved. On a sphere lines of
longitude start off parallel on the equator but meet at the poles. Also, the
internal angles of a triangle on a sphere can all equal 90°. Unlike a cylinder,
the surface of a sphere cannot be flattened without distortion, as mapmakers
find when they try to project the surface of the Earth onto a flat map.



At the start of this section we said that spacetime could be modelled using a
pseudo-Riemannian manifold. These structures differ from the Riemannian
manifolds we have discussed so far in that they allow dl2 (in (4.2.1)) to be
positive, zero or negative, as is the case with spacetime. The distinction,
though factually correct, is not relevant to our needs, and we'll carry on loosely
using the terms ‘space’, ‘curved space’, ‘Riemannian manifold’ or ‘manifold’
from now on.



One of the simplest two-dimensional manifolds is the surface of a sphere.
In Section 1.14.1 we met the line element (1.14.10) and metric (1.14.11) that
describes Euclidean three-dimensional space using spherical coordinates. The
line element is

If we set the polar coordinate r to be some constant R we lose the dr term
(because r is now a constant) and have defined the line element for the surface
of a sphere

which describes a two-dimensional surface using the two polar coordinates (θ,
ϕ). By looking at (4.3.1), we can see that the metric for this surface, using
coordinates (θ, ϕ), is

where ,  and  for .
The inverse metric is

For the unit radius sphere (R = 1) these metrics become

and



Problem 4.1.  Find the circumference C of a circle generated by sweeping a
point at constant angle θ around the ‘north pole’ on the surface of a sphere
radius R (see Figure 4.2).
Because θ is constant,  and 1.14.10 becomes

which is the line element that gives the distance between infinitesimally
close points on the circumference C. Taking the square root of both sides
gives

Figure 4.2:
Circle on a sphere.

As we sweep out our circle around the ‘north pole’ ϕ changes from 0 to 2π.
We integrate 4.3.6 using these limits:



which is different to the usual equation ( ) for the circumference of
a circle in two-dimensional Euclidean space. The difference, of course, is
because we are working on the curved surface of a sphere, not on a plane.
In Section 6.5 we'll be looking at geodesics (‘straightest’ line) on the
surface of the sphere.

The spacetime manifold is the stage on which the theatre of relativity is played
out. We'll now look at the main actors who perform on that stage. These are the
mathematical objects known as scalars, contravariant vectors, one-forms and
tensors.



Someone told me that each equation I included in the book would
halve the sales.

STEPHEN HAWKING



The branch of mathematics that is concerned with manifolds and the objects
that live on manifolds is called differential geometry. In this chapter we look
at four of those objects - scalars, contravariant vectors, one-forms (also known
as covariant vectors) and tensors. (Actually, scalars, contravariant vectors and
one-forms are all different types of tensor, but we'll start off by treating them
as separate entities.)
Most authors seem to prefer the term ‘one-form’ to ‘covariant vector’, so that's
what we'll be using from now on. Also, many authors refer to contravariant
vectors simply as vectors, as I've done in the title of this chapter. In fact, we're
going to be even sloppier than that and sometimes use ‘vector’ as a generic
term for both contravariant vectors and one-forms. Hopefully, the context
should make it clear when we're referring specifically to contravariant vectors
and when we're referring to both contravariant vectors and one-forms. Recall
that contravariant vectors have an upper index (eg ), and one-forms have a
lower index (eg ). Tensors can have none, one or more indices.
Later on, we'll meet the rules of tensor algebra, including operations such as
scaling, where a tensor  is multiplied by a scalar S to give a new tensor 

, and contraction, where a tensor  is summed over an upper and a
lower index to give another tensor . Differential geometry is the theoretical
foundation to these rules. However, just as you don't need to be an automotive
engineer in order to drive a car, you don't have to know all the underlying
mathematics if you want to manipulate tensors - just a working knowledge of
the rules of tensor manipulation, which you can more or less learn by rote. So,
much of this section is ‘under the bonnet’ detail - useful but not essential.
However, it should give you a deeper understanding of what is going on when
we actually start to use tensors in general relativity.
In Section 1.13 we looked at simple vectors representing quantities with
magnitude and direction, such as velocity. We can physically draw these
vectors as directed line segments - a line with an arrow at one end pointing in
the direction of the vector's direction. Using Cartesian coordinates, we saw
that a vector V consists of the product of its components  , and a set
of basis vectors  (recall the little hat means each basis vector is one
unit long) pointing along the x, y, z axes respectively (another way of saying



this is that the basis vectors are tangent to the coordinate axes) given by
(1.13.1)

Because these axes are nice simple straight lines, there's no need for the basis
vectors to change direction. This is why Cartesian vectors are so easy to use,
because the basis vectors don't change. Bases (plural of basis) of this sort,
which are constant, are known as non-coordinate bases, ie they don't change
with the coordinates.
Spacetime in special relativity, being flat, can also be described using a
Cartesian coordinate system. We've seen several examples of four-vectors in
special relativity including:

The four-position .
The four-velocity .
The four-momentum .
The four-force .

Unfortunately, the vectors used in general relativity are not directed line
segments stretching from one point to another in space. Instead, each vector is
located at a single point in spacetime. In fact, each point in spacetime is itself a
vector space and home to an infinite number of vectors. The vector space will
be both a tangent space (home to those objects known as contravariant
vectors), and a cotangent space (home to those objects known as one-forms).
Contravariant vectors and one-forms should be thought of as different
representations of the same geometrical object at a point in spacetime. Details
to follow, but for a contravariant vector, think of a tangent vector to a
parameterised curve; for a one-form, think of a gradient of a scalar field. We'll
see later how the metric tensor is used to convert a vector to its corresponding
one-form and vice versa. The reason that the simple vectors in Section 1.13
and the more abstract vectors we are now talking about are both loosely
referred to as ‘vectors’ is that they both obey the rules that define a vector
space. In brief, a vector space consists of a group of objects (call the group X,
for example) that can be added together and multiplied by a scalar, and the
result will be another member of the group X.
Up until now, our indices have referred to particular coordinate systems: x, y,



z for Cartesian, r, θ, ϕ for spherical, etc. Differential geometry demands a
more abstract use of indices, where they can refer to any permissible
coordinate system. Similarly, in general relativity, because we are dealing
with curved spacetime, there are no preferred coordinate systems and we need
to be able to transform from any one coordinate system to any other (the
terminology is that we are using general coordinates). So if  are the old
coordinates and  are the new coordinates (μ = 0, 1, 2, 3), then any functions
linking  and  are permissible as long as (a) the functions are
differentiable, and (b) each point in spacetime is uniquely labelled by a set of
four numbers. We move freely between different coordinate systems by using
the transformation properties (involving partial derivatives of the coordinate
functions) of contravariant vectors and one-forms.
Contravariant and one-form basis vectors are also defined in terms of
derivatives of the coordinate functions. We don't need to go into details, but
can just note that contravariant basis vectors are tangent to the coordinate
curves (along which only one of the coordinates changes), and one-form basis
vectors are gradients of the coordinate surfaces (on which only one of the
coordinates remains constant). Bases of this sort (unlike the constant non-
coordinate bases of Cartesian coordinates) that change with the coordinates,
are known as coordinate bases. These are the bases we'll be implicitly using
from now on.
However (thankfully!), the transformation properties of the components of
vectors and one-forms (and tensors in general) are basis-independent, meaning
we usually don't need to worry too much about basis vectors and basis one-
forms. Crucially, basis-independence means that if a tensor equation is true in
one coordinate system it will be true in all coordinate systems. Because we
tend to refer only to the components of vectors, one-forms, etc, we'll continue
our habit of loosely referring to a ‘vector  ’ or a ‘one-form  ’ when,
strictly speaking, this notation refers to the components of those objects.
Though not totally accurate, this terminology is good enough for our purposes.
Although, in the context of general relativity, we can't meaningfully talk about
directed line segments stretching from one point to another in space, we can
define an infinitesimal displacement vector in spacetime:

The power of the mathematics that follows is that it allows us to manipulate 



and end up with physical measurable quantities (time, distance, velocity,
momentum, etc).
Any contravariant vector or one-form is the product of its components and a
basis of some kind. Contravariant four-vectors are often represented by an
arrow over the letter (eg ) so we can say, using the Einstein summation
convention, that

where  and  are respectively the components and basis vectors of .
One-forms are often represented by a tilde over the letter (eg ) so we can
say, again using the Einstein summation convention, that

where  and  are respectively the components and basis one-forms of .
A contravariant vector acts linearly on a one-form (and vice versa) to give a
scalar (a real number). This works because the relationship between the basis
vectors and basis one-forms is defined (using the Kronecker delta) by the
equations

Therefore, for any one-form and vector

which is a scalar.
Before looking at the transformation properties of contravariant vectors and
one-forms we'll see what happens to scalar fields when we change from one
coordinate system to another.



In Section 1.13.2 we looked at a scalar field T, where the function T(x, y, z) is
the air temperature in a room described by Cartesian coordinates x, y, z. Say
we now want to express temperature T in terms of a different coordinate
system, spherical polar coordinates for example, with a function .
How do we do this, and how does T change in this new coordinate system?
We've seen how to express Cartesian coordinates in terms of spherical
coordinates using (1.9.2)
x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ.
And it wouldn't be too difficult to rearrange these equations to express
spherical coordinates in terms of Cartesian coordinates, so that , 

 and . However, we don't need to do this as we
know that temperature, being a scalar quantity, is an invariant, it doesn't change
with a change in coordinate system: if the temperature of the door knob in my
room is 15°C when I'm describing the room using Cartesian coordinates, it
will be the same temperature if I use spherical or any other coordinate system.
If only everything in life was so simple. We can therefore say

Note, although the temperature T of the door knob is the same in any coordinate
system, the actual values of the coordinates r, θ, ϕ or x, y, z describing the door
knob's location will of course be different. Our conclusion is simple:

Scalars do not change during a coordinate transformation.

Next we look at the transformation properties of contravariant vectors and one-
forms, then try to explain, term by term, what the definitions actually mean.



We'll start with the transformation equations.

A contravariant vector is an object with one upper index (also called a
superscript or upstairs index) and with components that transform under
coordinate transformations as follows:

We have here re-introduced the convention first met in Section 3.2.6 that when
discussing coordinate transformations the new coordinates are denoted by
primed indices (eg ) and the old coordinates by unprimed indices (eg ).

A one-form is an object with one lower (or subscript or downstairs) index and
with components that transform under coordinate transformations as follows:

Both equations are describing coordinate transformations. (5.3.1) tells us how
to carry out a coordinate transformation on a contravariant vector, (5.3.2) tells
us how to carry out a coordinate transformation on a one-form.

 are the components of the contravariant vector we start with,
expressed in the  coordinate system.

 are the components of the contravariant vector we finish up with,
expressed in the new  coordinate system.

 are the components of the one-form we start with, expressed in the 
coordinate system.

 are the components of the one-form we finish up with, expressed in



the new  coordinate system.

The terms  and  describe how the old and new coordinate systems
relate to each other. Specifically, we are taking partial derivatives of the
functions linking the coordinates in one system to the coordinates in another
system. As we'll see shortly, these terms represent a transformation matrix.
We multiply the vector in the old  coordinate system by the correct
transformation matrix to get the vector in the new  coordinate system.

We'll now look at specific examples of one-forms and contravariant vectors.

Staying with our earlier ‘room’ example, we'll now consider the gradient of
the scalar field T (1.13.6)

at a particular point in the room.

We can now state that the gradient  of a scalar field is an example of a
one-form.

Let's ask ourselves what would happen if we wanted to convert this
gradient/one-form to spherical polar coordinates? In that case we would need
to change T(x, y, z) into a different function , which gives the
temperature in terms of spherical polar coordinates r, θ, ϕ. These two
functions would not be the same, and therefore we can say

where  are the components of  in spherical coordinates.
Using the primed/unprimed convention for new/original coordinate systems,

we'll call the gradient  with  components , and the new



gradient with  components .
(5.3.2) tells us that the definition of a one-form is given by

which we can rewrite for our particular one-form as

As mentioned above, the term  represents a transformation matrix, in this
case a 3 × 3 transformation matrix because there are three  coordinates x, y, z
and three α coordinates r, θ, ϕ.
So, we can represent our mysterious transformation matrix as

If we knew the elements of this matrix we could multiply it by the one-form 
to find the new one-form .
As we'll shortly see, we find the elements of the transformation matrix by
taking partial derivatives of the functions linking the coordinates in one system

in terms of the coordinates in another system. So the elements of  are the
partial derivatives of  with respect to .

For example, the element  would be calculated as follows:

where r, θ, ϕ are all functions of x, y, z. In a similar fashion we would

calculate the other elements  and . Don't worry about the details of how
we do this for the moment, just try to understand that in order to transform the
components of a one-form from one coordinate system to another we need a
transformation matrix.



We now assume that the air at each point in the room is moving with some
velocity V, where V is a function V(x, y, z) of the three Cartesian coordinates x,
y, z.
As we saw in Section 3.6.3 we can use time t to parameterise the path of a
moving particle and thus obtain a vector whose components represent the
object’s spatial velocity (or three-velocity) in the x, y, z directions. The
particle's spatial velocity is then a tangent vector to the path and has

components . We'll call this vector .

We can now state that the velocity vector  is an example of a
contravariant vector.

Again we'll assume that we want to transform the vector  from Cartesian to
spherical polar coordinates, where we'll call it . (5.3.1) tells us that the
definition of a contravariant vector is given by

Again the term  represents a 3 × 3 transformation matrix, which we need to

multiply by  in order to calculate . Notice, however, that  is the

inverse of , and therefore the transformation matrix  will be the inverse

of the one-form transformation matrix .
As with one-forms, we find the elements of the transformation matrix by taking
partial derivatives of the functions linking the coordinates in one system in
terms of the coordinates in another system.

As an example of how the components  of  transform (details to
follow), we note that the first component of  would be calculated as
follows:

where r, θ, ϕ are all functions of x, y, z. In a similar fashion we would
calculate the other components  and .



Drawing on the above examples, and in the context of four-dimensional
spacetime, we can now give definitions of contravariant vectors and one-
forms.

A contravariant vector is a tangent vector to a parameterised curve in
spacetime.
If the parameter of the curve is λ, and using a coordinate system  the tangent
vector is given by

A relativistic example of such a curve might be the world-line of a particle
moving through spacetime, and an example of a contravariant vector on that
curve could then be the particle's four-velocity (3.6.1) 

. If, for convenience, we use c = 1 units, the
four-velocity vector becomes

where the four-velocity is defined as the rate of change of the particle's four-
position (t, x, y, z) with respect to proper time , which is the parameter along
the curve.

Consider a scalar field, where ϕ is a scalar function of  (β = 0, 1, 2, 3 = t, x,
y, z, for example) and is invariant under Lorentz transformations (meaning that
for each point in spacetime it has the same value in all inertial frames). The
gradient of the scalar field in the coordinate system  is given by

The object  is a one-form with components



We are now going to look more closely at how transformation matrices are
constructed. Don't worry, YOU DON'T NEED TO DO ANY OF THESE
CALCULATIONS WHEN MANIPULATING TENSORS - the maths is just the
reason why the rules of tensor algebra actually work.

Say we want to use a different coordinate system to describe the four-velocity
vector . The vector itself won't change, but its components 
will. We therefore need to determine how the components change under a
coordinate transformation.
Let's call the original coordinate system  (where β = 0, 1, 2, 3 = t, x, y, z)
and the new coordinate system  (where ɑ = 0, 1, 2, 3 = t, r, θ, ϕ, for
example). Using index notation, we therefore rename the original components

of  as  and rename this vector , and the new components

of  as  and rename this vector . Don't forget that  and 
 are the same vector, but with different components. The parameter proper

time , won't change under a coordinate transformation as it doesn't depend on
the coordinates, ie it's an invariant. We assume (otherwise none of this works!)
that the four  coordinates are nice well behaved functions of the four 
coordinates, and therefore we can take partial derivatives and use the total
derivative (1.10.11) to say

But the  terms (β = 0, 1, 2, 3) are simply the components of the vector 
expressed in the original x coordinate system. We can therefore say

Similarly, for the other three components  of 



We can write all this more succinctly in index notation as

or even better, seeing that

we can say

which should be familiar as it's the coordinate transformation rule (5.3.1) for
the components of contravariant vector.

The term  represents the 4 × 4 transformation matrix

So, to transform the components of a contravariant vector in one coordinate
system to another coordinate system we multiply the original components by
the transformation matrix (which will depend on the coordinate systems we are
changing from and to). The result will be the components of the vector in the
new coordinate system. For example, say our original vector  has
components  in the old coordinate system, and our transformed
vector  has components  in the new coordinate system, then



Note the convention that contravariant vectors are written as a column matrix.

Problem 5.1.  Returning to the flat space of special relativity, assume that
an inertial frame S' is moving with velocity v in the x direction relative to
another frame S. A contravariant vector  in frame S has components
(5,0,0,2). Find its components in frame S'.
Contravariant vectors transform according to (5.3.1)

Because we are in Minkowski space coordinate transformations are
described using the Lorentz transformations (3.4.2)

where the Lorentz factor (3.4.1) .
The transformation matrix for contravariant vectors (5.3.5) is given by

We calculate the first row of the matrix using  , substituting 

,  and , giving  and .



We calculate the second row of the matrix using  ,

substituting ,  and , giving  and .

We calculate the third row of the matrix using  , substituting 

and , giving .

We calculate the fourth row of the matrix using  , substituting 

and , giving .
All the other terms in the matrix being zero, we can write

This is the Lorentz transformation matrix, which we met earlier (3.4.12)
when looking at the Lorentz transformations in special relativity. The
components of  in frame S' are thus given by

Therefore, working out each of the four components of  , we get

Therefore, the components of  are .



Just as we did when looking at the transformation properties of contravariant
vectors, we want to see what happens when we use a different coordinate
system to describe our one-form , which we'll call . As before, the one-

form itself won't change, but its components  will.
We therefore need to determine how the components change under a coordinate
transformation.
Our original coordinate system is  and again we'll call our new coordinate

system . Using index notation, the components of  (which we'll call )

are given by .

It bears repeating that  and  are the same one-form, the same geometrical
‘thing’ in space, but with different components because they are being
described using different coordinate systems.
A version of the chain rule 1.10.4 tells us how to transform partial derivatives

or, because  and  , we can write

which is the coordinate transformation rule for the components of one-forms.

The term  in the above equation is shorthand notation for the 4 × 4
transformation matrix



So, for example, if our original one-form  has components  in
the old coordinate system, and our transformed one-form  has components 

 in the new coordinate system, then

Note the convention that one-forms are written as a row matrix.



As long as we are dealing with the sort of differentiable coordinate
transformations we've discussed so far, the laws of physics must be invariant -
a principle known as ‘general covariance’. In plain English, this means the
mathematical laws of physics must be the same irrespective of the coordinate
system we are using. The fundamental importance of tensors is that:

Because the transformation properties of tensor components are basis-
independent, if a tensor equation is true in one coordinate system it will
be true in all coordinate systems.

As there are no preferred coordinate systems in general relativity, it makes
sense to use tensor equations to formulate that theory, and that is what we need
to do.
We've already met scalars, vectors and one-forms, which in fact are all simple
tensors. Later on, when we look at curvature, we'll meet the Riemann curvature
tensor ( ), a four index monster tensor that completely describes the
curvature of any space. We then say hello to, among others, the Ricci tensor,
the energy-momentum tensor, the Einstein tensor, and finally, the star of the
show, the Einstein field equations. Along the way we need to learn how to
manipulate and differentiate tensors. In short, there's no avoiding tensors if you
want to understand general relativity.
So, what's a tensor?
For our purposes we can regard a tensor as:

A mathematical object represented by a collection of components that
transform a certain way.
A machine that produces scalars (numbers) when fed with vectors and
one-forms.

We have already discussed, at some length, the transformation properties of
contravariant vectors and one-forms. The good news is that tensors transform
in exactly the same way: using partial derivatives of the coordinate functions.
However, tensors can have multiple components because they are built up from
vectors, one-forms, scalars and other tensors. Before looking at how tensors



transform, we'll look at some basic tensor notation.
Tensors are classified according to their rank or order, which is just another
way of saying how many indices they have. They are also classified by type (n,
m) where n is the number of upper indices and m the number of lower indices.
For example:

A scalar, T for example, representing temperature, has no indices and is
therefore a tensor of rank 0, type (0, 0).
A contravariant vector  has one (upper) index and is therefore a tensor
of rank 1, type (1, 0).
Similarly, a one-form  also has one (lower) index and is also a tensor
of rank 1, type (0, 1).
A hypothetical tensor  has two indices (one upper, one lower) and is
therefore a tensor of rank 2, type (1, 1).
Another hypothetical tensor  also has two indices (two upper) and is
also a tensor of rank 2, type (2, 0).
The Riemann curvature tensor , which we'll be meeting later on, has
four indices (one upper, three lower) and is therefore a tensor of rank 4,
type (1, 3).

A type (0, 0) tensor is therefore just a number, a scalar, 106 for example.
A type (1, 0) tensor (aka a contravariant vector) is conventionally written in
column form, eg

A type (0, 1) tensor (aka a one-form) is conventionally written in row form, eg

These two tensors can be multiplied together (known as taking the tensor
product) to form a rank 2 tensor, which can be written as a 4 × 4 matrix:



So, for example, . In a similar fashion, two contravariant
vectors or two one-forms may also be multiplied together to give a rank 2
tensor.
Tensors of rank 3 can be thought of as a stack of matrices. Higher rank tensors
are harder to visualise, but you can still think of them as products of scalars,
vectors and one-forms - the building blocks from which we construct larger
tensors.
Seeing tensors expressed as rows, columns and matrices leads to another
informal definition of tensors as:

A multidimensional array of covariant (lower) and contravariant (upper)
indices.

We have already met tensors in the shape of various scalars, vectors and one-
forms. We have also come across the vitally important rank 2 Minkowski
metric tensor (3.5.2)

and used this to calculate the scalar product of two four-vectors (3.6.3)

which tells us where the plus and minus signs go in front of the terms .
We used this scalar product when we looked at the equations for four-velocity
(3.6.4) and the energy-momentum relation (3.6.18), the latter eventually
leading us to the famous mass-energy equation E = mc2.
It's worth making a small detour here in order to see just why the metric tensor
is involved when taking the scalar product of two vectors. We first need to
note that the components  of the metric are defined in terms of the coordinate



basis vectors as

or, in spacetime, using Greek indices

Using this definition, and recalling that an infinitesimal displacement vector in
spacetime is given by

we can see that the scalar product of this vector with itself will be

This equation is the spacetime version of (4.2.1)

the line element for an n-dimensional manifold that we met in the previous
chapter. In a similar fashion, the scalar product of two different vectors must
then be given by

Hence the need for the metric tensor.
Incidentally, when we looked at the scalar product of simple Cartesian vectors
(1.13.4)

this should, strictly speaking, be written (in index notation) as

where  is Euclidean metric tensor (1.14.6)



which tells us that a plus sign should go in front of the terms . We don't
normally bother doing this when using Cartesian vectors because we take for
granted that we are in Euclidean space.

We're metaphorically diving back under the bonnet again. What follows is the
behind the scenes mathematics that explains why the various operations of
tensor algebra work. Just to repeat: YOU DON'T NEED TO USE THIS
STUFF TO ACTUALLY MANIPULATE TENSORS.
We have already said that tensors transform in the same way as contravariant
vectors and one-forms. To see why this is, recall that vector transformations
are given by (5.3.1)

And one-form transformations are given by (5.3.2)

One method of constructing a new tensor is by multiplying the components of
vectors and one-forms. For example, we could make a tensor by multiplying
the components of two vectors  and  and a one-form  to give a tensor 

We know from (5.3.1) that  transforms as

and  transforms as



And we know from (5.3.2) that  transforms as

Therefore, because our new tensor  has been constructed by multiplying
the components of vectors and one-forms, its transformation equation will be
the product of the transformation equations of those constituent vectors and
one-forms, ie

In general terms this means that a tensor of contravariant rank m and covariant
rank n has components given by the tensor transformation law:

Of course, this looks horribly complicated. But all it actually represents is a
series of vector transformations (the partial derivatives with the μ and υ
indices) and one-form transformation (the partial derivatives with the  and α
indices) all strung together to give the total tensor transformation.
Crucially, 5.4.1 means the rules of tensor algebra actually work! We'll now
look at those rules.

In order to manipulate tensors we make use of the following rules:

A tensor may be multiplied by a scalar a to produce a new tensor

Tensors can be added or subtracted to form a new tensor



We've already seen this one. Tensors can be multiplied together to form a new
tensor. The rank of the new tensor will be the sum of the ranks of the
constituent tensors

A tensor can have its rank lowered by multiplying it by another tensor with an
equal index in the opposite position, ie by summing over the two indices. In
this example the upper and lower α indices are summed over

A single tensor can also be contracted by summing over identical upper and
lower indices. For example, we can contract a tensor  to give another
tensor , which is a contravariant vector.
Let's see how this contraction works. The tensor  will transform as
follows:

Remember that the x coordinates (represented by the β, λ, η indices) are
independent of each other. The Kronecker delta (here used as a tensor with an
upper and lower index) in the final term tells us that the derivative of any of
these coordinates with respect to any other is zero, and the derivative of a
coordinate with respect to itself is 1 (if x = x then ). We can therefore
write

meaning the contracted tensor transforms, as it should, as a contravariant



vector.
We've already seen that if we contract a vector with a one-form we obtain a
scalar

Of fundamental importance, contraction also means we can use the metric
tensor  and its inverse  (sometimes called the dual metric) to manipulate
expressions by raising and lowering indices

This gives us a way of directly relating one-forms to vectors and vice versa
(see example below).
If we multiply the metric tensor  by its inverse  we obtain the identity
matrix

We can write this in terms of the Kronecker delta (1.12.1) as

where we have again used the Kronecker delta as a tensor with an upper and
lower index.

In order to understand this somewhat counter-intuitive result we need to
introduce the tensor properties of symmetry/antisymmetry.

A rank 2 tensor is symmetric if . Such a tensor can be represented
by a symmetric matrix



So, for example, , , etc. Symmetric tensors we
meet in this book include the metric tensor, the energy-momentum tensor, the
Ricci tensor and the Einstein tensor.

Conversely, a rank 2 tensor is antisymmetric if . If you think
about it, this is only possible if the tensor is of the matrix form

where the diagonal terms are all zero. The Riemann curvature tensor, written
as , is antisymmetric on the first and second pair of indices, meaning 

.
The double contraction of a symmetric tensor  and an antisymmetric tensor 

 is zero, ie . We can show this as follows:

As μ and ν are dummy indices, we can swap them to give

which can only be true if

This may be clearer if we write out the double contraction in component form.
We'll use two simple tensors, a symmetrical one



and an antisymmetrical one

giving

Problem 5.2.  In spherical coordinates a contravariant vector 
and a one-form . Find  and .
We can use the metric to convert a one-form to a contravariant vector:

and to convert a contravariant vector to a one-form:

For spherical coordinates (r, θ, ϕ), the metric is (1.14.11)

and the inverse metric (1.14.12) is

Therefore, , , , , 
.

Thus , , 
.

Therefore, .

, , 



 (because 
).

Therefore, .

Problem 5.3.  Show that the tensor equation  is true in any
coordinate system.
The indices  and  are, of course, free indices representing an arbitrary
coordinate system, and we can change them to whatever we like. Using 
and  means we can make direct use of the tensor transformation law as
written in (5.4.1)

and assume that our tensor  is the result of a coordinate transformation
of the same tensor  expressed using different coordinates  and ,
meaning we can write

where  and  are the two transformation matrices we need to
multiply by  in order to get our original tensor . As 

 we can say

Dividing both sides by  gives

meaning that  is true in any coordinate system. A similar argument
shows that any tensor equation if true in one coordinate system will be true
in all coordinate systems.



Problem 5.4.  Show that, in special relativity, if

then

The right-hand side of this equation is a product. Using the product rule
(1.10.3) gives

But we can ignore the first term on the right-hand side because, in special
relativity , which is constant, ie

giving



We've now looked at scalars, vectors, one-forms and tensors, and we know
that these objects live on the manifold. This is all quite abstract. Can we
picture these things in the real world?
Visualising four-dimensional spacetime is beyond the imaginations of most of
us, so we'll simplify the situation and model a manifold using a rough and
ready mental picture of a real two-dimensional surface. I'm going to visualise a
pebble, but any smooth surface will do - an apple, a bottle, the bodywork of a
car etc. The surface has to be smooth because it needs to be differentiable, so
use an imaginary file to remove any imaginary sharp edges from your
imaginary surface. Picture the surface in your mind (or put a real pebble on the
table in front of you) and using our imagination we'll construct our simple
model of a manifold.
The surface of the pebble is our manifold, or curved space. It's two-
dimensional because if we choose the right coordinate systems we only need
two coordinates to describe any point on the surface of the pebble. Next,
imagine we stretch a red elastic net over the pebble to represent an arbitrary x,
y coordinate system, followed by a blue elastic net to represent an arbitrary x',
y' coordinate system. Now we can describe any point on the surface of the
pebble using both x, y and x', y' coordinates. Let's consider a point P on the
surface of the pebble.
First, because our manifold is a Riemannian manifold, we can assign a
symmetric metric tensor  to P and to every other point on the surface
of the pebble. In the jargon, we say we have defined a metric tensor field over
the surface of our pebble (a tensor field assigns a tensor to each point of a
manifold, just as a vector field assigns a vector to each point). The metric
defines the separation of infinitesimally adjacent points on the manifold.
Because our manifold is two-dimensional, the metric will be a 2 × 2 matrix.
We don't know what the metric actually is, but we do know its coefficients
will not be constant (otherwise our pebble would be flat!) and that the metric
for the red coordinate system will be different to the one for the blue.
Next, we can use our coordinates to construct a scalar field on the surface of
the pebble. I'm going to make one up, call it S, and say



Now we can assign a scalar value S to the point P. For example if x = 7, y = 2
then S = 55.
By taking the gradient of S we can define a one-form (5.3.4) at P

But we can define an infinite number of scalar fields, and therefore an infinite
number of one-forms at P. We therefore have a vector space at P, which is
called the cotangent or dual-space.
Now draw a number of imaginary curves on the surface of the pebble, each
going through P. These are our parameterised curves. If we were clever
enough, each curve could be expressed in terms of a parameter (t for example),
so x = f(t) and y = f(t). Now take a flat piece of paper, draw a point on it and
carefully draw a number of infinitely short (just do your best) straight lines
through that point. Rest the paper on the pebble so that the point on the paper is
touching point P on the pebble. We can see that the straight lines drawn on the
paper are tangent to the curves drawn on the pebble at point P. The direction of
each tangent is given by (5.3.3) and defines a contravariant vector. There are
an infinite number of parameterised curves we could draw on the pebble, and
therefore an infinite number of tangent vectors passing through P. We therefore
have a vector space at P, which is called the tangent space.
At any point on the surface of the pebble we can now, if we wish, take a
contravariant vector or one-form and use the transformation equations to flip
between the red and blue coordinate systems. But, as stressed earlier, in
practice we don't need to worry about physically calculating transformation
equations. The prime advantage of defining the geometry of the pebble's
surface in terms of general coordinates is that we can then proceed to define
tensors that are true in any coordinate system, tensors that describe both the
pebble's curvature (the Riemann curvature tensor) and physics (the field
equations, for example). Then, if we can somehow ascertain the metric, we can
use these tensors to calculate measurable physical quantities.



The most beautiful thing we can experience is the mysterious. It is the
source of all true art and all science.

ALBERT EINSTEIN



General relativity treats gravity as a property of curved spacetime, with mass
and energy as the source of that curvature. We therefore need to be familiar
with the mathematical tools necessary for understanding curved
spaces/manifolds.
We have now prepared the ground for a more detailed look at the mathematics
of curved spaces. Eventually, we want to be able to understand:

Geodesics - the ‘straightest’ possible paths between any two points in a
Riemannian manifold, and therefore the means to calculate the motion of
free particles moving in curved spacetime.
The Riemann curvature tensor, which measures the curvature of a
manifold. A modified version of this tensor provides the left-hand side of
the fundamental mathematical object of general relativity, our Holy Grail:
the Einstein field equations.

Parallel transport of a vector is the key to both of these concepts. However,
before we tackle parallel transport we need to be able to differentiate tensors.
To do this we introduce things called connection coefficients (symbol Γ),
which allow us to compare vectors at different points on the manifold. Once
we know a manifold's metric, we can calculate the connection coefficients,
which in turn opens the door to everything else. That is why the metric is
crucial for understanding Riemannian manifolds, and hence spacetime.



Our aim is to express general relativity in the form of valid tensor equations.
To do this we need to be able to differentiate tensors. Specifically, we need a
means of differentiating a tensor so that we end up with something that reduces
to an ordinary partial derivative in (flat) Minkowski space using Cartesian
coordinates, but transforms as a tensor when used in curved space. We'll start
by showing why finding the derivative of a tensor - we'll use the example of a
simple vector - is not as straightforward as it might look.

In Section 1.13.1 we considered a vector field V(x, y, z) representing air
moving in a room. We conjured up an imaginary function describing our vector
field

If we wanted to, we could easily take partial derivatives of V to find its rate of
change with respect to the x, y, z coordinates

Crucially, we don't need to worry about differentiating the basis vectors 
 because they are constant, each is one unit long and pointing along

the x, y, z axes.
This is the crux of our problem: the basis vectors we use in contravariant
vectors, one-forms and other tensors are not constant (the exception being
when we are using Cartesian coordinates in the Minkowski space of special
relativity) because they are coordinate basis vectors, defined in terms of
derivatives of the coordinates.
When differentiating a tensor we therefore have to take into account the
derivatives of the basis vectors. In order to do this we need to introduce things
called connection coefficients (also known as Christoffel symbols), which
are given the symbol Γ (the Greek letter Gamma).



Consider a vector  (ie the vector has components  and coordinate

basis vectors ). Using the product rule  gives

represents the rate of change of the components  (of the vector ) with
respect to .

 represents the rate of change of  with respect to , is itself a vector, and
can be expressed (in terms of basis vectors  ) as

The interpretation of the connection coefficients  is that the two downstairs
indices α and  refer to the rate of change of the components of  with respect
to  in the direction of the basis vector  (γ being the upstairs index). To use
a polar coordinate example, the connection coefficient  denotes the rate of
change of the component of  with respect to θ (r and θ being the downstairs
indices) in the direction the basis vector  (θ being the upstairs index). In
general, the connection coefficients  will vary depending on both the
particular n-dimensional space where vector  ‘lives’, and the coordinates
used to describe vector .
The examples that follow should help make this clearer. First, here are a few
key facts about connection coefficients:

Connection coefficients allow us to differentiate tensors.
They are called connection coefficients because they provide a
connection between different points on the manifold (as we'll see when
looking at the parallel transport of a vector along a curve).
If we know the metric, we can calculate the connection coefficients - see
(6.2.5).
In an n-dimensional Riemannian manifold there are theoretically 
different connection coefficients (though because of symmetry not all of



these are different).
Although they have indices, connection coefficients are not the
components of a tensor and cannot be treated like tensors.

Problem 6.1.  Calculate the connection coefficients  for two-
dimensional Euclidean space using polar coordinates.
Equation (1.9.1) tells us how Cartesian coordinates are related to polar
coordinates

For the rules of tensor algebra to work, the basis vectors  must transform
in the same way as the one-form . So we can find the transformation rule
for basis vectors using (5.3.2)

Substituting e for V gives

giving (noting that  is a dummy or summation index)

Similarly

Next we take partial derivatives,  and  using (6.2.3)



Using (6.2.4), we can rewrite this as

We now take partial derivatives  and  using (6.2.4)

Using (6.2.4) we can rewrite this as

Using (6.2.3) we can rewrite this as

The connection coefficients are therefore:

In this example we relied on knowing the relationship between Cartesian
coordinates (x and y) and polar coordinates (r and θ). There is another, much
more useful, method of calculating the Christoffel symbols from just the metric
that doesn't require any knowledge of Cartesian coordinates. We do this using



the important equation (stated without proof)

As you can see, this involves partial derivatives of the metric (the  etc
terms) and the inverse metric (the  terms).
Staying with the convention of using Greek indices for spacetime coordinates
we can rewrite (6.2.5) as

Problem 6.2.  Calculate the connection coefficients  for two-
dimensional Euclidean space in Cartesian coordinates.
Equation (1.14.5) gives us the line element for three-dimensional Euclidean
space using Cartesian coordinates

For two dimension this becomes

The metric is therefore

and the inverse metric would of course be identical

But in this case we don't need the inverse metric because we can see from
the equation to calculate the connection coefficients (6.2.5)



that, as all the components of  are constant, all the partial derivatives of 
 (the  etc terms) must therefore equal zero. Therefore,  for all

values of i, j, k.

Problem 6.3.  Calculate the connection coefficients  for the surface of a
unit radius sphere using polar coordinates.
Equation (4.3.2) gives the metric for the surface of a sphere radius R

and the inverse metric (4.3.3) is

For the unit radius sphere (R = 1) these become (4.3.4)

and (4.3.5)

To calculate the connection coefficients we use (6.2.5)

Don't forget that the indices (i,j,k,l) represent the spherical polar
coordinates θ and ϕ in various permutations.
The only  terms which do not equal zero are

(found by using the product rule).

Inspection of  tells us that this equals zero except when 
and .



Substituting these into (6.2.5)

We see that

At last, we can say the only non-zero connection coefficients for the surface
of the unit radius sphere in polar coordinates are

and

We've seen that flat Euclidean space only has zero valued connection
coefficients when using Cartesian coordinates. In the same space, but using
polar coordinates, the connection coefficients are not all zero because in polar
coordinates the basis vectors are not constant. In non-Euclidean space (the
surface of a sphere for example) the connection coefficients cannot all be zero



no matter what coordinate system we use, for the same reason - the basis
vectors are not constant.



After spending some time looking at connection coefficients we can now return
to our original problem of how to differentiate a tensor. Equation (6.2.1),
telling us how to differentiate a vector  , takes us part of the way

The connection coefficients are defined by (6.2.2)

Substituting (6.3.2) into (6.3.1) gives

The right-hand term  has two dummy indices (ie indices to be
summed over): α and γ. We can improve (6.3.3) by changing α to γ and γ to α
to give

and factoring out  gives

Now we have separated out the basis vectors  , we can say the components

of  are

This expression is known as the covariant derivative of the contravariant



vector , ie the rate of change of  in each of the directions  of the
coordinate system . The notation  is often used to denote the covariant
derivative, so (6.3.5) is written

Similarly, it can be shown that the covariant derivative of a one-form is given
by

In flat space, using Cartesian coordinates the covariant derivative of a vector
or one-form reduces to the partial derivative

and

which is what we would expect. Otherwise we need the partial derivative plus
a correction provided by the connection coefficient, ie we need the covariant
derivative.
The covariant derivatives of higher rank tensors are constructed from the
building blocks of (6.3.6) and (6.3.7) as follows:

take the partial derivative of the tensor,
add a  term for each upper index,
subtract a  term for each lower index.

Problem 6.4.  Find the covariant derivatives of the tensors ,  and 
.

Following the three rules given above, we obtain



This isn't of course the first time we've differentiated vectors. In Section 1.13.3
we looked at the divergence of a Cartesian vector field (remember sources and
sinks)

where the divergence is given by (1.13.8)

Using an identical upper and lower index (ie a dummy index), the covariant
derivative of a contravariant vector or tensor field is equivalent to finding the
divergence of those fields. In flat space, using Cartesian coordinate, the
covariant derivative (6.3.6)

reduces to

which is the same as (1.13.8)

We'll return to the divergence of a tensor field when we look at the energy-
momentum tensor.
Sometimes a comma is used to show a partial derivative, and a semi-colon is
used instead of the nabla symbol ∇ to denote the covariant derivative.
Equation (6.3.6)



would then be written as

and (6.3.7)

would be written as

Problem 6.5.  Problem 6.5. Show that the covariant derivative of the
Euclidean metric tensor  for any coordinate system is zero.
Substituting the Euclidean metric tensor for Cartesian coordinates (1.14.6)

into (6.3.9)

gives

In Cartesian coordinates the right-hand side equals zero (because the
Euclidean metric is constant, and the connection coefficients are zero),
therefore

But (and this is the clever thing about tensors) if this equation is true in
Cartesian coordinates, it must be true for the Euclidean metric in all



coordinate systems.
Actually, it is straightforward to show, by substituting (6.2.6)

into (6.3.9)

(and, of course, substituting  for ) that the covariant derivative of the
general metric tensor is zero for any coordinate system, ie

Intuitively, we can also show this by knowing that the covariant derivative
of the metric tensor must vanish in the flat spacetime of special relativity
(where the metric is constant). Being a tensor equation,  must
also then be true in any coordinate system.



We continue to home in on the key problem of how to define the curvature of a
particular space or manifold. We've seen that curves or surfaces embedded in
our familiar Euclidean space can be understood by reference to that space - we
can draw a circle on a piece of paper or put a sphere on a table, and measure
their extrinsic curvature directly. But we can't do that with intrinsically curved
manifolds such as spacetime.
The solution starts with the notion of moving a vector through a space whilst
keeping it as constant as possible. The question is: if we move a vector in this
way does it remain parallel to itself?
Let's first look at two-dimensional flat space. The answer is straightforward. If
we move a vector along a closed loop A, B, C in flat space (see Figure 6.1)
the vector doesn't change direction, in other words, the vector that arrives back
at point A is parallel to the vector that started from point A.

Figure 6.1:
A vector parallel transported along a closed loop in flat space.

Notice that this works for a cylinder as well because, as we've seen, its
surface is intrinsically flat.
Now let's see what happens if we try to parallel transport a vector around a
closed loop A, B, C on the surface of a sphere (see Figure 6.2).



Figure 6.2:
Parallel transport around closed loop on a sphere.

Although each vector is drawn as parallel as possible to the previous one, by
the time it arrives back it A it has changed direction by 90°. Furthermore, the
change in direction depends on the path taken - different loops give different
changes in direction.
This change in direction is a result of the curvature of the surface of the sphere.
For curved spaces in general, vector parallel transport is key to understanding
curvature. We now need to define parallel transport mathematically.
To do this we return to our old friend, the parameterised curve, which we met
in Sections 1.11, 3.6.3 and 5.3.4.2.
One vector we've met so far in relation to a parameterised curve is the tangent
vector (5.3.3) with components

which, to avoid confusion, we relabel as  (see Figure 6.3) with components

We put , our tangent vector, to one side for the moment and consider a
different vector , which isn't a tangent vector, but is also on the same
parameterised curve.



Figure 6.3:
Parallel transport of  along .

In order to parallel transport vector  along the curve the covariant derivative
of  along the curve must be zero, ie

First, we need to find .
Equation (6.2.1) tells us how to find the derivative of a vector

Swapping our parameter λ for  (so we are now taking ordinary and not
partial derivatives) we obtain

We can rewrite  as

Using the definition of the connection coefficients (6.2.2)



gives

Swapping α and γ in the final term gives

which can be rewritten as

which is a vector with components

This is an example of an absolute derivative (also known as the intrinsic
derivative), recognisable by the upper case D in the left-hand term. An
absolute derivative is a covariant derivative along a curve, in this case the
curve parameterised by λ.
The absolute derivative can also be expressed in terms of the tangent vector 

 (6.4.1) that we earlier mentioned and then put to one side.  has
components

So, using the chain rule, we can write (6.4.3) as

Our original condition (6.4.2) for the parallel transport of vector  along a
parameterised curve was



which defines the parallel transport of  along .
Or, in component form

This equation is important because we'll shortly be using it to find the geodesic
equations. As we'll see, freely falling objects in spacetime follow the most
direct path possible - curves known as geodesics.



In Euclidean space the shortest distance between two points is a straight line.
In curved space the shortest distance between two points is a curve called a
geodesic. These are curves that, given the curvature of the space, are as
‘straight’ as possible: great circles on the surface of a sphere for example.
We can now make use of the discussion in the previous section and define a
geodesic - the ‘straightest possible’ line - as a path which parallel transports
its own tangent vector. In flat space we can think of a straight line as a
succession of tangent vectors all going in the same direction (a straight line is
the only curve in Euclidean space that does this).
So, for a curve to be a geodesic the tangent vector must equal the parallel
transported vector, ie

And, from (6.4.2)

Using (6.4.4) we can therefore say

where we have rewritten the vector  as  , and (in case you've forgotten)
the upper case D signifies the absolute derivative.

Equations (6.5.1) are known as the geodesic equations and define the
‘straightest possible’ line in any curved space. When these equations are
written in the form shown in (6.5.1), where the right-hand side equals zero, the
parameter λ is known as an affine parameter.



Problem 6.6.  Show that the geodesics for two-dimensional Euclidean
space are straight lines.
As there is no z coordinate, we use a simplified version of (1.14.5)

Therefore, the metric is

The geodesic equations (6.5.1), using Latin indices as we are not working in
spacetime, are

We are in two-dimensional Euclidean space, so the index i equals 1 or 2, or
x and y in Cartesian coordinates. In order to calculate the connection
coefficients  we need (6.2.5)

But as the values of the metric are constant (they all equal 1) the partial

derivatives  for all values of i, j, k. Therefore,  for all
values of i, j, k, and (6.5.2) becomes

We need to find a function that if we differentiate twice will give us 

. This function is

where a and b are constants. Using Cartesian coordinates where  equals x
and y, (6.5.3) becomes



and

Although these two equations look different to the standard equation for a
straight line ((1.5.1) y = ax + b) they are actually the same thing expressed
in parametric form, using λ as the parameter. We can see this by solving for
λ, giving

and

Therefore

which is a straight line with gradient  and constant .

Problem 6.7.  Show that for the surface of a unit radius sphere (a) part of a
meridian joining the equator to the north pole is a geodesic, and (b) a great
circle on the surface of the sphere is a geodesic.
(a) In spherical polar coordinates our meridian is part of a great circle with
ends at the equator (at points θ = π/2, ϕ = 0) and at the north pole (at points
θ = 0, ϕ = 0).
The geodesic equation (6.5.2) is

In spherical polar coordinates  and . We also need the
connection coefficients for a unit radius sphere from Problem (6.3), which
we found to be



and

Equation (6.5.2) thus becomes (i = θ, j = ϕ, k = ϕ)

giving

And (i = ϕ, j = θ, k = ϕ)

giving

(We have two Γ terms  and  because we are summing over 

 where j and k take the value of θ and ϕ.)

We parameterise our meridian by saying  where , and ϕ =
0.

Therefore, , and .
(6.5.4) becomes 

and (6.5.5) becomes .
Both these equations are true (the left-hand side equals the right-hand side),
therefore they satisfy the geodesic equations (6.5.2) meaning we have shown
that the meridian is a geodesic. This shouldn't be a surprise as we define a



meridian to be a great circle passing through the two poles.
(b) We can use the equator as a simple example of a great circle. In
spherical polar coordinates the equator is defined by θ = π/2 and 

.
So, we can parameterise our equator by saying θ = π/2 and ϕ = λ, where 

.

Therefore, , and .

And  and .
We use (6.5.4) and (6.5.5) as we did in (a). Equation (6.5.4) becomes 

and (6.5.5) becomes .
Both these equations are true (the left-hand side equals the right-hand side),
therefore they satisfy the geodesic equations (6.5.2) meaning we have shown
that the equator is a geodesic. Again, this shouldn't be a surprise as we know
the equator is a great circle.

Problem 6.8.  Show that a circle on the surface of a unit radius sphere
defined by θ = π/4 and  is not a geodesic.
Such a circle describes a line of latitude on the ‘top’ part of the sphere and
can be parameterised by saying θ = π/4 and ϕ = λ where .

Therefore, , and .

And .

(6.5.4) becomes .
And (6.5.5) becomes .
The second equation equals zero, but the first equation does not. Therefore,
they do not satisfy the geodesic equations (6.5.2) meaning this line of
latitude is not a geodesic. Which again shouldn't be a surprise as the equator
is the only line of latitude that is a geodesic.



If we parallel transport a vector around an infinitesimal loop on a manifold,
the vector we end up with will only be equal to the vector we started with if
the manifold is flat. Otherwise, we can define the intrinsic curvature of the
manifold in terms of the amount the vector has been transformed at the end of
its tiny journey. Saying the manifold is curved is the same as saying the vector
is changed after being parallel transported around a closed loop. By measuring
that change, the Riemann curvature tensor therefore measures the curvature
of the manifold. In fact, the Riemann curvature tensor contains all the
information about the curvature of a manifold.
We won't derive the Riemann curvature tensor here as it's quite involved (see,
for example, Schutz [28]). But by thinking about the process of moving a vector
around a closed loop we can get a non-rigorous but intuitive idea of what this
tensor is going to look like. This description is taken from Carroll [4].
First, we imagine the loop as an infinitesimal parallelogram with one pair of
parallel sides defined by a vector  and the other pair by a vector . The
lengths of the sides of the loop are  and . We wish to parallel transport a
third vector  around our parallelogram. After we have done this,  will be
transformed (unless the space is flat) by an amount  So, we are looking for
a mathematical machine that when we feed in the initial conditions (vectors 

 and ) will then tell us the answer , ie how much  has
changed. Because the parallel transport of a vector is independent of
coordinates we can say that this mathematical machine is a tensor. Using the
rules of tensor contraction we can then say that  should be given by

where  is our long awaited rank 4, type (1,3) Riemann curvature tensor.
Notice that this is a balanced tensor equation where all the dummy indices on
the right-hand side are summed over to leave a single index ρ on both sides.
The actual form of the Riemann curvature tensor, a glorious mixture of
derivatives and products of connection coefficients, is



This looks (and often is) complicated. The following remarks might make
things a little less daunting:

Because the connection coefficients are derived from the metric (6.2.5),
the Riemann curvature tensor is also fundamentally derived from the
metric and its derivatives.
As with the connection coefficients, the indices (i, j, k, l) represent the
coordinates of the particular n-dimensional space we are using. For
example, if we were trying to find the Riemann curvature tensor for the
two-dimensional surface of a sphere in polar coordinates, the (i, j, k, l)
indices would represent the coordinates θ and ϕ. In three-dimensional (x,
y, z) Cartesian coordinates the (i, j, k, l) indices would represent the
coordinates (x, y, z).
Using the metric, we can lower the upstairs index to give

Having four indices, in n-dimensions the Riemann curvature tensor has 
components, ie 24 = 16 in two-dimensional space, 34 = 81 in three
dimensions and 44 = 256 in four dimensions (as in spacetime). However,
the good news is that the tensor has various symmetries that reduce the
number of independent components to only one in two-dimensional space,
6 in three dimensions, and 20 in four dimensions. These symmetries
include:

(As mentioned when looking at tensor symmetry/antisymmetry in Section
5.4.2, the Riemann curvature tensor is antisymmetric on the first and
second pair of indices.)
The third and fourth terms both contain a dummy or summation index m.
These terms therefore need to be summed over all their possible values.

Problem 6.9.  Calculate the components of the Riemann curvature tensor for
the surface of a unit radius sphere.
As noted above, for a two-dimensional surface of a sphere in polar
coordinates, the (i, j, k, l) indices represent the coordinates θ and ϕ. We also



saw that for a two-dimensional space (such as the surface of a sphere) the
Riemann curvature tensor has only one independent component. We'll take
one of these,  for example, and calculate it.
The Riemann curvature tensor is given by (6.6.1)

After substituting the indices for , (6.6.1) becomes

We now sum over m to give

How complicated is that? But from Problem (6.3), where we calculated the
connection coefficients for the surface of a unit radius sphere using polar
coordinates, we found that

And we can therefore simplify to

From Problem (6.3) we also know

and

So we can simplify

to



At last!



The complete, unadulterated form of the Riemann curvature tensor doesn't
appear in the Einstein field equations. Instead, it is contracted to give two
other important measures of curvature known as the Ricci tensor and the Ricci
scalar. Together, these are used to define the Einstein tensor, the left-hand side
of the Einstein field equations.

We contract the first and last indices of the Riemann curvature tensor to give

where  is the Ricci tensor. Applying the convention of using Greek indices
for spacetime coordinates we can rewrite this as

Problem 6.10.  Calculate the components of the Ricci tensor for the surface
of a unit radius sphere.
In Problem 6.9 we found that, for the surface of a unit sphere,

We can lower an index of  using the metric (4.3.4)

And then

We can then use the metric (4.3.5)



to calculate the Ricci tensor components

and obtain

But note that not all products of the metric and Riemann tensor give the
Ricci tensor. Recall “Double contraction to zero”, that we discussed in
Section 5.4.2. The metric tensor is symmetric, the Riemann tensor, written
as , is antisymmetric on the first and second pair of indices. If the
metric tensor indices equal the first or second pair of the Riemann tensor 

 indices then the result will be zero:

By contracting the Ricci tensor we derive the Ricci scalar R,

Problem 6.11.  Show that the Ricci scalar R = 2 for the surface of a unit
radius sphere.
We previously found  and . Using (6.7.3)

We sum over the i and j indices to give



Incidentally, it's straightforward to show that if we had used the metric for the
surface of a sphere radius a instead of unit radius, the Ricci scalar would be
given by

meaning the Ricci scalar decreases as the radius increase and becomes almost
zero for large radii.



I must observe that the theory of relativity resembles a building
consisting of two separate stories, the special theory and the general
theory. The special theory, on which the general theory rests, applies

to all physical phenomena with the exception of gravitation; the
general theory provides the law of gravitation and its relations to the

other forces of nature.
ALBERT EINSTEIN



We start this section by introducing the three key principles that guided
Einstein in formulating his theory of general relativity. We then turn our
attention to:

the spacetime of general relativity,
how objects move in spacetime,
how the curvature of spacetime is generated,

before finally introducing the Einstein field equations.



In his search for a gravitational theory of relativity Einstein formulated three
principles:

The principle of equivalence
The principle of general covariance
The principle of consistency

In terms of understanding general relativity, this is the BIG one. There are two
closely related principles of equivalence, the first being a weaker version of
the second. From now on we'll be using the second formulation, which we'll
refer to as the equivalence principle:

The weak equivalence principle states that, in a sufficiently small frame
of reference, freely falling objects in a gravitational field cannot be
distinguished by any experiment from uniformly accelerating objects.
The strong equivalence principle states that, in a sufficiently small frame
of reference, the physical behaviour of objects in a gravitational field
cannot be distinguished by any experiment from uniformly accelerating
objects.

To understand these principles, it's helpful to consider what Einstein described
as the ‘happiest thought of my life.’ This was his realisation that, ‘for an
observer falling freely from the roof of a house, the gravitational field does not
exist.’ Why doesn't it exist? Because, as we saw when we looked at
Newtonian gravitational acceleration (Section 2.5.3), inertial mass equals (to
an accuracy of at least one part in 1011) gravitational mass, meaning that the
acceleration of a body due to gravity does not depend on that body's mass. If
acceleration did depend on mass, you could tell if you were in a freely falling
frame (a plunging elevator for example) because objects of different masses
released in that frame would move at different accelerations.
Therefore, the movement of objects under the influence of gravity does not
depend on the composition or other properties of the objects. This is totally
different to other forces in nature. The acceleration of electrically charged



particles, for example, depends on the size and polarity (whether negative or
positive) of the charge.
Einstein was a great one for thought experiments, asking himself what would
happen in various imaginary scenarios. His ‘happiest thought’ was a thought
experiment about falling from the roof of a house. He also famously imagined
what would happen to an observer in an elevator in different situations. These
observations are only valid locally, in regions of spacetime small enough to
ignore tidal forces (the difference in the gravitational forces acting on two
neighbouring particles due to variations in the gravitational field). Bear in
mind that deep space, away from any gravitational field, is the same as the flat,
Minkowski space of special relativity. Consider an elevator:

The elevator is resting on the surface of the Earth. The observer would
experience the everyday force that we call gravity pulling him down. If he
drops a small ball it, of course, falls straight to the floor.
The elevator is in deep space, away from the effects of any gravitational
force, but is undergoing constant acceleration. The observer again feels a
force pulling him down. If he drops a ball, it accelerates to the floor just
as if it was experiencing a gravitational force.
The elevator is now plunging down a mineshaft in free fall. The observer
feels weightless as there is no force pulling him down. If he gently lets go
of a ball, it will hover in mid air.
The elevator is again in deep space, away from the effects of any
gravitational force, but this time it is moving with a constant velocity.
Again the observer feels weightless, and again, if he gently releases a
ball, it will appear to hover in mid air.

Two notions of equivalence arise from these thought experiments. These are:

Constant acceleration in deep/Minkowski space is equivalent to being in
a gravitational field.
Uniform motion in deep/Minkowski space is equivalent to being in free
fall in a gravitational field.

From these insights, Einstein was able to draw the following conclusions:

Gravity is an aspect of the geometry of spacetime, not of the composition



of the object moving through spacetime.
Small regions of spacetime are locally flat, and special relativity applies.
The laws of physics in a uniformly accelerating frame should be the same
as in a frame in a gravitational field (this is the statement of the strong
equivalence principle).

Mathematically, all this begins to make sense if spacetime is regarded as a
Riemannian manifold (maths-speak for a curved space) that is locally flat and
equipped with a metric tensor. The actual form of the metric (reflecting the
degree of curvature of spacetime) will vary depending on the proximity of
mass-energy. Freely falling test bodies follow paths that are geodesics of that
metric. This is what Einstein proposed in his theory of general relativity.
Also, because the laws of physics should be the same in a uniformly
accelerating frame and a gravitational field, Einstein was able to make testable
predictions that a gravitational field would:

Slow down clocks (a phenomenon known as gravitational time dilation)
and cause the wavelength of light to be lengthened (an effect known as
gravitational redshift). Later, in Section 9.4, we'll use the equivalence
principle to derive locally-valid equations for gravitational time dilation
and gravitational redshift. We'll also use the Schwarzschild metric to
derive general equations for these two phenomena that are valid in widely
separated local frames.
Cause light to be deflected by the sun. Imagine standing in an accelerating
elevator in deep space, away from the effects of a gravitational field.
Now shine a torch horizontally across the elevator onto the opposite wall.
Because the elevator is accelerating, the beam of light will strike the wall
at a lower point than if the elevator were in uniform motion. To an
observer in the elevator, the light beam would appear to curve
downwards. The equivalence principle requires that the same
phenomenon should also occur in a gravitational field. In Section 9.4.8
we'll take a closer look at how the Schwarzschild metric can be used to
quantify the gravitational deflection of light.

One of the key concepts of special relativity was the existence of Lorentz
frames of reference in (flat) Minkowski space, where objects obey Newton's
first law, ie remain at rest or in uniform motion in a straight line unless acted



upon by an external force.
Now let's examine Lorentz frames using the perspective of the equivalence
principle, which tells us that uniform accelerated motion is indistinguishable
from being at rest in a gravitational field. This means that an observer at rest in
a gravitational field is equivalent to one in a uniformly accelerating frame. A
frame that is uniformly accelerating cannot be inertial, therefore an observer in
a gravitational field cannot be in an inertial frame.
Imagine a uniformly accelerating spaceship in deep space unaffected by
gravity. Just ahead of the spaceship is a small rock, happily minding its own
business and obeying Newton's first law - ie in a state of uniform motion - and
therefore constituting an inertial frame of reference. Someone has forgotten to
close the skylight in the spaceship (there's always someone - luckily all the
occupants are wearing spacesuits) and the rock plunges through the opening
and crashes onto the upper deck. If the people on board the spaceship didn't
know any better they could reasonably assume that they were stationary in a
gravitational field, and the rock had fallen due to the effects of gravity.
Now take an observer sitting in a real gravitational field, on a chair on the
Earth's surface, for example. An apple falls from a nearby tree and hits the
ground. ‘Pesky gravity’, is the observer's explanation of the apple's fall. But
the equivalence principle tells us that this observer, at rest in a gravitational
field, cannot carry out any experiment that will distinguish her reference frame
from one that is constantly accelerating. Therefore, she is effectively in a non-
inertial accelerating frame, identical to the occupants of the spaceship.
But if that's the case, the freely falling apple must be equivalent to the
uniformly moving rock, and they both must constitute inertial frames. It must
follow that if the apple is in a state of uniform motion then it isn't the apple
that's accelerating down, it's the Earth's surface accelerating up - because,
locally:

a gravitational field is equivalent to a uniformly accelerating frame.

The equivalence principle means that gravity is indistinguishable from the
inertial forces we met earlier when looking at Newtonian mechanics (Section
2.3). Recall that these inertial or fictitious forces (think of the force pushing
you back into your seat in an accelerating car) are caused by an observer being
in a non-inertial reference frame. Newton's second law (2.4.1) tells us that if



two objects of mass  and  are to fall identically (ie with equal
acceleration a, as demanded by the equivalence principle) then

and

which, for constant a, means the force acting on each object must be
proportional to the object's mass. Because inertial forces result from the
acceleration of a non-inertial reference frame, they must be (in accordance
with Newton's second law (2.4.1)) proportional to the mass of the object acted
upon. We have just shown that the gravitational force acting on two objects is
proportional to their masses, meaning gravity is an inertial force.
From all this we can conclude that free fall is the natural state of motion, and
physics is most straightforward when everything is freely falling, as
summarised by Misner et al [23]:

‘Forego talk of acceleration! That, paradoxically, is the lesson of the
circumstance that “all objects fall with the same acceleration.”
Whose fault were those accelerations after all? They came from
allowing a ground-based observer into the act. The push of the ground
under his feet was driving him away from a natural world line.
Through that flaw in his arrangements, he became responsible for all
those accelerations. Put him in space and strap rockets to his legs. No
difference! Again the responsibility for what he sees is his. Once more
he notes that “all objects fall with the same acceleration”. Physics
looks as complicated to the jet-driven observer as it does to the man
on the ground. Rule out both observers to make physics looks simple.
Instead, travel aboard the freely moving spaceship. Nothing could be
more natural than what one sees: every object moves in a straight line
with uniform velocity. This is the way to do physics!’

And all this hinges on the equivalence principle. Testability is the essence of a
good scientific theory. To use a rather brutal metaphor, think of a scientific
theory as a champion prizefighter offering to take on all comers. The
prizefighter has to suffer only one defeat to lose his crown. Likewise, find just
one object that accelerates at a different rate in a gravitational field to other
objects, and the equivalence principle and hence general relativity would, at



the very least, be in serious trouble.
So now we know how to construct an inertial frame in a gravitational field: in
a sufficiently small frame of reference, gravity is equivalent to acceleration
and a freely falling frame will be an inertial frame. Imagine a laboratory on
Earth full of scientists busily measuring things with their clocks and rulers. As
we'll see later, when looking at the Schwarzschild metric, these measurements
are affected (admittedly to a tiny, tiny extent) by the Earth's gravitational field.
Drop that laboratory off a cliff or from an aeroplane and, for a few seconds at
least, the scientists would be working in an excellent approximation to an
inertial frame in the Minkowski space of special relativity.
But why, in the previous paragraph, did we need to stipulate a ‘sufficiently
small frame of reference’? One reason is the tidal forces that we met in Section
2.5.6, the consequence of the fact that any gravitational field is non-uniform in
space because:

it varies horizontally in space because objects in free fall don't move
parallel to each other but radially towards the centre of the planet, star or
other massive body that is ‘attracting’ them;
it varies vertically in space because the acceleration due to gravity varies
with height.

The other reason is that gravitational fields also vary with time, because the
longer an object is falling the more pronounced will be the above horizontal
and vertical effects.
As an illustration of the need for strictly local freely falling frames, consider
two such frames, one in the UK and one in Australia. Observers in the southern
hemisphere would measure the acceleration of the British freely falling
coordinate system to be almost opposite to their own.
Notwithstanding these non-uniformities in the gravitational field, the
equivalence principle allows us to state that small enough freely falling frames
will be inertial. This is true for any gravitational field. If we choose a
sufficiently small (in terms of space and time) freely falling frame, it will be an
inertial frame.



One of the postulates of special relativity is the principle of relativity, ie that
the laws of physics are the same in any inertial frame of reference. The
principle of general covariance extends that requirement to say that the form
of the laws of physics should be the same in all - inertial and accelerating -
frames. The rationale behind this principle is that physical phenomena
shouldn't depend on the choice of coordinate systems used to describe them,
and that all frames therefore are equally valid. Foster and Nightingale [9]
summarise the principle of general covariance as follows:

‘A physical equation of general relativity is generally true in all
coordinate systems if (a) the equation is a tensor equation (ie it
preserves its form under general coordinate transformations), and (b)
the equation is true in special relativity.’

Taken together, these two conditions mean that if we have a valid tensor
equation that is true in special relativity we can, with a little bit of twiddling,
magic up an equation that is true in general relativity. Shortly, we'll look at
what that ‘twiddling’ actually involves.
There appears to be an ongoing debate about the meaning and significance of
this principle, and Einstein appeared to have had a bit of a love-hate
relationship with it. But he did believe it was a sort of useful guide for him,
and ‘of great heuristic value’ (a heuristic being a mental short cut, a rule of
thumb or an educated guess) in helping him formulate his theory of general
relativity. At our introductory level, we can understand the principle of general
covariance as simply demanding that in general relativity physical laws must
be expressed as valid tensor equations.

The principle of consistency requires that a new scientific theory must be able
to account for the successful predictions of the old theories it seeks to replace.
What this means is that, given the appropriate conditions, general relativity
should reduce to both the laws of Newtonian mechanics and, in the absence of
gravity, to the formulations of special relativity.
In the next chapter we'll look in detail how general relativity approximates
Newtonian gravity in what is called the Newtonian limit, which assumes
slowly moving objects, and a weak and static gravitational field.



Mathematically, we can model spacetime using a four-dimensional Riemannian
manifold (that therefore locally approximates the flat spacetime of special
relativity). More precisely, we can say that in a small enough region of curved
spacetime we can construct a Cartesian coordinate system where the metric
tensor approximates to (3.5.2)

Another way of saying this is that we can find a coordinate transformation
matrix that allows us to transform the metric tensor  so that

In free fall, of course, the spacetime inside our plunging laboratory hasn't
changed: you can't change spacetime by jumping over a cliff. What has
happened though is that, because of the equivalence principle, we have in
effect constructed a coordinate system where the metric tensor in our falling
laboratory,  - the metric for curved spacetime, approximates  - the
Minkowski metric of flat space. None of this would work of course if the
equivalence principle was not true, if objects of different mass moved at
different accelerations in a gravitational field. Fortunately, for us and for
general relativity, no experiment to date has contradicted this principle.
We can use Cartesian coordinates (in the form of spacetime diagrams) in the
flat space of special relativity. In general relativity this usually isn't possible,
and we use general coordinates instead - the things that allow vectors, one-
forms and tensors to work properly.
The principle of general covariance allows us to take valid tensor equations
from special relativity and extend them to general relativity. We do this by the
‘twiddling’ referred to in Section 7.2.2, specifically by:

replacing the Minkowski metric  with the general metric tensor  ,
and, if they exist, replacing partial derivatives with covariant derivatives.

The second rule is often called the ‘comma goes to semi-colon’ rule because,



as we saw when looking at covariant differentiation in Section 6.3, commas
and semi-colons can be used as shorthand notation for partial and covariant
derivatives. This rule means that where equations valid in Cartesian
coordinates in special relativity contain derivatives (‘commas’), these can be
changed to covariant derivatives (‘semi-colons’) to give an equation valid in
any coordinate system in general relativity.
An example using the first rule would be that the (3.5.5) for proper time  in
special relativity

can be changed to

giving proper time in curved spacetime in general relativity, by replacing 
with the general metric tensor .
Two examples using the second rule are:

The law of conservation of particles in special relativity is given by

where n is the density of particles in their rest frame, and  is their four-
velocity. In general relativity, this law takes the form, valid in all frames,
of

The law of conservation of four-momentum changes from

in special relativity to

in general relativity, where  is the energy-momentum tensor (see
Section 7.5) defined as (7.5.8)



We can mention in passing the phenomenon of gravitational waves, a form of
radiation that can be thought of as ripples in the fabric of spacetime caused by
the acceleration of massive bodies. Gravitational waves travel at the speed of
light, but are not a form of electromagnetic radiation. Although any
accelerating body will theoretically produce gravitational waves, only extreme
events such as supernovae, black hole collisions, binary neutron stars, etc
produce radiation that is intense enough to be detectable. To date, despite a
world-wide effort to detect gravitational waves, there is strong, but only
indirect, evidence for their existence.



A fundamentally important result derived from the ‘comma goes to semi-colon
rule’ allows us to describe how free particles move in spacetime. In Section
6.5 we looked at geodesics on manifolds, including examples finding shortest
distances on the surface of a sphere. We've already claimed that spacetime can
be modelled using a Riemannian manifold, so it shouldn't be a huge surprise to
find that the geodesic equations given for curved spaces in general should also
apply to spacetime. Now we can show this.
Newton's first law (2.4) states that an object will remain at rest or in uniform
motion in a straight line unless acted upon by an external force. As noted in
Section 7.2.1, if an object obeys this law it must be in an inertial frame, ie is
not subject to a gravitational field. Therefore, we can say that the four-force
(3.6.17) acting on the object must be zero

where proper time  is given by (3.5.5) and  is the four-momentum (3.6.14)

If the object is at rest or in uniform motion in a straight line it must have zero
acceleration, ie

We can now use the ‘comma goes to semi-colon’ rule and move from special
to general relativity by replacing the derivative  with the absolute
derivative  that we first met in Section 6.4.

But we've already met something very similar to  in the form of (6.5.1)

which are the geodesic equations of a Riemannian manifold.
All we need do is replace the general parameter λ with proper time , the time



measured by a clock attached to a particle moving along a world-line through
spacetime (given by (7.3.1)) and we've found the geodesic equations for a free
particle moving in curved spacetime:

We'll return to this equation later when we look at the ‘Newtonian limit’ of
general relativity.
There are three types of geodesic in spacetime:

time-like geodesics
null-geodesics
space-like geodesics.

To understand the difference, recall that an n-dimensional Riemannian
manifold has a line element (4.2.1) given by

where  is the metric. In spacetime this can be expressed using the spacetime
metric tensor  as

where ds2 gives the interval between two infinitesimally close events in
spacetime.
Also, proper time  is given by (7.3.1)

which links proper time to the spacetime line element by

Recalling that spacetime is modelled using a pseudo-Riemannian manifold
where ds2 may be positive, zero or negative, the three types of spacetime
geodesic are defined as:



Time-like geodesics (where ds2 > 0 and proper time is real, ie dτ ≠ 0),
which describe the paths of freely falling massive particles. By ‘massive’
we just mean they have a mass of some sort.
Null geodesics (where ds2 = 0 and proper time is unchanging, ie dτ = 0,
which describe the paths of light rays (composed, of course, of massless
photons).
Space-like geodesics (where ds2 < 0), which have no physical
significance.

Time-like geodesics can be described using (7.4.2)

For null geodesics, we cannot use (7.4.2) because light rays travel along
world-lines of unchanging proper time. Instead we use another parameter, such
as in the geodesic equations 6.5.1

Our description of geodesics as defining the ‘straightest possible’ line in a
curved space may seem at odds with what we observe when we throw an
object, a ball for example, here on Earth. Irrespective of whether the ball is
thrown straight up or up at an angle, a graph of the ball's height plotted against
time gives an obvious parabolic curve, which doesn't look at all like a straight
line. The problem is that the ball's trajectory through three-dimensional space
is not the same as its trajectory (or world-line) through four-dimensional
spacetime. Let's take the example of a ball thrown to a height of 5m, as shown
in Figure 7.1, a three-dimensional spacetime diagram.



Figure 7.1:
World-line of a ball thrown to a height of 5m on Earth.

The parabolic curve OA shows the spatial trajectory of the ball on the xy plane
where it reaches a maximum height of 5 m. Using the relevant equation of
uniform motion (1.10.15)

we can easily calculate the total flight time of the ball to be about 2 seconds.
Using our normal ct time units means 2 seconds is represented by ct = 6 × 108

metres on the time axis. The parabolic curve OB represents the world-line of
the ball, with a spatial height of 5m and a ct time axis length of 6 × 108 m. If
we were to plot this curve using a scale of 1 cm equals 1m, it would have a
height of 5 cm and a length (measured along the ct axis) of 6,000,000 m = 6000
km, the approximate distance between London and Washington, D.C. The fact
that, to all intents and purposes, this curve is a straight line illustrates the
weakness of the terrestrial gravitational field and how little the Earth's mass
curves spacetime.

It's worth mentioning that the behaviour of two neighbouring parallel geodesics
provides a means of measuring spacetime curvature. Two such geodesics in
flat space will remain parallel but will eventually meet in curved spacetime.
This is the underlying mechanism behind the phenomenon of tidal forces that



we mentioned earlier. Mathematically, the relative acceleration between two
such geodesics is defined by something called the equation of geodesic
deviation, which describes the behaviour of a small ‘connecting vector’
joining the two geodesics. Without going into complicated details, the two
geodesics (A and B, for example) are defined in terms of a pair of
parameterised curves. So A is given by  and B is given by ,
where λ is an affine parameter. Each value of λ then corresponds to a point on
A and a neighbouring point on B. These two points are joined by a connecting
vector  (where  is the Greek letter xi), and we can say

It can then be shown that changes in the connecting vector are described by the
equation of geodesic deviation

The upper case D signifies the absolute derivative that we met earlier in
(6.4.3)

and  is the Riemann curvature tensor.



Newtonian theory gives mass as the ‘source’ of the gravitational field.
However, we saw in Section 3.6.9 that, in relativistic theory, mass, energy and
momentum are all related, as expressed in (3.6.18), the energy momentum
relation.

It therefore seems reasonable to assume that the source of the gravitational
field in general relativity should include momentum and energy as well as
mass. Recall that four-momentum (3.6.16) is given by

and provides a complete description of the total relativistic energy E (its time
component) and relativistic momentum p (its spatial components) of a particle.
Misner et al [23] speak of a ‘river’ of four-momentum flowing through
spacetime, ‘Each particle carries its four-momentum vector with itself along
its world line. Many particles, on many world lines... produce a continuum
flow - a river of four-momentum.’
The density and flow of this river of four-momentum is the source of the
gravitational field in general relativity. We need a machine to describe the
momentum and energy of not one particle but many. That machine is a rank 2
tensor known as the energy-momentum tensor , also known as the stress-
energy tensor. This tensor is the thing that describes the total energy of a
particular physical system, curves spacetime and sits proudly on the right-hand
side of the Einstein field equations. The energy-momentum tensor is symmetric,
so , and therefore has ten independent components.  is defined
as:

the rate of flow of the μth component of four-momentum across a surface
of constant ν.

What does this mean? The components of four-momentum are . If
we use spacetime coordinates of ct, x, y, z, the components of the energy-
momentum tensor are the rate of flow of each four-momentum component
across a surface of each constant spacetime coordinate. It's easy enough to
imagine the rate of flow of something or other through a spatial x, y, z surface.



Think of water shooting through a metre square hole in a wall (which could
represent one of the spatial surfaces, x for example). The volume of water
pouring through the hole in 1 second is the water's rate of flow. But what's the
meaning of rate of flow of a four-momentum component across a surface of
constant time ct? Let's look at this question in a little more detail.
Consider a volume of non-interacting particles at rest with respect to each
other in a Lorentz frame. Particles of this sort are collectively known as dust
and are the simplest type of fluid. In fact, as we'll see shortly, dust is the
special case of a pressure-free perfect fluid.
A tiny cube containing a number of these particles has volume dx × dy × dz. If
there are  particles per unit volume then  (a scalar) is the particles'
number density. In a different Lorentz frame, where the particles are moving in
the x direction, Lorentz contraction will cause the volume of the cube to change
to dx × dy × dz/γ (where γ is the Lorentz factor), and the new number density n
will be

.
Now consider the four-vector

where  is the particles' four-velocity (3.6.2), where 
. The time component  of the four-vector  is given by

which, from (7.5.1) gives

which is proportional to the number density (and would be the number density
if we let c = 1). The spatial components  of  (where i = 1, 2, 3) are the
rates of flow (particles per unit time per unit area) across a surface of constant
x, y, z and are given by



Because rate of flow per unit area is known as flux,  is called the number-
flux four-vector. Figure 7.2 (from Marsh [19]) shows a spacetime diagram
with the world-lines of particles travelling at constant velocity v along the x
axis. These world-lines cross two surfaces: BC of constant x and AB of
constant time ct. The world-lines crossing BC represent the flux across
constant x, (ie, nv from (7.5.2)). The same world-lines also cross AB, a
surface of constant time. We can obtain a new flux by scaling  as follows

(as v = x/t)

and we have shown that , the number density, is also a flux or rate of flow
across a surface, a surface of constant time. There are four  components
where ν equals time ct. If we use the usual spacetime coordinate labels μ, ν =
0, 1, 2, 3 these ‘density-type’ components are  and .

Figure 7.2:
Spacetime diagram showing dust particles crossing surfaces of constant x and

constant ct.



Figure 7.3 shows all sixteen components of , which can have various
energy density units, such as J m-3 or kg m-3.

Figure 7.3:
The components of the energy-momentum tensor.

These components can be described as follows:

 is the flux (rate of flow) of the 0th component of  across a surface
of t = constant, and equals energy density.

 is the flux of the ith component of  across a surface of t = constant,
and equals momentum density.

  is the flux of energy across a surface of  = constant, and
equals energy flux.

 is the j flux of i momentum, and equals pressure when i = j and shear
stress when i ≠ j.

To further illustrate the physical meaning of these various fluxes and densities
Figure 7.4 (from Lambourne[17]) shows a simple system of non-interacting
particles, each of mass m, moving with common velocity , ie
there is no velocity component in the z direction.
(A parallelepiped is a sort of squashed rectangular box where the opposite
faces remain parallel. The volume of a parallelepiped equals the area of its
base multiplied by its height.)



Figure 7.4:
Particles moving with common velocity  passing through area A.

Equation (3.6.12) tells us that in an inertial frame a particle's total relativistic
energy is given by

If there are n particles per unit volume, the energy density, ie the 
component of the energy-momentum tensor, will be

Note that if the particles are at rest in some frame, then γ = 1 and .
After time t, all the particles that have passed through an area A perpendicular
to the x axis will be contained in a parallelepiped of volume  , and the
number of those particles will equal . As each particle has energy ,
the total energy of all these particles equals . The energy-
momentum component  is the rate of flow of energy across a surface
perpendicular to the x axis. To find this quantity we need to divide the total
energy  by Atc (the c is necessary to keep the units correct) to give

Now imagine rotating the area A so it is perpendicular to the y axis. We could
then carry out a similar calculation to find the rate of flow of energy across a
surface perpendicular to the y axis, which would be given by



We've assumed there is no  velocity component, but if there were we would
have .
From the equation for four-momentum (3.6.15)

we can see that each particle has an x component of four-momentum given by 
. We earlier saw (when looking at ) that number density is a rate of

flow across a surface of constant time. The density of the x component of four-
momentum is therefore given by  (again, the c is necessary to keep the
units correct), ie

and we can see that . Similarly,

and, if there were a  velocity component, we would have .
Finally, the particles crossing area A perpendicular to the x axis will have a y
component of four-momentum equal to . The rate of flow of these
particles across A equals  divided by  . , the rate of flow of
the y component of four-momentum across A, a surface perpendicular to the x
axis, is therefore given by

and describes a shear stress, a force (force being rate of change of momentum)
that isn't perpendicular to A.

A similar calculation gives , which describes the rate of flow
of the x component of four-momentum across a surface perpendicular to the x
axis. This force, being perpendicular to A, defines pressure in the x direction.
Eventually, we end up with all the components of the energy-momentum tensor:



This is the general form of the energy-momentum tensor, which describes the
density and flow of four-momentum at a point in spacetime. Now let's look at
the two most common specific examples of an energy-momentum tensor: dust
and a perfect fluid.

As previously mentioned, dust is a collection of non-interacting particles at
rest with respect to each other in a Lorentz frame. In cosmology, dust is a good
approximation to the matter-dominated later universe. Although a hypothetical
cloud of dust may be swirling around in a complicated fashion we can
consider a small region known as a fluid element, where the particles have an
approximately equal average velocity. Schutz [28] refers to the Lorentz frame
containing this homogeneous region as the momentarily comoving rest frame
(MCRF) of the fluid element. Because the dust particles are at rest in the
MCRF, they have no velocity component, no momentum, γ = 1, and (7.5.3)
nicely simplifies to

where  is the mass density. For any Lorentz frame (not just the MCRF)
the energy-momentum tensor for dust is given by

In the MCRF, ,  and we get back to (7.5.4).



In physics, perfect fluids are used to model many different systems including,
in cosmology, the universe. A perfect fluid can be thought of as dust plus
pressure p. Random motion of the fluid's particles is what causes pressure,
which acts with equal magnitude in all directions. Unlike a real fluid, perfect
fluids are assumed to have zero viscosity (ie they aren't ‘sticky’) and zero heat
conductance in the MCRF. We can use these restrictions to deduce the energy-
momentum tensor of a perfect fluid.
Viscosity is essentially liquid friction between two adjacent particles. That
implies a shear stress, a force that is not perpendicular to the interface between
particles. We know that shear stresses are described by the  components of
the energy-momentum tensor, where i ≠ j. Therefore, for a perfect fluid, 

 for i ≠ j.
Although particles aren't moving in the MCRF, energy may still be transferred
by the mechanism of heat conduction. Moving energy will have associated
momentum described by the  components, and the heat conduction itself is
described by the  components. No heat conduction, as in a perfect fluid,
therefore implies .
We earlier saw that pressure p is the result of a force perpendicular to the
interface between particles and is described by the components  , where i =
j.
These restrictions mean that  must be a diagonal matrix. Because  must
be diagonal in all frames it must be a scalar multiple of the identity matrix

which means . Putting all this together, we find for a perfect
fluid in the MCRF

The energy-momentum tensor for a perfect fluid in any Lorentz frame (not just



the MCRF) is given by

Note that if (as is the case in many ‘ordinary’ relativistic circumstances not
involving exotic, superdense objects such as neutron stars) pressure is very
small compared to density, ie , then we can assume that  and
(7.5.7) reduces to the energy-momentum tensor for dust (7.5.5) .
It's instructive to use (7.5.7) to get back to the particular MCRF case of
(7.5.6). From (3.5.2) we know the Minkowski metric is

and from (3.6.2) we know the components of the four-velocity  are given by

So , but in the MCRF γ = 1, and therefore , , and
thus

Also, in the MCRF the spatial components of the four-velocity  (where i = 1,
2, 3) will = 0. And also  and , therefore

But , therefore

Finally, when i ≠ j, in the MCRF again , and , therefore

Putting all this together we can reaffirm that  in matrix form is indeed



The principle of general covariance allows us to replace the Minkowski
metric and rewrite (7.5.7)

so that it applies at any point in curved spacetime, where the metric is ,
giving

We mentioned earlier that, using a dummy index, the covariant derivative of a
tensor field is equivalent to the divergence of that field. In an isolated system,
energy and momentum should be conserved (ie, there are flows but no sources
or sinks of energy-momentum), and we would expect the divergence of the
energy-momentum tensor to equal zero. Although zero divergence of  is
true for both flat and curved spacetime, its meaning differs in the two cases. In
fact, as noted at the end of this section, the concept of energy conservation is
not an unambiguous one in general relativity.
In the flat spacetime of special relativity, the fundamental laws of conservation
of energy and momentum can indeed be expressed by saying

or, using comma notation,

These equations describe conservation of energy when , and conservation
of the ith component of momentum when



In other words, as there are no sources or sinks of energy-momentum, the
increase or decrease of total energy within the system equals the rate at which
total energy is entering or leaving that system.
In curved spacetime things are not quite so straightforward. Using the ‘comma
goes to semi-colon’ rule (7.5.9) becomes

Or, using a semi-colon to represent the covariant derivative,

which is sometimes known as the covariant divergence of . Although the
energy-momentum tensor has zero divergence in curved spacetime, this does
not imply a true conservation law as it does in special relativity. That is
because in curved spacetime there is an additional source of energy that isn't
included in the energy-momentum tensor, and that is gravitational energy.
Lambourne [17] says, ‘In the presence of gravitation (ie curvature), the
conservation of energy is not expected to apply to matter and radiation alone -
we also have to take the gravitational energy into account, and that is not
included in the energy-momentum tensor.’
Carroll [4] comments that, ‘The gravitational field ... does not have an energy-
momentum tensor. In fact it is very hard to come up with a sensible local
expression for the energy of a gravitational field; a number of suggestions have
been made, but they all have their drawbacks. Although there is no “correct”
answer, it is an important issue from the point of view of asking seemingly
reasonable questions such as, “What is the energy emitted per second from a
binary pulsar as the result of gravitational radiation?”’
The authoritative answer to the sixty-four-thousand-dollar question - ‘Is energy
conserved in general relativity?’ - appears to be a definite maybe. For
example, Weiss and Baez's [31] response is, ‘In special cases, yes. In general
- it depends on what you mean by “energy”, and what you mean by
“conserved”.’



Carroll [3] says, ‘Einstein tells us that space and time are dynamical, and in
particular that they can evolve with time. When the space through which
particles move is changing, the total energy of those particles is not
conserved.’
Interested readers may wish to consult these sources.



From 1907 to 1915 Einstein worked to develop his theory of general relativity.
It was a long and tortuous struggle, summed up by Earman and Glymour in Lost
in the Tensors: Einstein's Struggles with Covariance Principles 1912-1916
[6]:

‘The magnificence of Einstein's intellectual odyssey lies not only in
the grandeur of its conclusion, but also in its chaos, in the
indirectness of the paths that led to home. One cannot read this
history without amazement at Einstein's intellect; for much of the
period between 1912 and 1916 he was truly lost in the tensors, quite
completely on the wrong path, accompanied by erroneous reasons he
claimed to be fundamental. And yet, quite singularly, in the course of
a month he abandoned his errors and their justifications. The moral,
perhaps, is that a certain fickleness is more conducive to theoretical
progress than is any abundance of conceptual clarity – at least if one
is Einstein.’

So - and we all breathe a sigh of relief - even Einstein had problems with
tensors!
The heart of Einstein's problem was finding the correct relationship

where A on the left-hand side of what are known as the field equations
describes the curvature of spacetime, and B on the right-hand side gives the
mass-energy source of that curvature. By ‘correct’ relationship we mean an
expression that:

is a valid tensor equation;
doesn't contradict any of the fundamental laws of physics;
approximates, given the appropriate conditions, to the Newtonian
description of gravity as demanded by the principle of consistency.

We saw in Section 7.5 that the energy-momentum tensor  describes, in
theory at least, the total energy of a particular physical system, and is therefore
an excellent candidate for the source of the gravitational field.
But, we have also seen that the metric tensor  is of fundamental importance



in describing the curvature of a Riemannian manifold, including four-
dimensional spacetime. So maybe

is a solution, with κ (the Greek letter kappa) some unknown constant. The good
news is that this is a valid tensor equation, ie the μ and ν indices are upstairs
on both sides. Also, we saw from (6.3.12) that

and from (7.5.10) that

Taking the covariant derivative of both sides of (7.6.1) gives zero on both
sides, which is encouraging. Unfortunately, (7.6.1) does not reduce to
Poisson's equation, the defining field equation of Newtonian gravitation, so we
must reject it.

Although the Riemann curvature tensor  (6.6.1) contains all the
information about the curvature of a manifold we cannot use it uncontracted in
the field equations as it is of a higher rank than , and therefore wouldn't
give a valid tensor equation. However, in Section 6.7.2 we referred to the
Ricci tensor, an object formed from the Riemann curvature tensor. In 1915
Einstein had high hopes of the Ricci tensor and suggested

as a candidate for the field equations. Using (7.6.2) he was able to resolve a
long standing problem concerning a slight variation in Mercury's orbit that had
puzzled astronomers for many years, causing him to write in November of that
year that, ‘For a few days I was beside myself with joyous excitement.’ He
also corrected a previous tiny error he'd made when calculating the deflection
of light as it grazed the sun - a prediction famously confirmed by Eddington in
1919, using photographs of a total solar eclipse taken on the island of Príncipe
off the west coast of Africa.
However, there was a problem with (7.6.2) in that



which it has to because of (7.5.10).
Eventually, Einstein had to reject (7.6.2) (his Mercury and light deflection
triumphs were unaffected), and later in November 1915 he published his final
field equations

or, in covariant form,

where κ = 8πG/c4 is the Einstein constant. By defining the Einstein tensor 
 (incorporating both the Ricci tensor (6.7.1) and the Ricci scalar (6.7.5))

as

(7.6.4) can be written more succinctly as

We'll see later (the end of Section 8.5, when looking at the Newtonian limit of
Einstein's field equations) why κ has to equal 8πG/c4 in order to be consistent
with Newtonian gravitation.
You may also see the field equations written in terms of what are known as
geometrised units, where G = c = 1. Equation (7.6.4) then becomes

Sometimes, the geometrised units 8πG = c = 1 are used, giving the ultra-
succinct



keeping most of its charms discreetly hidden.
Different authors use different sign (+ or -) conventions for the field equations.
Foster and Nightingale [9], for example, give the form

It all depends on the signs chosen to define the metric tensor, the Riemann
curvature tensor and the Ricci tensor.

Problem 7.1.  Show that (7.6.4) can also be written in the form

First, multiply both sides of (7.6.4) by  and sum over both indices

Using the Kronecker delta (with dummy indices), we can then sum over all
possible values of ν

Therefore

which we can substitute into (7.6.4) to give



For the remainder of this book, we'll be exploring the meaning and
consequences of the Einstein field equations.
It's worth at this point mentioning a plain English, single sentence, summary of
these equations, in terms of the motion of freely falling test particles, given by
Baez and Bunn [1]. Although this simple formulation is of limited practical use
in exploring the full implications of general relativity, the authors do use it to,
‘Derive a few of its consequences concerning tidal forces, gravitational
waves, gravitational collapse, and the Big Bang cosmology.’
First, recall that the energy-momentum tensor  is defined as the rate of flow
of the μth component of four-momentum across a surface of constant ν. Next,
we assume that we are working with a perfect fluid, which can be used to
describe a range of phenomena including, on a sufficiently large scale, the
universe. We start with a round ball of test particles that are all initially at rest
relative to each other. Those particles are then allowed to fall freely through
spacetime. If V(t) is the volume of the ball after a proper time t has passed,
then it can be shown that

 

where these flows are measured at the centre of the ball at t = 0 using local
inertial coordinates. We met these flows in the previous section when
discussing the energy-momentum tensor. In this context, in plain English, Baez
and Bunn summarise the field equations as follows:

‘Given a small ball of freely falling test particles initially at rest with
respect to each other, the rate at which it begins to shrink is
proportional to its volume times: the energy density at the center of
the ball, plus the pressure in the x direction at that point, plus the
pressure in the y direction, plus the pressure in the z direction.’



An even simpler formulation applies if the pressure of the perfect fluid is the
same in all directions. As we'll see when we come to look at relativistic
cosmology, this is a working assumption that is thought to apply, on a
sufficiently large scale, to the universe. The field equations can then be
summarised as:

‘Given a small ball of freely falling test particles initially at rest with
respect to each other, the rate at which it begins to shrink is
proportional to its volume times: the energy density at the center of
the ball plus three times the pressure at that point.’

Now the energy-momentum tensor is that of a perfect fluid, which in the MCRF
is given by (7.5.6)

The authors use an even simpler version of this formulation (with pressure
equal to zero) to derive Newton's law of universal gravitation.



In 1917 Einstein proposed a modification to his field equations in the form of
an additional term , where  (the Greek letter Lambda) is called the
cosmological constant. His reason for doing this was his conviction, at that
time, that the universe is static. The obvious problem with assuming a static
universe is that gravity, being a force of attraction, would eventually act to
make the universe collapse onto itself. In order to ‘fix’ the field equations,
Einstein needed a mechanism to prevent this collapse, hence the cosmological
constant, which describes a sort of ‘anti-gravity’ repulsive force or negative
pressure. The modified field equations with the cosmological constant are

Shortly after Einstein's modification it was found that ‘static universe’
solutions to the field equations were unstable. Then came the momentous
discovery in 1929 by the American astronomer Edwin Hubble (1889–1953)
that the universe is expanding. Furthermore, it was found that this expansion is
consistent with cosmological solutions derived from the original, unmodified
field equations. This led Einstein to remark that the cosmological constant was
‘his greatest blunder’.
In 1998 observations from the Hubble Space Telescope showed that the
universe is not only expanding, but expanding at an accelerating rate. One way
to explain this expansion is in terms of a hypothetical dark energy that
permeates all space and which may possibly be described by the cosmological
constant. Ironically, Einstein's ‘greatest blunder’ has therefore now regained a
degree of scientific credibility. Dark energy and the cosmological constant may
be theoretically necessary to account for the accelerated expansion of the
universe, but their physical meaning is to date a complete mystery (a leading
current explanation is in terms of another mysterious quantity known as
vacuum energy).
We later discuss dark energy in greater detail when looking at relativistic
cosmology. Both dark energy and the cosmological constant can be ignored
when using the field equations to understand phenomena on a sub-cosmic
scale.



There could be no fairer destiny for any physical theory than that it
should point the way to a more comprehensive theory in which it lives

on as a limiting case.
ALBERT EINSTEIN



Newtonian mechanics provides an extremely accurate description of many
gravitational phenomena. The principle of consistency demands that general
relativity, which is a theory of gravity, must make the same predictions as
Newtonian gravitation given appropriate non-relativistic conditions. Assuming
we are using a test particle of negligible mass, we take these conditions to be
that:

The particle is moving relatively slowly (compared to the speed of light).
The gravitational field is weak.
The field does not change with time, ie it is static.

These conditions are known as the Newtonian limit of general relativity. We'll
now look at what happens when we apply these conditions to the equations of
general relativity. Specifically, we'll try to find relativistic approximations to:

Newton's three laws of motion (Section 2.4).
The relationship between the gravitational field and gravitational
potential (2.5.27) .
Newton's law of universal gravitation (2.5.2) .
Poisson's equation (2.5.28) .



This states that a particle will remain at rest or in uniform motion in a straight
line unless acted upon by an external force. We saw in Section 7.4 that in
spacetime freely moving or falling particles move along geodesics described
by the geodesic equations (7.4.2)

We can retrieve Newton's first law from the geodesic equations by considering
a particle in a Lorentz frame, ie in a Newtonian inertial frame in the absence of
gravity. Minkowski space, in other words, where we can use ordinary
Cartesian coordinates and the geodesic equations can then be written as

where i, j, k are the three spatial coordinates x, y, z. The connection
coefficients  will then equal zero, and the geodesic equations become

For non-relativistic speeds proper time  approximates to coordinate time t,
and we can rewrite this equation as

which is just another way of saying the acceleration of the particle equals zero,
ie the particle is either stationary or moving with constant velocity, which is
equivalent to Newton’s first law.

This states that a net force acting on a particle causes an acceleration of that
particle described by (2.4.1)

Or, equivalently, the force on the particle equals the rate of change of its
momentum p



In special relativity (Section 3.6.8) we defined the four-force (3.6.17) as the
rate of change of four-momentum

using (3.5.5) for proper time  in special relativity

The principle of general covariance allows us to replace the Minkowski
metric  with the general metric tensor  , giving proper time in curved
spacetime (7.3.1)

which we can substitute into the special relativistic equation (3.6.17) for four-
force to obtain

the upper case D signifying the absolute derivative. Equation (8.2.1) is the
general relativity version of Newton's second law (2.4.1) and is true for any
coordinate system.

Foster and Nightingale [9] state that this law - for every action there is an
equal and opposite reaction -

‘Is true in general relativity also. However, we must be careful,
because Newton's gravitational force is now replaced by Einstein's
idea that a massive body causes curvature of the spacetime around it,
and a free particle responds by moving along a geodesic in that
spacetime. It should be noted that this viewpoint ignores any
curvature produced by the particle following the geodesic. That is, the
particle is a test particle, and there is no question of its having any
affect on the body producing the gravitational field.



The gravitational interaction of two large bodies is not directly
addressed by Einstein's theory, although it is of importance in
astronomy, as for example in the famous pair of orbiting neutron stars
PSR 1913+16. Approximation methods for such cases ... are beyond
the scope of our book.’

If it's beyond the scope of their book, we can happily assume that it's beyond
the scope of this one.



Equation (2.5.27)  describes the relationship between the Newtonian
gravitational field g and the Newtonian gravitational potential ϕ. Because g
equals acceleration, the equation  is therefore the Newtonian
equation of motion for a particle moving in a gravitational field of potential ϕ.
We'll now try to derive an approximation of the Newtonian gravitational
equation  from the mathematics of general relativity.
Remember that in the Newtonian limit we make three assumptions:

The particle is moving relatively slowly (compared to the speed of light).
The gravitational field is weak.
The field does not change with time, ie it is static.

We've seen that proper time is measured by a clock travelling on a time-like
world-line, so we can take the proper time  as the parameter of the world-
line. The first assumption, that the particle is moving slowly, implies that the
time-component (ie the 0th component of the particle's four-velocity)
dominates the other (spatial) components, ie

and therefore the geodesic equations (6.5.2)

become

To calculate the connection coefficients  from the metric we use (a form of
- we've changed the indices) (6.2.6)



to give

However, we can simplify this because of our third assumption, that the
gravitational field is static, meaning we can ignore the  and  terms (as
these are with respect to time). This gives

Our second assumption, that the gravitational field is weak, allows us to write

where we assume that spacetime is only slightly changed compared to the zero
gravity Minkowski space of special relativity. The metric we are looking for 

 therefore equals the Minkowski metric  plus a small perturbation (an
extra little bit of metric) , which is due to the weak gravitational field. The
components of  are small compared to , meaning .

We next need to find an approximation for  in (8.3.2).
Recall that multiplying a metric by its inverse gives the identity matrix ,
which we can write as

Also, if we ignore the A2 term (which we can do if ), then 
.

Therefore, if we let , we can say

meaning

where (using the metric to juggle the indices) .



Also, as  then  and  (because 

).
We can now rewrite (8.3.2) as

and the geodesic equations (8.3.1) become

As the gravitational field is static we can assume that  and (8.3.5)
becomes (where )

meaning  is a constant.

Next we look at the spatial  components of (8.3.5), which are given by

We've introduced a minus sign because the spatial components of the
Minkowski metric  (3.5.2) are negative. We write cdt instead of dt because
we are using ct units of time (as a constant, c is written to the left of dt). We
now need to change the derivative on the left-hand side from  to t. To do this

we need to play around with  a little. By definition

We then use the product rule:



But we already know that  , meaning the right-hand term vanishes and

Therefore, if we multiply both sides of (8.3.6) by  we change the left-

hand term from  to  giving

But if we assume that

(which also implies ) then (8.3.7) becomes (the c2s cancel)

which is just another way of writing the Newtonian gravitational Equation
(2.5.27) .



In order to derive Newton's law of universal gravitation from general relativity
we need to jump ahead of ourselves a little and make use of the Schwarzschild
metric, one of the most useful solutions to Einstein's field equations and
something we'll be looking at in greater detail in the next chapter.
For now, we note that this metric can be used to describe the gravitational
field of a slowly rotating massive body (of mass M) such as the Earth or Sun.
The metric can be written as a four-dimensional line element

By looking at this equation we can see that as the term  decreases (either
by decreasing M or increasing r) the metric approaches the line element of flat
spacetime in spherical coordinates (3.5.6)

We are thus here dealing with the ‘almost flat’ spacetime of special relativity
and can use a ‘nearly Cartesian’ coordinate system.

So for very small values of  , we can do as we did in Section 8.3 and
assume that for a weak gravitational field we can use a metric of the form

where  is a little additional tweak to the Minkowski metric.

The  term of our ‘almost flat’ metric  then becomes (from
8.4.1)

giving

We know (2.5.21) that Newtonian gravitational potential ϕ at a point in a



gravitational field is given by . We can therefore rewrite (8.4.2) as

which we met (8.3.8) in the previous Section.
(8.3.9) tells us that

where is acceleration, and , where r is the
particle's radius vector in our Cartesian x, y, z coordinates. Substituting r and
using the vector form of  we can rewrite (8.4.4) as

where  is a unit vector in the direction of r. We know from Newton's second
law (2.4.1) that F = ma and can therefore multiply both sides of (8.4.5) by the
particle's mass m to give

which we can now identify as the vector form (2.5.2) of Newton's law of
universal gravitation



In Section 2.5.7.3 we met Poisson's equation (2.5.28)

which describes how mass produces the Newtonian gravitational field.
We are now going to try to find a way of deriving an approximation of
Poisson's equation from the Einstein field equations.
As in Section 8.3 we'll assume that for a weak gravitational field

where  is a small perturbation (an extra little bit of metric) and the
components of  are small compared to , ie .
We'll also assume that a weak gravitational field approximates the energy
momentum tensor for dust (7.5.5) so  and .
(Note:  is the overall equation for the energy-momentum tensor, T is the
actual value of it.)
Substituting  and T into the Einstein field equations (7.6.6)

we get

Substituting into this equation the weak gravitational field metric 
 gives

As the only non-zero component of  is , it seems reasonable to
focus on the  components of , ie the  term.
Remember that when we looked at the definition of four-velocity in Section
3.6.3 we saw from (3.6.2) that



In the Newtonian limit we are assuming that speeds are low compared to the
speed of light, and therefore ,  and .

Also, as  and we can say .
We can therefore write (8.5.1) as

Now we need to refer back to Section 6.7 where we saw that the Ricci tensor
(6.7.2) is

For the  term this becomes

A weak gravitational field assumes we are in ‘almost’ Minkowski space and
that our coordinate system is ‘nearly Cartesian’. Therefore, the connection
coefficients  are small and we can ignore the last two terms in (8.5.3),
which then becomes

Because our field is assumed to be static we can say  and (8.5.4)
becomes

But, we've already seen from (8.3.4) in Section 8.3 that



and so (changing the indices slightly) we can rewrite

Substituting (8.5.6) into (8.5.5) gives

But, from the definition (1.13.9) of the Laplacian operator  we can rewrite
the right-hand side as

giving

The reason for the minus sign is because we are only using the spatial
components of  and as

these all equal -1.
We now have two expressions for : (8.5.2) and (8.5.8) and can therefore
write



But we found in Section 8.3 that  , meaning (8.5.9) becomes

And, if we let the Einstein constant κ = 8πG/c4, (8.5.10) approximates to
Poisson's equation



It is always pleasant to have exact solutions in simple form at your
disposal.

KARL SCHWARZSCHILD



Minkowski space is known - somewhat disconcertingly to the student who has
exerted much effort trying to understand special relativity - as the ‘trivial’
solution to the Einstein field equations. Triviality may be in the eye of the
beholder, but if both the energy momentum tensor and the Riemann curvature
tensor equal zero, the result must be the flat spacetime of special relativity.
Ignoring the flat option, the Einstein field equations - effectively a set of non-
linear differential equations - are notoriously difficult to solve exactly.
Einstein himself used approximation methods when working out the
predictions of general relativity, such as accounting for the small discrepancy
in Mercury's orbit. We used an approximation in the previous chapter when
looking at the Newtonian limit (weak, static gravitational fields and light,
slow-moving particles) and assumed the metric (8.3.3) to be .

Figure 9.1:
Karl Schwarzschild (1873–1916).

There's nothing wrong of course with approximate solutions as long as they



produce reasonably accurate results. But in 1916, shortly after he had
proposed his general theory of relativity, Einstein was pleasantly surprised
when a German astrophysicist Karl Schwarzschild (Figure 9.1) published an
exact solution to the field equations. Schwarzschild posted his results to
Einstein, who wrote back in January of that year:

‘I have read your paper with the utmost interest. I had not expected
that one could formulate the exact solution of the problem in such a
simple way. I liked very much your mathematical treatment of the
subject. Next Thursday I shall present the work to the Academy with a
few words of explanation.’

Sadly, Karl Schwarzschild never had much time to savour his triumph. He died
in May 1916 as a result of a disease he contracted while serving in the German
army during World War I.

The Schwarzschild metric describes a static, spherically symmetric
gravitational field in the empty region of spacetime near a massive spherical
object. Strictly speaking, the solution only applies to non-rotating spherical
masses. However, the Schwarzschild metric also provides a good
approximation to the gravitational field of slowly rotating bodies such as the
Sun or Earth. It can also describe the simplest type of black hole.
Lambourne [17] calls the Schwarzschild solution, ‘The first and arguably the
most important non-trivial solution of the Einstein field equations.’



It's probably a good idea at this point to simply state the Schwarzschild metric
so at least we know what it looks like. Or rather, what ‘they’ look like, as the
same metric can be expressed in several different forms. Here is the full
version in line element form:

Where M is the mass of our spherically symmetric gravitational source, G is
the gravitational constant, and t, r, θ, ϕ are known as Schwarzschild
coordinates. Keep an open mind about these coordinates for the time being as
they are not quite as straightforward as they appear.

Some textbooks simplify (9.2.1) by using the substitution m = GM/c2 giving

Finally, the metric may be expressed in terms of a quantity known as the
Schwarzschild radius  (see Section 9.4.1) as

To add to the confusion, don't forget that some authorities assume that c = 1, so
don't even show the blessed thing in their equations!
Finally, to give one example of the metric in matrix form, we can write (9.2.1)
as

Now, let's list the assumptions that guided Schwarzschild in his search for this



metric. They are:

The metric describes the geometry of empty spacetime surrounding a
spherically symmetric body, such as a star or planet.
The gravitational field is static - we don't want the complication of a
metric that changes with time.
The gravitational field is spherically symmetric - the field will be the
same at equal distances from the source mass.
The metric is asymptotically flat, which simply means that the metric
must be constructed in such a way that it ends up describing the flat
spacetime of special relativity at a sufficiently large distance from the
source mass.

Because we are considering a spherically symmetric body, it makes sense to
try to use spherical coordinates t, r, θ, ϕ. As we'll see, using such coordinates
is not quite as straightforward as might first appear, but we'll make a start with
them for now.
It can be shown that in order for the above four conditions to be met the metric
must take the following general form:

where U, V, W are some unknown functions of r. In this metric the coordinate r
is the usual radial distance from the origin (the centre of the source mass). If
we assume that W = 1, we have changed r and can no longer assume that it is a
simple radial distance from the origin. This step makes sense, however, as we
can now rewrite (9.2.4) as

where A and B are some new unknown functions of r, ie A = A(r) and B = B(r).
Now we can take a magnifying glass to (9.2.5) and see how it conforms to the
above conditions. We note that this proposed metric has the following
properties:



None of the metric components depend on time - meaning the metric is
static.
If we let r and t be constant, then dt2 = 0 and dr2 = 0 and the metric
becomes

which is the line element for the surface of a sphere (4.3.1) - meaning the
metric is spherically symmetric.
The functions A(r) and B(r) must be consistent with . This is
because the metric describes the properties of empty spacetime in the
vicinity of a source mass. If the spacetime is empty at a particular point,
then the energy-momentum tensor at that point must equal zero. As we'll
shortly see, saying  implies both the Ricci tensor and Ricci scalar
are also zero in the Einstein field equations (7.6.4):

Both A(r) and B(r) must approach 1 as r approaches infinity. If this
happens, the metric becomes (3.5.6), the Minkowski metric in spherical
coordinates

and the fourth condition is satisfied - the metric is asymptotically flat.

We'll now derive the Schwarzschild metric, before examining some of its most
important properties.



The Schwarzschild metric describes the gravitational field of empty spacetime
surrounding a spherically symmetric body. In empty space, the energy-
momentum tensor  on the right-hand term of the Einstein field
equations (7.6.4) is equal to zero, and we have

which are known as the vacuum field equations. If we multiply both sides by 
 we get

If we sum  over all values of ν we obtain the Ricci scalar (6.7.3) , and

and if we sum the Kronecker delta  over all possible values of ν

Therefore

meaning R must equal zero. This means that for vacuum solutions of the
Einstein field equations both the Ricci tensor and the Ricci scalar vanish.
However, this does not necessarily mean that spacetime is flat.
Recall that the Riemann curvature tensor (6.6.1) is the absolute acid test for
determining whether a manifold is flat or curved. Only if the Riemann
curvature tensor is zero for all points in a particular space, is that space flat.
The Ricci tensor and the Ricci scalar are both derived from the Riemann
curvature tensor. Curved space is a tricky beast, however, and a zero valued
Ricci tensor and Ricci scalar does not necessarily imply that the underlying



Riemann curvature tensor must also equal zero. That is why the field equations
can have non-trivial solutions even when the energy-momentum tensor equals
zero.

In passing, we can namedrop Birkhoff’s theorem - named after the American
mathematician G D Birkhoff (1844–1944) - which states that the
Schwarzschild solution we are deriving is the only possible spherically
symmetric vacuum solution to Einstein’s field equations.

We start with (9.2.4) - the form our proposed metric must take

where U, V, W are functions of r.
If, as we did above, we assume that W = 1, we have changed the coordinate r
and can no longer assume that it is the usual radial distance from the origin. We
can rewrite (9.2.4) as

Where ν and λ are functions of r. We use exponential functions  and 
because these are always positive, meaning we can ensure the  term is
always positive and the  term is always negative. We do this because
the line element (9.3.1) must always have the consistent + - - - signature, ie the
one we have used throughout this book.
From the line element (9.3.1) we can read off the values of . These are 

, , , . All other values of 
.

Because the metric is a nice, simple diagonal matrix, the components  of the
inverse metric are the reciprocals of , ie , 

, , .



We now need to find the connection coefficients by plugging the values of 
and  into (6.2.6)

There are actually forty independent connection coefficients, but only nine are
non-zero. We'll calculate one as an example and state the others. We'll use a
prime  to indicate differentiation with respect to r, so λ' means .

Problem 9.1.  Calculate  from the line element (9.3.1).
 means , ,  , so we can say

ρ must equal 0 (otherwise ), therefore we can write

We now plug in the values of  and  to give

We can use a version of the chain rule (1.10.4) to solve . Let ,
giving  (where ). Then . The chain rule then says

which we can plug into (9.3.2) to give



The other connection coefficients can by similarly calculated. The nine
independent connection coefficients are:

Next we need the relevant Ricci tensor components using (6.7.2)

Only four components are non-zero. After substituting the connection
coefficients into this equation, plus lots of algebra, these are found to be:



These equations look horribly complicated, but thankfully things now start to
get easier. For a vacuum solution all these components must equal zero: 

, , , . We can therefore rearrange the 
equation to give

Next, we substitute this into the  equation to give

Now, we know that  cannot equal zero (e to the power of anything
doesn't equal zero), therefore it must be that

or

which we can integrate to

The proposed metric (9.3.1) that we started off with

must approximate to the Minkowski flat space metric as r approaches infinity,
ie  and  as . For this to happen  and  must equal
zero, because . Therefore, it must be that

We can substitute (9.3.3) into the  equation to eliminate ν':



We can rearrange (9.3.5) so that it becomes

To show this, we first use the product rule on the right-hand term of (9.3.6) and
say

We then use the chain rule and let , giving  , and 

. The chain rule then says

which we substitute into (9.3.7) to give

which is what we were trying to show. So now we can say

which integrates to

where b is an integration constant. We can rearrange this to get



Equation (9.3.4) tells us that , which we can substitute into (9.3.9) to
give

and turn this on its head to give

To find b/r we use the principle of consistency, ie that given the appropriate
conditions, general relativity should reduce to the laws of Newtonian
gravitation and the flat space of special relativity. We've already built into our
derivation the condition that our initial metric (9.3.1) approximates the
Minkowski metric as r increases (ie  and  as ). Now
we need to ensure that the metric behaves as it ought to for weak gravitational
fields.

In Section 8.3 we saw that at the Newtonian limit (where  and
) we have (8.3.8)

and therefore

where ϕ is the Newtonian gravitational potential at a point in a gravitational
field and is given by . We can therefore stipulate that at the
Newtonian limit, b/r must equal . As , we can therefore say



We can now define the exponential functions  and  , using (9.3.10) and
(9.3.9), as

and

and we can rewrite (9.3.1)

as

our goal - the Schwarzschild metric (9.2.1).



We'll now look more closely at some of the important properties and
implications of Schwarzschild spacetime. We first consider a crucial quantity
known as the Schwarzschild radius. We then need to investigate the meaning of
time and distance as described by the metric, and say a quick hello to the
geodesic equations of motion, which determine how objects and photons move
in this spacetime. Also, in this section, in no particular chronological order,
we discuss what are known as the four classical tests of general relativity,
these being:

gravitational redshift
precession of the perihelion of Mercury
gravitational deflection of light
gravitational time delay of signals passing the Sun.

Buried in the coefficients  and  is an important
quantity  known as the Schwarzschild radius, where

M being the mass of our spherically symmetric gravitational source, a star for
example, and m = GM/c2. We can rewrite the Schwarzschild metric in terms of

 as

If we magic away our star so that M = 0, then  = 0 and the Schwarzschild
metric again reverts to the Minkowski metric of special relativity expressed in
spherical coordinates. Only when M = 0 do the coordinates t and r represent
real clock-time and radial distance. If we increase M we start to curve
spacetime and we can no longer assume that the coordinates t and r represent
directly measurable quantities of time and distance.



Problem 9.2.  Assuming that they are both spherically symmetric bodies,
what is the Schwarzschild radius of (a) the Earth, (b) the Sun?
(a) The mass of the Earth = 5.97 × 1024 kg. The gravitational constant = 6.67
× 10-11 N m2 kg-2. Using (9.4.1)

or about 9 millimetres. The actual radius of the Earth is about 6.37 × 106 m
(6370 km).

(b) The mass of the Sun = 1.99 × 1030 kg.

or about 3 km or just under 2 miles. The actual radius of the Sun is about
6.96 × 108 m (696,000 km).

A strange property of the Schwarzschild metric is that if all the mass M could
be squeezed inside a sphere of radius , light would be unable to escape
from the object and we would have created a black hole, one of the strangest
objects in the universe. We'll be taking a closer look at black holes in the next
chapter.
From our previous example we can see that if we wanted to transform the
Earth into a black hole, we would need to squash it down into an 18mm
diameter ball - something about the size of a grape! The reason that planets and
most stars do not shrink down into black holes of their own accord is that there
are countervailing internal pressures and forces that act to prevent such a total
gravitational collapse.



You may have noticed that as the value of r approaches , the factor 
approaches zero and the metric starts to go haywire. First, the  metric
coefficient . Second, the  coefficient . We say there is a
singularity in the Schwarzschild metric at . A singularity is a point
where a mathematical object is undefined. For example, there's a singularity in
the function y = 1/x where x = 0. At that point the function ‘blows up’, and we
cannot assign a value to y.
But does the singularity at  have any physical significance? In other
words, is it describing a real lower-limit boundary of r, or is it some kind of
mathematical blip? It took some time following the publication of the
Schwarzschild metric for physicists to realise that  is not a physical
singularity, but instead a consequence of the coordinates being used. Hence, 

 is known as a coordinate singularity, and can removed by suitable
replacement of coordinates that are valid for r. Because  is a
coordinate singularity, by careful choice of coordinates other than t, r, θ, ϕ, the
Schwarzschild metric can describe the simplest form of non-rotating,
electrically neutral black hole, where the radius of the central mass is less than
the Schwarzschild radius, ie . These are known as Schwarzschild black
holes, which we look at in the next chapter.
Recall that the Schwarzschild metric is a vacuum solution to the Einstein field
equations. This means it is only valid in the empty region of spacetime outside
of a massive spherical object. For ‘ordinary’ celestial bodies such as planets,
our Sun and most stars, the Schwarzschild radius is located deep within the
object and . This means that the singularity  won't be a problem
when using our usual t, r, θ, ϕ coordinates because this singularity will not
occur in the empty space surrounding our object.

Because , the  and  terms in the Schwarzschild
metric will be less than 1 for ‘ordinary’ celestial bodies.

It's worth noting that there is a genuine physical singularity when r = 0, which
cannot be transformed away by changing coordinates. At this point, which is
thought to occur at the centre of a black hole, spacetime has infinite curvature,
matter has infinite density and the laws of physics break down.



We want to see how time is measured in Schwarzschild spacetime. We'll
consider the gravitational field outside of an imaginary planet Zog, which is
standing alone in the middle of boundless empty space. An observer, let's call
him Yuri, with a torch is standing on the surface of Zog. As well as a torch, he
is also equipped with a super-accurate clock. Yuri points the torch into the sky
and rapidly flashes it on and off twice. Each flash of light can be thought of as
an event. He records the time interval between the two flashes/events using his
clock.
In terms of the Schwarzschild metric, what do we know about these events?
We'll call the Schwarzschild coordinates of the first event 

 and those of the second event 
. We don't know the value of the 

 coordinates, but we know they are constant (because the
torch is stationary relative to Zog), and therefore . The two
events are separated by a difference in coordinate time equal to . We
don't know how this coordinate time relates to the time recorded on Yuri's
clock.
From our previous discussion, we know that the proper time (7.4.3) between
the two events in terms of the spacetime line element is given by

which is the time measured by a stationary clock at the same position as the
two events. Yuri's is such a clock. We can call the proper time measured by
Yuri's clock . Feeding all this information into the Schwarzschild metric
(9.2.1)

we find that the small (we'll assume that it's infinitesimal) spacetime
separation of the two events is



giving

Because  is less than 1, we can see that the proper time 
measured by Yuri between the two events is less than the coordinate time 

 separating the events, ie .
We can rewrite (9.4.3) in general terms for any increment of proper time as

or, substituting m = GM/c2, we can write

Looking at (9.4.3) we can see that if we travelled far, far away from Zog so 

, the term , and  will increasingly agree with dt.
We can therefore say that the coordinate time t is the same as the proper time 
kept by a stationary clock at infinite distance from Zog or, in other words, 

. Now we can rewrite (9.4.4) as

or



This equation tells us that the proper time  between two events as
recorded by a stationary distant observer is more than the proper time 
recorded by an observer located where the events occurred. We've actually
slipped an assumption in here: that the coordinate time difference between two
events in Schwarzschild spacetime is the same as that recorded by a distant
observer. We'll show that this assumption is true in Section 10.4.1.
This phenomenon - that clocks run slower in a gravitational field as seen by a
distant observer - is known as gravitational time dilation. In other words,
clocks lower down in a gravitational field (nearer the surface of the star,
planet, etc) run slower than clocks higher up in that field. To paraphrase -
gravity makes time run slower.
Note that although we have stated that our distant observer is infinitely far
away from the central body (Zog, in our example) all we are really asking is
that the observer should be sufficiently distant so that  is negligible,

meaning .
We can also see from (9.4.6) that if the two events are moved nearer the
surface of the spherically symmetric body, then r decreases and 

 increases. This means the distant observer would measure the
clock recording proper time  next to the events to be running even slower
compared to his own clock showing proper time .
Don't confuse the gravitational time dilation of general relativity with the time
dilation of special relativity we met in Section 3.3.9. The differences are:

In special relativity we are comparing two observers moving in relative
uniform motion. In our example of gravitational time dilation both
observers are stationary with respect to each other.
In special relativity two observers in relative uniform motion measure
each other's clocks to be running slow. This is not the case with
gravitational time dilation where both observers agree that the clock in
the stronger gravitational field runs slower than the one in the weaker
gravitational field.
In special relativity we use global reference frames (think of a spacetime
diagram stretching on for ever) that can, in theory, extend to infinity. We
assume that inertial observers in special relativity use synchronised



clocks to time events wherever they happen in their reference frame. In
general relativity we are dealing with curved spacetime and a global
coordinate system isn't usually possible, so we tend to use local frames.
In our example of gravitational time dilation the distant observer
measured the time difference between Yuri's light flashes locally at his
own location, not where they occurred where Yuri was standing on the
surface of Zog.

Figure 9.2:
Simple waves.

First, some basic information about waves in general - light, water, sound, etc.
Figure 9.2 shows two simple waves travelling from left to right across the
page. The top wave has a shorter wavelength λ (distance between two peaks)
than the bottom one. The frequency f of a wave is the number of cycles of a
wave to pass some point in a second, peaks per second for example. There is
an easy formula expressing the relationship between the wavelength, frequency
and velocity v of a wave. This is



So, for example, if a wave has a frequency of 10 cycles per second (or 10
hertz, to use the proper SI units) and a wavelength of 2m, it will have a
velocity of 10 × 2 = 20 m s-1.
The period of a wave is the duration of one cycle, so is the reciprocal of the
frequency. In our example, the period would therefore equal 1/10 = 0.1
seconds - the time it would take each peak to pass a particular point.
Returning to Yuri. When he flicked his torch on and off he measured the proper
time  between two events, ie two flashes of light. Another pair of events
might be the successive peaks of the light wave leaving the torch. The proper
time interval  then represents the period of the wave as it leaves the
torch. We can use (9.4.6) to show the period of the light wave as measured by
a distant observer  in terms of the period of the light wave  as
measured by Yuri:

In general terms, we can write

where  is the period of the wave measured where it is emitted. Because
frequency is the reciprocal of the period, we can say

where  is the frequency of the wave measured by a distant observer, and 
 is the frequency of the wave measured at the point of emission. This

equation tells us that the frequency of a wave as recorded by a distant observer
is less than the frequency recorded by an observer located where the events
occurred. This phenomenon is known as gravitational redshift, because a
reduction in frequency means a shift toward the longer wavelengths or ‘red’
end of the electromagnetic spectrum. We can think of the photons losing energy
as they climb out of the gravitational field - loss of energy equating to a drop in
frequency. Gravitational redshift doesn't only apply to visible light of course



but to all electromagnetic waves. Figure 9.3 illustrates this phenomenon
schematically.

Figure 9.3:
Gravitational redshift of a light wave escaping from a massive object.

Recall Einstein's ‘happiest thought’ (Section 7.2.1), when he realised the
fundamental importance of the equivalence principle in his search for a
gravitational theory of relativity. Using this principle, Einstein predicted a
local version of gravitational time dilation and gravitational redshift in 1907,
eight years before his full formulation of the general theory and the publication
of the Schwarzschild metric. The following modern derivation is based on
Schutz [29].

First, we need to mention a phenomenon known as the Doppler effect, which
describes the observed change in frequency of waves relative to a moving
observer. A police car siren, for example, appears to increase in pitch as the
car speeds towards you and decrease in pitch as it moves away. Think of the
‘yeeeoooow’ sound a racing car makes as speeds past. The police officer
driving the car will not of course notice any change in pitch of her siren. But if
she knows how fast she is travelling, and how to do the physics, she could



predict how the siren would sound to a passing observer.
The Doppler effect applies to light as well as sound. An observer moving
away from a light source will measure an increase in wavelength, a decrease
in frequency, and the light will appear redshifted. Conversely, an observer
moving towards the light source will see a decrease in wavelength, an increase
in frequency, and the light will appear blueshifted.
A useful approximation of the change in frequency of a light wave is given by

where  is the emitted frequency, and  is the measured frequency of an
observer moving with velocity v away from the light source. This equation
assumes that v is much smaller than c. Because the term (1 - v/c) is less than 1,
the observed frequency  will be less than the emitted frequency  and the
light will appear redshifted. If the observer is moving towards the light source
we change the sign from -v/c to +v/c and the light would appear blueshifted.
Now we recall the equivalence principle, which states that, locally, the
physical behaviour of objects in a gravitational field cannot be distinguished
by any experiment from the behaviour of uniformly accelerating objects. That
means that if a beam of light is redshifted in a uniformly accelerating frame it
must also be redshifted in a gravitational field. How can we show this?
Consider a thought experiment where an observer A is on top of a tower of
height h. On the ground next to the tower is a laser shining a beam of light
vertically upwards of frequency  (measured on the ground, ie at the bottom
of the tower). Observer A measures the frequency of the light beam when it
reaches him to be . What is the relationship between  and ? In order
to answer this question we introduce another (fanatically dedicated) observer
B, who jumps off the top of the tower the moment the laser emits its beam of
light. Observer B is momentarily stationary when he steps off the tower, which
is the same time as when the light is emitted, and so he measures its frequency
at that instant to be . In fact, because observer B is freely falling, and
therefore constitutes an inertial frame of reference, he measures the frequency
of the light beam to be constant at  (think of observer B as being effectively
in deep space measuring the speed of a passing light beam).



From falling observer B's point of view, observer A is moving away from the
light source. He can therefore use the Doppler effect equation (9.4.9) to
calculate the frequency  measured by observer A on top of a tower
compared to the frequency  measured by observer B. Just to be clear,
observer B doesn't see any change in frequency in the light beam, but he can
predict that observer A will measure a Doppler-caused redshift (just as the
police officer doesn't hear the pitch of her own siren change, but can calculate
that change for a roadside observer).
To calculate the Doppler redshift measured by observer A, we need the
relative velocity of that observer compared to the laser. This is the same as the
velocity v of observer B when the beam of light reaches the top of the tower.
We find v using the relevant equation of uniform motion (1.10.15) we met
earlier

where u is the initial velocity of observer A, ie u = 0, a is the acceleration due
to gravity, ie a = g, and t is the time it takes the light to reach the top of the
tower, ie t = h/c. We can therefore say

We can now plug this into the Doppler effect equation (9.4.9) to get

In our approximation, gh will be much smaller than c2, therefore the term 

 is less than 1, and  will be smaller than , and we have shown
the light is redshifted.
The principle of equivalence says that if some physical effect happens in a
uniformly accelerating frame, it must also happen in a stationary frame in a
gravitational field. From observer B's point of view the light is redshifted for
observer A due to the Doppler effect. From observer A's point of view the
light is red shifted because it climbed out of a gravitational field.



Because frequency is the reciprocal of period we can invert (9.4.10) to give an
equation for gravitational time dilation:

where  is the time measured at the bottom of our hypothetical tower, and 
 is the time measured at the top.

We have therefore used the principle of equivalence to derive approximations
((9.4.11) and (9.4.10)) of the equations of gravitational time dilation and
redshift.
These equations are reasonable approximation for small distances h near the
Earth. They are local versions of the gravitational time dilation and redshift
equations we derived in the previous section using the Schwarzschild metric.
As we saw when using our example of Yuri shining his torch into the sky on
planet Zog, the Schwarzschild equations are not limited to a single local frame
but can be used to take measurements in widely separated local frames (think
of the distant observer far away from Zog, measuring the time intervals of
Yuri's flashing torch).
In 1960 Pound and Rebka performed the first laboratory-based test of general
relativity when they measured the gravitational redshift of photons travelling
22.5m vertically in a tower at Harvard University's Jefferson Laboratory.
Their experiment, using gamma rays, showed a 10% deviation from the
predictions of general relativity, later improved to better than 1% by Pound
and Snider.

We'll now look at how to measure distance in Schwarzschild spacetime. When
deriving the Schwarzschild metric we had to change the definition of
coordinate r, meaning we could no longer assume that it represented a
straightforward radial distance from the origin. We saw that only when M = 0,
and the Schwarzschild metric reduces to the Minkowski metric, do the
coordinates t and r represent real clock-time and radial distance. So, what
does the coordinate r actually represent?
Consider two events that occur at the same coordinate time (ie dt = 0), but are



separated by an infinitesimal spatial distance. Using the Schwarzschild
metric (9.2.1) we can say

and we can say the proper distance (denoted by the Greek letter sigma σ)
between the two events is given by

or

For a fixed value of r (ie ), (9.4.13) reduces to

which is the line element (4.3.1) for the surface of an ordinary three-
dimensional sphere embedded in Euclidean space that we met in Section 4.3.

Problem 9.3.  What is the proper circumference C of a circle of
Schwarzschild coordinate radius r in the θ = π/2 plane centred on r = 0?
The θ = π/2 plane defines the equator of a sphere. The coordinates  are
constant, so . We use (9.4.14)



which becomes

and we can integrate to give

 and thus

the same as the ordinary circumference of a circle in flat space.

Let's be clear what we are saying here. Constant Schwarzschild coordinate
time t and coordinate distance r, define the surface of a Euclidean sphere.
Equation (9.4.15) then tells us that the infinitesimal proper distance 
between any two points/events in Schwarzschild spacetime is the same as the
separation of those two points on the surface of such a sphere. Effectively, for
each constant value of coordinate time t, Schwarzschild spacetime can be
thought of as a series of nested Euclidean spheres (think of a set of Russian
dolls), each one representing a different value of r.
Problem 9.3 tells us that the proper circumference of a great circle drawn on
one of these spheres is 2πr, just as it is in Euclidean space. However, because
we are dealing with curved spacetime (ie M ≠ 0) for the spherically symmetric
central star or planet etc) the coordinate distance r would not equal the proper
radius of such a circle. In other words, r does not represent proper radial
distance. This is shown in Figure 9.4 where a great circle is drawn around a
central spherical mass. We could use a ruler to measure the proper
circumference  and proper radius  of this circle. We could calculate the
Schwarzschild coordinate radius to be



but we would also find that

This discrepancy is due to the central spherical mass distorting spacetime
(actually space not spacetime in this particular example, where t is constant)
as dictated by the Schwarzschild metric.

Figure 9.4:
Measuring distance in Schwarzschild spacetime.

To quantify the relationship between proper distance σ and coordinate distance
r, we can consider two events that not only occur at the same coordinate time t,
but also at the same coordinate angles θ and ϕ (ie dθ = dϕ = 0). Equation
(9.4.14) now reduces to

The  terms in the Schwarzschild metric are less than 1 for

‘ordinary’ celestial bodies. Therefore, the  term in (9.4.17)
will be more than 1, meaning  is usually greater than dr (as long as r is
greater than the Schwarzschild radius 2GM/c2).
Recall (9.4.2) that we can also express the Schwarzschild metric in terms of
the Schwarzschild radius, in which case (9.4.17) becomes



or, substituting m = GM/c2, we can write

Figure 9.5:
Radial distance in Schwarzschild spacetime.

Figure 9.5 helps us visualise the relationship between σ and r. The lower
portion of the diagram shows flat space, where there is no central mass (ie M
= 0). The upper portion of the diagram shows the same space, but now curved
due to the introduction of a central mass (M > 0). The circles  and 
represent a Euclidean sphere of coordinate radius r, the circles  and  a
slightly larger sphere of coordinate radius . Circles  and  have a
proper circumference of 2πr. Circles  and  have a proper circumference
of . The proper measured distance between the two spheres equals
dr in flat space, but  (measured along the curve) in curved space. We can
see that:



 is larger than dr.
As we move radially outwards  increasingly approximates to dr.
As we move radially inwards, approaching the Schwarzschild radius, 
becomes increasingly large compared to dr.

Figure 9.5 is a type of embedding diagram, a frequently used model that helps
us picture the spatial curvature of general relativity. Embedding diagrams take
a slice through the equator (θ = π/2, t = constant) of a star etc. The distance
between nearby points on the curved surface then represent the proper distance

 , as discussed above. It's important to realise that only the curved surface
(the funnel-shaped bit) has any meaning in these diagrams. Points and distances
away from the curved surface (ie in the three-dimensional Euclidean space in
which the surface is embedded) have no physical meaning.
We can integrate 9.4.18 to obtain the proper radial distance  along a
particular radial coordinate line

(This derivation and the following black hole examples are taken from Griest

[13].) If we let  , Griest gives

where ln is the natural logarithm of what follows in the brackets. Recall that
the natural logarithm of a number x is the power to which e would have to be
raised to equal x. For example, ln(5) = 1.6094379 because e1.6094379 =
2.718281831.6094379 = 5.
Equation 9.4.21 looks unpleasantly complicated, both to derive and to solve
for any particular values of radial coordinates  and . This is not a problem,
however, because the process of finding both indefinite and definite integrals
is made infinitely easier by using an online integral calculator. For example,
using the WolframAlpha Calculus and Analysis Calculator [33], simply type
‘integrate (1-R/r) (̂-1/2)dr’ (omit the quotes) into the input box and out pops an



equivalent form of (9.4.21). This calculator also allows you to find definite
integrals (ie we can solve for radial coordinates values  and ), as we'll see
shortly.
Griest uses an example of a black hole of three times the Sun's mass, giving a
Schwarzschild radius of  = 8.85 km. He supposes that we fly a spaceship
around the black hole and measure the circumference (using (9.4.16)) of our
flight path to be  Our radial coordinate distance is therefore r
= 30 km. We then fly to r = 20 km and might well assume that we have
travelled a proper distance of 10 km. By integrating 9.4.18 between 

 and  , he shows that the proper distance we have
covered is actually 12.51 km. Our measured circumference at r = 20 km
would, however, be 2π × 20 km and not 2π × (30 - 12.51) km.
This is easy enough using the WolframAlpha Calculus and Analysis Calculator
[33]. Simply type ‘integrate (1-8.850/r) (̂-1/2)dr from r=20 to 30’ (omit the
quotes) into the input box, and out pops the answer: 12.5093.
Similarly, if we travelled from r = 30 km to r = 10 km we could cover a
proper distance of 29.5 km, not 20 km Such weirdness is the result of
spacetime being curved in the vicinity of a black hole.
Our own Sun also curves spacetime, but to a much smaller extent than a black
hole. For example, assume that the Earth's radial coordinate distance from the
centre of the Sun is r = 15 × 1010 m. If we fly from the Earth towards the Sun to
r = 14.9 × 1010 m we would have covered a coordinate distance of
1,000,000,000 m (a million kilometres), but a proper distance (ignoring all
gravitational influences except the Sun's) of about 1,000,000,010 m - a 10 m
difference.
The curvature of spacetime caused by the Earth is even smaller. If we assume
that the radial coordinate height of Mount Everest is r = 8848 m, the proper
height calculated by integrating 9.4.18 is around 8848.0000062 m. You'd
hardly notice the difference!
Looking at (9.4.18)

such tiny discrepancies between proper distance σ and coordinate distance r



are to be expected. Providing  then , which is what
astronomers can assume for most ‘ordinary’ celestial observations.

We saw in Section 7.4 that geodesic equations describe the paths of freely
moving/falling particles in spacetime. These equations are in the form of
parameterised curves. Time-like geodesics (where ds2 > 0, and proper time dτ
≠ 0) describe the paths of massive objects (‘massive’ meaning anything with
mass) and can use proper time as a parameter. Null geodesics (where ds2 = 0,
and proper time dτ = 0) describe the paths of (massless) photons and need to
use another parameter (often denoted by λ) instead of proper time.
In order to understand how things (objects with mass as well as massless
photons) move in Schwarzschild spacetime we therefore require the geodesic
equations defined by the Schwarzschild metric. These are four complicated-
looking differential equations that can be very difficult to solve. We'll give a
partial derivation of one of them and simply state the other three. These are the
important equations, after all, which allow physicists to describe how objects
and photons move in Schwarzschild spacetime.
They are obtained using the basic geodesic equation (6.5.1)

which means having to calculate the non-zero connection coefficients . We
met the general form of these connection coefficients (in terms of ν and λ and
their derivatives ν' and λ') when we were deriving the Schwarzschild metric
in Section 9.3.3. For example, we found that . Now we know the
actual Schwarzschild coefficients  and , we could plug these into (6.2.6)

calculate the explicit non-zero connection coefficients  and hence find the
geodesic equations. We'll now calculate one of the geodesic equations.

Problem 9.4.  Calculate the appropriate Schwarzschild geodesic equation
using the connection coefficient .



We saw in Section 9.3.3 that

so we first need to find .
Our proposed metric (9.3.1)was

We know from the Schwarzschild metric (9.2.1) that the metric coefficient

Using the definition of the natural logarithm we can say

Using either the chain rule or an online derivative calculator ([33], for
example) we find

We can now plug this value of the connection coefficient  into the
geodesic equation (6.5.1)

and seeing that ,  and  we can write

which is the required Schwarzschild geodesic equation.

The four Schwarzschild geodesic equations are:



We can simplify these equations by introducing two quantities known as
constants of motion. For an isolated system, these quantities are conserved
throughout the motion of whatever is doing the moving. We are interested in
two such constants of motion:

Total energy per unit mass energy (E/mc2) given by

Objects (whether a spinning wheel or an orbiting planet) moving around a
point possess a quantity known as angular momentum, analogous to the
ordinary momentum we've already met. Angular momentum per unit mass
(J/m) given by

Don't worry too much about what these equations actually mean. Their
importance to us is, because they describe conserved quantities, we can use
them to describe the motion of a freely falling particle of mass m in the
constant plane θ = π/2 in Schwarzschild spacetime. That motion is described



by the radial motion equation (see Lambourne [17], for example, for a
derivation):

Although it looks pretty horrible, this is a very useful equation. Because it
describes the motion of a freely falling object in Schwarzschild spacetime, it
can be used to derive the equations of orbital motion (remember Newton's
intuition that the Moon is ‘freely falling’ around the Earth), as well as
describing the motion of objects in radial free fall - like a dropped cup, for
example - as discussed in the next problem. We'll see that there are a couple of
obvious ways (9.4.28) may be simplified. First, if the free fall motion of the
object under consideration is radially inwards (ie radial free fall), then the
object has no angular momentum and J = 0. Second, if the object is at rest and
infinitely far away from the central mass M, the conserved energy given by
(9.4.26) reduces to E = mc2 and the right-hand side of (9.4.28) becomes zero.

Problem 9.5.  Show that for an object in radial free fall, (9.4.28) reduces to

Radial free fall implies the object is moving ‘straight down’, ie ϕ is
constant, therefore , and J = 0 in (9.4.27). Equation (9.4.28) thus
simplifies to

We can differentiate this with respect to . We do the left-hand side first
using the product rule to give

Next, the right-hand side, which we'll call x, so



which we can rearrange and divide by  to give

We've differentiated both sides with respect to , so (9.4.29) must equal
(9.4.30), giving

and dividing both sides by  gives

which is what we were trying to show. This equation neatly approximates
the Newtonian acceleration due to gravity (2.5.5)

we met in Section 2.5.3, but only when  , and r is sufficiently
large (ie distant from the Schwarzschild radius) to give a weak (Newtonian)
gravitational field and appoximate to proper radial distance.

One of the classical tests of general relativity explains a small observed
discrepancy in the orbit of Mercury. According to Newtonian mechanics, an
isolated planet (one not affected by the gravitational fields of other planets)
should follow an unchanging elliptical orbit around the Sun.



Figure 9.6:
Newtonian orbit of isolated planet.

An ellipse (see Figure 9.6) is defined by the semi-major axis a, the
eccentricity e (a measure of how ‘squashed’ the ellipse is), and the semi-minor
axis b, where . If e = 0 then b = a and the ellipse becomes a
circle. Mercury, incidentally, has the most eccentric orbit (e = 0.21) of all the
planets in the Solar System. The point where a planet's orbit is closest to the
Sun is called the perihelion. According to Newton, the position of the
perihelion should be fixed in space, orbit after orbit.
But this isn't quite what astronomers actually observe with Mercury.

We now need to introduce an angular measurement called the second of arc
(also known as an arcsecond or arcsec). There are 60 seconds of arc in a
minute of arc, and 60 minutes of arc in a degree. In other words, 1 degree
equals 3600 seconds of arc, and 180 × 60 × 60 seconds of arc equals π
radians. A second of arc is a tiny angle. If you look at a 1 cm diameter coin
from a distance of 2.06 km, it will subtend (make an angle at your eye of) 1
second of arc.



Figure 9.7:
Precession of the perihelion of Mercury.

Instead of being stationary in space, Mercury's perihelion is seen to advance,
albeit very slowly, year after year. This phenomenon is known as the
precession of the perihelion of Mercury (shown greatly exaggerated in Figure
9.7), and equals about 575 seconds of arc per century (that's right, per century
- how on Earth do they measure that?). By the middle of the nineteenth century
much of this movement had been meticulously explained in Newtonian terms,
as being due to the gravitational interaction of the other planets on Mercury's
orbit. However, a small residual and inexplicable discrepancy remained,
amounting to 43 seconds of arc per century.
One suggestion was that this anomaly might be due to an unknown planet called
Vulcan (Neptune had been discovered in 1846 based on similar discrepancies
in the orbit of Uranus). There was no sign of planet Vulcan, however, and it
wasn't until 1915 that Einstein was able to give an accurate explanation of the
residual precession of Mercury in terms of his theory of general relativity.
Using proper time  as the parameter λ, the Schwarzschild geodesic equations
can be used to derive equations describing the orbital motion of an object of
mass m, such as a planet, around a central mass M, such as the Sun. These
general relativistic equations have an additional term compared to the tried
and tested Newtonian orbital equations. This extra term (-GMJ2/m2c2r3, where
J refers to the quantity known as angular momentum that we met in Equation
9.4.27) is negligible for large values of r, ie for larger orbits. However, for
smaller values of r (Mercury's orbit, for example) the term becomes significant



and has the effect of rotating the orbit through the θ = π/2 plane, creating the
pretty flower-petal effect shown in Figure 9.8. Dividing the number of seconds
of arc in a circle (360 × 60 × 60 = 1,296,000) by the perihelion advance in
seconds of arc per century (575) tells us it takes 225,000 years for the
perihelion point to trace out one complete orbit of the Sun.

Figure 9.8:
Rotation of orbit in its own plane.

It can be shown that the angle of general relativistic perihelion advance Δϕ per
orbit of a planet orbiting in the constant θ = π/2 plane is given by

where M is the total mass of the system (which we can approximate in the case
of Mercury to the mass of the Sun), a is the semi-major axis, and e is the orbit's
eccentricity.

Problem 9.6.  Using (9.4.32) calculate the general relativistic portion of
Mercury's perihelion advance in seconds of arc per century. Assume the
following:
Mercury has a period (ie the time for one complete orbit) of 87.97 days,
the semi-major axis of Mercury's orbit a = 5.79 × 1010 m,
eccentricity of Mercury's orbit e = 0.207,
the mass of the Sun M = 1.99 × 1030 kg,



the gravitational constant G = 6.67 × 10-11 N m2 kg-2,
one year equals 365.25 days.
Using (9.4.32) we can write

The angle Δϕ is in radians. We want the angle expressed in seconds of arc.
There are 180 × 60 × 60 seconds of arc in π radians so we need to multiply
(9.4.33) by (180 × 3600)/π to give Δϕ in seconds of arc, ie

seconds of arc per orbit. We want seconds of arc per century, so we need to
multiply our answer by the number of orbits in one century, which equals the
number of days in a century 365.25 × 100 divided by the period 87.97. We
can therefore say



Relativistic precession of the perihelion also affects other planets and objects
in our Solar System, as shown in Table 9.1 (from Lambourne [17]).

 

Planet
Predicted relativistic

precession - seconds of arc per
century

Observed relativistic
precession - seconds of arc per

century
Mercury 43.0 43.1 ± 0.5
Venus 8.6 8.4 ± 4.8
Earth 3.8 5.0 ± 1.2
Icarus 10.3 9.8 ± 0.8

Table 9.1:
Predicted and observed rates of relativistic precession of perihelion of planets and

minor body Icarus.

In 1911 consideration of the equivalence principle led Einstein to believe that
light would be deflected in a gravitational field. It wasn't until 1915, however,
after he had successfully incorporated curved spacetime into a gravitational
theory of relativity, that he was able to make an accurate prediction as to the
magnitude of such a deflection. Einstein suggested that the bending of light
from stars appearing close to the Sun (normally, of course, these stars are
hidden by the Sun's glare) could be measured during a total eclipse. In 1919
British astrophysicist Arthur Eddington (Figure 9.9) led the famous expedition
to observe a solar eclipse and test general relativity. Eddington set up camp on
the island of Principe, in the Gulf of Guinea off the coast of west Africa.
Another team, led by Andrew Crommelin, observed the eclipse in northern
Brazil. Eventually, after returning to England and analysing the data, Eddington
confirmed that starlight was deflected as predicted by general relativity. In
September 1919 Einstein received a cable from Hendrik Lorentz telling him
the good news. Einstein wrote to his mother:

‘Dear Mother - Good news today. H.A. Lorentz has wired me that the
British expeditions have actually proved the light deflection near the



sun.’
Later that year, the news was announced publicly at a joint meeting of the
Royal Society and the Royal Astronomical Society in London, and Einstein
became a worldwide celebrity.

Figure 9.9:
Arthur Stanley Eddington (1882–1944).

That's the meeting, incidentally, where as he was leaving, Eddington was
(allegedly) asked whether it was true that only three people in the world
understood the theory of general relativity. When Eddington refrained from
answering, his questioner said, ‘Don't be modest Eddington.’ Eddington
replied, ‘Not at all. I was wondering who the third one might be.’
Although optical measurements of light deflection are in broad agreement with
general relativity there remain significant experimental difficulties with this
method, and the results are not totally conclusive. With the advent of large
radio telescopes and the discovery of quasars (very distant emitters of
electromagnetic radiation), a new technique known as radio interferometry
has been developed. This involves two widely spaced radio telescopes
comparing radiation from a quasar as it passes behind the Sun. These results
have shown only a 0.04% deviation from the predictions of general relativity.



Returning to the mathematics - using an alternative parameter to proper time,
the Schwarzschild geodesic equations can be used to derive null geodesic
equations that describe the path of a light ray in spacetime. The merest outline
of this quite difficult (well, I thought it was) derivation is that we start with the
geodesic equation (9.4.25)

and limit motion to the θ = π/2 plane, enabling us to simplify to

from which, setting u = 1/r, and some mathematical hand waving, can be
obtained

where m = GM/c2. A few more passes of the magic wand and a final
abracadabra yields the useful equation

where  is the angle of deflection (in radians) of a light ray passing close to a
spherically symmetric body of mass M, and b is the distance of closest
approach to the origin (which we can approximate to the distance from the
centre of the central body) - see Figure 9.10.

Figure 9.10:



The deflection of light due to the curvature of spacetime close to the Sun.

We can see from (9.4.34) that the angle of deflection  will be greatest when b
is least, which will be when the ray of light just grazes the surface of the
massive body. Equation (9.4.34) gives twice the deflection angle to that
predicted by Newtonian gravitational theory.

Problem 9.7.  Calculate the angle of deflection of a ray of light (in seconds
of arc) of a ray of light just grazing the Sun. Assume the following:
the radius of the Sun = 6.96 × 108 m,
the mass of the Sun M = 1.99 × 1030 kg,
the gravitational constant G = 6.67 × 10-11 N m2 kg-2.
We use (9.4.34), and let b = the radius of the Sun for a grazing ray:

We want the answer in seconds of arc. There are 180 × 60 × 60 seconds of
arc in π radians so we need to multiply (9.4.35) by (180 × 3600)/π to give 
in seconds of arc,

In 1964 Irwin I. Shapiro suggested that the curvature of spacetime could be
measured by bouncing a high-powered radar beam off a planet or satellite as it
passed behind the Sun. The transit time (ie, the beam's journey time from Earth
to the target and then back to Earth) should be slightly longer in spacetime



curved by the influence of the Sun's gravitational field than in flat space. This
is known as the Shapiro time delay experiment.
The experimental details are complex, but we can get a basic feel for the
principle behind the experiment by considering the simple configuration as
shown in Figure 9.11 - taken from Foster and Nightingale [9].
We want to compare two transit time intervals as measured by our observer on
Earth:

the proper time interval , calculated from the coordinate time (9.4.5);
the proper time interval , calculated from the proper
distance (9.4.19).

If spacetime were flat, we would expect these two time intervals to be equal.
The fact that they aren't is a consequence of the slight curvature of spacetime
caused by the Sun.

Figure 9.11:
Gravitational time delay.

The spatial coordinates of the observer on Earth are , and of the
object . Therefore, dθ = dϕ = 0, and  is obviously less than .
First, we measure the proper time taken by the there and back journey of the
radar pulse based on the Schwarzschild coordinate time taken.
We saw in Section 7.4 that null geodesics (where ) describe
the paths of light rays. Because a radar pulse travels at the speed of light we
can use (9.2.2)



and write

Which is the coordinate speed of light in the radial direction, ie the speed of
light measured using the r and t Schwarzschild coordinates. The coordinate
time for both legs of the journey can be found by integrating (9.4.36) to give

or

This is the coordinate time taken. We need the proper time  for the trip as
measured by an observer on Earth at . We find this by substituting (9.4.37)
into (9.4.5)

to give



Now, we measure the proper time taken by the radar pulse based on the proper
distance it travels, given by (9.4.19)

We can integrate this equation to give the proper distance σ travelled by the
radar pulse. If we then multiply that distance by 2 to account for the there and
back journey, then divide the result by c we obtain the total transit time ,
which is

For curved spacetime , that difference being the time delay caused
by spacetime curvature.
In practice, the time delay is too short to measure when the target planet is
between the Earth and the Sun (known as inferior conjunction). Shapiro
measured the delay when the planets - he used Mercury and Venus - were
behind the Sun (superior conjunction), which requires a more sophisticated
analysis than the one we've used in our example. For Venus the measured time
delay was about  (microseconds), which agreed with the theoretical
prediction to within 5%.
More accurate results (not depending on the terrain of the planet) were later
achieved by bouncing signals off the Viking and Voyager space probes,
launched in the 1970's, with time delays in agreement with theoretical
predictions to an accuracy of one part in one thousand. The most precise
measurement of gravitational time delay to date used signals from the Cassini
spacecraft (see Figure 9.12), launched in 1997, as it journeyed to Saturn. In
2003, results from Cassini showed only a 0.002% deviation from the
predictions of general relativity.



Figure 9.12:
High-precision test of general relativity by the Cassini space probe (NASA artist's

impression).



The black hole epitomizes the revolution wrought by general
relativity. It pushes to the extreme - and therefore tests to the limit -
the features of general relativity (the dynamics of curved spacetime)
that set it apart from special relativity (the physics of static, “flat”

spacetime) and the earlier mechanics of Newton.
JOHN WHEELER



A black hole is a region of spacetime that has undergone gravitational collapse
to such an extent that nothing, not even light, can escape. General relativity
predicts the formation of black holes through the distortion of spacetime when
a central mass, such as a collapsing star, becomes sufficiently dense. A black
hole consists of a mathematically defined surface, known as an event horizon,
surrounding a central singularity. A singularity is a point where the curvature
of spacetime becomes infinite. Roger Penrose proved in 1965 that once an
event horizon forms, a singularity must form inside it. The event horizon is a
one-way boundary. Objects and light that cross the event horizon must then fall
into the singularity. This means that events occurring within the event horizon -
ie inside the black hole - cannot be seen by an external observer.
The term ‘black hole’ was first used by John Wheeler in 1967. However, the
idea of light being unable to escape from a super-dense star was suggested in
the eighteenth century, independently, by British physicist John Michell (1724–
1793) and French mathematician and physicist Pierre-Simon Laplace (1749–
1827). Their analysis was of course based on Newtonian gravitation and used
the notion of escape speed (2.5.3) that we referred to earlier. We saw that for
an object trying to ‘break free’ of a gravitational field the escape speed  is
given by

If we let R = 2GM/c2, then

Therefore, if R < 2GM/c2, light cannot escape from the object. There are
fundamental differences between the Michell-Laplace and modern concepts of
a black hole. For example, the speed of light has no particular relevance in
non-relativistic mechanics, so objects moving faster than c could escape from
a Michell-Laplace black hole. However, the eighteenth century physicists did
calculate the correct radius of such a modern simple black hole - the quantity
we have already met, now known as the Schwarzschild radius .



We've previously mentioned that it took some time following the publication of
the Schwarzschild metric for physicists to realise that not all that metric's
singularities were physically significant, opening up the possibility that certain
objects might be able to undergo a total gravitational collapse. In the 1920's it
was suggested that the small dense stars known as white dwarfs (typically,
think of a star with the mass of the Sun, but the diameter of the Earth) were
supported against self-collapse by internal quantum electron effects known as
degeneracy pressure. In 1931 the Indian astrophysicist Subrahmanyan
Chandrasekhar (1910–1995) proposed an upper limit (about 1.4 times the mass
of the Sun) for white dwarfs beyond which degeneracy pressure would be
unable to resist gravity and the result would be gravitational collapse.
After the discovery of the neutron in 1932, it was suggested there might exist
super-dense neutron stars. (take our solar mass white dwarf and shrink it to
about 10 km across, for example). It was thought that the degeneracy pressure
of the neutrons that are the main constituents of these stars would allow them to
avoid gravitational collapse, and therefore exceed the upper limit that
Chandrasekhar had proposed for white dwarfs.
In 1939 J. Robert Oppenheimer and H. Snyder suggested that neutron stars
above approximately three solar masses would also collapse into black holes.
Oppenheimer and Snyder showed, using general relativity, that for a distant
observer the collapse of any star into a black hole takes an infinitely long time.
For such an observer, the star's surface would appear to slow down and stop
as it shrinks towards the event horizon. Because of gravitational redshift, the
star would also become redder and dimmer as it contracted.
An observer unlucky enough to fall into a black hole, however, would measure
a finite time to cross the event horizon and fall inwards to the central
singularity. Just as the equator is an invisible line circling the Earth, the event
horizon is an invisible surface surrounding a black hole. A falling observer
(assuming that he hadn't been ripped apart by tidal forces, a process aptly
known as spaghettification) wouldn't notice anything significant when passing
through the event horizon, though it would of course mark his point of no return
as he plunged towards the singularity.
Lambourne [17] states that many scientists regard Oppenheimer and Snyder's
work, ‘With its acceptance of complete gravitational collapse and recognition
of the coordinate nature of the singularity at , as the true birth of the



black hole concept.’
The popular image of a black hole is of some huge celestial vacuum cleaner
sucking up everything in the universe. This is incorrect. As long as you don't
get too close, a black hole is perfectly well behaved, with a gravitational field
identical to that of any other body of the same mass. If the Sun, for example,
were to be replaced by a black hole of equivalent mass (ie shrunk down to its
Schwarzschild radius of about 3 km) the sky would look very different, but the
Earth and other planets would remain in their current orbits.
John Wheeler came out with the memorable quote that, ‘Black holes have no
hair.’ This strange observation refers to the idea that black holes have only
three externally measurable properties: mass, angular momentum and electric
charge. All black holes have mass, so there are four different metrics that
uniquely describe black holes with and without angular momentum and electric
charge. The complete list is:

Schwarzschild metric - describes a black hole with mass only.
Kerr metric - describes a black hole with mass and angular momentum
only.
Reissner-Nordström metric - describes a black hole with mass and
electric charge only.
Kerr-Newman metric - describes a black hole with mass, angular
momentum and electric charge.

Black holes may also be classified by size, where  equals one solar mass):

 

Mini black holes
Stellar mass black holes

Intermediate mass black holes
Supermassive black holes

There is a theoretical, but unlikely, possibility that very low mass mini black
holes could be produced by the Large Hadron Collider at CERN. Fortunately
for all of us, CERN claim these hypothetical black holes would be short lived
and harmless.



Figure 10.1:
NASA artist's impression of Cygnus X-1 stellar mass black hole.

Although stellar mass black holes cannot be observed directly, material that
falls towards them is thought to produce huge amounts of X-rays, which are
detectable (there is a nice analogy of a black hole being a ‘messy eater’ - not
everything it tries to shovel into its mouth actually gets eaten). X-ray emitting
matter spiralling towards the black hole forms what is known as an accretion
disc. Indirect evidence for this type of black hole comes predominantly from
binary star systems, where a companion star sheds matter that falls into the
supposed neighbouring black hole. Cygnus X-1 (see Figure 10.1) is one of the
strongest X-ray sources seen from Earth, and is widely accepted as a likely
stellar mass black hole. So far, around twenty binary systems thought to contain
black holes have been found.
The ultimate fate of a star depends on its mass. Most average sized stars
(including our Sun) will become white dwarfs. Larger stars will end up as
neutrons stars. It is now thought that stellar mass black holes are the
evolutionary end point of massive (several times larger than the Sun) stars.
Though theoretically possible, the existence of intermediate mass black holes
remains an open question. Some candidates have been proposed, but none are
widely accepted.



Most, maybe all, galaxies are thought to contain a supermassive black hole at
their centre. There is strong evidence, for example, that our own Milky Way
galaxy contains a huge central black hole with a mass of about 
and a radius of no more than 6.25 light-hours (about the diameter of Uranus'
orbit). NGC 4261, a giant elliptical galaxy in the Virgo galaxy cluster, is
thought to contain a 400 million solar mass black hole complete with two ‘jets’
of material ejected from the inner region of the accretion disk (see Figure
10.2).

Figure 10.2:
NASA images of the Active Galaxy NGC 4261.

Because the Schwarzschild radius of an object is proportional to its mass, the
event horizon of a supermassive black hole is much larger than that of stellar
mass black hole. Tidal forces (the difference in gravitational force between
your head and feet if you are falling vertically) in the vicinity of the event
horizon surrounding a supermassive black hole are correspondingly much
smaller than those around a stellar mass black hole. Lewis and Kwan [18]
estimate that your survival time if you fell into a stellar mass black hole would
be a fraction of a second, compared to several hours for a supermassive black
hole. No matter what type of black hole you've encountered, once you've



crossed the event horizon, there's nothing you can do to stop yourself fatally
falling into the singularity. However, assuming that (a) you survive crossing
the event horizon, and (b) you are in control of a powerful enough spaceship,
you may be able to marginally prolong your survival time by judicious firing of
your rocket engines. Lewis and Kwan show that if you fall from rest at the
event horizon your best strategy is not to use your engines at all. This is
because firing your rocket in any direction can only shorten your survival time
compared to allowing yourself to free fall. The situation is different if you are
moving through the event horizon. In that case the authors provide helpful
equations (involving the mass of the black hole, how powerful your rocket is
and how fast you crossed the event horizon) for you to calculate the optimum
time to fire your engines.



We now take a closer look at the simplest kind of black hole: one with mass,
but no electric charge and no spin. Because these black holes are described
using the Schwarzschild metric they are known as Schwarzschild black holes.
Our path to understanding spacetime in the vicinity of a black hole is via our
old friend, the freely falling observer. We want to consider the time taken for
such an observer to fall into a black hole. As is usual in relativity, our
definition of ‘observer’ is a loose one encompassing a falling clock or
unfortunate human space traveller dramatically plummeting towards an existing
singularity or, less fancifully, a hypothetical clock ‘sitting’ on the surface of a
collapsing star. By ‘fall into a black hole’ we mean how long does it take the
observer to first reach the event horizon and then travel onwards to the central
singularity. As usual, we are interested in proper time - two measurements of
proper time, in fact. First, that recorded by the freely falling observer himself,
using his own clock. Second, that measured by a stationary distant observer
watching the fall and using his own clock. We already know that the answer to
these questions was provided by Oppenheimer and Snyder: the distant
observer sees the fall taking an infinite time, the falling observer records the
fall taking a finite time. Now we'll put a little mathematical flesh onto the bare
framework of those conclusions.



We are considering the motion of a radially free falling observer. Because
radial free fall implies the object is moving ‘straight down’ toward the centre
of the black hole, ϕ is constant. Therefore, from (9.4.27)

 and J = 0. The radial motion (9.4.28)

thus simplifies to

If we assume that our observer starts freely falling at rest from infinitely far
away , then the conserved energy E is only equal to mc2. The right-
hand side of (10.3.2) therefore equals zero and we have

We take the negative square root of (10.3.4) (because freely falling implies the
observer's r is decreasing) and integrate between an arbitrary point  on the
observer's descent and another lower point  (where, obviously, ),
giving us



where  is the observer's proper time measured between  and . Evaluating
this integral gives

so

To make our calculations a little easier, we can rewrite (10.3.5) in terms of the
Schwarzschild radius . When we do this, we are in effect
multiplying the right-hand side by , so we also need to divide by c to keep
the equation balanced:

This equation tells us the proper time, as measured by the observer, for a
radially free falling observer to fall from  to . The essential thing to note
about (10.3.6) is that, because it is well behaved and doesn't blow up for any
value of r, the freely falling observer measures a finite time to both pass
through the event horizon at  and then travel onwards to the singularity
at r = 0. This journey, in terms of proper time  and radial coordinate r is
shown in Figure 10.3.



Figure 10.3:
Falling into a black hole - proper time  and radial coordinate .

Problem 10.1.  An observer starts to free fall from infinity towards a three
solar mass black hole of Schwarzschild radius  = 8.85 km. How long
does it take the observer to fall (a) from  to the event horizon, (b)
to fall from  to the singularity, and (c) to fall from the event
horizon to the singularity? Assume that (10.3.6) is valid inside as well as
outside the black hole.
(a) Using 10.3.6, the event horizon , and converting all
distances to metres we obtain

(b) We use  in the above calculation to find the time to fall to the
singularity:



(c) Therefore, the observer takes 0.123 - 0.103 = 0.020 milliseconds to fall
from the event horizon to the singularity.

The above calculations are based on the observer freely falling at rest from
infinity. Now let's ask what happens if the observer starts his free fall not from
infinity but at rest from a point closer to the black hole, from , for
example. In this case we can no longer assume that the conserved energy E
equals mc2. To calculate the conserved energy we use (10.3.2)

At , when the observer starts along his geodesic from rest, 
and . Plugging those values into the above equation to find the conserved
energy E gives

this being the energy conserved along the observer's geodesic. This value of E
is then plugged into (10.3.2), and after some fairly heavy mathematics and a
few working approximations (see Lambourne [17], for example) it is possible
to derive an equation for the proper time taken to reach the singularity starting
free fall at rest from . That equation is

Problem 10.2.  An observer starts to free fall from rest at 
towards a three solar mass black hole of Schwarzschild radius  = 8.85



km. How long does it take the observer to reach the singularity?
We use (10.3.7) and obtain

As would be expected, it takes slightly longer (0.29 milliseconds) to fall
into the black hole starting at rest from r = 30 km, compared to the 0.103
milliseconds from r = 30 km when the free fall starts from infinity. The
crucial point to note is that no matter where the observer starts from, he
records his journey into the black hole as taking a finite time (and, in our
example, an extremely short time!).

Next, we'll look at what a stationary distant observer sees when watching
something fall into a black hole.



Our stationary distant observer is carefully watching some object falling into a
black hole or, perhaps, watching a star undergoing total gravitational collapse.
What does he see? First, we'll consider how long a light signal from the freely
falling object takes to reach the distant observer. Then we'll consider how the
distant observer measures the relationship between coordinate time t and the
position r of the freely falling object. We saw when looking at gravitational
time dilation (Section 9.4.2) that the coordinate time t of an event in
Schwarzschild spacetime is the same as the proper time  measured by a
stationary distant observer, ie . This means that if we can find the
coordinate time taken for a light signal, or for a change in position of the freely
falling object, we have automatically found the distant observer's proper time
measurement for those two events. That's what we're now going to do.

First, we'll find the journey time for a light signal/photon emitted by an object
freely falling into a black hole and received by a distant observer. To keep
things as simple as possible, we assume that both observers are on the same
radial line, ie dθ = dϕ = 0.
We saw in Section 9.4.9 that the coordinate speed of light in Schwarzschild
spacetime in a radial direction (dθ = dϕ = 0) is given by (9.4.36)

which we can rearrange to give

which, in terms of the Schwarzschild radius (9.4.1)  , can be
written as

which we can integrate to find the total time taken for the photon



where  and  are the coordinate time and radial coordinate of the photon
emitted by the object freely falling into the black hole, and  and  are the
coordinate time and radial coordinate when the same photon is received by the
distant observer. The integral of , found either by hand or by
using an online integral calculator ([33], for example), is

So, we can say

What does this equation tell us?
First, if there were no central mass (ie M = 0, meaning  = 0), the right-hand
term would disappear, we would be describing flat space, and the photon
journey time would be simply distance divided by speed .

Second, as the falling object approaches the event horizon ( ), the
right-hand term , and therefore the photon journey time also approaches
infinity. Because coordinate time is the same as a distant observer's proper
time, such an observer will never quite see the object reach the event horizon.
Third, we've justified the assumption we made in Section 9.4.2 (see just after
(9.4.6)) that the coordinate time difference between two signals sent in
Schwarzschild spacetime is the same as that recorded by a stationary distant
observer. Equation (10.4.2) tells us that the journey time of a photon only
depends on the coordinate positions of the signal's emitter and receiver. To see
this, let's assume for the moment that (10.4.2) is describing a stationary object
in Schwarzschild spacetime, and that shortly after the  signal is emitted,
another signal  is broadcast and received by the distant observer at .
Equation (10.4.2) tells us that

which we can juggle about to give



which tells us the coordinate time interval Δt between two emitted signals in
Schwarzschild spacetime is the same as the coordinate time interval Δt
between those signals being received by a distant observer.

We know that in Schwarzschild spacetime, coordinate time t is the same as
proper time  as measured by a distant stationary observer. Therefore, it will
be helpful for us to find the relationship between coordinate time and
coordinate distance r of a massive object (not, as in the previous section, a
photon) freely falling into a black hole as measured by a such an observer. In
other words, we want to find the function linking t to r. So, first we need to
find dt/dr.
We start with (10.3.3), which describes a freely falling something or other
starting its journey to the black hole at rest from infinitely far away ,
with consequent conserved energy E = mc2:

We take the negative square root of (10.3.3) (freely falling implies the
observer's r is decreasing) to give

which we can invert and rewrite in terms of the Schwarzschild radius 
 as

Next we consider the conserved energy E equation (9.4.26)

which, as we've already assumed E = mc2, becomes



or, in terms of the Schwarzschild radius  ,

Using the chain rule we know

so we can multiply (10.4.3) by (10.4.4) to get

This looks complicated, but we can see that as , ,
meaning . In other words, a tiny decrease in r as the falling
object approaches the event horizon results in an ever larger (approaching
infinite) increase in t. The distant observer never actually sees the falling
object or collapsing star reach the event horizon as it takes an infinite
coordinate time (proper time as measured by the distant observer) to do so.
The situation is illustrated in Figure 10.4, which also shows the finite proper
time for the fall (as recorded by the freely falling observer) that we saw in
Figure 10.3.



Figure 10.4:
Falling into a black hole - coordinate time t and radial coordinate r.

In order to plot the coordinate time curve shown in Figure 10.4, it would be
necessary to integrate (10.4.5), which gives (from d'Inverno [5])

Although this equation looks very different to (10.3.6)

(the one that tells us the proper time according to a freely falling observer),
they produce remarkably similar results ( ) until r gets very close to .
Only then does the coordinate time tend to shoot off to infinity, as shown in
Figure 10.4.

In Section 9.4.3, as part of our earlier general discussion of Schwarzschild
spacetime, we met the equation for gravitational redshift (9.4.8)



The relationship between velocity v, wavelength λ and frequency f is given by
(9.4.7)

or, in the case of light,

which we can use to rewrite (9.4.8) as

and therefore

or, in terms of the Schwarzschild radius ,

We can see from this equation that as the falling object or collapsing star's
surface approaches the event horizon, the wavelength of the emitted radiation 

, as seen by a distant observer, increases, ie as , . In other
words, the radiation becomes infinitely redshifted.
It can also be shown that as , the brightness or luminosity of the emitted
radiation as seen by a distant observer .

Now we can (literally) bring our discussion back down to Earth and
summarise what an astronomer, on our planet for example, would see when
observing a fall into a Schwarzschild black hole, such as a distant star in the
process of total gravitational collapse. First, as  (ie the star's surface



shrinks toward the event horizon), light signals emitted from the star take an
increasing time to reach the astronomer. Second, the contracting surface takes
an infinite amount of coordinate time to reach the event horizon. Third, as the
surface approaches the event horizon, emitted radiation becomes infinitely
redshifted and infinitely dim. In short, our astronomer would see the star
redden and dim and fade from view into, well, into a black hole. Anything
falling into an existing black hole would appear to stop, redden and fade from
sight at the event horizon, frozen for eternity in spacetime, even though the
object itself had long since plunged into the singularity.



We've seen that a freely falling observer records a finite proper time  for the
journey to the singularity. We now ask, what does he measure in terms of
coordinate time t? We've already answered the first part of that question when
looking at how a distant observer records the fall. Because coordinate time is
the same for both observers, the observer freely falling towards the event
horizon will calculate the same coordinate time as he moves towards the event
horizon as shown in Figure 10.3, ie coordinate time will shoot off to infinity.
However, for him, unlike the distant observer, coordinate time does not equal
proper time. Furthermore, as he seamlessly crosses the event horizon,
coordinate time will go into reverse and begin to decrease as he falls towards
the singularity, as shown in Figure 10.5.

Figure 10.5:
Coordinate time t for an observer freely falling into a black hole.

Does this mean that time is now running backwards for the observer? No, it
doesn't. The observer's proper time, the time recorded by his super-accurate
wristwatch for example, is still ticking away normally. What Figure 10.5
demonstrates are the limitations of Schwarzschild coordinates in visualising
the fall into a black hole from the event horizon to the singularity. As we
already know, only when M = 0 and the Schwarzschild metric reduces to the
Minkowski metric, do the coordinates t and r represent real clock-time and
real radial distance.



We can further explore the use (and inappropriateness) of Schwarzschild
coordinates, by returning to the concept of lightcones. We first came across
lightcones when looking at special relativity, where they helped us understand
the possible causal relationships between two events. Specifically, we saw
that only events that lie within each other's lightcones can be causally related.
Recall that the sides of the lightcone are formed from light rays passing through
the origin, and that the cone above the origin contains events that may have
been caused by the event at the origin.
In the flat spacetime of special relativity, light rays travel in straight lines and
lightcones can therefore be extended indefinitely. This is not the case in curved
spacetime, where light rays do not travel in straight lines. Nevertheless, we
can still use small, local lightcones to explore the causal structure of curved
spacetime. We know that freely falling massive particles follow time-like
geodesics (where ds2 > 0 - see Section 7.4). Although we are particularly
interested in freely falling particles, all massive particles can be thought of as
moving on time-like world-lines through the origin of a succession of local
lightcones, and will be constrained (not being able to travel faster than light)
by the sides of that lightcone (see Figure 10.6).

Figure 10.6:
Lightcone constraining the world-lines of moving particles.

In Minkowski space, lightcones are defined at the intersection of incoming and
outgoing light rays, ie light rays travelling in the negative and positive x
direction. Similarly, in Schwarzschild spacetime, we can also draw a
spacetime diagram showing the paths of incoming and outgoing light rays, each
defined by a null geodesic (where ds2 = 0 - see Section 7.4). We could then
draw lightcones at the intersection of these ingoing and outgoing null



geodesics.
And what are the equations for null geodesics or photon paths in
Schwarzschild spacetime? Recall that we found them, at least for radially
moving photons, in Section 10.4.1, when finding the journey time of a photon
from a falling to a distant observer. On a spacetime diagram, the gradient of
these null geodesic paths would be equal to d(ct)/dr (using our usual ct time
units), which we obtain by multiplying (10.4.1)

by c to give

and which we could integrate (as we did in Section 10.4.1) to give a slight
variation of (10.4.2), ie

the plus sign in front of the right-hand side of (10.5.2) describing the paths of
outgoing photons, the minus sign ingoing photons. If we plot (10.5.2) using
different values of  (corresponding to where the outgoing and ingoing
photons cross the r axis) we obtain the spacetime diagram shown in Figure
10.7.



Figure 10.7:
Ingoing and outgoing null geodesics in Schwarzschild coordinates.

What does this diagram tell us?
First, at sufficiently large values of r, the gradient of the ingoing and outgoing
null geodesics . Equation (10.5.1) confirms this: as  then 

 and , meaning the lightcones revert to those of
flat space, making angles of 45° with the coordinate axes.
Second, as  the lightcones become narrower, when  they
broaden and flip over abruptly before narrowing again, indicating that inside
the event horizon both photons and massive particles must relentlessly move
toward the central singularity at r = 0 (see Figure 10.8).

Figure 10.8:



Flipping lightcones in Schwarzschild coordinates.

The reversal of coordinate time and strange behaviour of the lightcones
illustrates the inappropriateness of Schwarzschild coordinates for the region 

. If we want to smoothly show the path of an in-falling particle or
photon we need to use other coordinates, ones that can cope with the fact that 

 is a coordinate and not a physical singularity.

One solution to this problem is a coordinate system known as advanced
Eddington-Finkelstein coordinates. The new coordinate ct' is defined by

which we can differentiate (see Section 1.10.1.5) to give

and then substitute into the Schwarzschild metric line element to give

which looks pretty horrible, but crucially is non-singular at . We can
therefore use advanced Eddington-Finkelstein coordinates to illustrate
smoothly what happens when objects or photons cross the event horizon. The
spacetime diagram for advanced Eddington-Finkelstein coordinates is shown
in Figure 10.9.



Figure 10.9:
Ingoing and outgoing null geodesics in advanced Eddington-Finkelstein coordinates.

What does this diagram tell us?
As with Schwarzschild coordinates, at sufficiently large values of r, the
lightcones revert to those of flat space, making angles of 45° with the
coordinate axes.
The important thing to note here is that ingoing particles and photons are well
behaved - coordinate time doesn't reverse or shoot off to infinity as it does
with Schwarzschild coordinates.
Consequently, the lightcones don't abruptly flip about as they cross , but
gently tilt toward the ct' axis, showing that anything inside the event horizon
must move to the singularity (see Figure 10.10). Photons emitted at 
(shown by the lightcone edges touching the red line) stay on the event horizon.



Figure 10.10:
Changing lightcones in advanced Eddington-Finkelstein coordinates.

Ingoing null geodesics are represented straight lines. However, this can be
reversed by changing the sign in (10.5.3) to give

which would straighten out the outgoing radial null geodesics, a coordinate
system known as retarded Eddington-Finkelstein coordinates. We can do
this because, unlike Schwarzschild coordinates, Eddington-Finkelstein
coordinates are not time-symmetric.
Although an improvement on Schwarzschild coordinates, Eddington-
Finkelstein coordinates are not perfect. The advanced form are good for
describing in-falling particles, but not out-falling; the retarded type are good
for describing out-falling particles, but not in-falling. These difficulties
provide the motivation for other, more complicated, coordinate systems used
to describe Schwarzschild black holes such as Kruskal coordinates that are
non-singular for all r ≠ 0.
We started this chapter with a quotation from John Wheeler, who has been
called ‘the father of the black hole’. It's fitting to end with another:

‘[The black hole] teaches us that space can be crumpled like a piece
of paper into an infinitesimal dot, that time can be extinguished like a
blown-out flame, and that the laws of physics that we regard as
“sacred”, as immutable, are anything but.’



Space is big. You just won't believe how vastly, hugely, mind-
bogglingly big it is. I mean, you may think it's a long way down the

road to the chemist's, but that's just peanuts to space.
DOUGLAS ADAMS



Cosmology is the study of the nature, origin and evolution of the universe.
Gravity dominates our understanding of the universe, and general relativity, the
best current theory of gravitation, thus underpins modern cosmology.
Newtonian theory is fine for describing gravitational phenomena - such as the
Solar System, galaxies, even clusters of galaxies - where the system's mass is
small in relation to its size. But compared to the size of the known universe
these structures are insignificant verging on tiny. On a cosmological scale, as
we consider larger and larger volumes of space the ratio of mass to size
increases, and general relativity becomes the essential theoretical framework.
We here give only a brief introduction to this (literally) huge subject. We start
with four key observed properties of the universe that underpin modern
cosmology:

the dark night sky
the cosmological principle
Hubble's law
Cosmic microwave background radiation.



The sky at night is dark. So what, you might say. The importance of the
observed fact that the night sky is dark is that it conflicts with the once common
assumption of an infinite and static universe. This contradiction, known as
Olbers' paradox, - after Heinrich Olbers (1758–1840), a German astronomer
- or the dark night sky paradox, occurs because if there were an infinite
number of infinitely old stars, every line of sight should end at a star, the light
from that star would have had sufficient time to reach us, and the night sky
should therefore be as bright as the surface of the average star. This would still
be true even if the stars were obscured by hypothetical clouds of cosmic matter
- eventually, the starlight would heat the matter up so that it emits as much light
as it absorbs.
The principle reason that the night sky is dark is because the universe has a
finite age (about 13.7 billion years), so the light from more distant stars hasn't
had time to yet reach us. A secondary reason is that because the universe is
expanding, the light from more distant stars is redshifted into obscurity.

This principle, based on a wealth of diverse evidence, states that on a
sufficiently large scale and at any given time, the universe looks the same to all
observers wherever they are. Specifically this means the universe is

Homogeneous - uniform throughout space, ie the number of stars per unit
volume is roughly the same everywhere.
Isotropic - uniform in all directions, eg the number of stars per unit solid
angle is roughly the same in all directions.

At first thought, these assumptions are questionable to say the least. The Solar
System, for example, contains just one star and is definitely not homogeneous
or isotropic. Nor is our Galaxy, the Milky Way, a disc-like structure
approximately 100,000 light-years across, with the greatest concentration of its
200 billion stars towards the centre of the disc. Galaxies tend to be
concentrated in groups and clusters. The Milky Way is part of the Local Group



of 40 or so galaxies. Clusters of galaxies form superclusters separated by vast
emptier regions known as voids - think of a sponge or holey cheese. Even at
these huge scales the universe is ‘lumpy’, with superclusters denser than the
voids between them. However, on an even larger scale than superclusters and
voids, deep sky galaxy surveys such as the Sloan Digital Sky Survey or the 2dF
Galaxy Redshift Survey indicate that the universe finally becomes
homogeneous.
This is illustrated in Figure 11.1, which shows a slice of the universe surveyed
by the 2dF (Two-degree-Field) galaxy redshift survey conducted by the Anglo-
Australian Observatory. The image contains over 100,000 galaxies stretching
out more than 4 billion light-years.

Figure 11.1:
2dF map of the distribution of galaxies.

The astronomical unit of distance known as the parsec (symbol - pc) is
approximately equal to 3.26 light-years (≈ 3.09 × 1016 m). Cosmological
evidence indicates that in any part of the universe, the average density of stuff
in a sphere radius 100 Mpc (recall that M equals mega, so 1 Mpc equals one
million parsecs) is the same as in any other sphere anywhere else of the same
size. On a similar scale, the universe also becomes isotropic, looking more or
less the same in all directions.
Figure 11.2 shows the temperature (about 2.725 K) of all-sky cosmic
background radiation taken by the Wilkinson Microwave Anisotropy Probe
(WMAP) in 2003. Anisotropy is the property of being directionally dependent,



ie the opposite of isotropy. The different colours (red is warmer, blue is
cooler) show tiny temperature variations or anisotropies of less than one part
in ten thousand - further evidence for the isotropy of the universe. The
radiation recorded in this colourised image was emitted almost 14 billion
years ago when the universe was in its infancy, long before the formation of
stars and galaxies. The small fluctuations of matter density indicated by the
different colour patterns eventually evolved to form galaxies.

Figure 11.2:
WMAP image of the cosmic microwave background radiation (CMBR).

Incidentally, homogeneity is not equivalent to isotropy. An isotropic universe
is necessarily homogeneous, but the reverse isn't true. For example, a universe
permeated by a uniform magnetic field would be homogeneous, but not
isotropic as the field would have a definite direction at each point. Luckily for
cosmologists, it just so happens that our universe is both isotropic and
homogeneous

Mentioned above as evidence for the cosmological principle, cosmic
microwave background radiation, a faint, diffuse glow coming from all
directions in the sky, was discovered in 1965 by Arno Penzias and Robert
Wilson, who won the Nobel prize for their efforts.

In physics, a black body is an idealised body that perfectly absorbs and emits
radiation. The importance of black body radiation is that its spectrum only
depends on temperature, not the composition of the radiating body. Spectral
analysis of CMBR shows an almost perfect fit to a black body spectrum with a



temperature of 2.725 K.

The existence of CMBR is excellent evidence for a Big Bang as opposed to a
Steady State model of the universe. CMBR is thought to have been emitted
about 13.7 billion years ago, 400,000 or so years after the Big Bang. The Big
Bang theory neatly predicts an initially very hot and dense universe of highly
energised subatomic particles that expands and cools for several hundred
thousand years until reaching a temperature of about 3000 K, when it emits
huge amounts of radiation. The expansion of the universe since that time has
redshifted that radiation - now detected as CMBR - to its current temperature
of 2.725 K.
Ryden [27] makes the point that if Olbers' eyes could somehow have seen
CMBR, he would never have formulated his eponymous paradox. She says,
‘Unknown to Olbers, the night sky actually is uniformly bright - it's just
uniformly bright at a temperature of ... 2.725 K rather than at a [visible to the
human eye] temperature of a few thousand degrees Kelvin.’
Incidentally, CMBR, an echo of the Big Bang, is what causes some of the static
on a non-digital television.

We've already met redshift - a shift in the lines of the spectra toward the ‘red’
end of the electromagnetic spectrum, ie the lengthening of wavelength - in the
form of gravitational time dilation and the Doppler effect. A third type of
redshift is cosmological redshift, caused by the expansion of space itself, a
concept we'll be discussing shortly. Both Doppler redshift and cosmological
redshift can be used to calculate the relative motion of observer and light
source.

Figure 11.3:
Part of the emission spectrum of hydrogen.

Different elements have different spectral signatures, a bit like product bar
codes, which can be studied and catalogued in the laboratory (a small part of
the emission spectrum of hydrogen is shown in Figure 11.3). Stars containing
these elements (mainly hydrogen and helium) emit light that can then be



analysed to (a) identify those elements, and (b) measure the extent to which the
spectral lines are shifted: usually to the red end of the spectrum (redshift),
occasionally to the blue (blueshift). A star or galaxy has a redshift z given by
the formula

where  and  are, respectively, the wavelengths of the observed and
emitted radiation. A blueshift is described if z < 0, and a redshift if z > 0. For
small redshifts of less than about 0.1, z is related to the velocity v of the
receding object by the simple formula v = cz.
In 1929 Edwin Hubble used this relationship to calculate the recessional
velocity of a sample of nearby galaxies. After estimating their distance (a much
more difficult measurement) he then proposed a simple law that describes the
expansion of the universe. Hubble's law states that the apparent recessional
velocity of a galaxy is proportional to its distance from the observer, ie

where  is known as Hubble's constant. The fundamental importance of
Hubble's law is that it describes an expanding universe.
Figure 11.4 shows a typical plot of recessional velocity versus distance for a
sample of galaxies. The gradient of the straight line, ie recessional velocity
divided by distance, gives the value of Hubble's constant. Hubble's original
estimate of this constant was . However, he seriously
underestimated the distance of the galaxies from Earth. Recent estimates give a
value of . Recalling that one parsec equals about 3.26
light-years, this means that the universe is expanding at a rate of around 70.4
km s-1 per 3.26 million light-years.



Figure 11.4:
Hubble's law: recessional velocity plotted against distance for a sample of galaxies.

This overall, large-scale motion of galaxies due to the expansion of the
universe is known as the Hubble flow. At any one time, the fact that the Hubble
flow can be described using a single rate of expansion (the Hubble constant) is
due to the validity of the cosmological principle.
A good way to visualise the Hubble flow is to imagine dots painted on the
surface of a spherical balloon (see Figure 11.5). As the balloon is inflated any
two dots will separate at a rate proportional to their distance apart. Think
about it - if they all moved with the same velocity, after time t they would have
all moved the same distance, which obviously doesn't happen. An observer A
on a particular dot would see all the other dots moving away from him and
might well think he's at the centre of the ‘balloon universe’. But so would
another observer B on a different dot. As with our universe, there is no
‘centre’ from which everything expands away from. This idea is known as the
Copernican principle, namely that there is no central, privileged location in
the universe.
(If the balloon was sufficiently large, with lots of more or less evenly spaced
dots, we would have an even better model because any observer on the
balloon's surface would see the dot distribution obeying the cosmological
principle, ie being both homogeneous and isotropic.)



Figure 11.5:
Hubble flow on a balloon.

Hubble's law describes the large-scale uniform motion of galaxies due to the
expansion of the universe. Galaxies may also be influenced by the gravitational
effects of other galaxies. This component of a galaxy's or star's velocity, which
is not explained by Hubble's law, is described by the term peculiar motion
and may need to taken into account when carrying out cosmological
calculations.



In terms of general relativity, the obvious question to ask is: what is the metric
that describes a spacetime that is both homogeneous and isotropic? In the
1930s the American mathematician and cosmologist Howard Robertson
(1903–1961) and the British mathematician Arthur Walker (1909–2001)
independently derived such a metric. The Robertson-Walker metric is the most
general possible metric describing a spacetime that conforms to the
cosmological principle. The metric's most common form is

The time coordinate t is known as cosmic time and is the time measured by an
observer whose peculiar motion is negligible, ie whose only motion is due to
the expansion or contraction of homogeneous, isotropic spacetime. These
observers, who all share the same cosmic time, are sometimes called
fundamental observers. In an expanding universe such as ours, fundamental
observers would all be moving with the Hubble flow.
The spatial coordinates (in this case r, θ, ϕ) assigned by a fundamental
observer are known as co-moving coordinates and remain constant with time
for any point. Figure 11.6 shows a triangle in expanding spacetime. Although
the coordinate grid has increased in size, the co-moving coordinates describing
the position of the triangle remain the same.

Figure 11.6:
Co-moving coordinates.



At any particular value of cosmic time, all fundamental observers will be
measuring the same spatial slice of three-dimensional space, known as a
space-like hypersurface. This is shown schematically in Figure 11.7 where
each space-like hypersurface represents all of space at a particular moment of
cosmic time , etc. Also shown are the diverging world-lines of
fundamental observers moving through cosmic time in an expanding universe.

Figure 11.7:
Hypersurfaces and diverging world-lines of fundamental observers.

Apart from the spacetime coordinates t, r, θ, ϕ there are two other quantities in
the Robertson-Walker metric - the curvature parameter k and the scale
factor R(t). Notice that the scale factor is a function of time. This is the first
metric we've met where the spatial coordinates may be time dependent. A
scale factor R(t) that increases with time describes an expanding universe; one
that decreases with time describes a contracting universe. Trying to find k, R(t)
and  (the current value of R(t)) is a major preoccupation of cosmologists
trying to understand and model the universe.

The cosmological principle demands that if space is curved then it must be
constantly curved at every point. This simplifies matters considerably as there
are only three types of space exhibiting constant curvature: flat space,



positively curved or closed space, and negatively curved or open space.
This aspect of the spatial r, θ, ϕ geometry described by the Robertson-Walker
metric is determined by the curvature parameter k. By rescaling the coordinate
r, k can take one of the three discrete values 0, +1 or -1 corresponding to flat,
positively curved or negatively curved three-dimensional space-like
hypersurfaces. The internal angles of a triangle in flat space add up to 180°, in
positively curved space to more than 180°, and in negatively curved space to
less than 180°. Although we can't draw three-dimensional curved spaces, we
can get a feel for their characteristics by considering two-dimensional
surfaces. Figure 11.8 shows flat, open and closed two-dimensional curved
surfaces corresponding to values of k = 0, +1 and -1. Just like a great circle on
the surface of a sphere, a rocket following a geodesic in positively curved
space would eventually return to its starting point.
Incidentally, it's not possible to construct a two-dimensional surface of
constant negative curvature in three-dimensional space. The k = -1 saddle-
shaped open surface illustrated in Figure 11.8 is a good approximation, but
will only have constant curvature in the centre of the saddle region.

Figure 11.8:
Positively curved, negatively curved and flat two-dimensional surfaces.

The overall curvature of a constant t space-like hypersurface depends on both
k and R(t) and can be shown to be equal to k/R2(t).



How might we determine a spatial distance between two points in the
universe, the distance to a far away galaxy, for example? In practice,
cosmologists often estimate distance by measuring the luminosity and
brightness of a star or galaxy to calculate a quantity known as the luminosity
distance. Theoretically, in terms of the Robertson-Walker metric, we need to
determine the relationship between the constant co-moving coordinates and the
actual distance measured with a hypothetical line of rulers. This ‘measured’
distance between two points is known as the proper distance and is equal to
the length of a geodesic between those points on a space-like hypersurface at a
fixed time t. Finding this proper distance (theoretically, don't forget - we can't
practically construct a line of rulers to a galaxy) is easier than it sounds. We
start with the Robertson-Walker metric (11.3.1)

For an observer at time t trying to determine the distance σ to a galaxy along a
radial coordinate r, the coordinates θ and ϕ are constant. Therefore, 

 and we can write

Recall that spacetime is modelled using a pseudo-Riemannian manifold, where
 may be positive, zero or negative. If we let the radial coordinate r of the

galaxy be  (  is the Greek letter chi) we can find σ by
integrating (11.3.2), ie

where, for convenience, we have designated the observer's coordinates as the



origin r = 0, and we write σ(t) to acknowledge that proper distance is a
function of time. Integrating either by hand or using an online integral
calculator ([33], for example), we can solve (11.3.3) for curvature parameter
values of k = 0, +1 and -1 to give

(where  is a function called the hyperbolic sine, a type of hyperbolic
function). We don't need to worry too much about what a hyperbolic sine
actually is (we get rid of it in a few lines time). Instead, we introduce a
quantity known as the proper radial velocity , which simply equals the
rate of change of proper distance with respect to cosmic time. We can then
rewrite the above three equations as

We can rewrite (11.3.4), (11.3.5) and (11.3.6) to give



which we can substitute into (11.3.7), (11.3.8) and (11.3.9) to give

for all three equations. We can rewrite (11.3.10) in the more conventional
form of

known as the velocity-distance law, where  is the proper radial velocity, 
is the proper distance, and

defines a quantity known as the Hubble parameter. The velocity-distance law
tells us that in Robertson-Walker spacetime (ie spacetime that conforms to the
cosmological principle) any fundamental observer is moving away from every
other fundamental observer with a proper radial velocity that is proportional to
the proper distance that separates them. This is a theoretical relationship
derived from the Robertson-Walker metric. Note both the similarity and
difference to Hubble's law (11.2.1)

that we met earlier, where  is the Hubble constant. Hubble's law is an
observational relationship that calculates recessional velocity v from redshift
z measurements using the formula v = cz. Because this formula is only valid for
small redshifts, Hubble's law is only accurate for relatively nearby galaxies.
The term ‘Hubble constant’ is actually a bit of a misnomer as it isn't constant
but changes with time. The Hubble constant  is actually the t = 0 (ie the
present value) of the time-dependent function H(t), the Hubble parameter.
It doesn't take an Einstein to see that there's nothing in the velocity-distance
law (11.3.11) prohibiting the recessional velocity  exceeding the speed of



light (known as superluminal speeds). If the proper distance  is set to

the quantity  is known as the Hubble length or distance. Galaxies further
away than  are therefore currently moving away from us at superluminal
speeds. The current value of the Hubble distance is about 4200Mpc, or 13.7
billion light-years. But doesn't special relativity prohibit superluminal speeds?
It does, but only in an observer's inertial frame. Galaxies receding from us at
superluminal speeds are doing so because space itself is expanding. They are
not travelling faster than light in our or any other observer's inertial frame. In
this context, superluminal speeds do not contradict special relativity.
Using the velocity-distance law, we can do a back-of-the-envelope calculation
of the age of the universe. First, we assume that the recessional velocity of two
galaxies currently moving away from each other has been constant since the
expansion of the universe started. Then, knowing that for an object moving
with constant velocity, time equals distance divided by that velocity, we can
rearrange the velocity-distance law (11.3.11)to find elapsed time  since the
galaxies were in contact, ie the age of the universe. This is given by

We known  and 1 pc ≈ 3.09 × 1016 m. Therefore,

which, converted to years, is

This calculation is based on the assumption of a constantly expanding universe.
The current estimate of the age of the universe is about 13.7 × 109 years. The
reason the two figures are so close (what's 200,000,000 or so years between
friends?) is that it is now thought that for most of the universe's history the
expansion has been more or less linear.
A final point regarding Robertson-Walker spacetime. We need to note the



distinction between the spatial r, θ, ϕ curvature and the spacetime t, r, θ, ϕ
curvature described by the Robertson-Walker metric. It's possible to have a
flat space-like universe (where k = 0), but the full Robertson-Walker
spacetime will not be flat as long as R(t) isn't constant. This is because the
proper distance between any two points in that universe will change as R(t)
changes.



Our aim is to model a universe that obeys the cosmological principle.
Introducing the Robertson-Walker metric was the first step. Next we need to
make an educated guess regarding the nature of the energy-momentum tensor 

 that describes the large-scale distribution and flow of energy and
momentum in the universe. Then it's possible (we don't go into details) to feed
the Robertson-Walker metric and  into the field equations to produce a set
of differential equations called the Friedmann equations. By changing the
parameters of these equations we can construct various Friedmann-Robertson-
Walker models that show how the scale factor R(t), and thus the universe, may
change with time. Finally, we ask which of these models, based on the
available evidence, best describes our own universe.

Cosmologists make the wonderfully simplifying assumption that the whole
universe can be treated as a perfect fluid, characterised by proper density 
and pressure p(t) - (to preserve homogeneity both proper density and pressure
may only be functions of cosmic time). A fundamental observer is by definition
travelling with the flow of this cosmic perfect fluid. Such a fluid is therefore
described by the energy-momentum tensor of a perfect fluid in its momentarily
comoving rest frame (MCRF) that we met earlier (7.5.6)

In Section 7.7 we introduced what Einstein referred to as his ‘greatest
blunder’, the cosmological constant  and its associated dark energy, a sort of
‘anti-gravity’ repulsive force or negative pressure. Confronted with the
evidence of an accelerating universe, cosmologists have now dusted off that
apparent ‘blunder’ and reintroduced dark energy into their equations.
Specifically, they treat the cosmic perfect fluid as being a mixture of three
constituent perfect fluids representing matter, radiation and the source
(whatever that is) of dark energy. The cosmic density can then be defined as



and the cosmic pressure as

The matter-component of the cosmic perfect fluid consists of the radiation-
emitting matter that we can detect (stars, galaxies etc), and other invisible
matter whose existence is inferred because of its gravitational effects on the
stuff we can see. This mysterious substance, which is thought to account for the
majority of matter in the universe, is called dark matter (and is no relation to
dark energy).
Let's look at the cosmological constant and dark energy in a little more detail.
Equation (7.7.1) gives the modified field equations with the cosmological
constant:

which we can rearrange to give

As the  term contributes energy and momentum to the right-hand side of
the equation we can regard it as representing another energy-momentum tensor
that we'll call  and write

We've already assumed that density  and pressure  constitute a perfect
fluid. Equation (7.5.8) tells us the components of the energy-momentum tensor
of a perfect fluid are given by

which we can thus rewrite using  and  as



We've defined  , so we can write

or, in the MCRF,

In the MCRF, when , , and therefore

giving

We know from Section 7.6 that κ = 8πG/c4, so

In the MCRF, when , , and therefore, from (11.4.4)

Substituting  from (11.4.5) into (11.4.7) we obtain



which tells us that a positive dark energy density  results in a negative dark
energy pressure .
The modified field equations then become

General relativity states that ordinary, positive pressure components of 
contribute to a system's ‘gravitational attraction’. Negative pressure (whatever
that is) has the opposite effect, tending to drive things apart. We've now shown
how introducing a cosmological constant into the field equations results in
negative pressure.

As well as assuming that the universe can be described as a perfect fluid,
cosmologists also generally assume that the matter component of such a
universe (stars, galaxies, dark matter etc) has zero pressure , ie
that it can be treated as dust. That leaves three density components (matter,
radiation and dark energy) plus two pressure components (radiation and dark
energy) that may need to be taken into consideration when modelling the
universe. The question we now ask is: how do these different density and
pressure components change with time?
Imagine a cube of space containing matter and radiation. What happens to the
density of that matter and radiation in an expanding or contracting universe?
First, we'll consider matter. If the lengths of the sides of the cube double (from
1 to 2, for example) the volume of the cube will increase by a factor of 8, and
the density  will decrease by a factor of 8 (the same amount of matter is now
in a larger cube). In terms of the scale factor R(t) we can say

where the  symbol means ‘proportional to’. In the case of radiation, Planck's
law states the energy of each particle is given by

where h is Planck's constant and f is frequency, ie a radiation particle's energy



is proportional to its frequency, or inversely proportional to its wavelength λ.
If, in an expanding universe, the length of the sides of the cube of space double,
the wavelength will also double. Combined with the above 
relationship for particle energy density, this means that the density of radiation 

 in terms of the scale factor R(t) is

In other words, in an expanding universe, radiation density decreases more
quickly than matter density and both decline relative to dark energy density,
which is assumed to be time invariant. These evolving density contributions
are illustrated schematically in Figure 11.9. Over time, matter density must
therefore overtake radiation density. Dark energy density must similarly
overtake both matter and radiation density. That dynamic is now thought to
describe the history of our (expanding) universe. First, there was a relatively
short-lived radiation-dominated era lasting about 50,000 years. That was
followed by a matter-dominated era lasting about 9.8 billion years. 13.7
billion years after the Big Bang, we are now living in a dark energy dominated
universe.

Figure 11.9:
Evolving density contributions of dark energy, matter and radiation in an expanding

universe.



At an arbitrary time t = 0 (often taken to be the present time) let  and
. At time t = t let  and R(t) = R(t). Using (11.4.8), we

can then divide  by  to give

Similarly, we can say

We can then use the cosmic density equation (11.4.1) to write

In order to calculate how cosmic pressure changes with time, it is necessary to
use something called an equation of state, which in relation to cosmology is
given by

where  for dust, 1/3 for radiation, and -1 for dark energy. Using these
equations of state, a corresponding cosmic pressure equation can also be
derived (see, for example, Lambourne [17] for details):

Equations (11.4.10) and (11.4.11) demonstrate the fundamental importance of
the cosmic density components  and . If cosmologists know (a)
these three values at a certain cosmic time, and (b) the scale factor function
R(t), they can calculate the cosmic density and cosmic pressure at any other
cosmic time. We'll use the above relationships to expand and simplify the
Friedmann equations, which we look at next.

The non-zero components of the Robertson-Walker metric (11.3.1) can be used



to calculate the connection coefficients , which can then be used to find the
Riemann curvature tensor , which can then be used to find the Ricci
tensor  components and the Ricci scalar R (not to be confused with the
scale factor R(t)), which can then be fed (phew!) into the field equations to
give a pair of independent equations known as the Friedmann equations, after
the Russian mathematical physicist Alexander Friedmann (Figure 11.10).

Figure 11.10:
Alexander Friedmann (1888–1925).

The Friedmann equations are some of the most important equations in
cosmology. Textbooks give various forms of these equations. The two we start
off with are



which is sometimes called the Friedmann equation, and

which is sometimes called the Friedmann acceleration equation.
We'll also make use of two expanded and simplified forms of these equations.
We know that cosmic density ρ has three components:  and .
Using (11.4.10), we can expand the first Friedmann equation in terms of these
components to give:

Using (11.4.10) and (11.4.11), we can also eliminate cosmic pressure p in the
second Friedmann equation to give

You will also commonly see the Friedmann equations written in terms of a
normalised scale factor a(t). Normalised means , ie the scale factor
at the present time  is defined to be 1. This is done by letting

so



Friedmann equation (11.4.12) then changes from

to

From the above, we've shown that

and from the definition of the Hubble parameter (11.3.12), we can say

At ,  and  , so

In other words, the rate of change of the normalised scale factor equals the
Hubble constant.

Equation (11.3.13) allowed us to calculate , which was found to equal
4.39 × 1017 s.  is the reciprocal of that value, ie

By definition, the normalised scale factor is currently 1, so every second from
now it increases by a factor of 2.3 × 10-18.
You may also see the Friedmann equations written not in terms of proper
density ρ (with units of kg m-3), but in terms of proper energy density 
(with units of J m-3 - where ε is the Greek letter epsilon).



Now we've met the Friedmann equations we can consider some simple
cosmological models. First, we'll look at a particularly basic universe, an
empty one containing no matter, radiation or dark energy. Next, we'll look at
the metaphorical source of dark energy, Einstein's original 1917 static
universe, his famous ‘greatest blunder’, where he attempted to ‘fix’ the field
equations with the addition of a cosmological constant. This is a k = 1 model.
Then we'll look at three k = 0 models, each having just one non-zero value of
the three constituent perfect fluids  and , ie we are considering
spatially flat universes containing only mass or radiation or dark energy. These
five examples are not now thought to accurately represent the universe as it
currently exists. However, as well as being a useful introduction to the subject
of cosmological modelling they may also represent stages in the evolutionary
history of our universe. The radiation only model, for example, is believed to
reasonably well describe the radiation dominated early universe.
Cosmological models based on the Friedmann equations and the Robertson-
Walker metric are known as Friedmann-Robertson-Walker (FRW) models.

If we turn all the dials to zero, we have an empty universe with no matter,
radiation or dark energy, ie . Plugging ρ = 0 into the first
Friedmann equation (11.4.12)

gives

In order to avoid taking square roots of negative numbers, k must equal 0 or -1.
If k = 0, R integrates to a constant and this solution describes empty, static, flat
Minkowski space. If k = -1

which integrates to give (ignoring the constant of integration)



or R = ±t if we let c = 1. In an empty, negatively curved, expanding universe R
= t, meaning the scale factor increases linearly with time (see Figure 11.11).

Figure 11.11:
An empty, expanding universe.

In terms of the normalised scale factor 11.4.16 , 11.4.19 can be
written as

At time , this becomes (recall that a(t) is normalised, ie is defined to equal 1
at time )

And dividing (11.4.20) by (11.4.21) gives



In search of a static universe, Einstein added a cosmological constant term to
his original field equations. By a static universe we of course mean one where
the scale factor is constant, ie

Let's look at the implications of using a cosmological constant to achieve a
constant scale factor. Equation (7.7.1) gives the modified field equations with
the cosmological constant:

If the Friedmann equations are derived from these field equations they become

and

where now, in both equations, ρ equals  and not  as in the
original (11.4.12) and (11.4.13) Friedmann equations. In other words, the dark

energy chunk of the universe is provided by the cosmological constant term 
in (11.4.23) and (11.4.24), and by the equivalent term dark energy term 
buried in (11.4.12) and (11.4.13). Effectively, we are saying the same thing in
two different ways.
We can easily check this equivalence with respect to the first Friedmann
equation (11.4.12), by using (11.4.6) that we derived for dark energy



We can divide this by 3 and rearrange to give

and we can see that adding a  term is equivalent to adding a  component
to (11.4.12) to give

In order for the universe to be static, both  and  must equal zero, as must
pressure p. Friedmann equation (11.4.24) then neatly reduces to

or

which is the value Einstein had to give his cosmological constant. Friedmann
equation (11.4.23) reduces to

meaning k must equal +1, ie this static universe has to be positively curved.
We can now solve for  (the scale factor - constant in the case of a static
universe), to give



Figure 11.12:
Einstein's static universe.

The problem with Einstein's static universe is that it is inherently unstable, a
bit like trying to balance a plank on a knife-edge. At equilibrium, the attractive
force of ρ does indeed exactly balance the repulsive force of . But the
slightest increase in size of the universe leads to runaway expansion, and the
slightest contraction leads to runaway collapse (see Figure 11.12).

Proposed in 1917 by the Dutch astronomer Willem de Sitter (1872–1934), this
model has k = 0, and contains no matter or radiation, only dark energy, ie 

. This model was the first to describe an expanding universe.
Equation (11.4.14) becomes

We can solve this first-order differential equation as follows. First, divide
both sides by R



then integrate both sides with respect to t

which gives

where K is a constant of integration. From the definition of the natural
logarithm eln(x) = x, we obtain

(We've changed the constant). If we let  when , this becomes

Divide (11.4.27) by (11.4.28) (thus cancelling the constant K) gives

and we can say



From (11.4.26), we can see the Hubble parameter (11.3.12)

is a constant. Letting , (11.4.29) can then be rewritten as

or, in terms of the normalised scale factor (11.4.16),

To simplify the above, we can say

as shown in Figure 11.13. However, note that the de Sitter curve shown is a
plot of  , with a consequently much exaggerated slope. A more
accurate plot of  would still grow exponentially, but at a
much smaller rate (because  ) and would appear
almost parallel to the horizontal time axis.

Figure 11.13:
de Sitter, Einstein-de Sitter and pure radiation models - not to scale.



This model is believed to reasonably well describe the radiation dominated
early universe. The parameters are k = 0, . Equation (11.4.14)
then becomes

which we can solve as follows. First, multiply both sides by R 

then integrate both sides with respect to t

We can simplify this by seeing that the Hubble parameter (11.3.12) is given by

so for  and , we can write

which is substituted into (11.4.31) to give

Evaluating this integral gives

where K is a constant of integration, which we can set to zero by letting R = 0
when t = 0 to give



If we again let  when , this becomes

Dividing (11.4.32) by (11.4.33) gives

or, in terms of the normalised scale factor (11.4.16),

To simplify the above, we can say

as shown in Figure 11.13.

In 1932 Einstein and de Sitter proposed this mass-only (for mass, think zero
pressure dust) model. This is an example of a Friedmann universe, where the
dark energy/cosmological constant component is assumed to be zero. For many
years, this model was thought to be a credible description of our universe.
Why? First, because the universe is expanding. Second, recall that in an
expanding universe, radiation density decreases more quickly than matter
density. That means that a radiation dominated universe is inherently unstable.
Sooner or later, matter density must overtake radiation density and become the
dominant component. Hence the widespread support for the Einstein-de Sitter
model, which was only finally rejected in the late 1990s when mounting
evidence for an accelerating universe persuaded cosmologists to turn to
models dominated by dark energy.

The parameters of this model are , . Equation (11.4.14)



then becomes

which we can solve as follows. First, multiply both sides by 

then integrate both sides with respect to t

We can simplify this by seeing that the Hubble parameter (11.3.12) is given by

so for  and , we can write

which is substituted into (11.4.35) to give

Evaluating this integral gives

where K is a constant of integration, which we can again eliminate by letting R
= 0 when t = 0 to give

If we again let  when , this becomes



Dividing (11.4.37) by (11.4.38) gives

or, in terms of the normalised scale factor (11.4.16),

To simplify the above, we can say

as shown in Figure 11.13.
As well as being a one-time contender for representing our universe, this
model is significant because it describes a universe with an expansion rate that
is set ‘just right’ to prevent collapse. The Einstein-de Sitter model is a
Friedmann universe with just the right amount of mass, so that the universe will
expand forever (but with a continually decreasing expansion rate). Turn the
mass dial up a fraction in an Einstein-de Sitter universe, and the expansion
will eventually halt and the universe contract into a Big Crunch.
We can see why this is by plugging k = 0 (corresponding to a spatially flat
universe) into (11.4.12) to obtain

which we can write in terms of the Hubble parameter (11.3.12)

or



This quantity, known as the critical density, is denoted by 

currently thought to be about  (which you can confirm by
plugging in the value of  we found using (11.4.18)). Equation 11.4.1 is the
same density as the density  of the Einstein-de Sitter universe given by
(11.4.36)

We can give the Friedmann equation (11.4.12) in terms of the Hubble
parameter (11.3.12)

If the actual density of a Friedmann universe  , then k must equal -1
and the spatial universe is negatively curved. In that case, the right-hand side
of (11.4.41) will never equal zero, the Hubble constant will therefore also
never equal zero, and the universe will expand for ever. It's a different story if 

. In that case, k must equal +1, the spatial universe is positively
curved, and it is possible for the two terms on the right-hand side of (11.4.41)
to cancel each other out and the Hubble constant to equal zero. In fact, this must
happen because matter density (which is proportional to 1/R3) will eventually
be less than the k term (which is proportional to 1/R2). A k = +1 Friedmann
universe must therefore eventually collapse. Finally, if then k must
equal 0, meaning the spatial universe is flat.
In truth, there's been a hefty chunk of mathematical handwaving in this
explanation. To derive R(t) for even a relatively simple matter-only Friedmann
universe involves the use of sin θ and cos θ parametric equations, where the
parameter θ varies from 0 to 2π. See Ryden [27], for example.
The three possible fates of a Friedmann universe, corresponding to k = 0 and



±1 are shown in Figure 11.14.

Figure 11.14:
Three possible fates of a Friedmann universe.

Instead of proper density , cosmologists often use quantities known as
density parameters, which are the ratios of the density components 

 and  to the critical density . These density parameters are
given the symbol Ω (the Greek letter Omega) and are defined as follows:

The total density parameter  is just the sum of the individual parameters,
ie

Using these density parameters, the first Friedmann equation can be rewritten



as

or, more concisely,

Because k cannot change its sign as a universe evolves, the right-hand side
of (11.4.42) cannot change its sign either. The total density parameter 
therefore determines the sign of k, ie if

With much substituting and jiggling of the density parameters and the
Friedmann equations it can be shown that (in terms of the normalised scale
factor )

Solving this differential equation for given values of , ,  and 
will show how the normalised scale factor a(t) changes with time, and thus the
evolution of that particular universe. Very simple models, such as the single
component ones we've looked at, can be solved exactly using (11.4.43). For
example, recall the empty universe model (Section 11.4.4) with no radiation,
matter or dark energy, ie . Equation 11.4.43 then simplifies to

The Hubble parameter (11.3.12) for an empty (k = -1) universe is given by



and therefore

which integrates to give

which is the same equation as (11.4.20) that we found earlier. This is an
example of an analytic or exact solution to equation (11.4.43). However, more
complicated models, with multiple components, can usually only be solved
numerically (ie approximately) using computer power.



Based on solutions to (11.4.43), cosmologists have proposed many different
Friedmann-Robertson-Walker models using different permutations of , ,

 and . An illustrative range of these models (taken from Harrison
[10]) is shown in Figure 11.15 (  refers to the value of the cosmological
constant in the static Einstein model we met earlier).
Most, but not all of these possible universes start with a Big Bang of some
sort. Some expand forever, a scenario known as the Big Chill. Some expand
initially before collapsing into a Big Crunch. One suggestion, known as the
Big Bounce model, describes an oscillating universe stuck in an infinitely
repeating cycle of Big Bang, expansion, contraction, Big Crunch.
The red tick in the top left box indicates the model that is currently thought to
best describe our own universe. This k = 0 universe is sometimes known as an
accelerating model. The acceleration is due to the changing proportions of
radiation, mass and dark energy density. We now appear to be living in a dark
energy dominated, and therefore accelerating, universe. This model of the
universe is known as the Lambda-CDM model, where CDM stands for cold
dark matter. The title therefore neatly includes the two big mysteries at the
heart of current cosmology: dark energy and dark matter. The Lambda-CDM
model is also known as the standard model of Big Bang cosmology.



Figure 11.15:
A range of FRW cosmological models.

Cosmologists are able to make use of various techniques to estimate the key
cosmological parameters of our universe. At the time of writing these are
thought to be:

.

Note that , which, from (11.4.42), tells us the spatial



geometry of the universe is approximately flat. As previously mentioned, the
history of the universe can be roughly divided into three periods:

A relatively short-lived radiation-dominated era lasting about 50,000
years after the Big Bang. During this time the radiation only model
discussed in Section 11.4.7 would be a reasonable approximation and,

from (11.4.34), .
A matter-dominated era lasting about 9.8 billion years. During this time
the matter only Einstein-de Sitter model discussed in Section 11.4.8
would be a reasonable approximation and, from (11.4.39), 

.
The current dark energy dominated universe During this time the dark
energy only de Sitter model discussed in Section 11.4.6 would be a
reasonable approximation and, from (11.4.39), .

Our final, nifty little calculation estimates the age of the universe  based on
the above cosmological parameters. Ignoring the contribution of radiation, and
assuming that  (ie ),  (11.4.43)

can be rearranged to give

By using an online integral calculator ([33], for example) this evaluates to

and, after some work,



By plugging in  and , we calculate the age of
the universe  to be about 13.78 billion years. NASA's current estimate of the
age of the universe [22] is 13.7 ± 0.13 billion years.

Figure 11.16:
NASA representation of the timeline of the universe.

We finish this chapter, and this book, with a beautiful NASA graphic (see
Figure 11.16) showing a representation of the timeline of the universe. I can't
better NASA's own description of this image. Here it is, taken verbatim from
their website [22]:
‘A representation of the evolution of the universe over 13.7 billion years. The
far left depicts the earliest moment we can now probe, when a period of
“inflation” produced a burst of exponential growth in the universe ... For the
next several billion years, the expansion of the universe gradually slowed
down as the matter in the universe pulled on itself via gravity. More recently,
the expansion has begun to speed up again as the repulsive effects of dark
energy have come to dominate the expansion of the universe. The afterglow
light seen by WMAP was emitted about 380,000 years after inflation and has
traversed the universe largely unimpeded since then. The conditions of earlier
times are imprinted on this light; it also forms a backlight for later
developments of the universe.’



And finally ...
If you liked this book, or even (perish the thought) if you didn’t, then please
consider helping other readers by posting a review on Amazon, Goodreads or
other online book review site. All honest reviews are appreciated, whatever
the length or rating. Thank you.
Feedback, comments, errors? Contact the author at
incomprehensiblething@gmail.com.
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Table A.1:
Planetary motion data from t = 0.00 to t = 4.10. See Section 2.5.4.

x
0.000 0.500 0.000 -4.000 0.000 1.630 0.000 0.500 8.000
0.050 -0.200 1.630
0.100 0.480 -3.685 0.163 -1.251 0.507 7.677
0.150 -0.568 1.505
0.200 0.423 -2.897 0.313 -2.146 0.527 6.847
0.250 -0.858 1.290
0.300 0.337 -1.958 0.443 -2.569 0.556 5.805
0.350 -1.054 1.033
0.400 0.232 -1.112 0.546 -2.617 0.593 4.794
0.450 -1.165 0.772
0.500 0.115 -0.454 0.623 -2.449 0.634 3.931
0.550 -1.211 0.527
0.600 -0.006 0.018 0.676 -2.190 0.676 3.241
0.650 -1.209 0.308
0.700 -0.127 0.342 0.706 -1.911 0.718 2.705
0.750 -1.175 0.117
0.800 -0.244 0.559 0.718 -1.646 0.758 2.292
0.850 -1.119 -0.048
0.900 -0.356 0.702 0.713 -1.408 0.797 1.974
0.950 -1.048 -0.189
1.000 -0.461 0.796 0.694 -1.200 0.833 1.728
1.050 -0.969 -0.309
1.100 -0.558 0.856 0.664 -1.019 0.867 1.536
1.150 -0.883 -0.411



1.150 -0.883 -0.411
1.200 -0.646 0.895 0.623 -0.862 0.897 1.385
1.250 -0.794 -0.497
1.300 -0.725 0.919 0.573 -0.726 0.924 1.267
1.350 -0.702 -0.569
1.400 -0.795 0.933 0.516 -0.605 0.948 1.174
1.450 -0.608 -0.630
1.500 -0.856 0.942 0.453 -0.498 0.969 1.100
1.550 -0.514 -0.680
1.600 -0.908 0.947 0.385 -0.402 0.986 1.043
1.650 -0.420 -0.720
1.700 -0.950 0.950 0.313 -0.313 1.000 1.000
1.750 -0.325 -0.751
1.800 -0.982 0.952 0.238 -0.230 1.010 0.969
1.850 -0.229 -0.774
1.900 -1.005 0.953 0.160 -0.152 1.018 0.949
1.950 -0.134 -0.790
2.000 -1.018 0.955 0.081 -0.076 1.022 0.938
2.050 -0.038 -0.797
2.100 -1.022 0.957 0.002 -0.002 1.022 0.936
2.150 0.057 -0.797
2.200 -1.017 0.959 -0.078 0.074 1.020 0.944
2.250 0.153 -0.790
2.300 -1.001 0.962 -0.157 0.151 1.013 0.961
2.350 0.249 -0.775
2.400 -0.976 0.964 -0.235 0.232 1.004 0.988
2.450 0.346 -0.752
2.500 -0.942 0.967 -0.310 0.318 0.991 1.026
2.550 0.442 -0.720



2.550 0.442 -0.720
2.600 -0.897 0.967 -0.382 0.412 0.975 1.078
2.650 0.539 -0.679
2.700 -0.844 0.966 -0.450 0.515 0.956 1.145
2.750 0.636 -0.627
2.800 -0.780 0.960 -0.512 0.630 0.933 1.231
2.850 0.732 -0.564
2.900 -0.707 0.947 -0.569 0.762 0.907 1.339
2.950 0.826 -0.488
3.000 -0.624 0.922 -0.618 0.912 0.878 1.477
3.050 0.919 -0.397
3.100 -0.532 0.880 -0.657 1.086 0.846 1.653
3.150 1.007 -0.288
3.200 -0.432 0.811 -0.686 1.288 0.811 1.878
3.250 1.088 -0.159
3.300 -0.323 0.700 -0.702 1.522 0.773 2.168
3.350 1.158 -0.007
3.400 -0.207 0.527 -0.703 1.787 0.733 2.543
3.450 1.210 0.172
3.500 -0.086 0.261 -0.686 2.078 0.691 3.031
3.550 1.236 0.379
3.600 0.038 -0.138 -0.648 2.372 0.649 3.663
3.650 1.223 0.617
3.700 0.160 -0.713 -0.586 2.615 0.607 4.462
3.750 1.151 0.878
3.800 0.275 -1.492 -0.498 2.704 0.569 5.427
3.850 1.002 1.148
3.900 0.375 -2.431 -0.383 2.484 0.536 6.480
3.950 0.759 1.397



3.950 0.759 1.397
4.000 0.451 -3.347 -0.244 1.808 0.513 7.421
4.050 0.424 1.578
4.100 0.493 -3.926 -0.086 0.683 0.501 7.956
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