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Mathematics is not a careful march down a
well-cleared highway, but a journey into a strange
wilderness, where the explorers often get lost. Rigor
should be a signal to the historian that the maps have
been made, and the real explorers have gone elsewbere.
—William S. Anglin

But leaving those of the Body, I shall proceed to such
Recreation as adorn the Mind; of which those of the
Mathematicks are inferior to none.

—William Leybourn (1626-1700)

The last thing one knows when writing a book is what
to put first.
—Blaise Pascal (1623-1662)
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Introduction

ou are lost in a maze: How do you find your way out?

You want to build a time machine, but is time travel
logically possible? How can one infinity be bigger than
another? Why can’t you drink from a Klein bottle? What
is the biggest number in the world to have a proper
name, and how can you write it? Who claimed he could
see in the fourth dimension? And what does “iteration”
mean? And what does “iteration” mean?

Mathematics was never my strong point in school, but
because I wanted to become an astronomer, I was told
to stick with it. Fortunately, in my last two years be-
fore heading off to university, I had a wonderful old-
fashioned, eccentric teacher (he actually wore a black
gown when teaching), called Mr. Kay (known to one and
all as “Danny”), who would suddenly divert from the
chalk and blackboard to ask, “But how did the universe
come to be asymmetric—that’s what I want to know,” or
“These imaginary numbers are very interesting; in part,
because they are so remarkably real.” During lunch-
break, Danny and the senior chemistry teacher, Mr. Erp
(whose nickname I need hardly spell out), would always
meet in the chemistry prep room for a game of chess.
They looked and acted very much like characters from a
Wellsian science fiction tale, and I sometimes imagined
them musing on formulas for invisibility or doorways to
higher dimensions. At any rate, though I was never a

shining student, I realize what a profound effect those
two deeply imaginative, thoughtful men had on my
future career. I did become an astronomer. I did perse-
vere with math to a certain level of competence. But,
much more than that, my curiosity was fired by the won-
derful and weird possibilities of these subjects: curved
space, Mdbius bands, parallel universes, patterns in the
heart of chaos, alternative realities. These strange possi-
bilities, and a thousand others, make up the stuffing of
this book. If you want a comprehensive, academic dictio-
nary of mathematics, look elsewhere. If you want rigor
and proof, try the next shelf. Herein you will find only
the unusual and the outrageous, the fanciful and the fan-
tastic: a compendium of the mathematics they didn’t
teach you in school.

Entries range from short definitions to lengthy articles
on topics of major importance or unusual interest. These
are arranged alphabetically according to the first word of
the entry name and are extensively cross-referenced.
Terms that appear in bold type have their own entries. A
number of puzzles are included for the reader to try; the
answers to these can be found at the back of the book.
Also at the back are a comprehensive list of references
and a category index. Readers are invited to visit the
author’s Web site at www.daviddarling.info for the latest
news in mathematics and related subjects.






abacus
A counting frame that started out, several thousand years
ago, as rows of pebbles in the desert sands of the Middle
East. The word appears to come from the Hebrew dbdq
(dust) or the Phoenician abak (sand) via the Greek abax,
which refers to a small tray covered with sand to hold the
pebbles steady. The familiar frame-supporting rods or
wires, threaded with smoothly running beads, gradually
emerged in a variety of places and mathematical forms.
In Europe, there was a strange state of affairs for more
than 1,500 years. The Greeks and the Romans, and then
the medieval Europeans, calculated on devices with a
place-value system in which zero was represented by an
empty line or wire. Yet the written notations didn’t have
a symbol for zero until it was introduced in Europe in
1202 by Fibonacci, via the Arabs and the Hindus.

abacus A special form of the Chinese abacus (c. 1958) consist-
ing of two abaci stacked one on top of the other. Luis Fernandes

The Chinese suan pan differs from the European aba-
cus in that the board is split into two decks, with two
beads on each rod in the upper deck and five beads, rep-
resenting the digits 0 through 4, on each rod in the bot-
tom. When all five beads on a rod in the lower deck are
moved up, they’re reset to the original position, and one
bead in the top deck is moved down as a carry. When
both beads in the upper deck are moved down, they’re
reset and a bead on the adjacent rod on the left is moved
up as a carry. The result of the computation is read off
from the beads clustered near the separator beam
between the upper and lower decks. In a sense, the aba-
cus works as a 5-2-5-2-5-2 ... -based number system in
which carries and shifts are similar to those in the deci-
mal system. Since each rod represents a digit in a deci-
mal number, the capacity of the abacus is limited only
by the number of rods on the abacus. When a user runs
out of rods, she simply adds another abacus to the left of
the row.

The Japanese soroban does away with the dual repre-
sentations of fives and tens by having only four counters
in the lower portion, known as “earth,” and only one
counter in the upper portion, known as “heaven.” The
world’s largest abacus is in the Science Museum in Lon-
don and measures 4.7 meters by 2.2 meters.

Abbott, Edwin Abbott (1838-1926)

An English clergyman and author who wrote several the-
ological works and a biography (1885) of Francis Bacon,
but is best known for his standard Shakespearian Grammar
(1870) and the pseudonymously written Flatland: A
Romance of Many Dimensions (by A Square, 1884).™

ABC conjecture

A remarkable conjecture, first put forward in 1980 by
Joseph Oesterle of the University of Paris and David
Masser of the Mathematics Institute of the University of
Basel in Switzerland, that is now considered one of the
most important unsolved problems in number theory. If
it were proved correct, the proofs of many other famous
conjectures and theorems would follow immediately—in
some cases in just a few lines. The vastly complex current
proof of Fermat’s last theorem, for example, would
reduce to less than a page of mathematical reasoning.
The ABC conjecture is disarmingly simple compared
to most of the deep questions in number theory and,
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moreover, turns out to be equivalent to all the main
problems that involve Diophantine equations (equa-
tions with integer coefficients and integer solutions).

Only a couple of concepts need to be understood to
grasp the ABC conjecture. A square-free number is an inte-
ger that isn’t divisible by the square of any number. For
example, 15 and 17 are square-free, but 16 (divisible by
4% and 18 (divisible by 3?) are not. The square-free part of
an integer 7, denoted sqp(#), is the largest square-free
number that can be formed by multiplying the prime fac-
tors of n. For n = 15, the prime factors are 5 and 3, and
3 x 5 =15, a square-free number, so that sqp(15) = 15.
On the other hand, for # = 16, the prime factors are all 2,
which means that sqp(16) = 2. In general, if 7 is square-
free, the square-free part of # is just n; otherwise, sqp ()
represents what is left over after all the factors that create
a square have been eliminated. In other words, sqp(») is
the product of the distinct prime numbers that divide 7.
For example, sqp(9) = sqp(3 % 3) = 3 and sqp(1,400) =
sSAP(2x2x2x5%x5%x7)=2x5x7=70.

The ABC conjecture deals with pairs of numbers that
have no common factors. Suppose A4 and B are two such
numbers that add to give C. For example, if A =3 and
B=7,then C=3+7=10. Now, consider the square-free
part of the product A x B x C: sqp(ABC) =sqp(3 x 7 x
10) = 210. For most values of A and B, sqp(ABC) > C, as
in the prior example. In other words, sqp(A4BC)/C > 1.
Occasionally, however, this isn’t true. For instance,
if A=1and B=38,then C=1+8=09, sqp(ABC) =
sqp(1 X 8% 9) =sqp(1 x2x2x2x3x3)=1x2x3=6,
and sqp(ABC)/C = % = %. Similarly, if A = 3 and
B =125, the ratio is %4.

David Masser proved that the ratio sqp(ABC)/C can
get arbitrarily small. In other words, given any number
greater than zero, no matter how small, it’s possible to find
integers A and B for which sqp(ABC)/C is smaller than
this number. In contrast, the ABC conjecture says that
[sqp(ABC)]"/C reaches a minimum value if 7 is any num-
ber greater than 1—even a number such as 1.0000000001,
which is only barely larger than 1. The tiny change in the
expression results in a huge difference in its mathematical
behavior. The ABC conjecture in effect translates an infi-
nite number of Diophantine equations (including the
equation of Fermat’s last theorem) into a single mathe-
matical statement.!"!

Abel, Niels Henrik (1802-1829)

The divergent series are the invention of the devil,
and it is a shame to base on them any demonstra-
tion whatsoever. By using them, one may draw
any conclusion he pleases and that is why these

series have produced so many fallacies and so
many paradoxes.

A Norwegian mathematician who, independently of his
contemporary Evariste Galois, pioneered group theory
and proved that there are no algebraic solutions of the
general quintic equation. Both Abel and Galois died
tragically young—Abel of tuberculosis, Galois in a sword
fight.

While a student in Christiania (now Oslo), Abel
thought he had discovered how to solve the general quin-
tic algebraically, but soon corrected himself in a famous
pamphlet published in 1824. In this early paper, Abel
showed the impossibility of solving the general quintic by
means of radicals, thus laying to rest a problem that had
perplexed mathematicians since the mid-sixteenth cen-
tury. Abel, chronically poor throughout his life, was
granted a small stipend by the Norwegian government that
allowed him to go on a mathematical tour of Germany
and France. In Berlin he met Leopold Crelle (1780-1856)
and in 1826 helped him found the first journal in the
world devoted to mathematical research. Its first three vol-
umes contained 22 of Abel’s papers, ensuring lasting fame
for both Abel and Crelle. Abel revolutionized the impor-
tant area of elliptic integrals with his theory of elliptic
functions, contributed to the theory of infinite series, and
founded the theory of commutative groups, known today
as Abelian groups. Yet his work was never properly appre-
ciated during his life, and, impoverished and ill, he
returned to Norway unable to obtain a teaching position.
Two days after his death, a delayed letter was delivered in
which Abel was offered a post at the University of Berlin.

Abelian group

A group that is commutative, that is, in which the result
of multiplying one member of the group by another is
independent of the order of multiplication. Abelian
groups, named after Niels Abel, are of central impor-
tance in modern mathematics, most notably in algebraic
topology. Examples of Abelian groups include the real
numbers (with addition), the nonzero real numbers
(with multiplication), and all cyclic groups, such as the
integers (with addition).

abracadabra

A word famously used by magicians but which started
out as a cabalistic or mystical charm for curing various
ailments, including toothache and fever. It was first men-
tioned in a poem called “Praecepta de Medicina” by the
Gnostic physician Quintus Severus Sammonicus in the
second century A.D. Sammonicus instructed that the let-
ters be written on parchment in the form of a triangle:
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ABRACADABRA
ABRACADABR
ABRACADASB
ABRACADA
A BRACAD
A BRACA
A BRAC
A B RA
A B R
A B
A

This was to be folded into the shape of a cross, worn for
nine days suspended from the neck, and, before sunrise,
cast behind the patient into a stream running eastward. It
was also a popular remedy in the Middle Ages. During
the Great Plague, around 1665, large numbers of these
amulets were worn as safeguards against infection. The
origin of the word itself is uncertain. One theory is that it
is based on Abrasax, the name of an Egyptian deity.

PUZZLE

A well-known puzzle, proposed by George Polya
(1887-1985), asks how many different ways there are
to spell abracadabra in this diamond-shaped arrange-
ment of letters:

Solutions begin on page 369.

abscissa
The x-coordinate, or horizontal distance from the y-axis,
in a system of Cartesian coordinates. Compare with
ordinate.

absolute

Not limited by exceptions or conditions. The term is
used in many different ways in mathematics, physics,
philosophy, and everyday speech. Absolute space and
absolute time, which, in Newton’s universe, form a
unique, immutable frame of reference, blend and be-
come deformable in the space-time of Einstein. See also

absolute zero. In some philosophies, the absolute stands
behind the reality we see—independent, transcendent,
unconditional, and all-encompassing. The American phi-
losopher Josiah Royce (1855-1916) took the absolute to
be a spiritual entity whose self-consciousness is imper-
fectly reflected in the totality of human thought. Mathe-
matics, too, reaches beyond imagination with its absolute
infinity. See also absolute value.

absolute value

The value of a number without regard to its sign. The
absolute value, or modulus, of a real number, 7 is the dis-
tance of the number from zero measured along the real
number line, and is denoted |7|. Being a distance, it can’t
be negative; so, for example, |3| = |-3| = 3. The same
idea applies to the absolute value of a complex number
a + ib, except that, in this case, the complex number is
represented by a point on an Argand diagram. The
absolute value, | + 74|, is the length of the line from the
origin to the given point, and is equal to V(> + 5?).

absolute zero

The lowest possible temperature of a substance, equal to 0
Kelvin (K), —273.15°C, or —459.67°F. In classical physics,
it is the temperature at which all molecular motion ceases.
However, in the “real” world of quantum mechanics it
isn’t possible to stop all motion of the particles making up
a substance as this would violate the Heisenberg uncer-
tainty principle. So, at 0 K, particles would still vibrate
with a certain small but nonzero energy known as the zero-
point energy. Temperatures within a few billionths of a
degree of absolute zero have been achieved in the labora-
tory. At such low temperatures, substances have been seen
to enter a peculiar state, known as the Bose-Einstein con-
densate, in which their quantum wave functions merge
and particles lose their individual identities. Although it is
possible to approach ever closer to absolute zero, the
third law of thermodynamics asserts that it’s impossible to
ever attain it. In a deep sense, absolute zero lies at the
asymptotic limit of low energy just as the speed of light
lies, for particles with mass, at the asymptotic limit of high
energy. In both cases, energy of motion (kinetic energy) is
the key quantity involved. At the high energy end, as the
average speed of the particles of a substance approaches
the speed of light, the temperature rises without limit,
heading for an unreachable « K.

abstract algebra

10 a mathematician, real life is a special case.
—Anonymous

Algebra that is not confined to familiar number systems,
such as the real numbers, but seeks to solve equations
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that may involve many other kinds of systems. One of
its aims, in fact, is to ask: What other number systems
are there? The term absiract refers to the perspective
taken on the subject, which is very different from that of
high school algebra. Rather than looking for the solu-
tions to a particular problem, abstract algebra is inter-
ested in such questions as: When does a solution exist?
If a solution does exist, is it unique? What general prop-
erties does a solution possess? Among the structures it
deals with are groups, rings, and fields. Historically,
examples of such structures often arose first in some
other field of mathematics, were specified rigorously
(axiomatically), and were then studied in their own right
in abstract algebra.

Abu’l Wafa (A.n. 940-998)

A Persian mathematician and astronomer who was the
first to describe geometrical constructions (see con-
structible) possible only with a straightedge and a fixed
compass, later dubbed a “rusty compass,” that never al-
ters its radius. He pioneered the use of the tangent func-
tion (see trigonometric function), apparently discovered
the secant and cosecant functions, and compiled tables
of sines and tangents at 15" intervals—work done as part
of an investigation into the orbit of the Moon.

abundant number

A number that is smaller than the sum of its aliquot parts
(proper divisors). Twelve is the smallest abundant num-
ber; the sum of its aliquot partsis 1 +2 +3 + 4 + 6 = 16,
followed by 18, 20, 24, and 30. A weird number is an abun-
dant number that is not semiperfect; in other words, 7 is
weird if the sum of its divisors is greater than #, but 7 is
not equal to the sum of any subset of its divisors. The
first few weird numbers are 70, 836, 4,030, 5,830, and
7,192. It isn’t known if there are any odd weird numbers.
A deficient number is one that is greater than the sum of its
aliquot parts. The first few deficient numbers are 1, 2, 3,
4,5, 8, and 9. Any divisor of a deficient (or perfect)
number is deficient. A number that is not abundant or
deficient is known as a perfect number.

Achilles and the Tortoise paradox
See Zeno’s paradoxes.

Ackermann function

One of the most important functions in computer sci-
ence. Its most outstanding property is that it grows aston-
ishingly fast. In fact, it gives rise to large numbers so
quickly that these numbers, called Ackermann numbers,
are written in a special way known as Knuth’s up-arrow
notation. The Ackermann function was discovered and
studied by Wilhelm Ackermann (1896-1962) in 1928.

Ackermann worked as a high school teacher from 1927
to 1961 but was also a student of the great mathemati-
cian David Hilbert in Gottingen and, from 1953, served
as an honorary professor in the university there.
Together with Hilbert he published the first modern
textbook on mathematical logic. The function he dis-
covered, and that now bears his name, is the simplest
example of a well-defined and total function that is also
computable but not primitive recursive (PR). “Well-
defined and total” means that the function is internally
consistent and doesn’t break any of the rules laid down
to define it. “Computable” means that it can, in prin-
ciple, be evaluated for all possible input values of its
variables. “Primitive recursive” means that it can be
computed using only for loops—repeated application of a
single operation a predetermined number of times. The
recursion, or feedback loop, in the Ackermann function
overruns the capacity of any for loop because the number
of loop repetitions isn’t known in advance. Instead, this
number is itself part of the computation, and grows as
the calculation proceeds. The Ackermann function can
only be calculated using a while loop, which keeps repeat-
ing an action until an associated test returns false. Such
loops are essential when the programmer doesn’t know
at the outset how many times the loop will be traversed.
(I's now known that everything computable can be pro-
grammed using while loops.)
The Ackermann function can be defined as follows:

AO,n)=n+1forn=0
Am, 0)=A(m—-1,1)form=1
Am,n)y=Am -1, A(m, n— 1)) for m, n=1.

Two positive integers, 7 and 7, are the input and A (m, )
is the output in the form of another positive integer. The
function can be programmed easily in just a few lines of
code. The problem isn’t the complexity of the function
but the awesome rate at which it grows. For example, the
innocuous-looking A(4,2) already has 19,729 digits! The
use of a powerful large-number shorthand system, such
as the up-arrow notation, is indispensable as the follow-
ing examples show:

AL, n)=2+#+3)-3

AQ2,n)=2%x(n+3)-3

AB,n)=2Tn+3)-3

A@, ) =2T2TQ2T (...T2) =3 (n+3 twos)
=2 (n+3)-3

AG, n)=2TTT(n + 3) = 3, etc.

Intuitively, the Ackermann function defines generaliza-
tions of multiplication by 2 (iterated additions) and
exponentiation with base 2 (iterated multiplications) to
iterated exponentiation, iteration of this operation, and
so on.™
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acre

An old unit of area, equal to 160 square rods, 4,840
square yards, 43,560 square feet, or 4,046.856 square
meters.

acute

From the Latin acus for “needle” (which also forms the
root for acid, acupuncture, and acumen). An acute angle is
less than 90°. An acute triangle is one in which all three
angles are acute. Compare with obtuse.

adjacent
Next to. Adjacent angles are next to each other, and thus
share one side. Adjacent sides of a polygon share a vertex.

affine geometry

The study of properties of geometric objects that remain
unchanged after parallel projection from one plane to
another. During such a projection, first studied by Leon-
hard Euler, each point (x, y) is mapped to a new point
(ax+cy+e bx+dy+f). Circles, angles, and distances are
altered by affine transformations and so are of no inter-
est in affine geometry. Affine transformations do, how-
ever, preserve collinearity of points: if three points
belong to the same straight line, their images (the points
that correspond to them) under affine transformations
also belong to the same line and, in addition, the middle
point remains between the other two points. Similarly,
under affine transformations, parallel lines remain par-
allel; concurrent lines remain concurrent (images of in-
tersecting lines intersect); the ratio of lengths of line
segments of a given line remains constant; the ratio of
areas of two triangles remains constant; and ellipses, par-
abolas, and hyperbolas continue to be ellipses, parabo-
las, and hyperbolas.

age puzzles and tricks

Problems that ask for a person’s age or, alternatively,
when a person was a certain age, given several round-
about facts. They go back at least 1,500 years to the time
of Metrodorus and Diophantus’s riddle. A number of
distinct types of age puzzles sprang up between the six-
teenth and early twentieth centuries, in most cases best
solved by a little algebra. One form asks: if X is now «
years old and Y is now & years old, when will X be ¢
times as old as Y? The single unknown, call it x, can be
found from the equation 4 + x = ¢(b + x). Another type
of problem takes the form: if X is now a times as old as
Y and after & years X will be ¢ times as old as ¥, how old
are X and Y now? In this case the trick is to set up and
solve two simultaneous equations: X =4Y and X + b=

(Y +1b).

PUZZLES
Around 1900, two more variants on the age puzzle
became popular. Here is an example of each for the
reader to try.
1. Bob is 24. He is twice as old as Alice was when
Bob was as old as Alice is now. How old is Alice?
2. The combined ages of Mary and Ann are 44 years.
Mary is twice as old as Ann was when Mary was
half as old as Ann will be when Ann is three times
as old as Mary was when Mary was three times as
old as Ann. How old is Ann?”
Solutions begin on page 369.

Various mathematical sleights of hand can seem to
conjure up a person’s age as if by magic. For example, ask
a person to multiply the first number of his or her age by
5, add 3, double this figure, add the second number of
his or her age to the figure, and tell you the answer.
Deduct 6 from this and you will have their age.

Alternatively, ask the person to pick a number, multi-
ply this by 2, add 5, and multiply by 50. If the person
has already had a birthday this year and it’s the year
2004, she should add 1,754, otherwise she should add
1,753. Each year after 2004 these numbers need to be
increased by 1. Finally, the person should subtract the
year they were born. The first digits of the answer are the
original number, while the last two digits are the per-
son’s age.

Here is one more trick. Take your age, multiply it by 7,
then multiply again by 1,443. The result is your age
repeated three times. (What you have actually done is
multiplied by 10,101; if you multiply by 1,010,101, the
repetition is fourfold, and so on.)

Agnesi, Maria Gaetana (1718-1799)

An Italian mathematician and scholar whose name is
associated with the curve known as the Witch of Agnesi.
Born in Milan, Maria was one of 24 children of a pro-
fessor of mathematics at the University of Bologna. A
child prodigy, she could speak seven languages, includ-
ing Latin, Greek, and Hebrew, by the age of 11 and was
solving difficult problems in geometry and ballistics by
her early teens. Her father encouraged her studies and
her appearance at public debates. However, Maria de-
veloped a chronic illness, marked by convulsions and
headaches, and, from the age of about 20, withdrew
socially and devoted herself to mathematics. Her lesti-
tuzioni analitiche ad wuso della gioventu italiana, published
in 1748, became a standard teaching manual, and in
1750, she was appointed to the chair of mathema-
tics and natural philosophy at Bologna. Yet she never
fulfilled her early promise in terms of making new
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breakthroughs. After the death of her father in 1752,
she moved into theology and, after serving for some
years as the directress of the Hospice Trivulzio for Blue
Nuns at Milan, joined the sisterhood herself and ended
her days in this austere order.

The famous curve that bears her name had been
studied earlier, in 1703, by Pierre de Fermat and the
Italian mathematician Guido Grandi (1671-1742).
Maria wrote about it in her teaching manual and re-
ferred to it as the awersiera, which simply means “to
turn.” But in translating this, the British mathema-
tician John Colson (1680-1760), the fifth Lucasian
professor of mathematics at Cambridge University,
confused awversiera with avversiere which means “witch,”
or “wife of the devil.” And so the name of the curve
came down to us as the Witch of Agnesi. To draw it,
start with a circle of diameter 4, centered at the point
(0, a/2) on the y-axis. Choose a point A4 on the line
y=a and connect it to the origin with a line segment.
Call the point where the segment crosses the circle B.
Let P be the point where the vertical line through A
crosses the horizontal line through B. The Witch is the
curve traced by P as A moves along the line y=4. By a
happy coincidence, it does look a bit like a witch’s hat!
In Cartesian coordinates, its equation is

y=a/(x* + a?).
Ahmes papyrus

See Rhind papyrus.

Ahrens, Wilhelm Ernst Martin Georg (1872-1927)
A great German exponent of recreational mathematics

whose Mathematische Unterhaltungen und Spiele® is one of
the most scholarly of all books on the subject.

Alcuin (735-804)

A leading intellectual of his time and the probable
compiler of Propositiones ad Acuendos Juvenes (Problems to
sharpen the young), one of the earliest collections of rec-
reational math problems. According to David Singmaster
and John Hadley: “The text contains 56 problems, includ-
ing 9 to 11 major types of problem which appear for the
first time, 2 major types which appear in the West for the
first time and 3 novel variations of known problems. . . .
It has recently been realized that the river-crossing prob-
lems and the crossing-a-desert problem, which appear
here for the first time, are probably the earliest known
combinatorial problems.”

Alcuin was born into a prominent family near the east
coast of England. He was sent to York, where he became a
pupil and, eventually, in 778, the headmaster, of Arch-
bishop Ecgberht’s School. (Ecgberht was the last person to
have known the Venerable Bede.) Alcuin built up a superb
library and made the school one of the chief centers of
learning in Europe. Its reputation became such that, in
781, Alcuin was invited to become master of Charle-
magne’s Palace School at Aachen and, effectively, minister
of education for Charlemagne’s empire. He accepted and
traveled to Aachen to a meeting of the leading scholars.
Subsequently, he was made head of Charlemagne’s Palace
School and there developed the Carolingian minuscule, a
clear, legible script that became the basis of how letters of
the present Roman alphabet are written.

Before leaving Aachen, Alcuin was responsible for the
most prized of the Carolingian codices, now called the
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Golden Gospels: a series of illuminated masterpieces writ-
ten largely in gold, on white or purple vellum. The develop-
ment of Carolingian minuscule had, indirectly, a major
impact on the history of mathematics. Because it was a far
more easily readable script than the older unspaced capital,
it led to many mathematical works being newly copied into
this new style in the ninth century. Most of the works of the
ancient Greek mathematicians that have survived did so
because of this transcription. Alcuin lived in Aachen from
782 to 790 and again from 793 to 796. In 796, he retired
from Charlemagne’s Palace School and became abbot of
the Abbey of St. Martin at Tours, where he and his monks
continued to work with the Carolingian minuscule script.

aleph

The first letter of the Hebrew alphabet, . It was first used
in mathematics by Georg Cantor to denote the various
orders, or sizes, of infinity: 8, (aleph-null), 8, (aleph-
one), etc. An earlier (and still used) symbol for infinity, o,
was introduced in 1655 by John Wallis in his Arithmetica
infinitorum but didn’t appear in print until the Ars con-
Jectandi by Jakob Bernoulli, published posthumously in
1713 by his nephew Nikolaus Bernoulli (see Bernoulli
Family).

Alexander’s horned sphere A sculpture of a five-level
Alexander’s horned sphere. Gideon Weisz, www.gideonweisz.com

Alexander’s horned sphere

In topology, an example of what is called a “wild” struc-
ture; it is named after the Princeton mathematician James
Waddell Alexander (1888-1971) who first described it in
the early 1920s. The horned sphere is topologically equiv-
alent to the simply connected surface of an ordinary hol-
low sphere but bounds a region that is not simply
connected. The horns-within-horns consist of a recursive
set—a fractal-of interlocking pairs of orthogonal rings
(rings set at right angles) of decreasing radius. A rubber
band around the base of any horn couldn’t be removed
from the structure even after infinitely many steps. The
horned sphere can be embedded in the plane by reducing
the interlock angle between ring pairs from 90° to 0°, then
weaving the rings together in an over-under pattern. The
sculptor Gideon Weisz has modeled a number of approx-
imations to the structure, one of which is shown in the
photograph.

algebra

A major branch of mathematics that, at an elementary
level, involves applying the rules of arithmetic to num-
bers, and to letters that stand for unknown numbers, with
the main aim of solving equations. Beyond the algebra
learned in high school is the much vaster and more pro-
found subject of abstract algebra. The word itself comes
from the Arabic aljebr, meaning “the reunion of broken
parts.” It first appeared in the title of a book, Akjebr w’al-
mugabalah (The science of reduction and comparison),
by the ninth-century Persian scholar al-Khowarizmi—
probably the greatest mathematician of his age, and as
famous among Arabs as Euclid and Aristotle are to the
Western world.

algebraic curve

A curve whose equation involves only algebraic functions.
These are functions that, in their most general form, can
be written as a sum of polynomials in x multiplied by
powers of 3, equal to zero. Among the simplest examples
are straight lines and conic sections.

algebraic fallacies
Misuse of algebra can have some surprising and absurd
results. Here, for example, is a famous “proof” that 1 =2:

Leta=b.
Then 4% = ab
rat=a’+ab
2a*=a*+ ab
2a*=2ab=a’ + ab — 2ab
2a*—2ab=a’ — ab
2(a* — ab) = 1(a® — ab).
Dividing both sides by a” — ab
2=1.
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Where’s the mistake? The problem lies with the seem-
ingly innocuous final division. Since 4 = 4, dividing by
a® — ab is the same as dividing by zero—the great taboo of
mathematics.

Another false argument runs as follows:

n+1=n*+2n+1
(n+17 - Q2n+1)=n"

Subtracting 7(2% + 1) from both sides and factorizing
gives

n+1P -+ 1)2r+1)=n*-nQ2n+1).
Adding Y27 + 1)? to both sides yields

(n+1P2 =+ DQRr+ 1)+ %1Q2n+ 1)
=’ = nQ2n+1)+%MQ2n+ 1)

This may be written:
[z +1)=1LQ2u+ D)= [(n-22n+ 1)
Taking square roots of both sides,
n+1-1%C2n+1)=n-"%Q2n+1).
Therefore,
n=n+1.

The problem here is that there are fwo square roots for
any positive number, one positive and one negative: the
square roots of 4 are 2 and —2, which can be written as
*+2. So the penultimate step should properly read:

+(n+1-%2n+1)=*(n-"%2n+1))

algebraic geometry

Originally, the geometry of complex number solutions
to polynomial equations. Modern algebraic geometry is
also concerned with algebraic varieties, which are a gen-
eralization of the solution sets found in the traditional
subject, as well as solutions in fields other than complex
numbers, for example finite fields.

algebraic number

A real number that is a root of a polynomial equation
with integer coefficients. For example, any rational num-
ber a/b, where a and b are nonzero integers, is an alge-
braic number of degree one, because it is a root of the
linear equation &x — a = 0. The square root of two is an
algebraic number of degree two because it is a root of the
quadratic equation x* — 2 = 0. If a real number is not alge-
braic, then it is a transcendental number. Almost all real
numbers are transcendental because, whereas the set of
algebraic numbers is countably infinite (see countable

set), the set of transcendental numbers is uncountably
infinite.

algebraic number theory

The branch of number theory that is studied without
using methods such as infinite series and convergence
taken from analysis. It contrasts with analytical number
theory.

algebraic topology

A branch of topology that deals with invariants of
a topological space that are algebraic structures, often
groups.

algorithm

A systematic method for solving a problem. The word
comes from the name of the Persian mathematician, al-
Khowarizmi, and may have been first used by Gottfried
Liebniz in the late 1600s. It remained little known in
Western mathematics, however, until the Russian mathe-
matician Andrei Markov (1903-1987) reintroduced it.
The term became especially popular in the areas of math
focused on computing and computation.

algorithmic complexity

A measure of complexity developed by Gregory Chaitin
and others, based on Claude Shannon’s information
theory and earlier work by the Russian mathematicians
Andrei Kolmogorov and Ray Solomonoff. Algorithmic
complexity quantifies how complex a system is in terms
of the shortest computer program, or set of algorithms,
needed to completely describe the system. In other
words, it is the smallest model of a given system that is
necessary and sufficient to capture the essential patterns
of that system. Algorithmic complexity has to do with
the mixture of repetition and innovation in a complex
system. At one extreme, a highly regular system can be
described by a very short program or algorithm. For
example, the bit string 01010101010101010101 . .. fol-
lows from just three commands: print a zero, print a one,
and repeat the last two commands indefinitely. The com-
plexity of such a system is very low. At the other extreme,
a totally random system has a very high algorithmic
complexity since the random patterns can’t be con-
densed into a smaller set of algorithms: the program is
effectively as large as the system itself. See also com-
pressible.

Alhambra

The former palace and citadel of the Moorish kings of
Granada, and perhaps the greatest monument to Islamic
mathematical art on Earth. Because the Qur’an consid-
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Alhambra Computer-generated tilings based on Islamic tile
designs such as those found in the Alhambra. Xah Lee,
www.xahlee.org

ers the depiction of living beings in religious settings
blasphemous, Islamic artists created intricate patterns to
symbolize the wonders of creation: the repetitive nature
of these complex geometric designs suggests the limitless
power of God. The sprawling citadel, looming high
above the Andalusian plain, boasts a remarkable array of
mosaics with tiles arranged in intricate patterns. The
Alhambra tilings are periodic; in other words, they con-

sist of some basic unit that is repeated in all directions to
fill up the available space. All 17 different groups of
isometries—the possible ways of repeatedly tiling the
plane—are used at the palace. The designs left a deep
impression on Maurits Escher, who came here in 1936.
Subsequently, Escher’s art took on a much more mathe-
matical nature, and over the next six years he produced
43 colored drawings of periodic tilings with a wide vari-
ety of symmetry types.

aliquot part

Also known as a proper divisor, any divisor of a number
that isn’t equal to the number itself. For instance, the
aliquot parts of 12 are 1, 2, 3, 4, and 6. The word comes
from the Latin a/i (“other”) and guot (“how many”). An
aliquot sequence is formed by taking the sum of the
aliquot parts of a number, adding them to form a new
number, then repeating this process on the next num-
ber and so on. For example, starting with 20, we get
1+2+4+5+10=22,then 1+ 2+ 11 = 14, then
1+2+7=10,then1+2+5=8,then1+2+4=7,
then 1, after which the sequence doesn’t change. For
some numbers, the result loops back immediately to
the original number; in such cases the two numbers are
called amicable numbers. In other cases, where a
sequence repeats a pattern after more than one step,
the result is known as an aliquot cycle or a sociable chain.
An example of this is the sequence 12496, 14288,
15472, 14536, 14264, ... The aliquot parts of 14264
add to give 12496, so that the whole cycle begins again.
Do all aliquot sequences end either in 1 or in an
aliquot cycle (of which amicable numbers are a special
case)? In 1888, the Belgian mathematician Eugéne
Catalan (1814-1894) conjectured that they do, but this
remains an open question.

al-Khowarizmi (c. 780-850)

An Arabic mathematician, born in Baghdad, who is
widely considered to be the founder of modern day alge-
bra. He believed that any math problem, no matter how
difficult, could be solved if broken down into a series of
smaller steps. The word algorithm may have derived from
his name.

Allais paradox

A paradox that stems from questions asked in 1951 by
the French economist Maurice Allais (1911-).") Which
of these would you choose: (A) an 89% chance of receiv-
ing an unknown amount and 11% chance of $1 million;
or (B) an 89% chance of an unknown amount (the same
amount as in A), a 10% chance of $2.5 million, and a 1%
chance of nothing? Would your choice be the same if the
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unknown amount was $1 million? What if the unknown
amount was zero?

Most people don’t like risk and so prefer the better
chance of winning $1 million in option A. This choice
is firm when the unknown amount is $1 million, but
seems to waver as the amount falls to nothing. In the lat-
ter case, the risk-averse person favors B because there
isn’t much difference between 10% and 11%, but there’s
a big difference between $1 million and $2.5 million.
Thus the choice between A and B depends on the un-
known amount, even though it is the same unknown
amount independent of the choice. This flies in the face
of the so-called independence axiom, that rational choice
between two alternatives should depend only on how
those two alternatives differ. Yet, if the amounts involved
in the problem are reduced to tens of dollars instead of
millions of dollars, people’s behavior tends to fall back in
line with the axioms of rational choice. In this case, peo-
ple tend to choose option B regardless of the unknown
amount. Perhaps when presented with such huge num-
bers, people begin to calculate qualitatively. For example,
if the unknown amount is $1 million the options are
essentially (A) a fortune guaranteed or (B) a fortune
almost guaranteed with a small chance of a bigger for-
tune and a tiny chance of nothing. Choice A is then
rational. However, if the unknown amount is nothing,
the options are (A) a small chance of a fortune ($1 mil-
lion) and a large chance of nothing, and (B) a small
chance of a larger fortune ($2.5 million) and a large
chance of nothing. In this case, the choice of B is ratio-
nal. Thus, the Allais paradox stems from our limited abil-
ity to calculate rationally with such unusual quantities.

almost perfect number

A description sometimes applied to the powers of 2
because the aliquot parts (proper divisors) of 2” sum to
2" — 1. So a power of 2 is a deficient number (one that is
less than the sum of its proper divisors), but only just. It
isn’t known whether there is an odd number » whose
divisors (excluding itself) sum to 7 — 1.

alphamagic square

A form of magic square, introduced by Lee Sallows,'
in which the number of letters in the word for each number,
in whatever language is being used, gives rise to another
magic square. In English, for example, the alphamagic
square:

5 (five) 22 (twenty-two) 18 (eighteen)
28 (twenty-eight) 15 (fifteen) 2 (two)
12 (twelve) 8 (eight) 25 (twenty-five)

278-280]

generates the square:

9 8
1 7 3
6 5 10

A surprisingly large number of 3 x 3 alphamagic squares
exist—in English and in other languages. French allows just
one 3 x 3 alphamagic square involving numbers up to 200,
but a further 255 squares if the size of the entries is
increased to 300. For entries less than 100, none occurs in
Danish or in Latin, but there are 6 in Dutch, 13 in Finnish,
and an incredible 221 in German. Yet to be determined is
whether a 3 x 3 square exists from which a magic square
can be derived that, in turn, yields a third magic square—a
magic triplet. Also unknown is the number of 4 x 4 and
5 x 5 language-dependent alphamagic squares. Here, for
example, is a four-by-four English alphamagic square:

26 37 48 59
49 58 27 36
57 46 39 28
38 29 56 47

alphametic

A type of cryptarithm in which a set of words is written
down in the form of a long addition sum or some other
mathematical problem. The object is to replace the let-
ters of the alphabet with decimal digits to make a valid
arithmetic sum. The word alphametic was coined in 1955
by James Hunter. However, the first modern alphametic,
published by Henry Dudeney in the July 1924 issue of
Strand Magazine, was “Send more money,” or, setting it
out in the form of a long addition:

SEND
MORE

MONEY

and has the (unique) solution:

9567
1085

10652

PUZZLES
The reader is invited to try to solve the following ele-
gant examples:

1. Earth, air, fire, water: nature. (Herman Nijon)

2. Saturn, Uranus, Neptune, Pluto: planets. (Peter J.

Martin)
3. Martin Gardner retires. (H. Everett Moore)
Solutions begin on page 369.
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Two rules are obeyed by every alphametic. First, the
mapping of letters to numbers is one-to-one; that is,
the same letter always stands for the same digit, and the
same digit is always represented by the same letter. Sec-
ond, the digit zero isn’t allowed as the left-most digit in
any of the numbers being added or in their sum. The
best alphametics are reckoned to be those with only one
correct answer.

Altekruse puzzle

A symmetrical 12-piece burr puzzle for which a patent
was granted to William Altekruse in 1890. The Alte-
kruse family is of Austrian-German origin and, curi-
ously, the name means “old cross” in German, which
has led some authors to incorrectly assume that it was a
pseudonym. William Altekruse came to the United
States as a young man in 1844 with his three brothers to
escape being drafted into the German army. The
Altekruse puzzle has an unusual mechanical action in
the first step of disassembly by which two halves move
in opposition to each other, unlike the more familiar
burr types that have a key piece or pieces. Depending
on how it is assembled, this action can take place along
one, two, or all three axes independently but not simul-
taneously.

alternate

A mathematical term with several different meanings: (1)
Alternate angles are angles on opposite sides and opposite
ends of a line that cuts two parallel lines. (2) A well-known
theorem called the alternate segment theorem involves the
segment on the opposite side of a given chord of a circle.
(3) An alternate hypothesis in statistics is the alternative
offered to the null hypothesis. (4) To alternate is to cycle
backward and forward between two different values, for
example, 0,1,0,1,0,1,....

altitude

A perpendicular line segment from one vertex of a figure
or solid to an edge or face opposite to that vertex. Also
the length of such a line segment.

ambiguous figure

An optical illusion in which the subject or the perspec-
tive of a picture or shape may suddenly switch in the
mind of the observer to another, equally valid possibil-
ity. Often the ambiguity stems from the fact that the
figure and ground can be reversed. An example of this is
the vase/profile illusion, made famous by the Danish
psychologist Edgar John Rubin (1886-1951) in 1915,
though earlier versions of the same illusion can be

ambiguous figure The Rubin vase illusion: one moment a
vase, the next two people face to face.

found in many eighteenth-century French prints depict-
ing a variety of vases, usually in a naturalistic setting,
and profiles of particular people. The same effect can be
created in three dimensions with a suitably shaped solid
vase. In some ambiguous figures, the features of a per-
son or of an animal can suddenly be seen as different
features of another individual. Classic examples include
the old woman—young woman illusion and the duck-
rabbit illusion. Upside-down pictures involve a special
case of dual-purpose features in which the reversal is
accomplished not mentally, by suddenly “seeing” the
alternative, but physically, by turning the picture 180°.
Ambiguity can also occur, particularly in some geomet-
ric drawings, when there is confusion as to which are
the front and the back faces of a figure, as in the Necker
cube, the Thiery figure, and Schrioder’s reversible
staircase.

ambiguous connectivity
See impossible figure.

Ames room

The famous distorted room illusion, named after the
American ophthalmologist Adelbert Ames Jr. (1880-
1955), who first constructed such a room in 1946 based
on a concept by the German physicist Hermann Helm-
holtz in the late nineteenth century. The Ames room
looks cubic when seen with one eye through a specially
positioned peephole; however, the room’s true shape is
trapezoidal. The floor, ceiling, some walls, and the far
windows are trapezoidal surfaces; the floor appears level
but is actually at an incline (one of the far corners being



14 amicable numbers

Ames room Misleading geometry makes these identical
twins appear totally different in size. Technische Universitat,
Dresden

much lower than the other); and the walls are slanted
outward, though they seem perpendicular to the floor.
This shape makes it look as if people or objects grow or
shrink as they move from one corner of the room to
another. See also distortion illusion.!"** 7!

amicable numbers

A pair of numbers, also known as friendly numbers, each
of whose aliquot parts add to give the other number.
(An aliquot part is any divisor that doesn’t include the
number itself.) The smallest amicable numbers are 220
(aliquot parts 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, and 110,
with a sum of 284) and 284 (aliquot parts 1, 2, 4, 71,
and 142, with a sum of 220). This pair was known to the
ancient Greeks, and the Arabs found several more. In
1636, Pierre de Fermat rediscovered the amicable pair
17,296 and 18,416; two years later René Descartes
rediscovered a third pair, 9,363,584 and 9,437,056. In
the eighteenth century, Leonhard Euler drew up a list
of more than 60. Then, in 1866, B. Nicolod Paganini
(not the violinist), a 16-year-old Italian, startled the
mathematical world by announcing that the numbers
1,184 and 1,210 were amicable. This second-lowest pair
of all had been completely overlooked! Today, the tally
of known amicable numbers has grown to about 2.5
million. No amicable pair is known in which one of the
two numbers is a square. An unusually high proportion
of the numbers in amicable pairs ends in either 0 or 5.
A bappy amicable pair is an amicable pair in which both
numbers are happy numbers; an example is 10,572,550
and 10,854,650. See also Harshad number.

amplitude

Size or magnitude. The origin of the word is the same
Indo-European ple root that gives us plus and comple-
ment. The more immediate Latin source is amplus for
“wide.” Today, amplitude is used to describe, among
other things, the distance a periodic function varies
from its central value, and the magnitude of a complex
number.

anagram
The rearrangement of the letters of a word or phrase into
another word or phrase, using all the letters only once.
The best anagrams are meaningful and relate in some way
to the original subject; for example, “stone age” and
“stage one.” There are also many remarkable examples of
long anagrams. “ “That’s one small step for a man; one
giant leap for mankind.” Neil Armstrong” becomes “An
‘Eagle’ lands on Earth’s Moon, making a first small per-
manent footprint.”

PUZZLES
The reader is invited to untangle the following ana-
grams that give clues to famous people:
1. A famous German waltz god.
2. Aha! lons made volts!
3. I'll make a wise phrase.
Solutions begin on page 369.

An antonymous anagram, or antigram, has a meaning
opposite to that of the subject text; for example, “within
earshot” and “I won’t hear this.” Transposed couplets, or
pairagrams, are single word anagrams that, when placed
together, create a short meaningful phrase, such as “best
bets” and “lovely volley.” A rare transposed triplet, or tri-
anagram, is “discounter introduces reductions.” See also
pangram.

anallagmatic curve

A curve that is invariant under inversion (see in-
verse). Examples include the cardioid, Cassinian ovals,
limacon of Pascal, strophoid, and Maclaurin tri-
sectrix.

analysis

A major branch of mathematics that has to do with
approximating certain mathematical objects, such as
numbers or functions, in terms of other objects that are
easier to understand or to handle. A simple example of
analysis is the calculation of the first few decimal places
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of pi by writing it as the limit of an infinite series. The
origins of analysis go back to the seventeenth century,
when people such as Isaac Newton began investigating
how to approximate locally—in the neighborhood of a
point—the behavior of quantities that vary continuously.
This led to an intense study of limits, which form the
basis of understanding infinite series, differentiation,
and integration.

Modern analysis is subdivided into several areas: real
analysis (the study of derivatives and integrals of real-
valued functions); functional analysis (the study of spaces
of functions); harmonic analysis (the study of Fourier
series and their abstractions); complex analysis (the study
of functions from the complex plane to the complex plane
that are complex differentiable); and nonstandard analy-
sis (the study of hyperreal numbers and their functions,
which leads to a rigorous treatment of infinitesimals and of
infinitely large numbers).

analytical geometry

Also known as coordinate geometry or Cartesian geometry,
the type of geometry that describes points, lines, and
shapes in terms of coordinates, and that uses algebra to
prove things about these objects by considering their

coordinates. René Descartes laid down the foundations
for analytical geometry in 1637 in his Discourse on the
Method of Rightly Conducting the Reason in the Search for
Truth in the Sciences, commonly referred to as Discourse on
Method. This work provided the basis for calculus,
which was introduced later by Isaac Newton and Gott-
fried Leibniz.

analytical number theory

The branch of number theory that uses methods taken
from analysis, especially complex analysis. It contrasts
with algebraic number theory.

anamorphosis

The process of distorting the perspective of an image to
such an extent that its normal appearance can only be
restored by the observer completely changing the way he
looks at the image. In catoptric anamorphosis, a curved
mirror, usually of cylindrical or conical shape, is used to
restore an anamorphic picture to its undistorted form. In
other kinds of anamorphism, the observer has to change
her viewing position—for example, by looking at the pic-
ture almost along its surface. Some anamorphic art
adds deception by concealing the distorted image in an

anamorphosis “Self-portrait with Albert” is a clever example of anamorphic art by the Hungarian artist Istvan Orosz. The artist's
hands over his desk and a small round mirror in which the artist's face is reflected can be seen in the etching. Istvan Orosz

(continued)
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anamorphosis (continued) A cylindrical mirror is placed over the circle. istvan Orosz

The mirror reveals a previously unsuspected aspect of the picture. The distorting effect of the curved mirror is to undistort a face
hidden amid the shapes on the desk: the face of Albert Einstein. Orosz created this etching for an exhibition in Princeton, where
the great scientist lived. /sivan Orosz
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otherwise normal looking picture. At one time, artists
who had the mathematical knowledge to create ana-
morphic pictures kept their calculations and grids well-
guarded secrets. Now it is relatively easy to create such
images by computer.

angle

My geometry teacher was sometimes acute, and
sometimes obtuse, but he was always right.
—Anonymous

The opening between two lines or two planes that meet;
the word comes from the Latin angulus for “sharp
bend.” Angles are measured in degrees. A right angle
has 90°, an acute angle less than 90°, and an obtuse
angle has between 90° and 180°. If an angle exceeds the
straight angle of 180°, it is said to be convex. Comple-
mentary angles add to 90°, and supplementary angles make
a total of 180°.

angle bisection
See bisecting an angle.

angle trisection
See trisecting an angle.

animals’ mathematical ability

Many different species, including rats, parrots, pigeons,
raccoons, and chimpanzees, are capable of doing simple
calculations. Tests on dogs have shown that they have a
basic grasp of cardinality—the number of things on offer.
If they’re shown a pile of treats and then shown the pile
again after it has been concealed and the number of
treats changed slightly, they will react differently than if
there’s been no change. However, not all purported ani-
mal math talents stand the test of time. At the turn of
the century, a horse named Clever Hans wowed audi-
ences with his counting skills. His trainer would pose a
problem, and the horse would tap out the answer. In the
end, though, it was found that Hans couldn’t really add
or subtract but was instead responding to subtle, unin-
tended clues from its trainer, who would visibly relax
when the horse reached the correct number.

annulus
The region between the smaller and the larger of two cir-
cles that share a common center.

antigravity houses and hills

The House of Mystery in the Oregon Vortex, Gold Hill,
Oregon, built during the Great Depression in the 1930s,
can claim to be the first “antigravity house.” It spawned

antigravity houses and hills Visitors to a “house of mystery,”
believing that the floor of the house is horizontal, may be
astonished by the apparent gravity-defying effects (right). All
these effects are easily understood, however, when it is real-
ized that the entire house tilts at the same angle as a hill on
which it is built.

many imitators around the United States and in other
parts of the world. Such buildings give rise to some
spectacular visual effects, which seem bewildering until
the underlying cause is revealed. Of course, the visitor
guides are not forthcoming about what is really going
on and make fantastic claims about magnetic or gravita-
tional anomalies, UFOs, or other weird and wonderful
phenomena. The fact is that all the stunning effects
stem from clever construction and concealment that
make an incline seem like a horizontal in the mind of
the visitor. All antigravity houses are built on hills, with
a typical incline of about 25°. But unlike a normal
house on the side of a hill, an antigravity house is built
so that its walls are perpendicular to the (inclined)
ground. In addition, the area around the house is sur-
rounded by a tall fence that prevents the visitor from
establishing a true horizontal. Thus compelled to fall
back on experience, the visitor assumes that the floor of
the house is horizontal and that the walls are vertical
with respect to Earth’s gravity. All the stunning visual
shenanigans follow from this.

In addition to man-made antigravity illusions, there
are also a number of remarkable natural locations
around the world where gravity seems to be out of kilter.
One example is the “Electric Brae,” known locally as
Croy Brae, in Ayrshire, Scotland. This runs the quarter-
mile from the bend overlooking the Croy railway
viaduct in the west (86 meters above sea level) to the
wooded Craigencroy Glen (92 meters above sea level) to
the east. While there is actually a slope of 1 in 86 (a rise
of 1 meter for every 86 meters horizontally) upward
from the bend at the Glen, the configuration of the land
on either side of the road creates the illusion that the
slope runs the other way. The author is among countless
folk who have parked their cars with the brakes off on
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this stretch of road and been amazed to see it roll appar-
ently uphill. See also distortion illusion.

antimagic square

An 7 X n square arrangement of the numbers 1 to 7” such
that the totals of the 7 rows and 7 columns and two long
diagonals form a sequence of (2% + 2) consecutive integers.
There are no antimagic squares of size 2 x 2 and 3 x 3 but
plenty of them for larger sizes. Here is a 4 x 4 example:

1 133 12
15 9 4 10
7 2 16 8
14 6 11 5

See also magic square.

antiprism

A semi-regular polyhedron constructed from two #-sided
polygons and 27 triangles. An antiprism is like a prism in
that it contains two copies of any chosen regular polygon,
but is unlike a prism in that one of the copies is given a

slight twist relative to the other. The polygons are con-
nected by a band of triangles pointing alternately up and
down. At each vertex, three triangles and one of the chosen
polygons meet. By spacing the two polygons at the proper
distance, all the triangles become equilateral. Antiprisms
are named square antiprisms, pentagonal antiprisms, and
so on. The simplest, the triangular antiprism, is better
known as the octahedron.

aperiodic tiling

A tiling made from the same basic elements or tiles that
can cover an arbitrarily large surface without ever
exactly repeating itself. For a long time it was thought
that whenever tiles could be used to make an aperiodic
tiling, those same tiles could also be fitted together in a
different way to make a periodic tiling. Then, in the
1960s, mathematicians began finding sets of tiles that
were uniquely aperiodic. In 1966, Robert Berger pro-
duced the first set of 20,426 aperiodic tiles, and soon
lowered this number to 104. Over the next few years,
other mathematicians reduced the number still further.

antiprism A pentagonal antiprism. Robert Webb, www.software3d.com; created using Webb's Stella program
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In 1971, Raphael Robinson found a set of six aperiodic
tiles based on notched squares; then, in 1974, Roger
Penrose found a set of two colored aperiodic tiles (see
Penrose tilings). The coloring can be dispensed with if
the pieces are notched. There is a set of three convex
(meaning no notches) aperiodic tiles, but it isn’t known
if there is a set of two such tiles or even a single tile (see
Einstein problem). In three dimensions, Robert Am-
mann found two aperiodic polyhedra, and Ludwig
Danzer found four aperiodic tetrahedra.

Apéry’s constant

The number defined by the formula {/(3) = S ,_, 1/,
where ( is the Riemann zeta function: It has the value
1.202056 . . . and gives the odds (1 in 1.202056...) of
any three positive integers, picked at random, having no
common divisor. In 1979, the French mathematician
Roger Apéry (1916-1994) stunned the mathematical
world with a proof that this number is irrational.!'
Whether it is a transcendental number remains an open
question.

apex
The vertex of a cone or a pyramid.

apocalypse number
See beast number.

Apollonius of Perga (c. 255-170 B.C.)

A highly influential Greek mathematician (born in a
region of what is now Turkey), known as the “Great
Geometer,” whose eight-part work On Conics introduced
such terms as ellipse, parabola, and hyperbola. Fuclid and
others had written earlier about the basic properties of
conic sections but Apollonius added many new results,
particularly related to normals and tangents to the vari-
ous conic curves. One of the most famous questions
he raised is known as the Apollonius problem. He
also wrote widely on other subjects including science,
medicine, and philosophy. In Oz the Burning Mirror he
showed that parallel rays of light are not brought to a
focus by a spherical mirror (as had been previously
thought), and he discussed the focal properties of a para-
bolic mirror. A few decades after his death, Emperor
Hadrian collected Apollonius’s works and ensured their
publication throughout his realm.

Apollonius problem

A problem first recorded in Tangencies, written around
200 B.C. by Apollonius of Perga. Given three objects in
the plane, each of which may be a circle C, a point P (a
degenerate circle), or a line L (part of a circle with infinite

Apollonius problem The Apollonian gasket.

radius), find another circle that is tangent to (just
touches) each of the three. There are ten cases: PPP, PPL,
PLL, LLL, PPC, PLC, LLC, LCC, PCC, CCC. The two
easiest involve three points or three straight lines and
were first solved by Euclid. Solutions to the eight other
cases, with the exception of the three-circle problem,
appeared in Tangencies; however, this work was lost. The
most difficult case, to find a tangent circle to any three
other circles, was first solved by the French mathemati-
cian Francois Viete (1540-1603) and involves the simul-
taneous solution of three quadratic equations, although,
in principle, a solution could be found using just a com-
pass and a straightedge. Any of the eight circles that is a
solution to the general three-circle problem is called an
Apollonius circle. If the three circles are mutually tangent
then the eight solutions collapse to just two, which are
known as Soddy circles. A fractal is produced by starting
with three mutually tangent circles and creating a
fourth—the inner Soddy circle—that is nested between the
original three. The process is repeated to yield three more
circles nested between sets of three of these, and then
repeated again indefinitely. The points that are never
inside a circle form a fractal set called the Apollonian gas-
ket, which has a fractional dimension of about 1.30568.

apothem

Also known as a short radius, the perpendicular distance
from the center of a regular polygon to one of its sides.
It is the same as the radius of a circle inscribed in the

polygon.
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apotome

One of Euclid’s categories of irrational numbers. An
apotome has the form V(N4 — VB). The corresponding
number with a “+” sign is called a binomial in Euclid’s
scheme.

applied mathematics
Mathematics for the sake of its use to science or society.

Arabic numeral
A numeral written with an Arabic digit alone: 0, 1, 2, 3, 4,
5,6,7,8,9,or in combination: 10, 11, 12,...5%,....

arbelos

A figure bounded by three semicircles 4B, BC, and AC,
where ABC is a straight line. Archimedes (about 250 B.C.)
called it an arbelos—the Greek word for a knife of the same
shape used by shoemakers to cut and trim leather—and
wrote about it in his Liber assumptorum (Book of lemmas).
Among its properties are that the sum of the two smaller
arc lengths is equal to the larger; the area of the arbelos is
n/4 times the product of the two smaller diameters (4B
and BC); and the area of the arbelos is equal to the area of
a circle whose diameter is the length of a perpendicular
segment drawn from the tangent point B of the two
smaller semicircles to the point D, where it meets the larger
semicircle. The circles inscribed on each half of BD of the
arbelos (called Archimedes’s circles) each have a diameter of
(AB)(BC)/(AC). Furthermore, the smallest circumcircle
of these two circles has an area equal to that of the arbelos.
Pappus of Alexandria wrote on the relations of the chain
of circles, C), Gy, C;, . . . (called a Pappus chain or an arbelos
train) that are mutually tangent to the two largest semicir-
cles and to each other. The centers of these circles lie on an
ellipse and the diameter of the nth circle is (1/7) times the
base of the perpendicular distance to the base of the semi-
circle.

A B o c

arbelos A Pappus chain of circles, C,, C,, G;, .. ., inside an

arbelos (shaded region).

arc

Any part of a curved line or part of the circumference of
a circle; the word comes from the Latin arcus for a bow,
which also gives rise to arch. Arc length is the distance
along part of a curve.

arch

A strong, curved structure, traditionally made from
wedge-shaped elements, that may take many different
forms and that provides both an opening and a support
for overlying material. Two common forms are the semi-
circular arch, first used by the Romans, and the pointed
Gothic arch. The semicircular arch is the weaker of the
two because it supports all the weight on the top and
tends to flatten at its midpoint. It also requires massive
supporting walls since all the stress on the arch acts purely
downward. The pointed arch, by contrast, directs stresses
both vertically and horizontally, so that the walls can be
thinner, though buttressing may be required to prevent
the walls from collapsing sideways. See also Vesica Piscis.

Archimedean dual
See Catalan solid.

Archimedean solid

A convex semi-regular polyhedron; a solid made from
regular polygonal sides of two or more types that meet in
a uniform pattern around each corner. (A regular poly-
hedron, or Platonic solid, has only one type of polygo-
nal side.) There are 13 Archimedean solids (see table
“Archimedian Solids”). Although they are named after
their discoverer, the first surviving record of them is in
the fifth book of the Mathematical Collection of Pappus of
Alexandria. The duals of the Archimedean solids (made
by replacing each face with a vertex, and each vertex with
a face) are commonly known as Catalan solids. Apart
from the Platonic and Archimedean solids, the only
other convex uniform polyhedra with regular faces are
prisms and antiprisms. This was shown by Johannes
Kepler, who also gave the names generally used for the
Archimedean solids. See also Johnson solid.

Archimedean spiral

A spiral, like that of the groove in a phonograph record,
in which the distance between adjacent coils, measured
radially out from the center, is constant. Archimedes was
the first to study it and it was the main subject of his trea-
tise On Spirals. The Archimedean spiral has a very simple
equation in polar coordinates (7, 0):

r=a+b0

where 4 and 4 can be any real numbers. Changing the
parameter 4 turns the spiral, while 4 controls the distance



Archimedean spiral 21

Archimedean Solids

Number of
Name Vertices Faces Edges
Truncated tetrahedron 8=4+4 12 18
Truncated cube 14=8+6 24 36
Truncated octahedron 14=6+8 24 36
Truncated dodecahedron 32=20+12 60 90
Truncated icosahedron 32=12+20 60 90
Cuboctahedron 14=8+6 12 24
Icosidodecahedron 32=20+12 30 60
Snub dodecahedron 92=80+ 12 60 150
Rhombicuboctahedron 26=8+18 24 48
Great rhombicosidodecahedron 62=30+20+12 120 180
Rhombicosidodecahedron 62=20+30+12 60 120
Great rhombicuboctahedron 26=8+12+6 48 72
Snub cube 38=32+6 24 60

Archimedean solid The complete set of Archimedean solids, starting far left and going clockwise: truncated cube, small rhom-
bicuboctahedron, great rhombicuboctahedron, snub cube, snub dodecahedron, great rhombicosidodecahedron, small rhombi-
cosidodecahedron, truncated dodecahedron, truncated icosahedron (soccer ball), icosidodecahedron, truncated tetrahedron,
cuboctahedron, and truncated octahedron. Robert Webb, www.software3d.com; created using Webb's Stella program
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between the arms. The Archimedean spiral is distin-
guished from the logarithmic spiral by the fact that suc-
cessive arms have a fixed distance (equal to 2ms if 0 is
measured in radians), whereas in a logarithmic spiral
these distances form a geometric sequence. Note that
the Archimedean spiral has two possible arms that coil in
opposite directions, one for 6 > 0 and the other for 6 <0.
Many examples of spirals in the man-made world, such
as a watch spring or the end of a rolled carpet, are either
Archimedean spirals or another curve that is very much
like it, the circle involute.

Archimedean tessellation

Also known as a semiregular tessellation, a tiling that uses
only regular polygons arranged so that two or more differ-
ent polygons are around each vertex and each vertex
involves the same pattern of polygons. There are eight
such tessellations, two involving triangles and squares, two
involving triangles and hexagons, and one each involving
squares and octagons; triangles and dodecagons; squares,
hexagons, and dodecagons; and triangles, squares, and
hexagons.

Archimedes of Syracuse (c. 287-212 B.c.)

One of the greatest mathematicians and scientists of all
time. He became a popular figure because of his involve-
ment in the defense of Syracuse against the Roman siege
in the first and second Punic Wars when his war ma-
chines helped keep the Romans at bay. He also devised a
scheme to move a full-size ship, complete with crew and
cargo, by pulling a single rope, and invented the irriga-
tion device known as the Archimedean screw. According
to one of many legends about him, he is said to have dis-
covered the principle of buoyancy while taking a bath
and then ran into the street naked shouting “eureka” (“I
found it!”).

In his book The Sand-Reckoner, he described a posi-
tional number system and used it to write the equiva-
lent of numbers up to 8 X 10%—the number of grains of
sand he thought it would take to fill the universe. He
devised a rule-of-thumb method to do private calcula-
tions that closely resembles integral calculus (2,000
years before its “discovery”), but then switched to geo-
metric proof for his results. He demonstrated that the
ratio of a circle’s perimeter to its diameter is the same as
the ratio of the circle’s area to the square of the radius.
Although he didn’t call this ratio “pi,” he showed how
to work it out to arbitrary accuracy and gave an approx-
imation of it as “exceeding 3 in less than Y7 but more
than %1,

Archimedes was the first, and possibly the only,
Greek mathematician to introduce mechanical curves

(those traced by a moving point) as legitimate objects
of study, and he used the Archimedean spiral to
square the circle. He proved that the area and volume
of the sphere are in the same ratio to the area and vol-
ume of a circumscribed straight cylinder, a result that
pleased him so much that he made it his epitaph.
Archimedes is probably also the first mathematical
physicist on record, and the best before Galileo and
Isaac Newton. He invented the field of statics, enunci-
ated the law of the lever, the law of equilibrium of flu-
ids, and the law of buoyancy, and was the first to
identify the concept of center of gravity. He is also,
perhaps erroneously, credited with the invention of
a square dissection puzzle known as the loculus of
Archimedes. Many of his original works were lost
when the library at Alexandria burned down and they
survive only in Latin or Arabic translations. Plutarch
wrote of him: “Being perpetually charmed by his famil-
iar siren, that is, by his geometry, he neglected to eat
and drink and took no care of his person; that he was
often carried by force to the baths, and when there he
would trace geometrical figures in the ashes of the fire,
and with his finger draws lines upon his body when it
was anointed with oil, being in a state of great ecstasy
and divinely possessed by his science.”

Archimedes's cattle problem

A fiendishly hard problem involving very large num-
bers that Archimedes presented in a 44-line letter to
Eratosthenes, the chief librarian at Alexandria. It ran as
follows:

If thou art diligent and wise, O stranger, compute
the number of cattle of the Sun, who once upon a
time grazed on the fields of the Thrinacian isle of
Sicily, divided into four herds of different colors,
one milk white, another a glossy black, a third yel-
low and the last dappled. In each herd were bulls,
mighty in number according to these proportions:
Understand, stranger, that the white bulls were
equal to a half and a third of the black together
with the whole of the yellow, while the black were
equal to the fourth part of the dappled and a fifth,
together with, once more, the whole of the yellow.
Observe further that the remaining bulls, the dap-
pled, were equal to a sixth part of the white and a
seventh, together with all of the yellow. These were
the proportions of the cows: The white were pre-
cisely equal to the third part and a fourth of the
whole herd of the black; while the black were equal
to the fourth part once more of the dappled and
with it a fifth part, when all, including the bulls,
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went to pasture together. Now the dappled in four
parts were equal in number to a fifth part and a
sixth of the yellow herd. Finally the yellow were in
number equal to a sixth part and a seventh of
the white herd. If thou canst accurately tell, O
stranger, the number of cattle of the Sun, giving
separately the number of well-fed bulls and again
the number of females according to each color,
thou wouldst not be called unskilled or ignorant of
numbers, but not yet shalt thou be numbered
among the wise.

But come, understand also all these conditions
regarding the cattle of the Sun. When the white
bulls mingled their number with the black, they
stood firm, equal in depth and breadth, and the
plains of Thrinacia, stretching far in all ways, were
filled with their multitude. Again, when the yellow
and the dappled bulls were gathered into one herd
they stood in such a manner that their number,
beginning from one, grew slowly greater till it com-
pleted a triangular figure, there being no bulls of
other colors in their midst nor none of them lack-
ing. If thou art able, O stranger, to find out all these
things and gather them together in your mind, giv-
ing all the relations, thou shalt depart crowned with
glory and knowing that thou hast been adjudged
perfect in this species of wisdom.

The answer to the first part of the problem—the smallest
solution for the total number of cattle—turns out to be
50,389,082. But when the extra two constraints in the
second part are factored in, the solution is vastly larger.
The approximate answer of 7.76 x 10*°** was found in
1880 by A. Amthor, having reduced the problem to a
form called a Pell equation.” His calculations were con-
tinued by an ad hoc group called the Hillsboro Mathe-
matical Club, of Hillsboro, Illinois, between 1889 and
1893. The club’s three members (Edmund Fish, George
Richards, and A. H. Bell) calculated the first 31 digits
and the last 12 digits of the smallest total number of cat-
tle to be

7760271406486818269530232833209 . .. 719455081800

though the two digits in bold should be 13.5" In 1931, a
correspondent to the New York Times wrote: “Since it has
been calculated that it would take the work of a thou-
sand men for a thousand years to determine the com-
plete [exact] number [of cattle], it is obvious that the
world will never have a complete solution.” But obvions
and never are words designed to make fools of prognosti-
cators. Enter the computer. In 1965, with the help of an
IBM 7040, H. C. Williams, R. A. German, and

C. R. Zarnke reported a complete solution to the cattle
problem, though it was 1981 before all 202,545 digits
were published, by Harry Nelson, who used a Cray-1
supercomputer to generate the answer, which begins:
7.760271406486818269530232833213 . . . x 1020»4 B34

Archimedes'’s square
See loculus of Archimedes.

area

A measure of surface extension in two-dimensional
space. Area is the Latin word for a vacant piece of level
ground and still carries this common meaning. The
French shortened form are denotes a square of land with
a side length of 10 meters, that is, an area of 100 square
meters. A bectare is a hundred are.

area codes

North American telephone area codes seem to have
been chosen at random. But there was a method to their
selection. In the mid-1950s when direct dialing of long-
distance calls first became possible, it made sense to
assign area codes that took the shortest time to dial to
the larger cities. Almost all calls were from rotary dials.
Area codes such as 212, 213, 312, and 313 took very lit-
tle time for the dial to return to its starting position
compared, for example, to numbers such as 809, 908,
709. The quickest-to-dial area codes were assigned to the
places expected to receive the most direct-dialed calls.
New York City got 212, Chicago 312, Los Angeles 213,
and Washington, D.C., 202, which is a little longer to
dial than 212, but much shorter than others. In order of
decreasing size and estimated amount of telephone traf-
fic, the numbers grew larger: San Francisco got 415,
Miami 305, and so on. At the other end of the spectrum
came places like Hawaii (the last state annexed in 1959)
with 808, Puerto Rico with 809, and Newfoundland with
709. The original plan (still in use until about 1993) was
that area codes had a certain construction to the num-
bers: the first digit is 2 through 9, the second digit is 0 or
1, and the third digit is 1 through 9. Three-digit numbers
with two zeros are special codes, that is, 700, 800, or 900.
Three-digit numbers with two ones are for special local
codes such as 411 for local directory assistance, 611 for
repairs, and so forth.

Argand diagram

A way of representing complex numbers as points on
a coordinate plane, also known as the Argand plane or
the complex plane, using the x-axis as the real axis and
the y-axis as the imaginary axis. It is named for the
French amateur mathematician Jean Robert Argand
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(1768-1822) who described it in a paper in 1806.M"
John Wallis suggested a similar method 120 years ear-
lier and Casper Wessel extensively developed it. But
Wessel’s paper was published in Danish and wasn’t cir-
culated in the languages more common to mathemat-
ics at that time. In fact, it wasn’t until 1895 that his
paper came to the attention of the mathematical com-
munity—long after the name “Argand diagram” had
stuck.

argument

(1) The input for a function. (2) The angle between ZO,
where Z is the point representing a complex number on
an Argand diagram and O is the origin, and the real
axis. (3) A mathematical proof, possibly an informal
one.

Aristotle’s wheel

A paradox mentioned in the ancient Greek text Mechan-
ica, whose author is unknown but is suspected by some
to have been Aristotle. The paradox concerns two
concentric circles on a wheel, as shown in the diagram. A
one-to-one correspondence exists between points on the
larger circle and those on the smaller circle. Therefore,
the wheel should travel the same distance regardless of
whether it is rolled from left to right on the top straight
line or on the bottom one. This seems to imply that the
two circumferences of the different-sized circles are
equal, which is impossible. How can this apparent con-
tradiction be resolved? The key lies in the (false) assump-
tion that a one-to-one correspondence of points means
that two curves must have the same length. In fact, the
cardinalities of points in a line segment of any length
(or even an infinitely long line or an infinitely large
n-dimensional Euclidean space) are all the same. See also

infinity.

Aristotle’s wheel

The outer circle turns once when going
from A to B, as does the inner circle when going from C to D.
Yet AB is the same length as CD. How can this be, since the
circles are a different size?

arithmetic

A branch of mathematics concerned with doing calcula-
tions with numbers using addition, subtraction, multipli-
cation, and division.

arithmetic mean
The sum of 7 given numbers divided by 7. See also geo-
metric mean and harmonic mean.

arithmetic sequence
Also known as an arithmetic progression, a finite sequence
of at least three numbers, or an infinite sequence, whose
terms differ by a constant, known as the common differ-
ence. For example, starting with 1 and using a com-
mon difference of 4 we can get the finite arithmetic
sequence: 1, 5, 9, 13, 17, 21, and also the infinite
sequence 1, 5,9, 13, 17,21,25,29,...,4n+1,....In
general, the terms of an arithmetic sequence with the
first term 4, and common difference 4, have the form
a,=dn+a, (n=1,2,3,...). Does every increasing
sequence of integers have to contain an arithmetic pro-
gression? Surprisingly, the answer is no. To construct a
counterexample, start with 0. Then for the next term in
the sequence, take the smallest possible integer that doesn’t
cause an arithmetic progression to form in the sequence
constructed thus far. (There must be such an integer
because there are infinitely many integers beyond the
last term, and only finitely many possible progressions
that the new term could complete.) This gives the nonar-
ithmetic sequence 0, 1, 3, 4, 9, 10, 12, 13,27, 28, . . ..
If the terms of an arithmetic sequence are added
together the result is an arithmetic series, ay+ (ay+d )+ ... +
(a0 + (n — 1)d), the sum of which is given by:

S,=n/2 Qay+ (n—1)d)=n/2 (ay + a,).

See also geometric sequence.

around the world game
See Icosian game.

array
A set of numbers presented in a particular pattern, usu-
ally a grid. Matrices (see matrix) and vectors are exam-
ples of arrays.

Arrow paradox

The oldest and best-known paradox related to vot-
ing. The American economist Kenneth Arrow (1921-)
showed that it is impossible to devise a perfect demo-
cratic voting system. In his book Social Choice and Indi-
vidual Values,"® Arrow identified five conditions that
are universally regarded as essential for any system in
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which social decisions are based on individual voting
preferences. The Arrow paradox is that these five condi-
tions are logically inconsistent: under certain condi-
tions, at least one of the essential conditions will be
violated.

arrowhead
See dart.

artificial intelligence (Al)

The subject of “making a machine behave in ways that
would be called intelligent if a human were so behaving,”
according John McCarthy, who coined the term in 1955.
How can we tell if a computer has acquired Al at a
human level? One way would be to apply the Turing
test, though not everyone agrees that this test is fool-
proof (see Chinese room). Certainly, Al has not devel-
oped at nearly the rate many of its pioneers expected
back in the 1950s and 1960s. Meanwhile, progress in
fields such as neural networks and fuzzy logic continues
to be made, and most computer scientists have no doubt
that it is only a matter of time before computers are out-
performing their biological masters in a wide variety of
tasks beyond those that call for mere number-crunching

ability.

artificial life

A lifelike pattern that may emerge from a cellular
automaton and appear organic in the way it moves,
grows, changes shape, reproduces, aggregates, and dies.
Artificial life was pioneered by the computer scientist
Chris Langton, and has been researched extensively at
the Santa Fe Institute. It is being used to model various
complex systems such as ecosystems, the economy,
societies and cultures, and the immune system. The
study of artificial life, though controversial, promises
insights into natural processes that lead to the buildup
of structure in self-organizing (see self-organization)
systems.

associative

Three numbers, x, 3, and z, are said to be associative under
addition if

x+(+z)=(x+y) +z
and to be associative under multiplication if
XX (xz)=(xXYy) Xz

In general, three elements 4, 4, and ¢ of a set S are asso-
ciative under the binary operation (an operation that
works on two elements at a time) * if

ax(bx0)=(a*b)*ec

The word incorporates the Greek root socz, from which
we also get social, and may have been first used in the
modern mathematical sense by William Hamilton
around 1850. Compare with distributive and commu-
tative.

astroid

A hypocycloid—the path of a point on a circle rolling
inside another circle—for which the radius of the inner cir-
cle is four times smaller than that of the larger circle; this
ratio results in the astroid having four cusps. The astroid
was first studied by the Danish astronomer Ole Rémer in
1674, in his search for better shapes for gear teeth, and
later by Johann Bernoulli (1691) (see Bernoulli family),
Gottfried Leibniz (1715), and Jean d’Alembert (1748). Its
modern name comes from the Greek aster for “star” and
was introduced in a book by Karl Ludwig von Littrow
published in Vienna in 1836; before this, the curve had a
variety of names, including tetracuspid (still used), cubo-
cycloid, and paracycle. The astroid has the Cartesian
equation

2/3

x +y2/3 — r2/3

where 7 is the radius of the fixed outer circle, and 7/4 is
the radius of the rolling circle. Its area is 3nr*/8, or %
times that of the rolling circle, and its length is 67. The
astroid is a sextic curve and also a special form of a
Lamé curve. It has a remarkable relationship with the
quadrifolium (see rose curve): the radial, pedal, and
orthoptic of the astroid are the quadrifolium, while
the catacaustic of the quadrifolium is the astroid. The

astroid As a small circle rolls around the inside of a larger
one with exactly four times its circumference, a point on the
rim of the small circle traces out an astroid. © Jan Wassenaar,
www.2dcurves.com
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astroid is also the catacaustic of the deltoid and the
evolute of the ellipse.

asymptote

A curve that gets closer and closer to a fixed straight line
without ever actually touching it. Imagine facing along
the direction of a great wall that is just a meter to your
left. Every second, you walk forward a meter and at the
same time move sideways slightly so that you halve the
distance between you and the wall. The path you follow
is an asymptote. The word comes from the Greek roots
(not), sum (together), and piptein (to fall), so that it liter-
ally means “not falling together” and was originally used
in a wider sense to describe any two curves that don’t
intersect. Proclus writes about both asymptotic lines and
symptotic lines (those that do cross). Nowadays, “symp-
totic” is almost never heard, and “asymptote” is used
mainly to denote lines that serve as a limiting barrier for
some curve as one of its parameters approaches plus or
minus infinity. The “~” symbol is often used to show that
one function is asymptotic to another. For example,
f(x) ~ g(x) indicates that the ratio of the functions f(x) to
g(x) approaches 1 as x tends to infinity. Asymptotes are
not always parallel to the x- and y-axes, as shown by the
graph of x + 1/x, which is asymptotic to both the y-axis
and the diagonal line y = x.

Atiyah, Michael Francis (1929-)

An English mathematician who has contributed to
many topics in mathematics, notably dealing with the
relationships between geometry and analysis. In topol-
ogy, he developed K-theory. He proved the index theorem
on the number of solutions of elliptic differential equa-
tions, linking differential geometry, topology, and
analysis—a theorem that has been usefully applied to
quantum theory. Atiyah was influential in initiating work
on gauge theories and applications to nonlinear differen-
tial equations, and in making links between topology and
quantum field theory. Theories of superspace and super-
gravity, and string theory, were all developed using ideas
introduced by him.

Atomium, the

A giant steel monument in Heysel Park, Brussels, Bel-
gium, consisting of 9 spheres that represent the body-
centered cubic structure of an iron crystal magnified 150
billion times. Designed by the architect André Waterkeyn
and built for the 1958 World’s Fair, the 103-meter-high
Atomium was originally meant to stand for only 6
months. It may be the world’s largest cube. Each of its
spheres have a diameter of 18 meters and are connected
by escalators. Three of the upper spheres have no vertical

support, and so for safety reasons are not open to the pub-
lic. However, the top sphere offers a panoramic view of
Brussels through its windows, and the lower spheres con-
tain various exhibitions.

attractor

A trajectory, or set of points in phase space, toward
which nearby orbits converge, and which is stable. Spe-
cific types of attractor include fixed-point attractor, peri-
odic attractor, and chaotic attractor.

Aubel’s theorem

Given a quadrilateral and a square drawn on each side of
it, the two lines connecting the centers of the squares on
opposite sides are perpendicular and of equal length.

autogram
See self-enumerating sentence.

automorphic number

Also known as an automorph, a number » whose square
ends in 7 For instance 5 is automorphic, because
5* =25, which ends in 5. A number 7 is called trimorphic
if n* ends in #. For example 49° = 117,649, is trimor-
phic. Not all trimorphic numbers are automorphic. A
number 7 is called tri-automorphic if 3n” ends in #; for
example 6,667 is tri-automorphic because 3 x 667° =
133,346,667 ends in 7.

automorphism

An isomorphism from a set onto itself. An auntomorphism
group of a group G is the group formed by the automor-
phisms of G (bijections from G to itself that preserve the
multiplication). Similarly, one can consider the auto-
morphism groups of other structures such as rings and
graphs, by looking at bijections that preserve their math-
ematical structure.

Avagadro constant

One of the best known examples of a large number in
science. It is named after the Italian physicist Amedio
Avagadro (1776-1856) and is defined as the number of
carbon atoms in 12 grams of pure carbon, or, more gen-
erally as the number of atoms of 7 grams in an element
with atomic weight 7. It has the value 6.02214199 x 10%.

average

A vague term that usually refers to the arithmetic mean
but can also signify the median, mode, geometric mean,
or weighted mean. The word stems from a commercial
practice of the shipping age. The root aver means to
declare, and the shippers of goods would declare the
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value of their goods. When the goods were sold, a deduc-
tion was made from each person’s share, based on their
declared value, for a portion of the loss or “average.”

axiom

A statement that is considered to be true without need
of proof. The term axiom comes from the Greek axios
meaning “worthy” and was used by many Greek philoso-
phers and mathematicians, including Aristotle. Curi-
ously, Euclid, whose axioms are best known of all, seems
to have favored a more general phrase meaning “com-
mon notion.”

axiom of choice
An axiom in set theory that is one of the most controver-
sial axioms in mathematics; it was formulated in 1904 by
the German mathematician Ernst Zermelo (1871-1953)
and, at first, seems obvious and trivial. Imagine there are
many—possibly an unlimited number of—boxes in front of
you, each of which has at least one thing in it. The axiom
of choice (AC) says simply that you can always choose one
item out of each box. More formally, if § is a collection of
nonempty sets, then there exists a set that has exactly one
element in common with every set S of S. Put another
way, there exists a function f with the property that, for
each set Sin the collection, f(S) is a member of S. Bertrand
Russell summed it up neatly: “To choose one sock from
each of infinitely many pairs of socks requires the Axiom
of Choice, but for shoes the Axiom is not needed.” His
point is that the two socks in a pair are identical in
appearance, so, to pick one of them, we have to make an
arbitrary choice. For shoes, we can use an explicit rule,
such as “always choose the left shoe.” Russell specifically
mentions nfinitely many pairs, because if the number is
finite then AC is superfluous: we can pick one member
of each pair using the definition of “nonempty” and then
repeat the operation finitely many times using the rules
of formal logic.

AC lies at the heart of a number of important mathe-
matical arguments and results. For example, it is equiv-

alent to the well-ordering principle, to the statement that
for any two cardinal numbers 7 and 7, then m < n or
m=nor m>n, and to Tychonoff’s theorem (the product of
any collection of compact spaces in topology is com-
pact). Other results hinge upon it, such as the assertion
that every infinite set has a denumerable subset. Yet AC
was strongly attacked when it was first suggested, and
still makes some mathematicians uneasy. The central
issue is what it means to choose something from the sets
in question and what it means for the choosing func-
tion to exist. This problem is brought into sharp focus
when § happens to be the collection of all nonempty
subsets of the real numbers. No one has ever found a
suitable choosing function for this collection, and there
are good reasons to suspect that no one ever will. AC
just mandates that there 75 such function. Because AC
conjures up sets without offering workable procedures,
it is said to be nonconstructive, as are any theorems whose
proofs involve AC. Another reason that some mathe-
maticians aren’t greatly enamored with AC is that it
implies the existence of some bizarre counterintuitive
objects, the most famous and notorious example of
which is the Banach-Tarski paradox. The main reason
for accepting AC, as the majority of mathematicians do
(albeit often reluctantly), is that it is useful. However, as
a result of work by Kurt Godel and, later, by Paul
Cohen, it has been proven to be independent of the
remaining axioms of set theory. Thus there are no con-
tradictions in choosing to reject it; among the alterna-
tives are to adopt a contradictory axiom or to use a
completely different framework for mathematics, such
as category theory.

axis

A line with respect to which a curve or figure is drawn,
measured, rotated, and so forth. The word comes from
the Greek root aks for a point of turning or rotation and
seems to have first been used in English by Thomas
Digges around 1570 in reference to the rotational axis of
a right circular cone.



Babbage, Charles (1791-1871)

On two occasions I have been asked [by members of
Parliament], “Pray, Mr. Babbage, if you put into
the machine wrong figures, will the right answers
come out” I am not able rightly to apprebend the
kind of confusion of ideas that could provoke such a
question.

An English mathematician who served as Lucasian Pro-
fessor of Mathematics at Cambridge (1828-1839) and
became the most important figure in the prehistory of
computers. Babbage noted that astronomical and other
mathematical tables of the period were riddled with
errors because all the calculations had to be done by
hand. This gave him the idea of building a machine that
would do the tedious work of computation more accu-
rately, faster, and without ever getting tired.

In 1822, Babbage wrote a letter to one of the top
British scientists of the day, Humphrey Davy, in which
he talked about the design of an automatic calculator.
Shortly after, he was given a grant by the British govern-
ment to build this device—an elaborate symphony of
rods and interlocking gear teeth—which Babbage called
the Difference Engine. Construction started but never
finished. Despite heroic efforts to construct a working
model, the critical tolerances were beyond what engi-
neers could provide in the first half of the eighteenth cen-
tury (though the resultant gear-making skills gave Britain
an edge in precision machinery for several decades and
even contributed to the qualitative superiority of the
British navy in World War I). The government had spent
£17,000, and Babbage contributed a similar amount of
his own money, on the project, when Babbage set his
sights on something even more ambitious. He grasped

Babbage, Charles The realization of Babbage's dream: the Manchester Mark 1 computer at Manchester University, England, in
1948. This was the first computer that could store both data and programs electronically. Ferranti Electronics Ltd.
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that the basic mechanisms of the Difference Engine
could be generalized to an all-purpose calculating ma-
chine, programmable by a punched-card mechanism like
that of a Jacquard loom. This vastly more powerful
machine was called the Analytical Engine and would
have been the world’s first true computer. But it never
got off the ground. “He was illjudged enough,” wrote the
secretary of the Royal Astronomical Society, “to press the
consideration of this new machine upon the members of
Government, who were already sick of the old one.”
Prime Minister Robert Peel was less than enthusiastic: “I
would like a little previous consideration before I move
in a thin house of country gentlemen a large vote for the
creation of a wooden man to calculate tables from the
formula x* + x + 41.” The government’s eventual with-
drawal of support for his schemes left Babbage a dis-
appointed and embittered man. However, his ideas
survived and proved to be the forerunner of modern
computers. Parts of his uncompleted mechanisms are on
display in the London Science Museum. In 1991, work-
ing from Babbage’s original plans, a Difference Engine
was completed—and functioned perfectly. Among Bab-
bage’s many lesser known accomplishments was his
cracking of the Vigeneére cipher, a discovery that helped
English military campaigns but wasn’t published for sev-
eral years, by which time the credit had gone instead to
Friedrich Kasiski, who broke the code some years after
Babbage."*” See also Byron, Ada.

Bachet de Méziriac, Claude-Gaspar (1581-1638)
A poet and early mathematician of the French Academy,
best known for his 1621 translation of Diophantus’s
Arithmetica, the book that Pierre de Fermat was reading
when he inscribed the margin with his famous last theo-
rem. Bachet is also remembered as a collector of mathe-
matical puzzles, many of which he published in Problémes
plaisans et délectables qui font par les nombres (1612) (Pleasant
and delightful problems that involve numbers), including
river-crossing problems, measuring and weighing puz-
zles, number tricks, and magic squares. One of the puz-
zles is to find the least number of weights that can be used
on a scale pan to weigh any integral number of pounds
from 1 to 40 inclusive, if the weights can be placed in
either of the scale pans. The answer is four: 1, 3, 9, and 27
pounds. On a slightly more serious note, Bachet observed
that apparently every positive number can be expressed as
a sum of at most four squares; for example, 5 = 2> + 17,
6=2+1"+1,7=2"+1"+1"+148=22+2% and
9 = 32 The case of 7 shows that sometimes three squares
wouldn’t be enough. Bachet said he had checked this for
more than 300 numbers but didn’t know how to prove it.
It wasn’t until the late eighteenth century that Joseph
Lagrange supplied a complete proof.®*”

backgammon

A gambling game for two in which each player seeks to
get a set of pieces from one side of the board to the other,
while trying to prevent the other player from doing the
same. The distance that a piece can be moved at each
turn is determined by the throw of dice.

Backgammon has roots stretching back 5,000 years.
From Mesopotamia, versions of it spread to Greece and
Rome as well as to India and China. The rules of the
modern form of the game were largely established in
England in 1743 by Edmond Hoyle but benefited from
a crucial modification that emerged in American gam-
bling clubs in the 1920s. This final innovation, which
added a new level of subtlety, is known as the doubling
cube.

Backgammon is played with two sets of 15 checkers:
one player has black, the other white. The players’ check-
ers move in opposite directions on a board with 24 spaces
or points. Each player’s goal is to be the first to bring all
their own checkers “home” (into their own quarter of the
board) and then “bear them off” (remove them from the
board altogether). The movement of the checkers follows
the outcome of a roll of two dice, the numbers on the
two dice constituting separate moves.

The actual amount that changes hands at the end of
the game can be more than the initial stake. For instance,
in certain winning positions called gammon and backgam-
mon, the stake is doubled or trebled, respectively. The
other way the stake can change is by means of the dou-
bling cube. If one of the players thinks that she is in a
winning position, she can turn the doubling cube and
announce a double, which means that the total stake will
be doubled. If her opponent refuses the double, he imme-
diately loses his (undoubled) stake and the game is fin-
ished. If he accepts the double, the stakes are doubled and,
as a compensation, the doubling cube is handed over to
him and he gets the exclusive right to announce the next
double. (He is now said to own the cube.) If the luck of the
game changes so that he later judges that he is now win-
ning, he’ll be in a position to announce a redouble, which
means that the stake is doubled again. If the first player
refuses the double, she now loses the doubled stake; if
she accepts, the game goes on with a redoubled stake,
four times the original value. There’s no limit to how
many times the stake can be doubled, but the right to
announce a double switches from one player to the other
every time it’s exercised. (Initially either player can
double—no one owns the cube.) This aspect of the game
adds greatly to the variety of tactical possibilities and
problems.

baker's dozen
See thirteen.
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Bakhshali manuscript

An early mathematical manuscript, written on birch bark
and found in the summer of 1881 near the village of
Bakhshali in the Yusufzai subdivision of the Peshawar
district (now in Pakistan). A large part of the manuscript
had been destroyed and only about 70 leaves of birch
bark, of which a few were mere scraps, survived to the
time of its discovery. Although its date is uncertain, it is
most commonly put at about the third or fourth century
A.D. and appears to be a commentary on an earlier math-
ematical work. Among the rules and techniques it sets
out for solving problems, mostly in arithmetic and alge-
bra, but also to a lesser extent in geometry and mensura-
tion, is this formula (stated here in modern terms) for
calculating the square root of a nonsquare number Q:

VO=N(A+b)=A+b2A~ B12AV/[2(A+b/24)]

If 0 = 41 (so that 4 = 6 and b = 5) this gives V0 =
6.403138528, which compares very favorably with the
correct result of 6.403124237.

ball
Mathematicians, unlike the rest of the human race, draw
a sharp distinction between a sphere and a ball. A sphere
(in mathematics) is only a surface, whereas a ball is every-
thing inside, and possibly including, that surface—the fill-
ing of the sphere. An open ball consists of all the points
that are less than a given distance (the radius) away from
a given point (the center); a closed ball consists of all the
points that are less than or equal to the radius.
Mathematical balls can also exist in any number of
dimensions. A one-dimensional ball of radius 7 is just a
line segment. It consists of all the points on a line
between —r and 7, or, in the case of a one-dimensional #u:t
ball (a ball with a radius of 1), between -1 and 1. A 1 —d
unit ball thus has a length, or “1 — d volume,” of 2. A2 —d
unit ball, which is the filling of a unit circle, has an area,
or 2 — d volume, of m. The volume of a unit ball in 3 — d
is 4/31. In 4 — d it is /2. Apparently, as the number of
dimensions increases, so does the volume of the unit
ball. What does this volume tend to do as the dimension
tends to infinity? Intuitively, it might seem that in higher
and higher dimensions there’s more and more “room” in
the unit ball, allowing its volume to become larger and
larger. Does the volume become infinite, or does it
approach a sufficiently large constant as the dimension
increases? The answer is surprising and shows how our
intuition is often misleading. Using a technique called
multivariable calculus the volume of the unit ball in #
dimensions, V(#), can be shown to be w"*/ T'(n/2 + 1),
where I is the gamma function that generalizes the fac-
torial function (i.e., T'(z + 1) = z!). For n even, say n = 2%,
the volume of the unit ball is thus given by V(z) =7*/ /.

Ball, Walter William Rouse (1850-1925)

A British mathematician who lectured at Trinity College,
Cambridge University, from 1878 to 1905, but is best
known as a historian and as the author of the timeless clas-
sic Mathematical Recreations and Essays.* It was first pub-
lished in 1892 and ran to fourteen editions, the last four
with revisions by the great geometer Harold Coxeter.

Banach, Stefan (1892-1945)

A great Polish mathematician who founded functional
analysis and also made important contributions to the
understanding of vector spaces, measure theory, and set
theory. His name is associated with Banach space, Banach
algebra, the Habn-Banach theorem, and the remarkable
Banach-Tarski paradox. Largely self-taught in mathemat-
ics, Banach was “discovered” by Hugo Steinhaus and
when World War II began was president of the Polish
Mathematical Society and a full professor at Lvov Uni-
versity. Being on good terms with Soviet mathematicians,
he was allowed to hold his chair during the Soviet occu-
pation of Lvov. The German occupation of the city in
1941 resulted in the mass murder of Polish academics.
Banach survived, but the only way he could earn a living
was by feeding lice with his blood in a German institute
where typhoid fever research was conducted. His health
declined during the occupation, and Banach died before
he could be repatriated from Lvov, which was incorpo-
rated into the Soviet Union and returned to Poland after
the war. Théorie des opérations linéaires (The theory of linear
operations) is regarded as his most influential work.

Banach-Tarski paradox

There are more things in heaven and earth, Horatio,
than are dreamt of in your philosophy.
—William Shakespeare

A seemingly bizarre and outrageous claim that it is possi-
ble to take a ball, break it into a number of pieces, and
then reassemble those pieces to make two identical
copies of the ball. The claim can be made even stronger:
it is possible to decompose a ball the size of a marble and
then reassemble the pieces to make another ball the size
of Earth, or, indeed, the size of the known universe!
Before writing off Banach and Tarski as being either
very bad mathematicians or very good practical jokers, it’s
important to understand that this is not a claim about
what can actually be done with a real ball, a sharp knife,
and some dabs of glue. Nor is there any chance of some
entrepreneur being able to slice up a gold ingot and
assemble in its place two new ones like the original. The
Banach-Tarski paradox tells us nothing new about the
physics of the world around us but a great deal about how
volume, space, and other familiar-sounding things can
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assume unfamiliar guises in the strange abstract world of
mathematics.

Stefan Banach and Alfred Tarski announced their
startling conclusion in 1924, having built on earlier
work by Felix Hausdorff, who proved that it’s possible
to chop up the unit interval (the line segment from 0 to
1) into countably many pieces, slide these bits around,
and fit them together to make an interval of length 2.
The Banach-Tarski paradox, which mathematicians
often refer to as the Banach-Tarski decomposition because
it’s really a proof not a paradox, highlights the fact that
among the infinite set of points that make up a mathe-
matical ball, the concepts of volume and measure can’t
be defined for all possible subsets. What this boils
down to is that quantities that can be measured in any
familiar sense are not necessarily preserved when a ball
is broken down into subsets and then those subsets
reassembled in a different way using just translations
(slides) and rotations (turns). These unmeasurable sub-
sets are extremely complex, lacking reasonable bound-
aries and volume in the ordinary sense, and thus are
not attainable in the real world of matter and energy. In
any case, the Banach-Tarski paradox doesn’t give a pre-
scription for how to produce the subsets: it only proves
their existence and that there must be at least five of
them to produce a second copy of the original ball. The
fact that the Banach-Tarski paradox depends on the
axiom of choice (AC), yet is so strongly counterintu-
itive, has been used by some mathematics to suggest
that the AC must be wrong; however, the benefits of
adopting the AC are so great that such black sheep of
the mathematical family as the paradox are generally
tolerated. 334!

Bang's theorem
If all the faces of a tetrahedron have the same perimeter,
then the faces are all congruent triangles.

banker’s rounding

For banking or scientific purposes it’s often considered
correct to round something 0.5 to the nearest even num-
ber (not always upward). For instance, 5.5 rounds to 6,
but 12.5 rounds to 12. This method avoids introducing a
bias to a large set of numbers, by rounding up more or
less as often as rounding down. Unfortunately, at a lower
level, it is often taught to round something 0.5 upward all
the time. See also round-off error.

Barbaro, Daniele (1513-1570)

A Venetian geometer whose book, La Practica della Per-
spectiva (1568-9), presents the techniques of perspective,
illustrated in part with a range of polyhedra. Partly based
on the methods and writings of the great artist Piero della

Francesca (1416-1492), but written in a more readable
and humanistic style, it includes the earliest drawing of
the truncated icosidodecabedron and one of the earliest rep-
resentations, along with that of the German goldsmith
Wenzel Jamnitzer (1508-1585), of a rhombicosidodecahe-
dron. La Practica was one of the most respected texts on
perspective in the sixteenth century, comparable to
Albrecht Diirer’s Painter’s Manual.

barber paradox
See Russell’s paradox.

Barbier's theorem
See curve of constant width.

Barlow, Peter (1776-1862)

A self-educated English mathematician who wrote sev-
eral important books on the subject but is best known for
New Mathematical Tables (generally known as Barlow’s
Tables), a compendium of factors, squares, cubes, square
roots, reciprocals, and hyperbolic logarithms of all num-
bers from 1 to 10,000, and his invention of a special tele-
scope lens. “Barlows” are popularly used by amateur
astronomers to this day to multiply the power of other
lenses. Barlow also worked on the design of bridges and
was appointed as royal commissioner for railways, con-
ducting experiments to see if the limitation on gradients
and radius of curvature proposed by George Stephenson
was correct.

Barnsley’s fern

A fractal shape, first explored by Michael F. Barnsley at
the Georgia Institute of Technology in the 1980s, that has
many geometric features in common with a natural fern,

Barnsley’s fern  David Nicholls
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most notably the appearance of frondlike forms at differ-
ent scales. As in the case of real ferns, Barnsley’s fern
reveals smaller prominences along the edge of each frond
that are miniature versions of the overall figure. Along
these small prominences are still smaller protuberances,
and so on. Barnsley’s fern is created by the repetitive
application of four relatively simple mathematical rules
and is a type of fractal, introduced by Barnsley, known as
an terated function system (IFS).1%

base

(1) The flat plane or straight line upon which a shape or a
solid rests. (2) The number upon which a number system
is based; this is also the number of different characters or
figures needed by the number system. The base, or radix, of
our familiar decimal system is 10. Thus, there are ten sym-
bols, 0,1,2,3,4,5,6,7,8,and 9, and a decimal number is
written right to left in terms of units, tens, hundreds, and
so on. Each move to the left represents a jump by a power
of 10. The decimal number 375, for example, equals
(3x10% + (7 x 10) + (5 x 1). This can easily be written to
another base. Decimal 375,y becomes in octal (base 8)
5675 = (5 X 8%) + (6 X 8) + (7 X 1), or in binary (base 2)
101111001,.

basin of attraction

The set of all points in phase space that are under the
influence of an attractor, or, more generally, the initial
conditions of a system that evolve into the range of
behavior allowed by the attractor. If one imagines a com-
plex system as a sink, then the attractor can be consid-
ered the drain at the bottom, and the basin of attraction
is the sink’s basin.

basis
In mathematics, usually associated with linear algebra; a
minimal set of vectors that spans a vector space.

Bayes, Thomas (1702-1761)

An English mathematician and theologian, remembered
chiefly for the theorem named after him (see Bayes’s the-
orem), and the technique of Bayesian inference that
arises from it. Bayes wrote on probability theory, the log-
ical basis of calculus, and asymptotic series.

Bayesian inference

Statistical inference in which probabilities are interpreted
not as frequencies or proportions, but rather as degrees of
belief. A prior distribution for a certain random variable
is assumed; then this is modified, in the light of experi-
mentation, using Bayes’s theorem. Pierre Laplace ap-
plied Bayesian inference to estimate the mass of Saturn
and in a variety of other problems.

Bayes's theorem

Also known as Bayes’s rule, a result in probability theory,
named after Thomas Bayes, who proved a special case of
it. It is used in statistical inference to update estimates of
the probability that different hypotheses are true, based
on observations and a knowledge of how likely those
observations are, given each hypothesis. In fact, it is
habitually used by scientists in preference to the princi-
ple of induction. Bayes’s theorem says that if an instance
X is actually observed, then the probability of a hypoth-
esis H must be multiplied by the following ratio:

probability of observing X if H is true
probability of observing X

In other words, the probability of a hypothesis H condi-
tional on a given body of data X is equal to the ratio of
the unconditional probability of the conjunction of the
hypothesis with the data to the unconditional probabil-
ity of the data alone.

Beale cipher

One of the greatest unsolved puzzles in cryptography—
or a mere hoax. About a century ago, a fellow by the
name of Thomas Beale supposedly buried two wagon-
loads of pots filled with silver coins in Bedford County,
near Roanoke, Virginia. Local rumors claim the treasure
was buried near Bedford Lake. Beale wrote three encoded
letters telling what was buried, where it was buried, and
to whom it belonged. He entrusted these three letters to
a friend, went west, and was never heard from again. Sev-
eral years later, someone examined the letters and was
able to crack the code in the second one, which turned
out to be based on the text from the Declaration of Inde-
pendence. A number in the letter indicated which word
in the document was to be used. The first letter of that
word replaced the number. For example, if the first four
words of the document were “We hold these truths,” the
number 3 in the letter would represent the letter £. The
second letter translated as follows:

I have deposited in the county of Bedford about four
miles from Bufords in an excavation or vault six feet
below the surface of the ground the following articles
belonging jointly to the parties whose names are given
in number three herewith. The first deposit consisted
of ten hundred and fourteen pounds of gold and thirty
eight hundred and twelve pounds of silver deposited
Nov eighteen nineteen. The second was made Dec
eighteen twenty one and consisted of nineteen hun-
dred and seven pounds of gold and twelve hundred
and eighty eight of silver, also jewels obtained in St.
Louis in exchange to save transportation and valued at
thirteen [tlhousand dollars. The above is securely
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packed i[n] [i]ron pots with iron cov[e]rs. Th[e] vault
is roughly lined with stone and the vessels rest on solid
stone and are covered [w]ith others. Paper number
one describes th(e] exact locality of the va[u]lt so that
no difficulty will be had in finding it.

One of the remaining letters supposedly contains direc-
tions on how to find the treasure but, to date, no one has
solved the code. One theory is that both the remaining let-
ters are encoded using either the same document in a dif-
ferent way, or another very public document. Or, of
course, this could all be an elaborate, but entertaining,
wheeze. Those interested may wish to contact the Beale
Cypher Association, P.O. Box 975, Beaver Falls, PA 15010.

Beal’s conjecture

In 1997, the Texan financier Andrew Beal offered
$75,000, later increased to $100,000, to the first person
who could prove or provide a counterexample to the fol-
lowing conjecture:

If x" + y" =z, where x, y, zm, n, and r are all positive
integers, and m, # and r are greater than two, then x,
9, and z have a common factor (greater than one).

Fermat’s last theorem, which was proved in 1994, is a
special case of Beal’s conjecture. However, no one has yet
been able to use this fact to prove or disprove the con-
jecture, nor has anyone been able to come up with a
counterexample as a disproof. It is known that for any set
of three exponents m, #, and 7, each greater than two,
there can be at most finitely many solutions. But is this
finite number zero? The prize remains unclaimed.

beast number (666)

Also known as the Apocalypse number, the “number of the
beast” mentioned in the Bible’s book of Revelation, the
relevant verse of which (Rev. 13:18) is often quoted as:

Here is wisdom. Let him that hath understanding
count the number of the beast: for it is the number
of a man; and his number is six hundred threescore
and six.

Leaving aside the thorny issue of what this actually
means, the number 666 does have some interesting math-
ematical properties. Most notably, it is the sum of the first
36 natural numbers (all the numbers on a roulette wheel):
1+2+3+...+ 36, which makes it the thirty-sixth trian-
gular number. It is also the sum of the squares of the first
seven prime numbers, 2° + 37 + 5 + 77 + 11> + 13> + 172
Other curious representations of “the beast” include:

P+2+3+48+5+6+5+4+33+2°+1°
32041
6+6+6+6"+6°+6.

Furthermore, 666 is one member of a Pythagorean
triplet (216, 630, 666), which can be written in the
remarkable form:

(6% 6 X 6)> + (666 — 6 X 6) = 6662

In Roman numerals, 666 represents all the numbers from
500 in descending order, namely D (500) + C (100) + L
(50)+ X (10) + V (5) + I (1), or DCLXVL. In fact, it’s been
suggested that the Roman representation of 666 may have
something to do with the biblical reference. DCLXVI was
often used as a generic way of referring to any unspecified
or unknown large number—the Roman equivalent of our
“zillion.” Thus, the writer of Revelation might simply
have been using “666” to mean “big but unspecified.”

Beatty sequences

Suppose R is an irrational number greater than 1, and let
S be the number satisfying the equation 1/R+1/5=1. Let
[x] denote the floor function of x, that is, the greatest inte-
ger less than or equal to x. Then the sequences [#R] and
[#S], where n ranges through the set N of positive inte-
gers, are the Beatty sequences determined by R. The inter-
esting thing about them is that they partition N; in other
words, every positive integer occurs exactly once in one
sequence or the other. For example, when R is the golden
ratio (about 1.618), the two sequences begin with

1,3,4,6,8,9,11,12,14,16,17,19,21, ..., and
2,5,7, 10, 13, 15, 18, 20, 23, 26, 28,31, 34 . . ..

Beatty sequences are named after the American mathe-
matician Samuel Beatty (1881-1970), who introduced
them in 1926 in a problem in the American Mathematical
Monthly. Beatty was the first person to receive a Ph.D. in
mathematics from a Canadian university, and later
became the chairman of the mathematics department
and chancellor of the University of Toronto.

beauty and mathematics

Many mathematicians and scientists have commented
on the beauty they find in the structure and symmetry of
the equations that underpin their work, and that beauty
is often the first sign of truth. In A4 Mathematician’s Apol-
0gy,*" G. H. Hardy wrote:

The mathematician’s patterns, like the painter’s or
the poet’s must be beautiful; the ideas, like the col-
ors or the words must fit together in a harmonious
way. Beauty is the first test: there is no permanent
place in this world for ugly mathematics.

The physicist Paul Dirac went even further:

I think that there is a moral to this story, namely
that it is more important to have beauty in one’s
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equations than to have them fit experiment. If
[Erwin] Schrédinger had been more confident of his
work, he could have published it some months earlier,
and he could have published a more accurate equa-
tion. It seems that if one is working from the point of
view of getting beauty in one’s equations, and if one
has really a sound insight, one is on a sure line of pro-
gress. If there is not complete agreement between the
results of one’s work and experiment, one should not
allow oneself to be too discouraged, because the dis-
crepancy may well be due to minor features that are
not properly taken into account and that will get
cleared up with further development of the theory."”

The architect Richard Buckminster Fuller also saw beauty
as an acid test of truth: “When I’'m working on a prob-
lem, I never think about beauty. I think only how to
solve the problem. But when I have finished, if the solu-
tion is not beautiful, I know it is wrong.”

Bell, Eric Temple (1883-1960)

A Scottish-born mathematician and writer who, from
1903, spent most of his life in the United States, teaching
at the University of Washington from 1912 until 1926,
then serving as professor of mathematics at the Califor-
nia Institute of Technology. He did work in number the-
ory but is best remembered for his books, including
Algebraic Arithmetic (1927) and The Development of Mathe-
matics (1940), which became classics, and, at a more pop-
ular level, Men of Mathematics (1937)% and Mathematics,
Queen and Servant of Science (1951). He was also a prolific
writer of science fiction under the penname John Taine.

bell curve
The characteristic shape of the graph of a normal (Gauss-
ian) distribution.

Bell number

Named after Eric Bell, one of the first to analyze them in
depth, the number of ways that » distinguishable objects
(such as differently colored balls) can be grouped into
sets (such as buckets) if no set can be empty. For example,
if there are three balls, colored red (R), green (G), and
blue (B), they can be grouped in five different ways:
(RGB), RG)(B), (RB)(G), (BG)(R), and (R)(G)(B), so
that the third Bell number is 5. The sequence of Bell
numbers, 1, 2, 5, 15, 52, 203, 877, 4,140, 21,147, . . ., can
be built up in the form of a triangle, as follows. The first
row has just the number one. Each successive row begins
with the last number of the previous row and continues
by adding the number just written down to the number
immediately above and to the right of it.

1
1 2
235
57 10 15
15 20 27 37 52
52...

The Bell numbers appear down the left-hand side of the
triangle. These normal Bell numbers contrast with ordered
Bell numbers, which count the number of ways of placing
n distinguishable objects (balls) into one or more distin-
guishable sets (buckets). The ordered Bell numbers are 1,
3, 13, 75, 541, 4,683, 47,293, 545,835, . . . . Bell numbers
are related to the Catalan numbers.

Benford’s law

If a number is chosen at random from a large table of data
or statistics, such as stock quotations, populations of towns
in Germany, or half-lives of radioactive atoms, the chance
that the first digit is 1 is about 30.1%, that the first digit is
2 is about 17.6%, that it is 3 is 12.4%, . . ., and that it is 9
is 4.5%. These figures fit the rule that the probability that
the first digit is 4 is log;o(1 + 1/4). This rule is called Ben-
ford’s law after the American physicist Frank Benford, who
publicized his findings in 1938.%" The same discovery had
been made 57 years earlier by the astronomer and mathe-
matician Simon Newcomb, who noticed that the front
pages of logarithm tables tended to be more dog-eared
than pages later on.”?

Benford tested thousands of different collections of
data, including the surface areas of 335 rivers, specific
heats and molecular weights of thousands of chemicals,
baseball statistics, and the street addresses of the first 342
people listed in the book American Men of Science. All
these seemingly unrelated sets of numbers followed the
same first-digit probability pattern as the worn pages of
logarithm tables suggested. In all cases, the number 1
showed up as the first digit about 30% of the time, more
often than any other, and seven times more often than
the number 9.

It seems extraordinary. Why shouldn’t the numbers 1 to
9 take equal turns to be the first digit? Benford’s findings
have been verified by other researchers. The larger and
more varied the sampling of numbers from different data
sets, it has been found, the more closely the distribution of
numbers approaches what Benford’s law predicts. More-
over these probabilities are scale invariant and base invari-
ant. For example, it doesn’t matter whether the numbers
are based on the dollar prices of stocks or their prices in
yen or euros, nor does it matter if the numbers are in terms
of stocks per dollar; provided there are enough numbers in
the sample, Benford’s law will hold.* 2%
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Benham's disk

Benham'’s disk

A disk, marked with a black and white pattern, which,
when spun around, causes people to see colors. Benham’s
disk, also known as Benham’s wheel and Benbam’s top, was
invented in 1894 by the toy maker C. E. Benham and orig-
inally sold through Messrs. Newton and Co. as the Artifi-
cial Spectrum Top. It is one of a number of spinning disk
color illusions first described by Gustav Fechner in 1838.
For this reason, the illusory colors are known as Fechner col-
ors. From the beginning, it was realized that the root of the
illusion probably lay in the variation of retinal response
time with wavelength. An online animated version of
the disk can be seen at http://www.michaelbach.de/ot/
col_benham/index.html.

Bernoulli family
An extraordinary Swiss family from Basle that produced
eight outstanding mathematicians within three genera-
tions. Together with Isaac Newton, Gottfried Leibniz,
Leonhard Euler, and Joseph Lagrange, the Bernoulli
family dominated mathematics and physics in the seven-
teenth and eighteenth centuries, making important con-
tributions to differential calculus, geometry, mechanics,
ballistics, thermodynamics, hydrodynamics, optics, elas-
ticity, magnetism, astronomy, and probability theory.
Unfortunately, the Bernoullis were as conceited and arro-
gant as they were brilliant, and engaged in bitter rivalries
and rows with one another.

The patriarchs of this mathematical dynasty were Jakob
I (1654-1705) and his brother Johann I (1667-17438). (The

Roman numerals are used to tell fathers, brothers, sons,
and cousins apart, as the same Christian names were used
repeatedly.) Next came Jakob’s son, Nikolaus I, and
Johann’s three sons, Nikolaus II, Daniel (1700-1772), and
Johann IL Finally, came Johann II’s mathematical off-
spring, Johann III and Jakob IL

Jakob I developed a passion for science and mathe-
matics after meeting Robert Boyle during a trip to En-
gland in 1676. He largely taught himself in these subjects
and went on to lecture in experimental physics at the
University of Basle. He also secretly introduced his
younger brother to mathematics, against the wishes of his
parents who wanted the younger brother to go into com-
merce. The cooperation between the two brothers soon
degenerated, however, into vitriolic argument. Irked by
Johann’s bragging, Jakob publicly claimed that his
younger brother had copied his own results. Later, having
been appointed to the chair of mathematics at Basle,
Jakob succeeded in blocking his brother’s appointment
to the same department, forcing Johann to take a teach-
ing job at the University of Groningen instead. Johann
proposed the so-called brachistrochrone problem and,
along with Newton, Leibniz, 'Hospital, and Jakob, man-
aged to solve it—but only after he first came up with a
faulty proof and then tried to substitute one of Jakob’s in
its place! Eventually, Johann was offered a post at Basle
as, of all things, the department head of Ancient Greek.
But, en route to Basle, Johann learned that Jakob had
died of tuberculosis. Upon his arrival he set about lobby-
ing for the vacant position and, in less than two months,
got his way. Jakob’s most important work, his Ars Con-
Jectandi (The art of conjecture), was published posthu-
mously and formed the basis of probability theory.

Sadly, Johann I repeated his father’s mistake and tried
to force the most mathematically talented of his three
sons, Daniel, into an unwanted career as a merchant.
When the attempt failed, Johann let Daniel study medi-
cine, in order to prevent his son from becoming a com-
petitor. But all three sons followed their father’s path,
and Daniel, while studying medicine, was tutored in
math by his older brother Nikolaus II. In 1720, Daniel
went to Venice to work as a physician but won such a big
reputation for his work in physics and mathematics that
Peter the Great of Russia offered him a chair at the Acad-
emy of Science in St. Petersburg. Daniel went, along
with Nikolaus II, who was also offered a position at the
Academy. However, after just eight months, Nikolaus
came down with a fever and died. Upset, Daniel wanted
to return to Basle, but Johann I didn’t want his son—a
potential rival-back home. Instead he sent one of his
pupils, none other than the great Leonhard Euler, to
St. Petersburg to keep Daniel company. The two Swiss
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mathematicians became good friends, and the six years
they spent together in St. Petersburg were the most pro-
ductive of Daniel’s life.

When Daniel finally returned to Basle, quarrels
within the family flared up again after he won the prize
of the Parisian Academy of Science with a paper, co-
authored with his father, on astronomy. Jealous of
Daniel’s success, Johann threw him out of the family
house. And worse was to come. In 1738 Daniel pub-
lished his magnum opus, Hydrodynamica. Johann I
read the book, hastily wrote one of his own called
Hydraunlica, back-dated it to 1732, and claimed to be the
inventor of fluid dynamics! The plagiarism was soon
uncovered, and Johann was ridiculed by his colleagues,
but his son never recovered from the blow. See also
St. Petersburg paradox.

Bernoulli number

A number of the type defined by Jakob Bernoulli in
connection with evaluating sums of the form >#. The se-
quence By, By, B, . .. can be generated using the formula

x/(e* = 1)=> (B,x")/n!

though various different notations are used for them. The
first few Bernoulli numbers are: By =1, B, = -, B, = %,
B, = Y50, By = Y2, ... They crop up in many diverse
areas of mathematics including the series expansions of
tan(x) and Fermat’s last theorem.

Berry's paradox

A paradox, devised by G. G. Berry of the Bodleian
Library at Oxford University in 1906, that involves state-
ments of the form: “The smallest number not nameable
in under ten words.” At first sight, there doesn’t seem
anything particularly mysterious about this sentence.
After all, there are only so many sentences that have less
than ten words, and only a set S of these specify unique
numbers; so there is clearly some number N that is the
smallest integer not in S. The trouble is, the Berry sen-
tence itself is a specification for that number in only nine
words! Berry’s paradox shows that the concept of name-
ability is inherently ambiguous and a dangerous concept
to be used without qualification. A similar air of the
paradoxical swirls around the notion of interesting
numbers. "

Bertrand’s box paradox

A problem, similar to the Monty Hall problem, that was
published by the French mathematician Joseph Bertrand
(1822-1900) in his 1889 text Calcul des Probabitités. Sup-
pose there are three desks, each with two drawers. One
desk contains a gold medal in each drawer, one contains a
silver medal in each drawer, and one contains one of each,

but you don’t know which desk is which. If you open a
drawer and find a gold medal, what are the chances that
the other drawer in that desk also contains gold? This
comes down, then, to figuring out the probability that
you’ve picked the gold-gold desk instead of the gold-silver
desk. Many people quickly jump to the conclusion that
there are two possibilities, and since the selection was ran-
dom, it must be 50-50. But this is wrong. Think of the ini-
tial selection as picking from among six drawers:

Before After
S S G G G
S G G G
1 2 3 1 2 3

So, we have it narrowed down to three drawers, with an
equal probability of each one being the one that was
picked. One of the drawers is in desk 2, so there’s a one-
third chance that desk 2 was picked. Two of the drawers
are in desk 3, so there are two one-third chances (i.e., a
two-third chance) that desk 3 was picked.

Bertrand'’s postulate

Also known as Betrand’s conjecture, if n is an integer greater
than 3, then there is at least one prime number between
n and 2% — 2. This postulate (which should now be called
a theorem) is named after the French mathematician
Joseph Bertrand (1822-1900) who, in 1845, showed it
was true for values of # up to 3 million. The Russian
Pafnuty Chebyshev (1821-1894) gave the first complete
proof in 1850, so that it is sometimes called Chebyshev’s
theorem (although another theorem also goes by this
name). In 1932, Paul Erd6s gave a more elegant proof,
using the binomial coefficients, which is the one that
appears in most modern textbooks. Bertrand’s postulate
implies that the #th prime p, is at most 2”.

Bessel, Friedrich Wilhelm (1784-1846)

A German astronomer and mathematician who became
director of the observatory at Konigsberg (see bridges of
Konigsberg). Much of Bessel’s work dealt with perturba-
tions (wobbles) in the motion of planets and stars caused
by the gravitational influence of other bodies. To help
analyze these perturbations he developed certain mathe-
matical functions that are now known as Bessel functions
and are used widely in physics.

beta function
The function

m%msz*u—w*w

It can be defined in terms of the gamma function by
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_ T
Bm, )= Tn+n) ~

Many integrals can be reduced to the evaluation of beta
functions.

Betti number

An important topological property of a surface, named
after the Italian mathematician Enrico Betti (1823-1892).
The Betti number is the maximum number of cuts that
can be made without dividing the surface into two sepa-
rate pieces. If the surface has edges, each cut must be a
“crosscut,” one that goes from a point on an edge to
another point on an edge. If the surface is closed, like a
sphere, so that it has no edges, each cut must be a “loop
cut,” a cut in the form of a simple closed curve. The Betti
number of a square is 0 because it is impossible to cross-
cut without leaving two pieces. However, if the square is
folded into a tube, its topology changes—it now has two
disconnected edges—and its Betti number changes to 1. A
torus, or donut shape, has a Betti number of 2. See also
chromatic number.

bicorn

Also known as the cocked-hat, any of a collection of quar-
tic curves studied by James Sylvester in 1864 and by
Arthur Cayley in 1867. The bicorn has the Cartesian
equation

2@ - x%) = (x* + 2ay — a)-

bicorn The bicorn curve © Jan Wassenaar, www.2dcurves.com

bicuspid curve
The quartic curve given by the equation

(x*—ad)(x—a)+ (y*—a’)=0.

Bieberbach conjecture

A celebrated conjecture made by the German mathemati-
cian Ludwig Bieberbach (1886-1982) in 1916, that was
finally proved, after many partial results by others, by
Louis de Branges of Purdue University in 1984.5% Bierber-
bach is infamous in the history of mathematics because of
his outspoken anti-Semitism during the Nazi era. Follow-
ing the dismissal of Edmund Landau (1877-1938) from
the University of Gottingen, Bierberbach wrote: “This
should be seen as a prime example of the fact that repre-
sentatives of overly different races do not mix as students
and teachers. . . . The instincts of the Gottingen students
felt that Landau was a type who handled things in an un-
German manner.”

Bieberbach’s conjecture (BC) stemmed from the Rie-
mann mapping theorem (RMT), which makes a claim
about any region of a plane that is simply connected (in
other words, any region, however complicated, that
doesn’t have any holes). The RMT says there must be
some function, or mapping, such that every point in the
arbitrary region is associated with one and only one point
inside a circle with unit radius. Complex functions are
best suited to plane-to-plane mappings and are often eas-
ier to work with if they can be represented as a power
series. For example, given the complex number z, the
function e” can be expressed as the infinite series 1 + z+
z?/2!+2°/3!+ . . . . Bieberbach guessed that there is a link
between the conditions imposed on a function by RMT
and the numerical coefficients of the terms in a power
series that represents the function. The BC says that if a
function gives a one-to-one association between points in
the unit circle and points in a simply connected region of
the plane, the coefficients of the power series that repre-
sents the function are never larger than the correspond-
ing power. In other words, given that /(z) = 4, + a4,z +
a,z* + a;z* + . . ., then |a,|< n|ay| for each .

bifurcation

The value of a smoothly varying control parameter, or
the point in parameter space, at which the behavior of a
dynamical system undergoes a qualitative change. For
example, a simple equilibrium, or a fixed-point attrac-
tor, might give way to a periodic oscillation as the stress
on a system increases. Similarly, a periodic attractor
might become unstable and be replaced by a chaotic
attractor. To give a real-world example, drops fall indi-
vidually at equal intervals, from a dripping faucet at
low pressure. As the pressure is increased, however, the
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pattern of dripping abruptly changes so that two drops
fall close together, with a longer interval before the next
pair fall. In this case, a simple periodic process has given
way to a periodic process with twice the period, a process
described as “period doubling.” If the flow rate of water
through the faucet is increased still further, beyond the
bifurcation point, often an irregular dripping is found
and the behavior can become chaotic. See also chaos.

bilateral

Having two sides, or relating to the right and left sides of an
object. Bilateral symmetry is a symmetrical arrangement, as
of an organism or a body part, along a central axis, so that
the body is divided into equivalent right and left halves by
only one plane. See also mirror reversal problem.

bilateral diagram

A device invented by Lewis Carroll to represent the dif-
ferent logical states that two objects with two properties
can take. Each cell in a four-square array represents one
of the four possible object/property states and is covered
by a red counter if the state is present and by a gray
counter if it is absent.

billion
See large numbers.

bimagic square

A magic square that becomes a new magic square when
each integer is squared. If, in addition to being bimagic,
the integers in the square can be cubed and the resulting
square is still magic, the square is said to be trimagic. To
date the smallest bimagic square seems to be of order 8,
while the smallest trimagic square is of order 32.

binary

There are 10 kinds of people in the world, those who
understand binary math, and those who don’t.
—Anonymous

The simplest positional number system and the natural
one to use when dealing with computers; it employs just
two symbols, 0 and 1, which correspond to the possible
states of an off-on switch. Each place to the left in a binary
number represents the next highest power of two. The
binary number 10110,, for example, means 1 x 2* + 0 x
22 +1x22+1x2'+0x2° or 22, in the familiar decimal
notation. Nonintegers can be represented by using negative
powers, which are set off from the other digits by means of
a radix point (called a decimal point in base 10). The binary
number 11.01, thus means 1 x2' + 1 x2°+ 0 x 27 + 1 x
272 which equals 3.25,,. A number that terminates in a dec-
imal doesn’t necessarily do so in binary (e.g., 0.3; =

0.0100110011001 . . . ,), and vice versa. An irrational num-
ber, however, is nonperiodic in both systems (e.g., pi, =
3.1415926 . ..,,=11.001001000011111 ... ,). Binary arith-
metic was first investigated by Gottfried Leibniz in 1672,
though he didn’t publish anything about it until 1701.

binary operation
An operation that involves two operands. For example,
addition and subtraction are binary operations.

binomial

An expression containing two terms, joined by + or —.
The binomial theorem gives the result of raising a bino-
mial expression to a power; the expansion and the series
it leads to are called the binomial expansion and the bino-
mial series. A binomial distribution is described by a for-
mula related to the binomial expansion. A binomial
equation is a particular kind of equation that contains
two terms.

binomial coefficient

A coefficient of x in the expansion of (x + y)”. The
binomial coefficient ,C, or (J) gives the number of
ways of picking » unordered outcomes from # possi-
bilities, and is also known as a combination. It has the
value 7!/ (n — m)!m! The binomial coefficients form the
rows of Pascal’s triangle.

binomial theorem
The result that allows the expansion of a binomial
expression:

n

(x+yy=x"+a, X" Y+a,,x""+ ... +y

where the coefficients «; are called binomial coefficients.

Birkhoff, George David (1884-1944)

The foremost American mathematician of the early twen-
tieth century and the first prominent dynamicist in the
New World. He is known for his work on linear differen-
tial equations and difference equations, and was also
deeply interested in and made contributions to the analy-
sis of dynamical systems, celestial mechanics, the four-
color map problem, and function spaces. Although a
geometer at heart, he discovered new symbolic solution
methods. He saw beyond the theory of oscillations, cre-
ated a rigorous theory of ergodic behavior, and foresaw
dynamical models for chaos. In addition he wrote on the
foundations of relativity and quantum mechanics and, in
Aesthetic Measure (1933), on art and music.

birthday paradox
The fact—not really a paradox—that you need a group of
only 23 people for there to be a better than 50/50
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chance that two of these people will have the same
birthday. This seems surprising because we are used to
comparing our particular birthday with others and only
rarely finding a perfect match. The probability of any
two individuals having the same birthday is just Y36s.
Even if you were to ask 20 people, the probability of
finding someone with your birthday is still less than Y.
But the odds improve dramatically when a group of peo-
ple ask each other about their birthdays because then there
are many more opportunities for a matchup. One way to
calculate the probability of a birthday match is to count
the pairs of people involved. In a room of 23 people,
there are (23 x 22)/2, or 253, possible pairs. Each pair has
a probability of success of Y565 = 0.00274 (0.274%), and
thus a probability of failure of (1 — 0.00274) = 0.99726
(99.726%). The probability of no match among any of
the pairs of people is 0.99726 to the 253rd power, which
is 0.499 (49.9%). So the probability of a successful match
is (1 — 0.499), or slightly better than even (50/50). With
42 people, the probability of a birthday match climbs
to 90%.

birthday surprise

Here is a way to learn someone’s birthday by doing a lit-
tle simple math. Ask a person to take the month number
(January = 1, February = 2, and so forth) of their birth-
day, multiply by 5, add 6, multiply the total by 4, add 9,
and multiply the new total by 5 again. Finally, have her
add the number of the day on which she was born and
give you the total. In your head, subtract 165 and you
will have the month and day of her birth. How does this
work? If M is the month number and D the day number,
then after the seven steps the expression for their calcula-
tion is: 5(4(5M + 6) + 9) + D = 100M + D + 165. Thus, if
you subtract the 165, what will remain will be the month
in hundreds plus the day.

bisect
To cut in half.

bisecting an angle

Splitting an angle exactly in two. The ancient Greeks
knew how to easily do it using only a pair of compasses
and a straightedge. Here’s how: Put the point of the com-
pass at a point O and draw a circle so that it cuts the two
lines coming out from the angle. Call these intersection
points 4 and B. Now put the point of the compass at 4
and draw an arc that follows within the opening of the
angle. Without changing the radius at which the compass
is set, move its point to B and draw another arc. Join the
point where the two arcs cross, P, to O using the straight
edge: angle POB is half of angle AOB. See also trisecting
an angle.

bishops problem

To find the maximum number of bishops (chess pieces
capable of moving any number of spaces along diagonals
of their own color) that can be placed on an 7 X 7 chess-
board in such a way that no two are attacking each other.
The answer is 2z — 2, which gives the solution 14 for a
standard (8 x 8) chessboard. The numbers of distinct
maximal arrangements for z = 1, 2, . . . bishops are 1, 4,
26, 260, 3,368, . . ..

bistromathics

The revolutionary new (and totally fictitious) field of
mathematics in restaurants, as described by Douglas
Adams in his book Life, the Universe and Everything:™

Numbers written on restaurant bills within the con-
fines of restaurants do not follow the same mathe-
matical laws as numbers written on any other pieces
of paper in any other parts of the Universe. This sin-
gle statement took the scientific world by storm. . ..
So many mathematical conferences got held in such
good restaurants that many of the finest minds of a
generation died of obesity and heart failure and the
science of math was put back by years.

Adams explains that just as Einstein found that space and
time are not an absolute but depend on the observer’s
movement, so numbers are not absolute, but depend on
the observer’s movement in restaurants:

The first non-absolute number is the number of
people for whom the table is reserved. This will vary
during the course of the first three telephone calls to
the restaurant, and then bear no apparent relation
to the number of people who actually turn up, or to
the number of people who subsequently join them
after the show/match/party/gig, or to the number of
people who leave when they see who else has turned
up. The second non-absolute number is the given
time of arrival, which is now known to be one of the
most bizarre of mathematical concepts, a recipriver-
sexcluson, a number whose existence can only be
defined as being anything other than itself. In other
words, the given time of arrival is the one moment
of time at which it is impossible that any member of
the party will arrive. . . . The third and most mysteri-
ous piece of nonabsoluteness of all lies in the rela-
tionship between the number of items on the bill,
the cost of each item, the number of people at the
table and what they are each prepared to pay for.

See also large numbers.

bit
A binary digit, either 0 or 1. See also byte.
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blackjack
Also known as fwenty-one, the most popular casino game
in the world and the only such game with a fluctuating
probability: the odds of winning change with the makeup
of the deck. The cards two to nine have a numerical value
equal to the number printed on the card. Tens and all face
cards (jack [J], queen [Q ], and king [K]) have the value
of 10. Aces may be counted as either 11 or one. A dealer
plays against one to seven players. Every player and the
dealer initially receive two cards each, dealt by the dealer.
Each player’s hand is played against the dealer’s hand
only. If a player’s hand has a value closer to 21 (without
going over) than the dealer’s hand, the player wins. The
best possible hand is known as a blackjack (21 in the first
two cards) and consists of an ace and a ten-valued card
(10, J, Q, K). The payout for a blackjack is 3-to-2: the
player is paid three chips for every two chips bet. When
both the player and the dealer have blackjacks, it is a nor-
mal te (push) situation and the player retains the initial
bet. The player has several choices after receiving the first
two cards: (1) Hit or draw: take one or more cards to add-
up to a better hand. (2) Stand: stop taking more cards. (3)
Double down: double the initial amount (in cases consid-
ered more favorable). (4) Split pairs: if the two cards are
equal in value they may be played in two separate hands.
The dealer must draw until his hand adds up to 17 or
more. Both the player and the dealer can go over 21, a sit-
uation known as bust; the player loses the bet immedi-
ately. The dealer plays his hand last, after all the players at
the table. This rule creates the so-called house edge. John
Scarne™®? was the first to calculate the house advantage at
blackjack as 5.9%. However, the house edge can be cut to
around 1% if the player follows certain rules. The set of
rules known as basic strategy make blackjack one of the
fairest games of any kind, almost as fair as coin tossing.
In 1962 Edward O. Thorp, an IBM computer scientist,
published Beat the Dealer,”* which introduced a winning
method called card counting. This method considered the
10-valued cards and the aces as positive, and the cards 2
to 6 as negative. If the net value of the remaining deck
was positive, the player must increase the bet accord-
ingly. The method had visible results when only one deck
was used and very few cards remained in the deck. Casi-
nos responded by changing the rules dramatically. The
penetration was introduced: not all the cards in the deck
are played. Shuffling is done unexpectedly. Also, most
casinos introduced multiple-deck blackjack.

Blanche’s dissection

The simplest dissection of a square into rectangles of the
same areas but different shapes. It is composed of seven
pieces; the square is 210 units on a side, and each rectan-
gle has area of 210%/7 = 6,300.

Bolyai, Janos (1802-1860)

A Hungarian mathematician who was one of the
founders of non-Euclidean geometry, independently
coming to almost the same conclusions as Nikolai Loba-
chevsky. He was initially taught by his father, Farkas,
also a mathematician, then he studied at the Royal
Engineering College in Vienna from 1818 to 1822.
Between 1820 and 1823 he prepared his treatise on a
complete system of non-Euclidean geometry, com-
menting, “Out of nothing I have created a strange new
universe.” It was published in 1832 as an appendix to an
essay by his father. Carl Gauss, on reading the appen-
dix, wrote to a friend saying, “I regard this young
geometer Bélyai as a genius of the first order.” It was not
until 1848 that Bdlyai learned that Lobachevsky had
produced a similar piece of work in 1829. Although he
never published more than the 24 pages of the appen-
dix, Bolyai left more than 20,000 pages of manuscript of
mathematical work when he died. He was an accom-
plished linguist, speaking nine foreign languages includ-
ing Chinese and Tibetan.

book-stacking problem

How much of an overhang can be achieved by stacking
books on a table before the books overbalance and fall
off? Assume each book is one unit long. To balance one
book on a table, the center of gravity of the book must
be somewhere over the table; to achieve the maximum
overhang, the center of gravity should be just over the
table’s edge. The maximum overhang with one book is
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book-stacking problem The solution to the book-stacking
problem.
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obviously "2 unit. For two books, the center of gravity of
the first should be directly over the edge of the second,
and the center of gravity of the stack of two books
should be directly above the edge of the table. The cen-
ter of gravity of the stack of two books is at the midpoint
of the books’ overlap, or (1 + 12)/2, which is % unit from
the far end of the top book. It turns out that the over-
hangs are related to the harmonic numbers H,, (see har-
monic sequence), which are defined as 1 + 2 + 15
+. ..+ 1/n: the maximum overhang possible for 7z books
is H,/2. With four books, the overhang (1 + 2 + 5 +
14)/2 exceeds 1, so that no part of the top book is
directly over the table. With 31 books, the overhang is
2.0136 book lengths.

Boole (Stott), Alicia (1860-1940)

The third daughter of George Boole and an important
mathematician in her own right. At the age of 18, she was
introduced to a set of wooden cubes devised by her
brother-in-law Charles Hinton as an aid to visualization
of the fourth dimension. Despite having had no formal
education, she surprised everyone by becoming adept
with the cubes and developing an amazing feel for four-
dimensional geometry. She introduced the word polytope
to describe a four-dimensional convex solid, and went on
to explore the properties of the six regular polytopes
and to make 12 beautiful card models of their three-
dimensional central cross sections. She sent photographs
of these models to the Dutch mathematician Pieter
Schoute (1846-1923), who had done similar work and
with whom she subsequently published two papers. The
models themselves are now housed in the Department of
Pure Mathematics and Mathematical Statistics at Cam-
bridge University.

Boole, George (1815-1864)

An English mathematician and philosopher who is
regarded as one of the founders of computer science.
His great contribution was to approach logic in a new
way, reducing it to a simple algebra and thus incorpo-
rating logic into mathematics. He pointed out the anal-
ogy between algebraic symbols and those that represent
logical forms; his algebra of logic became known as
Boolean algebra and is now used in designing comput-
ers and analyzing logic circuits. Although he never stud-
ied for a degree, Boole was appointed to the chair of
mathematics at Queens College, Cork, Ireland, in 1849.
One day in 1864 he walked the two miles in pouring
rain from his home to the college and then lectured in
wet clothes. A fever followed but whether this alone
would have caused his demise is unknown. Certainly
his condition wasn’t helped by his wife, Mary (a niece
of Sir George Everest, after whom the mountain is

named), who, following the principle that remedy
should resemble cause, put Boole to bed and threw
buckets of water over him. He expired shortly after. See
also Boole (Stott), Alicia.

Boolean
Taking only 0/1, true/false, yes/no values.

Boolean algebra

An algebra in which the binary operations are chosen to
model the union and intersection operations in set the-
ory. For any set A, the subsets of A4 form a Boolean alge-
bra under the operations of union, intersection, and
complement.

Borel, Emile (1871-1956)

A French mathematician who worked on divergent series,
the theory of functions, probability, and game theory,
and was the first to define games of strategy. He also
founded measure theory, which applies the theory of
sets to the theory of functions, and thus became an orig-
inator, with Henri Lebesgue and René Louis Baire
(1874-1932), of the modern theory of functions of a real
variable.

Borges, Jorge Luis (1899-1986)

An Argentinian author, essayist, and poet, many of
whose short stories explore paradoxes and other strange
avenues of mathematics, logic, philosophy, and time. For
example, the possibility of branches in time is dealt with
in “The Garden of Forking Paths,” while the strange
notion of the Universal Library is the subject of “The
Library of Babel.” Borges was profoundly influenced by
European culture, English literature, and such thinkers as
George Berkeley.

Borromean rings

Three rings linked in such a way that although they can’t
be separated, no two rings are linked; remove any one
ring, however, and the other two fall apart. Named after
the Italian family of Borromeo whose family crest has
borne the rings since the fifteenth century, the design has
been used in many places and times as a symbol of
strength in unity. A form of the Borromean link known
as Odin’s triangle or the walknot (“knot of the slain”) was
used by the Norse folk of Scandinavia in two variants: a
set of Borromean triangles and a unicursal curve that
makes a trefoil knot. A motif of three interlaced crescent
moons, similar to the Borromean rings, can be seen at the
Palace of Fontainebleau. Designed by the architect
Philibert de I’Orme, it is based on the moon emblem
used by Diane de Poitiers (1499-1566), mistress of King
Henry II of France. A similar pattern, but with three



42 Borromean rings

Borromean rings A flowerpot on Isola Bella, an island on Lake Maggiore, near Arona in northern Italy, that bears the Borromeo fam-

ily crest. Peter Cromwell

interlaced snakes in place of the crescent moons, occurs
at various sites in Wales, including Bangor Cathedral.
The Borromean rings are commonly used to symbolize
the Christianity Trinity. An early source for this was a
thirteenth-century French manuscript, now lost, in which
the word unitas appears in the center, inside all the cir-
cles, and the three syllables of “tri-ni-tas” are distributed
in the outer sectors. Borromean rings can also be found
on Japanese family emblems, at a Japanese Shinto shrine
north of Sakurai in the province of Nara, and in the
sculptures of the Australian artist John Robinson. In
North America, the design is known as the Ballantine
rings after the New Jersey brewing company P. Ballantine
and Sons who use it as a trademark with the rings labeled
Purity, Body, and Flavor.

The rings first appeared in mathematics in the earliest
work on knots by Peter Tait in 1876. The pattern of cir-
cles can be interlaced by replacing each of the six vertices

by a crossing that shows how the circles pass over and
under one another. Since there are two choices for each
crossing, there are 2° = 64 possible interlaced patterns.
However, after taking symmetry into account, these 64
reduce to only 10 geometrically distinct patterns. Two
patterns are considered to be the same if one can be
obtained from the other by applying one or more of the
following operations: rotation by 120°, reflection, and
reflection in the plane of the pattern. The last symmetry
operation means that the sense of all the crossings is
switched. The rings can also be analyzed from the view-
point of topology, which means that the designs are
thought of as links made from a flexible and elastic
material. If two links can be manipulated and deformed
to look like one another (without breaking and joining
the rings) then they are topologically equivalent. The 10
geometrically distinct patterns boil down to only five
distinct topological types.
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Borromean rings Three alternating rings carved in a panel in
a walnut door of the church of San Sigismondo in Cremona,
Italy. The emblem is one of several belonging to the Sforza
family. peter Cromwell

Borsuk-Ulam theorem

One of the most important and profound statements
in topology: if there are z regions in z-dimensional
space, then there is some hyperplane that cuts each
region exactly in half, measured by volume. All kinds
of interesting results follow from this. For example, at
any given moment on Earth’s surface, there must exist
two antipodal points—points on exactly opposite sides
of Earth—with the same temperature and barometric
pressure! One way to see that this must be true is to
think of two opposite points A and B on the equator.
Suppose A starts out warmer than B. Now move A
and B together around the equator until 4 moves
into B’s original position, and simultaneously B into
A’s original position. A is now cooler than B, so
somewhere in between they must have been the same
temperature. The Borsuk-Ulam theorem implies the
Brouwer fixed-point theorem and also the ham sand-
wich theorem.

bottle sizes

Wine and champagne come in various standard bottle
sizes, as shown in the table “Wine Bottle Sizes.” These fol-
low a geometric sequence, doubling in size with each
step, up to the double-magnum, but thereafter increase in
a more complicated way. There are also regional varia-
tions (for example, a Nebuchadnezzar may hold from 12
to 15 liters) and differences depending on the type of
drink held.

Wine Bottle Sizes

Name of Size Region Capacity (liters) Standard Bottle Equivalents
Baby/split All 0.1875 0.25
Half-bottle All 0.375 0.5
Bottle All 0.75 1
Magnum All 1.5 2
Double-magnum All 3 4
Jeroboam Burgundy, Champagne 5 6.67
Jeroboam Bordeaux, Cabernet S. 45 6
Rehoboam Burgundy, Champagne 4.5 6
Imperial Bordeaux, Cabernet S. 6 8
Methuselah Burgundy, Champagne 6 8
Salmanazar Burgundy, Champagne 9 12
Balthazar Burgundy, Champagne 12 16
Nebuchadnezzar Burgundy, Champagne 15 20
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boundary condition

The value of a function at the edge of the range of some
of its variables. Recognizing the boundary conditions of
an unknown function helps in its identification since
other unknowns, such as variables in integrations, can
then be eliminated.

boundary value problem
An ordinary differential equation or a partial differen-
tial equation given together with boundary conditions
to ensure a unique solution.

Bourbaki, Nicholas

Not an individual but a collective mathematician. In the
1930s, the Bourbaki group, made up of some of the bright-
est mathematicians in France, began as a club, holding
secret meetings in Strasbourg to update university lectures
and texts in the wake of World War I, which had essentially
wiped out a generation of young talent. In time, Bourbaki
authored encyclopedic accounts of all areas of mathemat-
ics, and its influence became widespread.

Its origins can be traced to 1934 and to André Weil and
Henri Cartan who were maitres de conférences (the equiv-
alent of assistant professors) at the University of Stras-
bourg. One of their duties was to teach differential and
integral calculus but they found the standard text on this
subject, Traité dAnalyse by E. Goursat, wanting. Following a
suggestion by Weil to write a new “Treatise on Analysis,” a
group of about 10 mathematicians began to meet regularly
to plan the new work. Quickly, it was decided that the work
should be collective, without any acknowledgment of indi-
vidual contributions, and this became a feature of Bour-
baki’s output. In the summer of 1935, the pen name
Nicholas Bourbaki was chosen, and the initial membership
consisted of Weil, Cartan, Claude Chevalley, Jean Delsarte,
and Jean Dieudonné—all former students at the Ecole Nor-
male Supérieure in Paris. Over the years, the membership
varied; some people in the first group dropped out quickly,
others were added, and later there was a regular process of
addition and retirement (mandatory by the age of 50).

Bourbaki adopted rules and procedures that to outsiders
often seemed eccentric and even bizarre. For example, dur-
ing meetings to review and revise drafts for the various
books the group developed, anyone could express his
opinion as loudly as he wanted at any time, so it was not
uncommon for several distinguished mathematicians to be
on their feet at the same time shouting monologues at the
top of their voices. Somehow out of this mayhem emerged
work of extreme precision, to the point of pedantry and
dryness. Bourbaki would have nothing to do with geome-
try or any attempt at visualization, and believed that math-
ematics should distance itself from the sciences. However,
despite its tendency to be boring and long-winded, Bour-

baki did achieve its goal: to set down in writing what was
no longer in doubt in modern mathematics.

brachistochrone problem

A problem with which Johann Bernoulli (see Bernoulli
Family) challenged his contemporaries in Acta Erudito-
rum 1n June 1696:

Following the example set by Pascal, Fermat, etc., I
hope to gain the gratitude of the whole scientific com-
munity by placing before the finest mathematicians of
our time a problem which will test their methods and
the strength of their intellect. If someone communi-
cates to me the solution of the proposed problem, I
shall publicly declare him worthy of praise. . . . Given
two points A and B in a vertical plane, what is the
curve traced out by a point acted on only by gravity,
which starts at A and reaches B in the shortest time?

Isaac Newton reportedly solved the problem between
four in the evening and four in the morning after a hard
day at the Royal Mint, later commenting: “I do not love
to be dunned [pestered] and teased by foreigners about
mathematical things. ...” Other correct solutions came
from Gottfried Leibniz, the Frenchman Guillaume de
L'Hoépital, and Johann’s brother Jakob. They, like
Johann, realized that the solution to the brachistochrone
problem, as it was also to the tautochrone problem, was
a curve known as the cycloid.

Brahmagupta (A.n. 598-after 665)

A Hindu astronomer and mathematician who became
the head of the observatory at Ujjain—the foremost math-
ematical center of ancient India. His main work, Brah-
masphutasiddbanta (The opening of the universe), written
in 628, contains some remarkably advanced ideas,
including a good understanding of the mathematical role
of zero, rules for manipulating both positive and nega-
tive numbers, a method for computing square roots,
methods of solving linear and some quadratic equations,
and rules for summing series. His contributions to
astronomy were equally ahead of their time. Brab-
magupta’s theorem states that in a cyclic quadrilateral (a
four-sided shape whose corners lie on a circle) having per-
pendicular diagonals, the perpendicular to a side from
the point of intersection of the diagonals always bisects
the opposite side. Brahmagupta’s formula for the area of
a cyclic quadrilateral with sides of length 4, 4, ¢, and 4 is
\/(S—a)(S—b)(S—c)(S—d), where S=(a+b+c+d)/2. As

d goes to zero, this reduces to Heron’s formula.
g

braid
A collection of lines or strings that are plaited together
and whose ends are attached to two parallel straight lines.
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Braid theory was pioneered by the Austrian mathemati-
cian Emil Artin (1898-1962) and is related to knot the-
ory. It also has other applications: for instance, if we
consider the way the roots of a polynomial move as one
of the polynomial’s coefficients changes, this motion can
be thought of as a braid.

Brianchon’s theorem

Given a conic section, if we circumscribe a hexagon
about it, then the major diagonals of the hexagon are
concurrent.

bridges of Kénigsberg

A famous routing problem that was analyzed and solved
by Leonhard Euler in 1736, and that helped spur the
development of graph theory. The old city of Konigs-
berg, once the capital of East Prussia, is now called Kalin-
ingrad. It falls within a tiny part of Russia known as the
Western Russian Enclave, between Poland and Lithuania,
which (to the surprise even of many modern Russians) is
not connected with the rest of the country! Konigsberg
lay some four miles from the Baltic Sea on rising ground
on both sides of the river Pregel (now the Pregolya),
which flowed through the town in two branches before
uniting below the Grune Brocke (Green Bridge). Seven
bridges (numbered in the diagram) crossed the Pregel and
connected various parts of the city (letters A to D),
including Kneiphof Island (B), the site of Konigsberg
University and the grave of its most famous son, the great
philosopher Emmanuel Kant (1724-1804).

A question arose among the town’s curious citizens:
Wias it possible to make a journey across all seven bridges
without having to cross any bridge more than once? No one
had been able to do it, but was there a solution? Euler,
who was in St. Petersburg, Russia, at the time, heard

KCONINGSBERGA

bridges of Konigsberg An old map of the city showing the
seven bridges.

bridges of Konigsberg The essential layout of the bridges. B
represents Kneiphof Island.

about this puzzle and looked into it. In 1736, he pub-
lished a paper called Solutio problematis ad geometriam situs
pertinentis (The solution of a problem relating to the
geometry of position) in which he gave his answer. Euler
reasoned that, for such a journey to be possible, each
land mass would need to have an even number of bridges
connected to it, or, if the journey began at one land mass
and ended at another then those two land masses alone
could have an odd number of connecting bridges while
all the other land masses would have to have an even
number of connecting bridges. Since the Konigsberg
bridges violated this layout, a grand tour that involved
only one crossing per bridge was impossible. Euler’s
paper was important because it solved not just the
Konigsberg conundrum but the much more general case
of any network of points, or vertices, that are connected
by lines, or arcs. What is more, the words geometry of posi-
tion in the title show that Euler realized that he was deal-
ing with a different type of geometry where distance is
irrelevant. So this work can be seen as a prelude to the
subject of topology. See also Euler path.

Briggs, Henry (1561-1630)

An English mathematician who introduced common
logarithms (to base 10) and was largely responsible for
getting scientists to use them. Although a well-regarded
mathematician in his own right, holding the Savilian
chair of geometry at Oxford, Briggs was most important
as a contact and as a public relations man for his field.

Brocard problem
The problem of finding the integer solutions of the
equation

n!+1=m’

These solutions are called Brown numbers, and only three
of them are known: (5, 4), (11, 5), and (71, 7). Paul Erdos
conjectured that there are no others.

broken chessboard
See polyomino.
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Bronowski, Jacob (1908-1974)

A Polish mathematician who worked first on operation
theory and its application to military strategy, but later on
the ethics of science. He is remembered for writing and
narrating the television series The Ascent of Man in 1973.

Brouwer, Luitzen Egbertus Jan (1881-1966)

A Dutch mathematician who opposed the logicist school
of Bertrand Russell and established the intuitionist
school of mathematical thought. He was also one of the

founders of topology, doing most of his work in this
field between 1909 and 1913.

Brouwer fixed-point theorem

An amazing result in topology and one of the most useful
theorems in mathematics. Suppose there are two sheets of
paper, one lying directly on top of the other. Take the top
sheet, crumple it up, and put it back on top of the other
sheet. Brouwer’s theorem says that there must be at least
one point on the top sheet that is in exactly the same posi-
tion relative to the bottom sheet as it was originally. The
same idea works in three dimensions. Take a cup of coffee
and stir it as much as you like. Brouwer’s theorem insists
that there must be some point in the coffee that is in
exactly the same spot as it was before you started stirring
(though it might have moved around in between). More-
over, if you stir again to move that point out of its original
position, you can’t help but move another point back into
its original position! Not surprisingly, the formal defini-
tion of Brouwer’s theorem makes no mention of sheets of
paper or cups of coffee. It states that a continuous function
from an 7-ball into an #-ball (that is, any way of mapping
points in one object that is topologically the same as the
filling of an #-dimensional sphere to another such object)
must have a fixed point. Continuity of the function is
essential: for example, if you rip the paper in the previous
example then there may not be a fixed point.

Brownian motion

The most common type of continuous random motion
of a particle, one in which the particle’s vibrations have
more energy at short length and time scales. It models
the motion of a particle in a fluid, fluctuation of stock
prices, and many other processes. Brownian motion is
named after the Scottish botanist Robert Brown
(1773-1858) who first studied it.

Brun’s constant
See twin primes.

bubbles
Whether alone or in groups joined together, bubbles get
their shape by following one simple rule: soap film

always tries to form a minimal surface. The mathemati-
cal study of bubbles and films began in earnest in the
1830s with the experiments of Joseph Plateau. A single
bubble will always try to form a sphere because this
shape, as proposed by Archimedes and proved by Her-
mann Amandus Schwarz (1843-1921) in 1884, is the
minimal surface enclosing a single volume. For a long
time, mathematicians believed that the minimal surface
for enclosing two separate volumes of air is a double bub-
ble separated by a third surface, which meets the other
two along a circle at 120° and is flat if the bubbles enclose
the same volume and, otherwise, is a spherical surface
that bulges a little into the larger of the two. The double
bubble conjecture was finally confirmed by a team of four
mathematicians in 2000.

Another great bubble mystery that has recently been
solved is why the bubbles in a glass of Guinness appear
to sink rather than rise. Bubbles that rise, like those in a
saucepan or those breathed out by a diver, are a familiar
sight and easy to explain: gas bubbles are lighter than
liquid and experience a buoyancy force that drives them
up toward the liquid surface. But many of the bubbles
in a glass of Guinness can be seen heading downward.
Researchers have found that large bubbles in the center
of the glass move upward relatively quickly and drag
liquid with them. Since the amount of liquid in the glass
stays the same (unless someone drinks it!) the liquid
moving upward near the center must eventually move
back down near the walls of the glass. This downward-

bubbles A honeycomb-like arrangement of tightly packed
bubbles.

Australian National University
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moving liquid has a dragging effect on the bubbles.
Larger bubbles are more buoyant than smaller bubbles,
and continue to move upward. Smaller bubbles (less
than 0.05 mm in diameter) aren’t buoyant enough to
resist this drag force, and move downward with the lig-
uid near the sides of the glass. Since Guinness is quite
opaque, and these downward-moving small bubbles are
close to the side of the glass, it often looks as if almost
all the bubbles are moving down. See also Plateau
problem.

buckyball

Also known as a fullerene, a large molecule made of carbon
atoms arranged in the form of a convex polyhedral cage.
Buckyballs are named after the architect Richard Buckmin-
ster Fuller because they look like the geodesic domes that
he invented. The first buckyball to be discovered (by acci-
dent) was C,, in which 60 carbon atoms are arranged at
each of the vertices of a truncated icosahedron. This shape,
which looks like a soccer ball, has 32 faces, of which 20 are
regular hexagons and 12 are regular pentagons. Many

buckyball A molecule of Buckminster fullerene—a buckyball. nvick Wilson
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different types of buckyballs are known. Common ones
have 70, 76, and 84 carbon atoms, but all are built up exclu-
sively from hexagonal and pentagonal faces in arrangements
that follow Euler’s formula. This formula ensures that while
the number of hexagons can vary from one type of fullerene
to another, every fullerene has exactly 12 pentagons. (In fact,
buckyballs with heptagonal faces have been seen, but these
faces are concave and are regarded as defects.)

Buffon’s needle

An early problem in geometrical probability (see proba-
bility theory) that was investigated experimentally in
1777 by the French naturalist and mathematician Comte
Georges Louis de Buffon (1707-1788). It involves drop-
ping a needle repeatedly onto a lined sheet of paper and
finding the probability of the needle crossing one of the
lines on the page. The result, surprisingly, is directly
related to the value of pi.

Consider a simple case in which the lines are 1 cm apart
and the needle is 1 cm in length. After many drops the
probability of the needle lying across a line is found to be
very close to 2/m. Why? There are two variables: the dis-
tance from the center of the needle to the closest line, 4,

/

p,

/

\\

,/___
h

Buffon's needle Needles are dropped randomly onto a lined
surface.

which can vary between 0 and 0.5 cm, and the angle, 6, at
which the needle falls with respect to the lines, which can
vary between 0 and 180°. The needle will hit a line if 4 <
15 5inM. In a plot of 4 against % sin®, the values on or below
the curve represent a hit; thus, the probability of a success
is the ratio of the area below the curve to the area of entire
rectangle. The area below the curve is given by the integral
of % sin@ from 0 to 7, which is 1. The area of the rectangle
is /2. So, the probability of a hit is 1/(n/2) or 2/n (about
0.637). Dropping a needle many times onto lined paper
gives an interesting (but slow) way to find ©. This kind of
probabilistic means of performing calculations is the basis
of a technique known as the Monte Carlo method.

bundle

A map between two topological spaces A and B, where
the sets /! (b) for elements & of B (known as fibers), are all
homeomorphic to a single space. The simplest example
is the Mobius band, for which A is the Mdbius band, B
is a circle, and the fibers are homeomorphic to an inter-
val on the real number line.

Burali-Forti paradox

An argument that shows that the collection of ordinal
numbers (numbers that give the position of objects) do not,
unlike the natural numbers, form a set. Each ordinal num-
ber can be defined as the set of all its predecessors. Thus:

0 is defined as {}, the empty set
1 is defined as {0} which can be written as {{}}
2 is defined as {0, 1} which can be written as {{}, {{}}}

3 is defined as {0, 1, 2} which can be written as {{}, {{}},
{0 {0

in general, 7 is defined as {0, 1, 2,...#— 1}

If the ordinal numbers formed a set, this set would then be
an ordinal number greater than any number in the set.
This contradicts the assertion that the set contains all ordi-
nal numbers. Although the ordinal numbers don’t form a
set, they can be regarded as a collection called a class.

Buridan’s ass

A paradox of medieval logic concerning the behavior of an
ass that is placed equidistantly from two piles of food of
equal size and quality. Assuming that the behavior of the
ass is entirely rational, it has no reason to prefer one pile to
the other. Thus lacking a basis to decide which pile to eat
first, it remains in its original position and starves. With
one pile it would have lived; having two identical piles it
dies. How can this make sense? The paradox is named after
the French philosopher Jean Buridan (c. 1295-1356).
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burr puzzle

An interlocking wooden puzzle that, when put together,
typically looks like three rectangular blocks crossing one
another at right-angles. Little is known about its early his-
tory, but it was certainly produced both in Asia and
Europe in the eighteenth century. It acquired the name
Chinese puzzle, probably because so many were produced
in the Orient from the early 1900s. In 1928, Edwin Wyatt
published Puzzles in Wood,”™' the first book devoted to
the subject, and introduced the term burr puzzle because
of the likeness of the assembled toy to a seed burr.

Burr puzzles consist of three (the smallest number), six
(the most common number), twelve, or other numbers
of pieces that are notched in various ways so as to pose a
challenge to the would-be assembler. The earliest known
reference to the popular six-piece burr appears in a Berlin
catalog of 1790, but not until 1917 was a patent taken out
on a particular design. In 1977, William Cutler proved
that 25 possible notchable pieces can be used to make
solid six-piece burrs and that they can be put together in
314 ways. (Pieces are considered notchable if they can be
made by a sequence of notches that are produced by chis-
eling out the space between two saw cuts.) Cutler also
proved there are 369 general pieces from which solid
burrs can be made and that these can be assembled in
119,979 ways. One particular form of burr has six identi-
cal pieces, all of which move outward or inward together.
Another form, with flat notched pieces, has one piece
with an extra notch or an extended notch that allows it to
fit in last, either by sliding or twisting, although this isn’t
initially obvious. This form is sometimes made with
equal pieces so that it can only be assembled by force,
perhaps after steaming.

butterfly effect

One of the more sensational and loudly touted claims of
chaos theory: a butterfly beating its wings could, by an
intricate chain of causes and effects, give rise to a hurri-
cane. The gist of the argument is that minuscule distur-
bances can be amplified unpredictably into major
phenomena. However, the overwhelming likelihood is
that any effect as small as the beating of a butterfly’s wing
would be quickly dampened out and play no significant
part in future events. See also causality.

butterfly theorem

Let M be the midpoint of a chord PQ of a circle, through
which two other chords 4B and CD are drawn. If AD
intersects PQ at X and CB intersects PQ at Y, then M is
also the midpoint of XV The theorem gets its name from
the shape of the resulting figure.

Byron, (Augusta) Ada (1815-1852)
Also known as Lady Lovelace, the daughter of Lord
Byron and one of the most picturesque characters in
computer prehistory. Her parents separated five weeks
after her birth and she was raised by her mother (neé
Annabella Milbanke), whom Lord Byron had called his
“Princess of Parallelograms” because of her interest in
mathematics. She was determined that Ada would be-
come a mathematician and scientist, not a poet like her
father. Ada, however, managed to combine both worlds,
blending her science with poetical vision and her mathe-
matics with metaphor.

At the age of 17 she was introduced to Mary Somerville,
a remarkable woman who translated Laplace’s works into
English, and whose texts were used at Cambridge (where a

burr puzzle A difficult six-piece burr with 19 false assemblies and a final piece that requires 10 directional moves. Mr. Puzzle Aus-

tralia/William Cutler
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women’s college is now named after her). It was at one of
Mary Somerville’s dinner parties, in November 1834,
that Ada first heard of Charles Babbage’s ideas for a new
calculating machine, the Analytical Engine, and was
immediately intrigued. In 1843, Ada, married and the
mother of three children, translated a French article
about the Engine and showed it to Babbage. He sug-
gested that she add her own notes, which turned out to be
three times the length of the original piece and included
prescient comments about how such a machine might be
used to compose complex music, produce graphics, and

solve scientific problems. A regular correspondence
ensued between Ada and Babbage, during which Ada sug-
gested to Babbage a plan for how the engine might calcu-
late Bernoulli numbers—a plan now regarded as the first
computer program. In recognition of this, a software lan-
guage developed by the U.S. Department of Defense was
named “Ada” in 1979. Like her father, she died at the age
of 36, following a series of illnesses.**”!

byte

A string of 8 bits, used to represent a character.



caduceus

In mathematics, a pair of curves in space, each of which is
a helix and which twist in opposite directions around one
another. In mythology, the caduceus is the wing-topped
staff, wound about by two snakes, carried by Hermes,
the Greek messenger of the gods. The snakes became
entwined after Hermes threw his staff at them to stop their
fighting. A caduceus was carried by Greek officials and
became a Roman symbol for truce and neutrality. Since
the sixteenth century it has also served as a symbol of
medicine. Before modern medicine, people infected by
parasitic worms were treated by physicians using a stick
and a knife. A slit would be cut in the patient’s skin in
front of the worm, and as the parasite crawled out of the
incision, the worm would be wound around a stick until
it was totally removed. The medical treatment of parasitic
worm infection by knife and stick is believed to be the
inspiration for the original caduceus. It was used as a pro-
motional sign for physicians of that period.

Cage, John (1912-1992)

The American avant-garde composer perhaps best known
for the quietest piece of music ever written. His piano
composition 433" calls for the player to sit in silence for
273 seconds—this being the number of degrees below

caduceus Auckland Medical Research Foundation
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zero on the centigrade scale of absolute zero at which
molecular motion stops. 4°33” was inspired by Cage’s
visit to Harvard University’s anechoic chamber about
which he wrote:

There is no such thing as empty space or empty
time. There is always something to hear or some-
thing to see. In fact, try as we might to make a
silence, we cannot. For certain engineering pur-
poses, it is desirable to have as silent a situation as
possible. Such a room is called an anechoic cham-
ber, its walls made of special materials, a room with-
out echoes. I entered one at Harvard University . . .
and heard two sounds, one a high and one a low.
When I described them to the engineer in charge, he
informed me that the high one was my nervous sys-
tem and the low one was my blood circulation.

Cage’s 4’33” breaks traditional boundaries by shifting
attention from the stage to the audience and even beyond
the concert hall. The listener becomes aware of all sorts of
sound, from the mundane to the profound, from the
expected to the surprising, from the intimate to the cosmic:
shifting in seats, riffling programs, breathing, a creaking
door, passing traffic, a recaptured memory. Is sitting quietly
alone for 273 seconds equivalent to a private performance
(and audience) of the piece? Or, in the final analysis, is it all
pretentious nonsense? In his essay on “Nothing” Martin
Gardner wrote: “I have not heard 4’33” performed, but
friends who have tell me it is Cage’s finest composition.”

Caesar cipher

The simplest and oldest known type of substitution
cipher, attributed to Julius Caesar, who used it to send
government messages. In it, each letter in the alphabet is
replaced by another letter using a predefined rule that
shifts the alphabet a uniform amount to the right or left.

For example, a shift of three units to the right, would turn
the “This is secret” into “Wklv lv vhfuhw.”

cake-cutting

How can a group of people cut up a cake so that each gets
what they consider to be a fair share? In its modern math-
ematical form, this classic problem of fair division dates
from World War II, when Hugo Steinhaus tackled it using
a game theory approach.?”™ Any number of “players” are
allowed. They agree on rules for dividing the cake, and



52 Calabi-Yau space

then everyone follows those rules. In the end, each player
must get what he or she perceives to be a fair share. In the
simplest case, involving just two people, there is an easy,
well-known strategy: one cuts, the other chooses. Can this
method be extended to three people? Can it be extended
so that each person, according to his own judgment,
receives the biggest piece? Steinhaus was able to prove that
a so-called envy-free division, where everyone believes they
got the best deal exists in every case, for any number of
players. However, it was left for others to find actual algo-
rithms that worked for three or more players.

A three-person envy-free method was first devised by
John Selfridge and John Conway. Suppose the players are
called Alice, Bob, and Carol. The method goes like this:
(1) Alice cuts the cake into what she thinks are thirds. (2)
Bob trims one piece to create a two-way tie for largest, and
sets the trimmings aside. (3) Carol picks a piece, then Bob,
then Alice. Bob has to take a trimmed piece if Carol does
not. Call the person who took the trimmed piece T, and
the other (of Bob and Carol) NT. (4) To deal with the
trimmings, NT cuts them into what she thinks are thirds.
(5) The players pick pieces in this order: T, Alice, NT. The
key to the success of the Selfridge-Conway strategy is that
for the trimmings, Alice has an “irrevocable advantage”
with respect to T, since Alice will never envy T even if T
gets all the trimmings. Thus Alice can pick after T and
allow the method to end in a finite number of steps.

For four or more cake-cutters, envy-free solutions are
very complex and can take arbitrarily long to resolve. How-
ever, a general solution of the problem of fair, envy-free
division was eventually found in 1992 by the Americans
Steven Brams, a political scientist at New York University,
and Alan Taylor, a mathematician at Union College in
Schenectady, New York.""*¥ With two players, the first
player cuts the cake in half. With three players, the first
player cuts the cake into thirds. With four players, Brams
and Taylor showed, the first player, say Bob, cuts the cake
into five equal-looking pieces. He passes them to Carol,
who trims two at most to create a three-way tie for largest in
her eyes. She sets the trimmings aside and gives the five
pieces to Don, who trims one at most to create a two-way tie
for largest in his eyes. Alice, the fourth player, now selects
the piece she likes best. Choosing proceeds in the reverse
order from cutting, with the proviso that anyone who
trimmed one or more pieces must take one of them if any
are still available when it’s his or her turn to choose. The
extra piece to begin with assures that no player gets second-
best. If someone takes a piece she likes before it’s her turn to
choose, an equivalent piece or better always remains on the
table. According to a formula Brams and Taylor developed,
Bob must cut the cake into at least 2 ~2*! pieces at the start.
This amounts to nine pieces for five players, 17 pieces for
six, and so on. Bob has to cut all these extra pieces to make

sure that, when he finally gets to choose at the end, there
will be a piece left that hasn’t been either trimmed or cho-
sen by one of the many other players. With 22 players, Bob
has to divide the cake into over a million pieces—small
crumbs of comfort in the quest for a fairer world.?*®

Calabi-Yau space

A type of mathematical space that enters into string the-
ory, where the geometry of the universe is held to consist
of at least 10 dimensions—the four familiar dimensions of
space-time and six compact dimensions of Calabi-Yau
space. These extra dimensions are so tightly curled up
that they aren’t noticed. Although the main application
of Calabi-Yau spaces is in theoretical physics, they are
also interesting from a purely mathematical standpoint.

calculus

The calculus is the greatest aid we have to the applica-
tion of physical truth in the broadest sense of the word.
—William Fogg Osgood (1864-1943)

The branch of mathematics that deals with (1) the rate of
change of quantities (which can be interpreted as the
slopes of curves), known as differential calculus, and (2) the
length, area, and volume of objects, known as integral
caleulus. Calculus was one of the most important de-
velopments in mathematics and also in physics, much
of which involves studying how quickly one quantity
changes with respect to another. It is no coincidence that
one of the founders of calculus was the brilliant English
physicist Isaac Newton; another was Gottfried Leibniz.
Although students nowadays learn differential calculus
first, integral calculus has older roots.

calculus of variations

Calculus problems, especially differentiation and maxi-
mization, that involve functions on a set of functions of
a real variable. An example is to find the shape of a cable
suspended from both ends.

calendar curiosities
The earliest event in human history for which a definite
date is known is a battle between the Lydians (allies of the
Greek Spartans) and the Medes (ruled by the Persian king
Cyrus) who had been locked in a war for five years. As the
two sides faced each other for a crucial daytime con-
frontation, a solar eclipse occurred. This was taken as a
sign of the gods® disapproval and the Lydians and Medes
agreed to end the fighting then and there. The dates of
solar eclipses can be figured out with great accuracy, and
this one is known to have taken place on May 28, 586 B.C.
Much less certain is the birth date of Christ. It was not
until A.D. 440 that Christmas was celebrated on Decem-
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ber 25. This date was chosen because it coincided with
the birth date of Mithras, the Persian sun-god, and was
close to the pagan festival of Yule. In A.D. 534, Dionysius
Exiguus (also known as Dennis the Little) created the sys-
tem, still used today, of counting the years from the birth
of Christ. Unfortunately, he slipped up in his calcula-
tions. No one knows exactly when Jesus was born, but it
was probably around 6 B.C. and certainly before the
death of Herod the Great in 4 B.C.

As for the future, there’s no shortage of predictions
about the end of the world. According to the Mayan
“long count” linear calendar, it will happen on June 5,
2012. Other calendric curiosities: February 1865 is the
only month in recorded history not to have a full moon,
and months that begin on a Sunday will always have a
Friday the 13th.

Caliban
A pseudonym of Hubert Phillips.

S T

cannonball problem Cannonballs stacked in Narbonne, France. Australia National University

Caliban puzzle
A logic puzzle in which one is asked to infer one or more
facts from a set of given facts.

cannonball problem

The mathematical analysis of stacks of cannonballs (or of
spheres in general) that has its roots in a question posed
by Sir Walter Raleigh, explorer, introducer of the potato
and tobacco to Britain, and part-time pirate on the high
seas. Raleigh asked his mathematical assistant, Thomas
Harriot, how he could quickly figure out the number of
cannonballs in a square pyramidal stack without having
to count them individually. Harriot solved this problem
without difficulty. If £ is the number of cannonballs
along the side of the bottom layer, the number of can-
nonballs in the pyramid 7 is equal to % &(1 + £)(1 + 2k).
For example, if =7, »=420. A more specific form of the
cannonball problem asks what is the smallest number of
balls that can first be laid out on the ground as an » x »
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square, then piled into a square pyramid £ balls high? In
other words, what is the smallest square number that is
also a square pyramidal number? This answer is the
smallest solution to the Diophantine equation

Vs k(1 + B)(1 + 2&) = n?

and turns out to be k=24, » =70, corresponding to 4,900
cannonballs. The ultimate form of the cannonball prob-
lem is to ask if there are any other, larger solutions. In
1875 Edouard Lucas conjectured that there weren’t, and
in 1918 G. N. Watson proved that Lucas was right.*!

Returning to Elizabethan times, Thomas Harriot’s in-
terest in spheres extended far beyond piles of cannon-
balls. Harriot was an atomist, in the classical Greek sense,
and believed that understanding how spheres pack
together was crucial to understanding how the basic con-
stituents of nature are arranged. Harriot also carried out
numerous experiments in optics and was far ahead of his
time in this field. So when, in 1909, Johannes Kepler
wanted some advice on how to give his own theories on
optics a stronger scientific underpinning who better to
turn to than the Englishman? Harriot supplied Kepler
with important data on the behavior of light rays passing
through glass, but he also stimulated the German’s inter-
est in the sphere-packing problem. In response, Kepler
published a little booklet titled The Six- Cornered Snowflake
(1611) that would influence the science of crystallogra-
phy for the next two centuries and that contained what
has come to be known as Kepler’s conjecture about the
most efficient way to pack spheres.

canonical form

A form of any given polyhedron distorted so that every
edge is tangent to the unit sphere and the center of grav-
ity of the tangent points is the origin.

Cantor, Georg Ferdinand Ludwig
Philipp (1845-1918)
A Russian-born German mathematician who founded set
theory and introduced the concept of transfinite num-
bers. His shocking and counterintuitive ideas about
infinity drew widespread criticism before being accepted
as a cornerstone of modern mathematical theory.
Cantor was 11 when his family moved from St. Peters-
burg to Germany. Despite attempts to push him into the
more lucrative field of engineering, he eventually won his
father’s approval to study math at the Polytechnic of
Zurich. The following year, 1863, his father died and Can-
tor switched to the University of Berlin where he studied
under some of the greats of the day, including Karl Weier-
strass and Leopold Kronecker. After receiving his doc-
torate in 1867, he had trouble finding a good job and was
forced to accept a position as an unpaid lecturer and later

as an assistant professor at the backwater University of
Halle. In 1872, he achieved his first breakthrough—and a
promotion—by proving that if a function is continuous
(in other words, its graph is smooth) throughout an inter-
val, it can be represented by a unique trigonometric series.
This work, suggested to him by his colleague Heinrich
Heine, was crucial because it led Cantor to think about
the relations between points, represented by real num-
bers, that make up an unbroken line—the so-called contin-
unm. Cantor realized that irrational numbers can be
represented as infinite sequences of rational numbers, so
that they can be understood as geometric points on the
real-number line, just as rational numbers can. He was
now in uncharted territory and at odds with mathematical
orthodoxy, which frowned on the idea of actual infinity;
however, he found like-minded friends in Richard
Dedekind and, later, Gosta Mittag-Leffler.

In 1873 to 1874 Cantor proved that the rational num-
bers could be paired off, one by one, with the natural
numbers and were therefore countable, but that there was
no such one-to-one correspondence with the real num-
bers. He then went on to show, incredibly, that there are
exactly the same number of points on a short line as there
are on an indefinitely long line, or on a plane, or in any
mathematical space of higher dimensions. On this, he
wrote to Dedekind: “I see it, but I don’t believe it!”

By 1883, Cantor had abandoned his earlier reticence
about dealing with irrationals only as sequences of ratio-
nals and started to think in terms of a new type of
number—the transfinite numbers. The sets of natural
numbers and of real numbers were, he reasoned, just two
elements of a series of different kinds of infinity. This dra-
matic extension of the number system to allow for legiti-
mate mathematics of the infinite was violently opposed.
Henri Poincaré said that Cantor’s theory of infinite sets
would be regarded by future generations as “a disease
from which one has recovered.” Kronecker went further
and did all he could to ridicule Cantor’s ideas, suppress
publication of his results, and block Cantor’s ambition of
gaining a position at the prestigious University of Berlin.
In the spring of 1884 Cantor suffered the first of several
attacks of depression, exacerbated if not induced by the
negative reaction of his contemporaries. In between these
attacks, he published further results but was increasingly
troubled by his failure to prove the continuum hypoth-
esis—his belief that the order of infinity of the real num-
bers came next after that of the natural numbers.
Although his later years were spent in and out of a sana-
toria, he lived long enough to see his ideas on set theory
vindicated and be described by David Hilbert as “the
finest product of mathematical genius and one of the
supreme achievements of purely intellectual human
activity.”
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Cantor dust.

Cantor dust

Also known as the Cantor set, possibly the first pure frac-
tal ever found. It was detected by Georg Cantor around
1872. To produce Cantor dust, start with a line segment,
divide it in three equal smaller segments, take out the
middle one, and repeat this process indefinitely. Al-
though Cantor dust is riddled with infinitely many gaps,
it still contains uncountably many points. It has a fractal
dimension of log 2/log 3, or approximately 0.631. See
also Sierpinski carpet.

cap
The symbol N used to denote the union between two sets.

Cardano, Girolamo (1501-1570)

A celebrated Renaissance mathematician, physician, as-
trologer, and gambler, whose writings on the use of neg-
ative numbers are the earliest known in Europe. As a
physician, he gave one of the first clinical descriptions of
typhoid fever. The illegitimate child of a mathematically
gifted lawyer who was a friend of Leonardo da Vinci, he
entered the University of Pavia in 1520 and later studied
medicine at Padua. His eccentric and confrontational
style earned him few friends, and he had trouble finding
work. Eventually, he won a reputation as a physician and
his services were highly valued at the courts.

Today, Cardano is remembered mostly for his achieve-
ments in algebra. He published the solutions to the quartic
and cubic equations in his book Ars magna (1545). The
solution to the cubic was communicated to him by Nic-
col6 Tartaglia (who later claimed that Cardano had sworn
not to reveal it, and became embroiled with Cardano in a
decade-long fight), and the quartic was solved by Cardano’s
student Lodovico Ferrari. Both were acknowledged in the
foreword of the book. Cardano was notoriously short of
money and kept himself afloat by being an accomplished
gambler and chess player. A book by him about games of
chance, Liber de Ludo Aleae (Book on games of chance),
written in the 1560s but published posthumously in 1663,

contains the first systematic treatment of probability the-
ory, as well as a section on effective cheating methods.
Cardano invented several mechanical devices including the
combination lock, the Cardano suspension (consisting of
three concentric circles that allow a supported compass to
rotate freely), and the Cardan shafi, which allows the trans-
mission of rotary motion at various angles and is used in
vehicles to this day. He made several contributions to
hydrodynamics and claimed that perpetual motion is
impossible, except in celestial bodies. He published two
encyclopedias of natural science that contain a wide variety
of inventions, facts, and occult superstitions.

Cardano led a beleaguered life. His elder and favorite
son was executed in 1560 after he confessed to having poi-
soned his mercenary, cuckolding wife. Cardano’s daughter
was allegedly a prostitute who died from syphilis, prompt-
ing him to write a treatise about the disease. His younger
son was a gambler who stole money from him. And Car-
dano himself was accused of heresy in 1570 because he
computed the horoscope of Jesus Christ. Apparently, his
own son contributed to the prosecution. Cardano was
arrested and had to spend several months in prison, then
was forced to abjure and had to give up his professorship.
He moved to Rome, received a lifetime annuity from Pope
Gregory XIII, and finished his not-uneventful autobiogra-
phy. He died on the day he had (supposedly) astrologically
predicted. See also Chinese rings.

Cardan'’s rings
See Chinese rings.

cardinal number

A number, often called simply a cardinal, that is used to
count the objects or ideas in a set or collection: 0, 1,
2,..., 83, and so on. The cardinality of a set is just the
number of elements the set contains. For finite sets this is
always a natural number. To compare the sizes of two sets,
X and Y, all that’s necessary is to pair off the elements of X
with those of Y and see if there are any left over. This con-
cept is obvious in the case of finite sets but leads to some
strange conclusions when dealing with infinite sets (see
infinity). For example, it is possible to pair off all the nat-
ural numbers with all the even numbers, with none left
over; thus the set of natural numbers and the set of even
numbers have the same cardinality. In fact, an infinite set
can be defined as any set that has a proper subset of the
same cardinality. Every countable set that is infinite has a
cardinality of aleph-null; the set of real numbers has car-
dinality aleph-one. See also ordinal number.

cardioid
A heart-shaped curve first studied in 1674 by the Dan-
ish astronomer Ole Rémer who was trying to find the
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cardioid A cardioid curve spun by thread on a computer
loom. Jos Leys wwwijosleys.com

best shape for gear teeth; the curve appears to have
been named by Giovanni Salvemini de Castillon
(1708-1791). When a circle rolls around another circle
of the same size, any point on the moving circle traces
out a cardioid. The Greeks used this fact when attempt-
ing to describe the motions of the planets. The car-
dioid is also the envelope of all circles with centers
on a fixed circle, passing through one point on the
fixed circle. In polar coordinates, it has the equation
r = 2a(l — cosB). It can also be described as an epi-
cycloid with one cusp.

cards

The standard deck of 52 cards can be ordered in 52! (see
factorial), or 8.065817517094 x 10¥ ways. There are var-
ious ways to shuffle cards in order to randomize them
or to perform tricks with them. Each of the four kings in
a deck represents a great leader from history: Charle-
magne (hearts), Alexander the Great (clubs), Julius Cae-
sar (diamonds), King David (spades). The king of hearts
is the only one without a moustache. See also black-
jack.

Carmichael number

Also known as an absolute pseudoprime, a number 7 that
is a Fermat pseudoprime to any base, that is, it divides
(a" — a) for any a. Another way of saying this is that a
Carmichael number is actually a composite number
even though Fermat’s little theorem suggests it is
probably a prime number. (Fermat’s little theorem says

that if P is a prime number, then for any number 4,
(4" — a) must be divisible by P. Carmichael numbers sat-
isfy this condition to any base despite being compos-
ite.) There are only seven Carmichael numbers under
10,000 (they are 561, 1,105, 1,729, 2,465, 2,821, 6,601,
and 8,911), and less than a quarter of a million of them
under 10'. Nevertheless, in 1994 it was proved that
there are infinitely many of them. All Carmichael num-
bers are the product of at least three distinct primes, for
example, 561 =3 x 11 x 17.

Carroll, Lewis (1832-1898)
The pen name of Charles Lutwidge Dodgson (obtained
by anglicizing the Latin translation, “Carolus Lodovi-
cus,” of his first two names), an English mathematician,
logician, and writer. Carroll was born at the Old Parson-
age, Newton-by-Daresbury, Cheshire, his father being
the vicar of All Saints Church, Daresbury. There is a
commemorative window in the church, and a “Wonder-
land” weathervane, showing the Mad Hatter, the White
Rabbit, and Alice, on the local primary school. Carroll
was educated at Rugby School (the student mathematics
society there is still called the Dodgson Society in his
honor) and then at Christ Church, Oxford, at which col-
lege he was to spend the rest of his life, employed mainly
as a lecturer.

Carroll’s most famous book, Alice’s Adventures in
Wonderland (1865), grew out of a story he told on the
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Carroll, Lewis Lewis Carroll's Chess Wordgame, a game
based on notation in Carroll's diaries with rules devised by
Martin Gardner. Kadon Enterprises, Inc, www.gamepuzzles.com
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hot summer afternoon of July 4, 1862, when out rowing
with the three young daughters of the Greek scholar
H. G. Liddell, dean of Christ Church. Alice, named
after Alice Liddell (later Hargreaves, 1852-1934), con-
tinued her adventures in Through the Looking-Glass
(1871). Carroll wrote other books for children, includ-
ing a long poem, “The Hunting of the Snark” (1876)
and published several mathematical works, but was not
distinguished academically. He stammered badly, never
married, and seemed to find greatest pleasure in the
company of little girls, with whom he lost his shyness.
He was also an amateur pioneer in photography and an
inventor of puzzles, games, ciphers, and mnemon-
ics.*! Carroll was a master of fantasy and his stories
have their own logic. Carroll used puns and coined
neologisms, including what he called “portmanteau
words” like chortle (combining chuckle and snort). He
played games with idioms, using such expressions as
“beating time” (to music) in a literal sense. He reshaped
such animals of fable or rhetoric as the Gryphon, the
March Hare (said to have been inspired by a carved hare
carrying a satchel located at St. Mary’s Church, Beverly,
Humberside, where Carroll visited), and the Cheshire
Cat, and invented new ones, including the Bander-
snatch and the Boojum.

PUZZLES
Here are a few examples of puzzles invented by
Carroll:

1. You are given two glasses. One contains 50
tablespoons of milk, the other 50 tablespoons
of water. Take one tablespoon of milk and mix it
with the water. Now take one tablespoon of the
water/milk mixture and mix it with the pure milk
to obtain a milk/water mixture. Is there more
water in the milk/water mixture or more milk in
the water/milk mixture?

2. If you paint the faces of a cube with six different
colors, how many ways are there to do this if
each face is painted a different color and two col-
orings of the cube are considered equivalent if
you can rotate one to get the other? What if we
drop the restriction that the faces be painted dif-
ferent colors?

3. Make a word-ladder from FOUR to FIVE. (Every
step in a word ladder differs from the previous
step in exactly one letter and each step in the lad-
der is an English word.)

4. Why is a raven like a writing desk?

Solutions begin on page 369.

CARROLLIAN QUOTES
From Alice’s Adventures in Wonderland:

« “The different branches of Arithmetic—Ambition,
Distraction, Uglification, and Derision.”

* “Then you should say what you mean,” the March
Hare went on.

“I do,” Alice hastily replied; “at least | mean
what | say, that's the same thing, you know.”

“Not the same thing a bit!" said the Hatter.
“Why, you might just as well say that ‘I see what |
eat’ is the same thing as ‘I eat what | see!”

* “Take some more tea,” the March Hare said to
Alice, very earnestly.

“I've had nothing yet,” Alice replied in an
offended tone, “so | can't take more.”

“You mean you can't take /ess,” said the Hatter.
“It's very easy to take more than nothing.”

From The Hunting of the Snark:
* “What | tell you three times is true.”
From Alice through the Looking Glass

« “Can you do addition?” the White Queen asked.

“What's one and one and one and one and one
and one and one and one and one and one?”

“I don't know,” said Alice. “I lost count.”

* “It's very good jam,” said the Queen.

“Well, I don't want any to-day, at any rate.”

“You couldn't have it if you did want it,” the
Queen said. “The rule is jam tomorrow and jam
yesterday but never jam to-day.”

“It must come sometimes to “jam to-day,” Alice
objected.

“No it can't,” said the Queen. “It's jam every
other day; to-day isn‘t any other day, you know."

“I don't understand you,” said Alice. “It's dread-
fully confusing”

* “When | use a word,” Humpty Dumpty said, in a
rather scornful tone, “it means just what I choose it
to mean—neither more nor less”

“The question is,” said Alice, “whether you can
make words mean so many different things."

“The question is,” said Humpty Dumpty, “which
is to be master—that’s all.”

Cartesian geometry
See analytical geometry.

Cartesian coordinates

An ordered set of real numbers that defines the position
of a point in terms of its projection onto mutually per-
pendicular number lines. In the plane, each point is
defined by two such projections, one onto the x-axis and
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one onto the y-axis, and is written as an ordered pair of
real numbers (x, ). The same system works equally in
spaces of three or more dimensions.

Cartesian oval

A curve that actually consists of two ovals, one inside the
other. It is the locus of a point whose distances s and ¢ from
two fixed points S and T satisfy the equation s + mf = a.
When c¢is the distance between S and 7 then the curve can
be expressed in the form:

(1= m®) (x> + %) + 2mPex+ & — m’c®Y = 4a*(x* + »?)

The curves were first studied by René Descartes in 1637
and are sometimes called the ovals of Descartes; they were
also investigated by Isaac Newton in his classification of
cubic curves. If m = =1, then the Cartesian oval is a cen-
tral conic. If m = a/c, then it becomes a limagon of Pas-
cal, in which case the inside oval touches the outside one.
Cartesian ovals are anallagmatic curves.

Cassinian ovals

Also known as Cassini’s ovals, a family of curves, each
member of which is defined as follows: given two points
A and B and a constant ¢?, the locus of points P with
PA x PB = ¢*. The locus has the equation (x* + y?)* —
2a*(x* — y?)? — a* + ¢* = 0, where a = AB. Equivalently,
Cassinian ovals can be thought of as the set of curves
produced when a circular torus is sliced at every possi-
ble point parallel to its axis. If ¢ = 4, then the curve is
a special case known as the lemniscate of Bernoulli
(a figure-eight type curve). The ovals are named after
the Italian-born astronomer Giovanni Cassini (1625-
1712) who first investigated them in 1680 while study-
ing the relative motions of Earth and the Sun. Cassini

© ©

Cassinian ovals The many different ways to slice a dough-
nut. Xah Lee, www.xahlee.org

thought that the Sun traveled round Earth on one of
these curves (rather than the ellipse, as correctly pro-
posed in Kepler’s heliocentric scheme), with Earth at
one focus.

casting out nines

A method for checking arithmetic that uses the idea of
the digital root of a number. Let the digital root of a
number # be 7(x); for example, 7(7,586) = 8. For any two
numbers 4 and : r(a + b) = r(r(a) + r(b)) and r(a x b) =
r(r(a) X r(b)). These rules allow checks on addition and
multiplication as the following examples show. Does
7,586 + 9,492 = 16,978 1(r(7,586) + r(9,492)) = (8 + 6) =
5; r(16,978) = 4; so the sum given is incorrect. Does
7,586 x 9,492 = 72,006,312. r(r(7,586) x 7(9,492)) =
(8 x 6) = r(48) = 3; r(72,006,312) = (21) = 3; which sug-
gests that the product given is likely to be correct. The
name “casting out nines” comes from the fact that nines
need not be included in the calculation of the digital
roots, since they have no effect on the final result. This a
direct outcome of the fact that we use a decimal number
system. If we calculated instead in octal (base eight), say,
then the process would be one of “casting out sevens.”
This kind of checking will pick up most errors, but not
all. For example, an interchange of two digits will not be
detected, nor will replacing a nine by a zero or vice versa.
The method appears in the work of ninth-century Arab
mathematicians but may have originated earlier with the
Greeks and, possibly, the Hindus.

Catalan number
Any number, #,, from the Catalan sequence defined by

u,= (2n)! / (n+ 1)lnl.

It begins: 1, 2, 5, 14, 42, 132, 429, 1,430, 4,862, 16,796,
58,786, 208,012, 742,900, . . . . The values of #, represent
the number of ways a polygon with 7 + 2 sides can be cut
into # triangles using straight lines joining vertices (see
vertex). Catalan numbers are named after the Belgian
mathematician Eugéne Catalan (1814-1894). They also
arise in other counting problems, for example in deter-
mining how many ways 2% beans can be divided into two
containers if one container can never have less than the
second.

Catalan solid

A polyhedron that is a dual of an Archimedean solid.
(A dual of a polyhedron is obtained by replacing each
face with a vertex, and each vertex with a face.) Catalan
solids are named after the Belgian mathematician Eugéne
Catalan (1814-1894) who first described them in 1865.
See also Platonic solid and Johnson solid. (See table,
“Catalan solids.”)
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Catalan Solids

Name

Corresponding
Archimedean Solid

Triakis tetrahedron

Truncated tetrahedron

Rhombic dodecahedron

Cuboctahedron

Triakis octahedron

Truncated cube

Tetrakis hexahedron

Truncated octahedron

Deltoidal icositetrahedron

Small rhombicubocta-
hedron

Disdyakis dodecahedron Great rhombicubocta-
hedron

Pentagonal icositetrahedron Snub cube

Rhombic triacontahedron  Icosidodecahedron

Triakis icosahedron

Truncated dodecahedron

Pentakis dodecahedron

Truncated icosahedron

Deltoidal hexecontahedron

Rhombicosidodeca-
hedron

Disdyakis triacontahedron

Great rhombicosidodeca-
hedron

Pentagonal
hexecontahedron

Snub dodecahedron

Catalan solid Two of the Catalan solids: the rhombic tricontahedron (right) and the disdyakistriacontahedron (left). Robert Webb,
www.software3d.com; created using Webb's Stella program

Catalan’s conjecture

The hypothesis, put forward by the Belgian mathemati-
cian Eugéne Catalan (1814-1894) in 1844, that 8 (= 2%
and 9 (= 3?) are the only pair of consecutive powers. In
other words, the Catalan equation for prime numbers p
and ¢ and positive integers x and y

X —yi=
has only the one solution
3¥-2=1

In 1976 R. Tijdeman took the first major step toward
showing this is true by proving that for any solution, y? is
less than e to the power ¢ to the power e to the power e to
the power 730 (a huge number!). Since then, this bound
has been reduced many times, and it is now know that the
larger of p and 4 is at most 7.78 x 10" and the smaller is at
least 10”. On April 18, 2002, the Romanian number theo-
rist Preda Mihailescu sent a manuscript to several mathe-
maticians with a proof of the entire conjecture together
with an analysis by Yuri Bilu. It is expected that as soon as
this work is completely reviewed by other mathematicians
that Catalan’s conjecture will have been proved.!
Solutions to Catalan’s conjecture and Fermat’s last
theorem are special cases of the Fermat-Catalan equation:
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x'+y1=2,

where x, y, and z are positive, coprime integers and the
exponents are all primes with

1/p+1/qg+1/r<1.

The Fermat-Catalan conjecture is that there are only finitely
many solutions to this system. These solutions include:

r+2=3(p=22);2°+7°=3"
13+ 7 =2';

33°+ 1,549,034’ = 15,613’

and 43° + 96,222° = 30,042,907%.

Catalan’s constant

A constant that crops up regularly in combinatorial prob-
lems, especially in the evaluation of certain infinite series
and integrals. For example, it is equal to

_‘.:] arctan(x) / x dx, and
1-B 42—+ -

It is also the solution to the following problem as 7
becomes arbitrarily large: If you have a 2% X 2n checker-
board and a supply of 2#> dominoes that are just large
enough to cover two squares of the checkerboard, how
many ways are there to cover the whole board with the
dominoes? Catalan’s constant has the value 0.915965 .. . ;
it is not known if it’s an irrational number.

catastrophe theory

A theory, developed by the French mathematician René
Thom (1923-2003), that attempts to explain the behav-
ior of complex dynamical systems by relating it to topol-
ogy. The evolution of such systems consists of steady
continuous change interspersed with sudden major
jumps, or “catastrophes,” when the topology of the set
changes. Catastrophe theory has been applied, with vary-
ing degrees of success, to phenomena as diverse as earth-
quakes, stock market crashes, prison riots, and human
conflicts, at the personal, group, and societal level. The
theory was first developed by Thom in a paper published
in 1968 but became well known through his book Struc-
tural Stability and Morphogenesis (1972).%°"! Many mathe-
maticians took up the study of catastrophe theory and
it was in tremendous vogue for a while, yet it never
achieved the success that its younger cousin chaos theory
has because it failed to live up to its promise of useful
predictions. Late in his career, the surrealist Salvador Dali
painted Topological Abduction of Europe: Homage to René
Thom (1983), an aerial view of a seismically fractured
landscape juxtaposed with the equation that strives to
explain it.

catch-22

A situation in which a person is frustrated by a paradoxical
rule or set of circumstances that preclude any attempt to
escape from them. The name comes from the title of a
novel by Joseph Heller (1923-1999), based on his personal
experiences, about an American airman’s attempts to sur-
vive the madness of World War II. Heller wrote:

There was only one catch and that was Catch-22,
which specified that concern for one’s own safety in
the face of dangers that were real and immediate was
the process of a rational mind. Orr was crazy and
could be grounded. All he had to do was ask; and as
soon as he did, he would no longer be crazy and
would have to fly more missions. Orr would be
crazy to fly more missions and sane if he didn’t, but
if he was sane he had to fly them. If he flew them he
was crazy and didn’t have to; but if he didn’t want
to he was sane and had to.

category theory

The study of abstracted collections of mathematical
objects, such as the category of sets or the category of
vector spaces, together with abstracted operations send-
ing one object to another, such as the collection of func-
tions from one set to another or linear transformations
from one vector space to another.

catenary

The shape that a rope or telephone cable makes, under the
influence of gravity, when suspended between two points.
The word comes from the Latin catena, meaning “chain,”
and was first used by Christiaan Huygens while studying
the form of suspended chains. Galileo thought the shape
would be a parabola. In fact, near the vertex, a parabola
and a catenary do look very similar. When x is slightly
greater than three, however, the catenary begins to rapidly
outgrow the value of the parabola. The two shapes are
related in another way. If a parabola is rolled along a
straight line, the focus of the parabola moves along a cate-
nary curve. Surprisingly, too, if a bicycle with square (or
any polygon-shaped) wheels is ridden along a road made
of upturned catenaries the wheels will roll smoothly and
the rider will stay at the same height! The St. Louis Arch,
which is 192 meters wide at the base and 192 meters tall,
follows the form of a catenary, the exact formula for which
is displayed inside the arch: y = 68.8 cosh (0.01x — 1),
where cosh is the hyperbolic cosine function.

The general equation of a catenary can be written

y =k cosh(x/k),

where k is a constant, or, in terms of the exponential
function,
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catenary The catenary curve. © Jan Wassenaar, www.2dcurves.com

=k + /2.
In the special case where & = 1, these reduce to
y=cosh(x) = (" + ¢7%)/2.
In terms of a polynomial series

=051 +x+x/2'+x3/3! + x4 +. ..+ 1 —x+x%/2!
-3+ xAl - L))
=1+x%/20+ x40 + 261 + . . ..

For small values of x the terms beyond x°/2! are very
small, so that the equation closely approximates that of a
parabola, as we have already seen.

catenoid

The surface of revolution produced when a catenary
rotates about its central axis. The catenoid was first
described by Leonhard Euler in 1740 and is the oldest
known minimal surface (a shape of least area when
bounded by a given closed space). It is the minimal sur-
face connecting two parallel circles of unequal diameter
on the same axis; soap film between two circular rings
takes this form (see also bubbles). The catenoid is the

only known minimal surface that is also a surface of rev-
olution, and is one of only four minimal surfaces that
have the topological properties of being unbounded,
embedded, and non-periodic; the others are the simple
plane, the helicoid, and Costa’s surface.

cathetus

A line that is perpendicular to another line. Usually, it
refers to one of the lines in a right triangle that is not the
hypotenuse.

Cauchy, Augustin Louis, Baron (1789-1857)

A French mathematician who founded complex analysis
by discovering the Cauchy-Riemann equations and wrote
789 papers—an output surpassed only by Leonhard
Euler, George Cayley, and Paul Erdos. He coined the
name for the determinant and systematized its study and
gave nearly modern definitions of limit, continuity, and
convergence.

causality

The relationship between causes and effects. An event or
state of affairs A is the cause of an event B if A is the
reason that brings about the effect B. For instance, one
might say, “my pushing the gas pedal caused the car to
go faster.” An important question in philosophy and
other fields is how (and if) causes can bring about
effects. In a strict reading, if A causes B, then A must
always be followed by B. In this sense, for example,
smoking doesn’t cause cancer. In everyday usage, we
therefore often take “A causes B” to mean “A causes an
increase in the probability of B.” The establishment of
cause and effect, even with this relaxed reading, is noto-
riously difficult. The Scottish philosopher David Hume
held that causes and effects are not real, but instead are
imagined by our minds to make sense of the observation
that A often occurs together with or slightly before B.
All we can actually observe are correlations, not causa-
tions. This is also expressed in the logical fallacy, “corre-
lation implies causation.” For instance, the observation
that smokers have a dramatically increased lung cancer
rate doesn’t establish that smoking must be the cause of
that increased cancer rate: maybe there exists a certain
genetic defect which both causes cancer and a yearning
for nicotine.!'"!

caustic

The envelope of rays of light reflected (or refracted) by a
given curve from a given point source of light; a catacaus-
tic results from reflection, a diacaustic from refraction.
Among the caustic curves of a circle are a lima, if the light
source is nearby, a nephroid, if the source is at infinity,
and a cardioid, if the source is on the circle.
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Cavalieri’s principle

If two solids have the same height and the same cross-
sectional area at every level, then they have the same
volume. This principle is named after the Italian mathe-
matician Bonaventura Cavalieri (1598-1647).

Cayley, Arthur (1821-1895)

A British mathematician who made important contribu-
tions to non-Euclidean geometry and the algebra of
matrices (see matrix). The former eventually found its way
into the study of the space-time continuum, the latter into
a formulation of quantum mechanics by the German
physicist Werner Heisenberg. Cayley was also far ahead of
his time in pioneering the idea of abstract groups.

Cayley number
See octonion.

Cayley’s mousetrap

A permutation problem invented by Arthur Cayley.
Write the numbers 1, 2, . . ., 7 on a set of cards and shuf-
fle the deck. Start counting using the top card. If the card
chosen does not equal the count, move it to the bottom
of the deck and continue counting forward. If the card
chosen does equal the count, discard the chosen card and
begin counting again at 1. The game is won if all cards are
discarded, and lost if the count reaches 7 + 1. The num-
ber of ways the cards can be arranged such that at least
one card is in the proper place forn=1,2,...,are 1, 1,
4,15,76,455, . ...

Cayley's sextic
A sinusoidal spiral curve described by the Cartesian
equation

4(x* + 9% — ax)* = 274 (x> + y*)o

It was discovered by Colin Maclaurin but was first stud-
ied in detail by Arthur Cayley and named after him by
R. C. Archibald in 1900.

ceiling

The largest value that something can take. The ceiling
function of a number x is the smallest integer that is not
smaller than x.

cell

(1) A three-dimensional object that is part of a higher-
dimensional object, such as a polychoron. A cell is
related to higher-dimensional objects in the way that a
face, or (two-dimensional) polygon, is related to higher-
dimensional objects. For example, a cell is to a Four-
dimensional polytope, or polychoron, what a face is to a
three-dimensional polytope, or polyhedron. Often poly-

topes are classified simply by how many cells they have.
For example, the tesseract has eight cells, each one of
which is a cube. (2) The fundamental spatial unit oper-
ated on by the rules of a cellular automaton during one
generation.

cellular automaton

An array of cells that evolves according to a set of rules
based on the states of surrounding cells; for example, a
cell might be “on” if its four neighbor cells (east, west,
north, and south) are also on. The entire array can self-
organize into global patterns that may move around the
screen. These patterns can be quite complex even though
they emerge from just a few very simple rules governing
the connections among the cells. Cellular automata are
the simplest models of spatially distributed processes.
They were first investigated by John von Neumann in
about 1952. Von Neumann incorporated a cellular model
into his “universal constructor” and also proved that an
automaton consisting of cells with four orthogonal
neighbors and 29 possible states would be capable of
simulating a Turing machine for some configuration of
about 200,000 cells. The best-known cellular automaton
is Life (see Life, Conway’s game of ). Another example is
Langton’s ant. The study of cellular automata and their
patterns has led to insights into the way structure is built
up in biological and other complex systems, and for this
reason forms part of the subject of artificial life.

celt

Also known as a rattleback, a simple ancient toy that
behaves in a very counterintuitive way. When spun one
way about its vertical axis, the celt spins for a long time.
When spun the other way, however, a wobble quickly sets
in that halts the rotation and then, incredibly, reverses it.
In his 1986 paper on the subject, the British physicist
Hermann Bondi wrote: “Many people, even trained sci-
entists, find it hard to understand that the behaviour of
the toy doesn’t violate the principle of conservation of
angular momentum.”* The celt’s remarkable antics stem
from three factors: a curved base that has two different
radii—one long radius for the lengthwise curve and one
shorter radius for the tighter curve across the width; axes
of symmetry that are skewed slightly from the principal
axes of inertia; and a different distribution of mass about
each of the two horizontal axes of inertia. To understand
how the celt can switch direction halfway through its per-
formance, think of the frictional force that acts at the
point of contact between the celt and the surface. One
component of the friction creates a torque (twisting
force) that tends to rotate the celt about its vertical axis.
The point of contact is moving all the time and the
torque changes. If the inertial and symmetrical axes coin-
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cided, the average torque over a single oscillation would
be zero. But for the celt, there’s a net torque in one direc-
tion, which reverses the angular momentum. See also
Tippee Top.

center of perspective
The point where the lines joining corresponding points
of two figures that are in perspective meet.

centillion
See large number.

central angle
The angle subtended at the center of a circle by an arc or
a chord; in other words, the angle between two radii.

centroid

For a triangle, the point of intersection of the medians.
For any other shape, the point where coordinates are the
average of the coordinates of the shape’s vertices (see ver-
tex). The centroid is the center of mass of a figure.

century

A period of 100 years. The original Latin centuria means
simply “one hundred” and was used to describe any col-
lection of 100 items. In the Roman army, a century was a
group of 100 men, each known as a centurion. One of the
few modern examples of “century” being used other than
to denote a period of time is in the game of cricket where
a batsman who scores 100 runs in an inning is said to
have “made a century.”

Ceva, Giovanni (1647-1734)

A Jesuit-trained Italian mathematician who specialized in
geometry. His greatest discovery, now known as Ceva’s
theorem, can be stated as follows. Given a triangle with
vertices (corners), A, B, and C and points D, E, and F on
the opposite sides, the lines AD, BE, and CF will inter-
sect at a single point if BD x CEx AF=DCx EA x FB.
The term cevian line was coined by French geometers
around the end of the eighteenth century to honor Ceva.
It is defined as any line joining a vertex of a triangle to a
point on the opposite side. The median, altitude, and
angle bisector are all examples of cevians. The perpen-
dicular bisector, however, in most cases, is not a cevian
because it doesn’t usually pass through a vertex.

chained arrow notation
See Conway’s chained arrow notation.

Chaitin, Gregory (1947-)
An American mathematician and computer scientist at
IBM’s T. J. Watson Research Center who is the chief

architect of a new subject known as algorithmic information
theory, which has profound consequences for our ideas
about randomness. In particular, because of the limita-
tions of computers and the programs they run, Chaitin
has shown that there is an inherent uncertainty or
unknowability in mathematics that is similar to the
uncertainty principle in physics. Although there are an
infinite number of mathematical facts, they are, for the
most part, unrelated to each other and impossible to tie
together with unifying theorems. His powerful message is
that most of mathematics is true for no particular reason;
math is true by accident. See Chaitin’s constant.

Chaitin’s constant

A real number, represented by capital omega (Q) and also
known as the Halting probability, whose digits are distrib-
uted so randomly that no rule can be found to predict
them. Discovered by Gregory Chaitin, Q is definable but
not computable. It has no pattern or structure to it what-
soever, but consists instead of an infinitely long string of
zeros and ones in which each digit is as unrelated to its pre-
decessor as one coin toss is to the next. Although called a
constant, it is not a constant in the sense that, for example,
pi is, since its definition depends on the arbitrary choice of
computation model and programming language. For each
such model or language, Q is the probability that a ran-
domly produced string will represent a program that, when
run, will eventually halt. To derive it, Chaitin considered
all the possible programs that a hypothetical computer
known as a Turing machine could run, and then looked
for the probability that a program, chosen at random from
among all the possible programs, will halt. He eventually
showed that this halting probability turns Turing’s ques-
tion of whether a program ever stops into a real number,
somewhere between zero and one. He further showed that,
just as there are no computable instructions for deciding in
advance whether a computer will halt, there are also no
instructions for determining the digits of Q. Omega is
uncomputable and unknowable: we don’t know its value
for any programming language and we never will. This is
extraordinary enough in itself, but Chaitin has found that
Q permeates the whole of mathematics, placing funda-
mental limits on what we can know.

And Q is just the beginning. There are more disturbing
numbers called Super-Omegas, whose degree of random-
ness is vastly greater even than that of Q. If there were an
omnipotent computer that could solve the halting prob-
lem and evaluate Q, this mega-brain would have its own
unknowable halting probability called Q’. And if there
were a still more godlike machine that could find @, its
halting probability would be Q”. These higher Omegas, it
has been recently discovered, are not meaningless
abstractions. Q, for instance, gives the probability that
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an infinite computation produces only a finite amount of
output. Q” is equivalent to the probability that, during
an infinite computation, a computer will fail to produce
an output—for example, get no result from a computa-
tion and move on to the next one—and that it will do this
only a finite number of times. Omega and the Omega
hierarchy are revealing to mathematicians an unsettling
truth: the problems that we can hope ever to solve form
a tiny archipelago in a vast ocean of undecidability.!*"!

Champernowne’s number

The first known normal number. It was discovered in
1933 by the English mathematician David G. Champer-
nowne and consists of a decimal fraction in which the
decimal integers are written down in increasing order:
0.12345678910111213 . ... Champernowne’s number has
been proven to be a normal number in base 10 and also
to be an irrational number. However, although its digits
appear with equal frequency, the sequence of its digits are
not unpredictable. An example of a number whose se-
quence of digits 7s unpredictable is Chaitin’s constant.

chance
See probability theory.

change ringing

The art of change ringing is peculiar to the English,
and, like most English peculiarities, unintelligible
to the rest of the world. To the musical Belgian, for
example, it appears that the proper thing to do with
a carefully tuned ring of bells is to play a tune upon
it. By the English campanologist . . . the proper use
of the bells is to work out mathematical permuta-
tions and combinations.

—Dorothy L. Sayers, The Nine Tailors

The ringing of a set of bells in a precise relationship to
one another to produce a pleasing sound. Bells are num-
bered 1, 2, 3, 4, 5... from lightest (highest-pitched) to
heaviest. After each sequence, or round, the order of the
bells is changed slightly in a predetermined way. With 5
bells, there are 5 x4 x 3 X 2 X 1, or 120, possible changes,
which take about 4 minutes to ring. With 6, 7, or 8 bells,
the number of unique changes is 720, 5,040, and 40,320,
respectively. To produce pleasing variations in the sound,
bells are made to change places with adjacent bells in the
row, for example:

1 2 3 45 6 7 8

21 4 3 6 5 8 7
These rows are the musical notation of change ringing.
No bell moves more than one place in the row at a time,

although more than one pair may change in the same

2
2
4
4

change ringing The “Plain Hunt Minimus” for four bells. The
sequences for bells 1 and 3 are shown by lines.

row. In order to ring a different row with each pull of the
rope, ringers have devised methods for changing pairs in
orderly ways. In ringing a method, the bells begin in
rounds, ring changes according to the method, and
return to rounds without repeating any row along the
way. These place changes produce musical patterns, with
the sounds of the bells weaving in and out. For example,
a “Plain Hunt Minimus” with four bells is rung as shown
in the diagram.
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Experienced ringers test and extend their abilities by
ringing peals: 5,000 or more changes without breaks or
repeating a row. Peals customarily last about three hours.
The first peal was rung in England in 1715. Chiming bells
(swinging them through a short arc using a rope and a
lever) goes well back into the Middle Ages, but it wasn’t
until the seventeenth century that ringers developed the
full wheel, which allowed enough control for orderly
ringing. In 1668 Fabian Stedman published Tintinnalogia
(The art of change ringing), containing all the available
information on systematic ringing. The theory of change
ringing set forth by Stedman has been refined in later
years but remains essentially unchanged today. Bells for
change ringing are hung in stout frames that allow the
bells to swing through 360°. Each bell is attached to a
wooden wheel with a handmade rope running around it
and takes about 2 seconds to rotate. The bells are
arranged in the frame so their ropes hang in a circle in the
ringing chamber below. Into each rope is woven a tuft of
brightly colored wool (a sally), which marks where the
ringer must catch the rope while ringing. Bells are rung
from the “mouth up” position. With a pull of the rope,
the bell swings through a full circle to the up position
again. With the next pull it swings back in the other
direction. The plot of Dorothy Sayers’s The Nine Tailors
(1934), considered one of her best works, revolves
around the art of change ringing.

chaos

We adore chaos because we love to produce order.
—M. C. Escher

A phenomenon shown by some dynamical systems,
which consists of a curious, infinitely complex pattern of
behavior that lies just beyond the edge of total order. A
system is chaotic if it is predictable in principle and yet is
unpredictable in practice over long periods because its
behavior depends very sensitively on initial conditions.
Despite this unpredictability, however, there are certain
constants, such as Feigenbaum’s constant, and certain
structures, such as chaotic attractors, that are fixed and
susceptible to analysis. The weather, the movements of a
metal pendulum moving over fixed magnets, and the
orbits of closely spaced moons are all examples of chaotic
systems. Although the ideas behind modern chaos theory
were actively studied at some level throughout most of
the twentieth century, the word as a mathematical term
dates only from an article in American Mathematical
Monthly in 1975 called “Period Three Implies Chaos.”

In everyday language, chaos has come to mean the
exact opposite of order. But the Greek root kbaox means
“empty space” and this meaning still persists in archaic
usage where it refers to a canyon or abyss. The evolution

of the word to mean disorder seems to come from refer-
ence to the time before God created the universe. Empty
space was formless and the creation filled the emptiness
and established order. Mathematical chaos represents an
unexpected third state: a deterministic system subject to
simple rules that nevertheless displays infinitely complex
behavior.!"*”!

chaos tiles
See Penrose tiling.

chaotic attractor

Also known as a strange attractor, a type of attractor (i.e.,
an attracting set of states) in a complex dynamical sys-
tem’s phase space that shows sensitivity to initial condi-
tions. Because of this property, once the system is on the
attractor, nearby states diverge from each other exponen-
tially fast. Consequently, small amounts of noise are
amplified. Once sufficiently amplified the noise deter-
mines the system’s large-scale behavior and the system is
then unpredictable. Chaotic attractors themselves are
markedly patterned, often having elegant, fixed geometric
structures, despite the fact that the trajectories moving
within them appear unpredictable. The chaotic attractor’s
geometric shape is the order underlying the apparent
chaos. It functions in much the same way as someone
kneading dough. The local separation of trajectories cor-
responds to stretching the dough and the global attraction
property corresponds to folding the stretched dough back
onto itself. One result of the stretch-and-fold aspect of
chaotic attractors is that they are fractals; that is, some
cross section of them reveals similar structure on all scales.

character theory

The study of the traces (sums of the diagonal elements)
of the matrix representations of a group. The informa-
tion gained is listed in character tables, the properties of
which give insight into the group’s properties.

chess

A game of strategy for two players that probably origi-
nated in India, though the earliest documentary refer-
ences are in Chinese and Persian texts in about A.D. 600.
Each player has 16 pieces, either black or white, consist-
ing of eight pawns, two rooks (also known as castles), two
knights, two bishops, a queen, and a king. The object is
to lay siege to the opposing king in such a way that it can-
not escape attack—a position known as checkmate (from
the Persian phrase Shah Mat, meaning “the king is dead”).
There are 400 first-move combinations—20 for white x 20
for black (though only 64 of these are regarded as strong),
318,979,564,000 ways of playing the first four moves, and
169,518,829,100,544,000 trillion ways of playing the first
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chess An illumination from the Cantigas de Santa Maria (a thirteenth-century collection of songs) showing a chess game in

progress.

10 moves. The total number of possible board configura-
tions is estimated at 10'®; for comparison, that of Go is
generally put at about 10"

A standard chessboard is a square plane divided into
64 smaller squares by straight lines at right angles. Origi-
nally, it wasn’t checkered (that is, made with its rows and
columns alternately of dark and light colors), and this
feature was introduced merely to help the eye in actual
play. In many puzzles based on chess the utility of check-
ering is questionable, and the board may be generalized
to any z X 7 size.

One of the first puzzles to use a chessboard was the
wheat and chessboard problem, posed in 1256 by the
Arabic mathematician Ibn Kallikan. Among the earliest
problems to involve chess pieces, proposed by Guarini di
Forli in 1512, asks how two white and two black knights
can be interchanged, using normal knight’s moves, if they
are placed at the corners of a 3 x 3 board. The unusual
L-shaped movement of the knight is what makes one of
the best known chess puzzles, the knight’s tour, such a
challenge. Other standard puzzles, often called simply the
kings problem, the queens puzzle, the rooks problem,

the bishops problem, and the knights problem, ask for
the greatest number of each of these pieces that can be
placed on an 8 x 8 board or on a generalized 7 x # board
without attacking each other, and/or the smallest number
of each of these pieces that are needed to occupy or attack
every square. Fairy chess is any variant on the standard
game, which may involve a change in the form of the
board, the rules of play, or the pieces used. For example,
the normal rules of chess can be used but with a cylindri-
cal or Mobius band connection of the edges.

Chinese cross
See burr puzzle.

Chinese remainder theorem

If there are » numbers, 4, to a,, that have no factors in
common (i.e., are pairwise relatively prime), then any
integer greater than or equal to 0 and less than the prod-
uct of all the numbers 7 can be uniquely represented by
a series consisting of the remainders of division by the
numbers 7. For example, if 2, = 3 and 4, = 5, the Chinese
remainder theorem (CRT) says that every integer from 0
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to 14 will have a unique set of remainders when divided
separately by (modulo) 3 and 5. Listing out all the possi-
bilities shows that this is true:

0 has a remainder of 0 modulo 3 and a remainder of 0
modulo 5.

1 has a remainder of 1 modulo 3 and a remainder of 1
modulo 5.

2 has a remainder of 2 modulo 3 and a remainder of 2
modulo 5.

3 has a remainder of 0 modulo 3 and a remainder of 3
modulo 5.

4 has a remainder of 1 modulo 3 and a remainder of 4
modulo 5.

5 has a remainder of 2 modulo 3 and a remainder of 0
modulo 5.

6 has a remainder of 0 modulo 3 and a remainder of 1
modulo 5.

7 has a remainder of 1 modulo 3 and a remainder of 2
modulo 5.

8 has a remainder of 2 modulo 3 and a remainder of 3
modulo 5.

9 has a remainder of 0 modulo 3 and a remainder of 4
modulo 5.

10 has a remainder of 1 modulo 3 and a remainder of
0 modulo 5.

11 has a remainder of 2 modulo 3 and a remainder of
1 modulo 5.

12 has a remainder of 0 modulo 3 and a remainder of
2 modulo 5.

13 has a remainder of 1 modulo 3 and a remainder of
3 modulo 5.

14 has a remainder of 2 modulo 3 and a remainder of
4 modulo 5.

CRT enables problems such as the following to be solved:
Find the two smallest counting numbers that will each
have the remainders 2, 3, and 2 when divided by 3, 5, and
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7, respectively. It is said that the ancient Chinese used a
variant of this theorem to count their soldiers by having
them line up in rectangles of 7 by 7, 11 by 11, and so forth.
After counting only the remainders, they solved the associ-
ated system of equations for the smallest positive solution.

Chinese rings

One of the oldest known mechanical puzzles, the object
of which is to remove all # rings from a horizontal loop
of stiff wire, and/or put them back on the loop. On the
first move it is possible to take up to two rings off the left
end of the wire. One or both of those can then be slipped
through the wire loop (from top to bottom). If both are
removed then the fourth ring can be slipped over the
end. If just one of the first two is removed, then the next
step is to slip the third ring over the end. Subsequently,
rings must be put back on to the wire loop in order to
remove other rings, and this procedure is repeated over
and over again. In general, the minimum number of
moves needed is (2"*' — 2)/3 if nis even and (2"*' - 1)/3
if # is odd. For example, with seven rings the solution
takes 85 moves. Most of the solution is easy, as each
move normally involves going forward or back to the pre-
vious state. The key to a correct solution is the first step:
if # is even, you must remove two rings; if 7 is odd, you
must remove only one. The solution is similar to that of
the Tower of Hanoi. In fact, Edouard Lucas, who in-
vented the Tower of Hanoi, gave an elegant solution to
the Chinese rings that uses binary arithmetic.

Stewart Cullin, the noted nineteenth-century ethnolo-
gist, relates that the puzzle was invented by the famous
Chinese general Chu-ko Liang (A.D. 181-234), in the sec-
ond century, as a present to his wife so that, in trying to
solve it, she would have something to do while he was
away at the wars. However, this is anecdotal and its ori-
gins remain obscure. The earliest reference to it in Europe
may be in about 1500 in the form of Problem 107 of the
manuscript De Viribus Quantitatis by Luca Pacioli in
which the description appears: “Do Cavare et Mettere una
Strenghetta Salda in al Quanti Anelli Saldi, Difficil Caso”
(Remove and put a little bar joined in some joined rings,

Q) Chinese rings An unusual
A example of Chinese rings in
ivory, dating from the mid-
nineteenth century. Sue & Brian
Young/Mr. Puzzle Australia,
vaw,mrpuzzle,com,au
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difficult case). It was also mentioned by Girolamo Car-
dan in the 1550 edition of his book De Subtililate from
which comes the name Cardan’s rings, and was treated at
length in mathematical terms by John Wallis in about
1685. By the end of the seventeenth century, it had
become popular in many European countries. French
peasants used it to lock chests and called it baguenaudier,
or “time-waster.”

Chinese room

An argument first put forward by the American philoso-
pher John Searle (1932-) in 1980 in an attempt to show
that the human mind is not a computer and that the
Turing test is not adequate to prove that a machine can
have strong artificial intelligence (strong Al)—in other
words, can think in a humanlike way.”” In the Chinese
room scenario, a person who understands no Chinese
sits in a room into which written Chinese characters are
passed. The person uses a complex set of rules, estab-
lished ahead of time, to manipulate these characters, and
pass other characters out of the room. The idea is that a
Chinese-speaking interviewer would pass questions writ-
ten in Chinese into the room, and the corresponding
answers would come out of the room in Chinese. Searle
maintains that if such a system could indeed pass a Tur-
ing test, the person who manipulated the symbols would
obviously not understand Chinese any better than he
did before entering the room.

Searle proceeds systematically to refute the claims of
strong Al by positioning himself as the one who manip-
ulates the Chinese symbols. The first claim is that a sys-
tem able to pass the Turing test understands the input
and output. Searle replies that as the “computer” in the
Chinese room, he gains no understanding of Chinese by
simply manipulating the symbols according to the for-
mal program (the complex translation rules). The opera-
tor in the room need not have any understanding of what
the interviewer is asking, or of the replies that he is pro-
ducing. He may not even know that there is a question-
and-answer session going on outside the room.

The second claim of strong Al to which Searle objects
is the claim that the system explains human understand-
ing. Searle asserts that since the system is functioning—in
this case passing the Turing Test—and yet there is no
understanding on the part of the operator, then the sys-
tem does not understand and therefore could not explain
human understanding.

chiral

Having different left-hand and right-hand forms; not
mirror symmetric. For example, the snub cube (one of the
Archimedean solids) is chiral, where as the ordinary
cube is not.

Chladni, Ernst Florens Friedrich (1756-1827)

A German lawyer, musician (he was born in Leipzig in
the same year as Mozart and died in the same year as
Beethoven), and amateur scientist who founded the sci-
ence of acoustics. While investigating musical tones, he
had the inspired idea of making the sounds visible in a
solid material. He spread fine sand over a glass or metal
plate and set it into vibration with the bow of a violin by
scraping the bow along one edge of the plate. The bow
alternately stuck and slipped in rapid succession on the
edge of the plate creating waves that moved across the
plate and were reflected from the edges. These reflected
waves became superimposed on the new waves coming
from the bow edge, resulting in symmetrical patterns of
nodal lines where the plate wasn’t moving. The type of
pattern produced on a Chladni plate depends on a vari-
ety of factors, including the point or points of support
and their location; the point where the bow touches the
plate; the frequency of the vibration, which is influenced
by the speed the bow; and the shape and other properties
of the plate itself.

chord
A straight line that joins two points on a curve. Most
commonly, chord is used to mean a straight line segment
joining, and included between, two points on a circle. In
this more restricted sense it first appears in English in
1551 in Robert Recorde’s The Pathwaie to Knowledge:
“Defin., If the line goe crosse the circle, and passe beside
the centre, then is it called a corde, or a stryngline.”
Some surprising results emerge from moving chords.
For example, take a chord in a circle C, and slide the
chord around the circle so that the midpoint of the chord
traces out a smaller concentric circle. Call the area
between the two circles A(C). Now do the same thing
with a larger circle C” but with the same length chord. Is
A(C’) larger or smaller than A(C)? Surprisingly, they are
the same. In other words A(C) doesn’t depend on what
circle you start with, only the length of the chord. An
even more amazing fact is that if you slide a chord of
fixed length around any convex shape C so that the chord’s
midpoint traces out another figure D, the area between C
and D doesn’t depend on what shape you started with.

chromatic number

(1) In graph theory, the minimum number of colors
needed to color (the vertices of) a connected graph so
that no two adjacent vertices are colored the same. In the
case of simple graphs, this so-called coloring problem can
be solved by inspection. In general, however, finding the
chromatic number of a large graph (and, similarly, an
optimal coloring) is an NP-hard problem. (2) In topol-
ogy, the maximum number of regions that can be drawn
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on a surface in such a way that each region has a border
in common with every other region. If each region is
given a different color, each color will border on every
other color. The chromatic number of a square, tube, or
sphere, for example, is 4; in other words, it is impossible
to place more than four differently colored regions on
one of these figures so that any pair has a common
boundary. “Chromatic number” also indicates the least
number of colors needed to color any finite map on a
given surface. Again, this is 4 in the case of the plane,
tube, and sphere, as was proved quite recently in the solu-
tion to the four-color map problem. The chromatic
number, in both senses just described, is 7 for the torus,
6 for the Mobius band, and 2 for the Klein bottle. See
also Betti number.

chronogram

A phrase or sentence in which certain letters represent,
cryptically, a date, epoch, or, in rare cases, a non-date
number. For example, the chronogram “My Day Is
Closed In Immortality” commemorates the death of
Queen Elizabeth the First of England: the capital letters
can be rearranged to give MDCIIIL, or 1603, the year in
which she died.

Church, Alonzo (1903-1995)

An American logician and professor at Princeton Univer-
sity who was an early pioneer of theoretical computer sci-
ence. He is best known for his development, in 1934, of
the so-called lambda calculus, a model of computation,
and his discovery, in 1936, of an “undecidable problem”
within it. This result preceded Alan Turing’s famous
work on the halting problem, which also pointed out the
existence of a problem unsolvable by mechanical means.
Church and Turing then showed that the lambda calculus
and the Turing machine, which is used in the halting
problem, are equivalent in capability. They also demon-
strated a variety of alternative “mechanical processes for
computation” with equivalent computational abilities.
See also Church-Turing thesis.

Church-Turing thesis

A logical/mathematical postulate, independently arrived
at by Alan Turing and Alonzo Church, which asserts that
as long as a procedure is sufficiently clear-cut and
mechanical, there is some algorithmic way of solving it
(such as via computation on a Turing machine). Thus,
there are some processes or problems that are com-
putable according to some set of algorithms, and other
processes or problems that are not. A strong form of the
Church-Turing thesis claims that all neural and psycho-
logical processes can be simulated as computational
processes on a computer.

cipher

(1) A cryptographic system (see cryptography) in which
units of plain text of regular length, usually letters, are
arbitrarily transposed (see transposition cipher) or sub-
stituted (see substitution cipher) according to a prede-
termined code, or a message written or transmitted in
such a system. See also Caesar cipher and Beal cipher.
(2) The mathematical symbol (0) for zero.

circle

The set of all points in a plane at a given distance, called
the radius, from a fixed point, called the center. A circle is
a simple closed curve that divides the plane into an inte-
rior and exterior. It has a perimeter, called a circumference,
of length 217 and encloses an area of 7t7°. In coordinate
geometry a circle with center (x,, y,) and radius 7 is the set
of all points (x, ) such that:

(x=x)+ (—p) =1

“Circle” comes from the Latin circus, which refers to a
large round or rounded oblong enclosure in which the
famous Roman chariot races were held.

A line cutting a circle in two places is called a secant. The
segment of a secant bound by the circle is called a chord, and
the longest chord is that which passes through the center
and is known as a diameter. The ratio of the circumference to
the diameter of a circle is pi. The length of a circle between
two radii is called an arc; the ratio between the length of an
arc and the radius defines the angle between two radii in
radians. The area bounded by two radii and an arc is known
as a sector. A line touching a circle in one place is called a zan-
gent. Tangent lines are perpendicular to radii. In affine
geometry all circles and ellipses become congruent, and in
projective geometry the other conic sections join them. A
circle is a conic section with eccentricity zero. In topology
all simple closed curves are homeomorphic to circles, and
the word circle is often applied to them as a result. The three-
dimensional analog of the circle is the sphere, and the four-
dimensional analog is the hypersphere.

circle involute

The simplest kind of spiral to draw and understand. It is
the path that a goat, tethered to a post, would follow if it
walked around and around in the same direction, keep-
ing its tether taught until it wound its way to the center.
The radial distance between adjacent loops of the spiral is
equal to the circumference of the central circle. Except
for the innermost loop, the circle involute is hard to dis-
tinguish from the Archimedean spiral, though the two
curves are never identical.

circular cone
A cone whose base is a circle.
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circular helix
See helix.

circular prime

A prime number that remains prime on any cyclic rota-
tion of its digits. An example (in the decimal system) is
1,193 because 1,931, 9,311, and 3,119 are also prime.
Any one-digit prime is circular by default. In base ten,
any circular prime with two or more digits can only con-
tain the digits 1, 3, 7, and 9; otherwise when 0, 2, 4, 5, 6,
or 8 is rotated into the units place, the result can be
divided by 2 or 5. The only circular primes known, listing
just the smallest representative from each cycle, are: 2, 3,
5, 7,11, 13, 17, 37, 79, 113, 197, 199, 337, 1,193, 3,779,
11,939, 19,937, 193,939, 199,933, Ry, Rys, Rsi7 Rigsi and
possibly Russ. These last five are the known rep-unit
primes and probable primes. It’s generally believed that
there are infinitely many rep-unit primes, so there should
be infinitely many circular primes. But it’s very likely that
all circular primes not on the list above are rep-units.

circumcenter

The center of a circle that passes through the vertices (see
vertex) of a given polygon, usually a triangle. For a trian-
gle, it is the same as the point of intersection of the per-
pendicular bisectors of the three sides.

circumcircle

The circle that passes through all three vertices (see
vertex) of a given triangle. It is said to circumscribe the
triangle.

circumference

The distance around the outside of a circle. The word
comes the Latin circus (“circle”) and ferre (“to carry”), thus
means “to carry around.”

cissoid

Given a fixed point A4 and two curves C and D, the cis-
soid of the two curves with respect to A is constructed as
follows: pick a point P on C, and draw a line / through P
and A. This cuts D at Q. Let R be the point on /such that
AP=0R. The locus of R as P moves on C is the cissoid.
The name cissoid, meaning “ivy-shaped,” first appears in
the work of Geminus in the first century B.C.

A special case of this curve, now known as the cissoid of
Diocles, was first explored by Diocles in his attempt to
solve the classical problem of duplicating the cube.
Later investigators of the same curve include Pierre de
Fermat, Christiaan Huygens, John Wallis, and Isaac
Newton. The cissoid of Diocles is traced out by the ver-
tex of a parabola as it rolls, without slipping, on a second
parabola of the same size. It has the Cartesian equation

cissoid The cissoid of Diocles. © Jan Wassenaar,
www.2dcurves.com

' =x*/(Q2a- x).

Interestingly, Diocles investigated the properties of the
focal point of a parabola in Or Burning Mirrors (a similar
title appears in the works of Archimedes). The problem,
then as now, is to find a mirror surface such that when it
is placed facing the Sun, it focuses the maximum amount
of heat.

classification

The goal in a branch of mathematics of providing an
exhaustive list of some type of mathematical object
with no repetitions. For example, the classification of
3-manifolds is one of the outstanding problems in topol-
ogy. With the advent of computers, one weak but precise
way to state a classification problem is to ask whether
there is an algorithm to determine whether two given
objects are equivalent.

clelia

Also known as a clelie curve, the locus of a point P that
moves on the surface of a sphere in such a way that ¢/6
is constant, where ¢ and 0 are the longitude and colati-
tude (the angular distance from a pole).
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Clifford, William Kingdon (1845-1879)

An English mathematician who studied non-Euclidean
geometry and topology. In 1870, he wrote Or the Space
Theory of Matter in which he argued that energy and mat-
ter are simply different types of curvature of space—a
remarkably advanced idea that would come to fruition in
Einstein’s general relativity theory. Although small of
build Clifford was remarkably strong and able to do one-
armed chin-ups. His death at an early age was the result
of overwork and exhaustion.

clock puzzles
The earliest known clock problem was posed in 1694
by Jacques Ozanam in his Récréations mathématiques et

physiques.

PUZZLES
Here are two clock puzzles invented by Lewis Carroll:

1. A clock has hour and minute hands of the same
length and no numerals on its face. At what time
between 6 and 7 o’clock will the time on the
clock appear to be the same as the time read on
the reflection of the clock in a mirror?

2. Which has a better chance of giving the right time:
a clock that has stopped or one that loses a
minute every day?

And here is another from Henry Dudeney’s Amuse-
ments in Mathematics called “The Club Clock”:

3. One of the big clocks in the Cogitators’ Club was
found the other night to have stopped just when
the second hand was exactly midway between
the other two hands. One of the members pro-
posed to some of his friends that they should tell
him the exact time when (if the clock had not
stopped) the second hand would next again have
been midway between the minute hand and the
hour hand. Can you find the correct time that it
would happen?

Solutions begin on page 369.

closed

A closed curve is one that has no endpoints so that it com-
pletely encloses a certain area. A closed interval, which cor-
responds to a closed set, is an interval that includes its
endpoints.

cochleoid

A spiral curve that was first studied by J. Peck in 1700 and
Bernoulli in 1726. Its name, meaning “snail-form”
(kochlias is Greek for “snail”), was coined by Benthan and
Falkenburg in 1884. It can be constructed starting from a
point O on the y-axis. For all circles through O (tangent

cochleoid A cochleoid inside the circle used to construct it.
© Jan Wassenaar, www.2dcurves.com

to the y-axis), pace a constant distance on the circle. The
collection of those points is the cochleoid. In Cartesian
coordinates, it is given by the formula

(x* + %) tan™ (y/x) = ay
and in polar coordinates by
r=asin® /0.

The points of contact of parallel tangents to the cochleoid
lie on a strophoid.

code
See cipher.

codimension

In general, if a mathematical object sits inside or is asso-
ciated with another object of dimension 7, then it is said
to have codimension % if it has dimension 7 — &.

coding theory

The branch of mathematics concerned with sending data
across noisy channels and recovering the message. Whereas
cryptography is about making messages hard to read, cod-
ing theory focuses on making messages easy to read. The
basic problem is that messages, in the form of binary digits
or bits (strings of 0 or 1) have to be sent along a channel
(such as a phone line) in which errors occur randomly, but
at a predictable overall rate. To compensate for the errors,
more bits have to be sent than are contained in the original
message. The easiest way to detect errors in binary data is
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the parity code, which inserts an extra parity bit after every
7 bits from the source message. To correct as well as detect
errors, the data has to be retransmitted. A simple way to do
this is to repeat each bit a set number of times. The recipi-
ent sees which value, 0 or 1, occurs more often and
assumes that to be the intended bit. This method can cope
with error rates up to 1 error in every 2 bits transmitted but
it means that an awful lot of extra bits have to be sent.

In 1948, Claude Shannon at Bell Labs began the sub-
ject of coding theory by proving the minimum number
of extra bits that had to be transmitted to encode mes-
sages but without showing ways to find these optimal
codes. Two years later, Richard Hamming, also at Bell
Labs, gave details of error-correcting codes with informa-
tion transmission rates more efficient than simple repeti-
tion. His first code, in which four data bits were followed
by three check bits, allowed not only the detection but
the correction of a single error.

While Shannon and Hamming were involved with
information transmission in the United States, John
Leech devised similar codes while working on group the-
ory at Cambridge University. This research also took in
the sphere packing problem and culminated in the amaz-
ing, 24-dimensional Leech lattice, the study of which
proved crucial to understanding and classifying finite
symmetry groups. The value of error-correcting codes for
information transmission, both on Earth and from space,
was immediately grasped, and a variety of codes were
constructed that boosted both economy of transmission
and error-correction capacity. Between 1969 and 1973 the
NASA Mariner probes used a powerful Reed-Muller code
capable of correcting 7 errors out of 32 bits transmitted.
A less obvious application of error-correcting codes came
with the development of the compact disk on which the
signal is encoded digitally. To guard against scratches and
other damage, two interleaved codes that can correct up
to 4,000 consecutive errors are used. By the late 1990s the
goal of finding explicit codes that reach the limits pre-
dicted by Shannon’s original work had been achieved.

codomain

For a given function or mapping, a set within which the
values of the function lie. This is different from the set of
values, known as the range, that the function actually takes.

coefficient

A number or other factor that multiplies a variable. For
example, in the equation 3x — 4ky = 8, the 3 and 4k are
coefficients of the variables x and y. The word combines
three elements, the Latin facere (“to do”), and the prefixes
ex (“out”) and co (“with”), to give the overall meaning of
joining two things together to bring about a result. The
sixteenth-century mathematician Francois Vieta may

have coined the word, but it was not commonly used
until around the beginning of the eighteenth century.

Coffin, Stewart T.

A leading designer of mechanical puzzles. He is also
the author of The Puzzling World of Polybedral Dissec-
tions,”*" one of the most significant works produced on
this subject.

cohomology

A subject that involves calculating algebraic invariants of
topological spaces that are formally dual to homology.
The invariants obtained are in general more powerful than
those given by homology and usually have more algebraic
structure. Generalized cobomology theories, both for topologi-
cal spaces and for purely algebraic structures, have been
developed that have some of the formal properties of
cohomology but which don’t have the same geometric
background.

coin paradox

Consider two round coins of equal size. Imagine holding
one still and then rolling the other coin around it, mak-
ing sure that it doesn’t slip and that the rims are touching
at all times. How many times will the moving coin have
rotated after it has completed one revolution of the sta-
tionary coin? Most people believe that the answer will be
once and are therefore surprised to discover that the
truth is in fact twice.

coincidence

What an amazing coincidence! Well, not really. Coinci-
dences are bound to happen. In a world where there are
a great many potential coincidences each with a small
probability of happening, someone, somewhere is going
to see one—and be amazed by it. The fact that there are
countless numbers of noncoincidences and many people
who don’t see a significant coincidence in the same
period of time is overlooked. Also, we tend to underesti-
mate the probabilities of coincidences in certain situa-
tions and are therefore more surprised than we should be
when coincidences happen. A classic example of this is
the birthday paradox.

Obviously some things are extraordinarily unlikely.
What are the chances, for example, of a meteorite hitting
your car? Next to nothing, but not quite nothing. There
are a lot of cars and there are dozens of meteorites that
strike Earth every day. Sooner or later, it’s bound to hap-
pen. In fact, it did happen to Michelle Knapp’s Chevy
Malibu parked outside her home in Peekskill, New York,
on the evening of October 9, 1992. A 12-kilogram space
rock smashed through the car’s trunk and ended up on
the driveway below.
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Does coincidence completely explain away all events
that might otherwise be put down to precognition? On
April 15,1912, the SS Titanic sunk on her maiden voyage,
having been holed by an iceberg, and over 1,500 people
died. Fourteen years earlier a novel had been published by
Morgan Robertson that seemed to foretell the disaster.
The book described a ship the same size as Titanic that
struck an iceberg on its maiden voyage on a misty April
night. The name of Robertson’s fictional ship was the
Titan. Mere happenstance or evidence of something
deeper? Numerologists often spot matchups that would
go unnoticed by the rest of us. Is it so strange that there are
almost exactly 500 million inches in the pole-to-pole
diameter of Earth? Not if you work in centimeters. And
should we make such a fuss over the fact that the speed of
light is within 0.1% of 300,000 kilometers per second
when we give no attention to the miles-per-second value
of 186,282? Yet, surely, there can be no doubt that Shake-
speare wrote the Bible. The King James Version was pub-
lished in 1611, when Shakespeare was 46 years old. Look
up Psalm 46. Count 46 words from the beginning of the
Psalm. You will find the word “Shake.” Count 46 words
from the end of the Psalm. You will find the word “Spear.”
To some, an obvious coded message. See also thirteen.

Collatz problem

A problem first posed by the German mathematician
Lothar Collatz (1910-1990) in 1937, that is also known var-
iously as the 3% + 1 problem, Kakutani’s problem, the Syracuse
problem, Thwaites’ conjecture, and Ulam’s conjecture. It runs as
follows. Let 7 be any integer. (1) If 7 is odd, put 7 equal to
3n+ 1; otherwise, put z equal to /2. (2) If =1, stop; oth-
erwise go back to step 1. Does this process always terminate
(i.e., end in 1) for any value of »¢ To date, this question
remains unanswered, though the process has been found to
stop for all 7 up to 5.6 x 10", British mathematician Bryan
Thwaites (1996) has offered a £1,000 reward for a resolu-
tion of the problem. However, John Conway has shown
that Collatz-type problems can be formally undecidable,
so it not known if a solution is even possible. The members
of sequences produced by the Collatz problem are some-
times known as hailstone sequences.!"!

combination

A set of objects selected without reference to the order in
which they are arranged. Compare with permutation.
See also binomial coefficient.

combinatorics

The study of the ways of choosing and arranging objects
from given collections and the study of other kinds of
problems relating to counting the number of ways to do
something.

commensurable

Two lines or distances are commensurable if the ratio of
their lengths is a rational number. If the ratio is an irra-
tional number, they are called incommensurable.

common fraction
A fraction that consists of the quotient of two integers.

communication theory
See information theory.

commutative

Two numbers, x and z, are said to be commutative under
addition if

x+y=y+x
and to be commutative under multiplication if

XXY=yX.

In general, two elements 4 and % of a set S are commuta-
tive under the binary operation (an operation that works
on two elements at a time) * if

axb=>bx*b

Compare with associative and distributive.

complement

That which is needed to complete something. For in-
stance, the complement of a number is what needs to be
added to it to make a specified value; the complement of
an angle is the angle required to turn it into a right angle.
The complement of a set is composed of all the elements
that are not members of that set.

complete

Describes a formal system in which all statements can be
proved as being true or false. Most interesting formal sys-
tems are not complete, as demonstrated by Godel’s in-
completeness theorem.

complete graph

A connected graph in which exactly one edge connects
each pair of vertices (see vertex). A complete graph with
n vertices, denoted K,, has n(» — 1)/2 edges (i.e., the nth
triangular number), (z — 1)! Hamilton circuits, and a
chromatic number of 7. Every vertex in K, has degree
n — 1; therefore K, has an Euler circuit if and only if
n is odd. In a weighted complete graph, each edge has a
number called a weight attached to it. Each path then
has a total weight, which is the sum of the weights of
the edges in the path. See also traveling salesman
problem.
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complex adaptive system (CAS)

A nonlinear, interactive, complex system with the ability
to adapt to a changing environment. CASs evolve by ran-
dom mutation, self-organization, the transformation of
their internal models of the environment, and natural
selection. Examples include living organisms, the nervous
system, the immune system, the economy, corporations,
and societies. In a CAS, semiautonomous agents interact
according to certain rules of interaction, evolving to maxi-
mize some measure like fitness. The agents are diverse in
form and capability and they adapt by changing their rules
and, hence, behavior, as they gain experience. CASs evolve
historically—their experience determines their future tra-
jectory. Their adaptability can either be increased or de-
creased by the rules shaping their interaction. Moreover,
unanticipated, emergent structures can play a determining
role in the evolution of such systems, which is why they are
highly unpredictable. On the other hand, CASs have the
potential of a great deal of creativity that was not pro-
grammed into them from the beginning.

complex analysis

The study of functions of a complex variable. Often, the
most natural proofs for statements in real analysis or
even number theory use techniques from complex anal-
ysis. Unlike real functions, which are commonly repre-
sented as two-dimensional graphs, complex functions
have four-dimensional graphs and may usefully be illus-
trated by color-coding a three-dimensional graph to sug-
gest four dimensions.

complex number

A real number plus a real number times the square root
of —1; in other words, a number of the form z = a + 7b,
where  and & are real and i = V1. The term i is known
as an imaginary number or the imaginary part of the com-
plex number a + ib; a is called the real part. The names
“complex,” “real,” and “imaginary,” which came about
historically, are totally misleading because complex num-
bers are not particularly complex and imaginary numbers
are no less real than real numbers! Another way to repre-
sent a complex number is as an ordered pair of real num-
bers (a, b) together with the operations: (4, b) + (¢, d) =
(@a+c¢b+d)and (a b) X (¢ d) = (ac— bd, bc + ad). Alter-
natively, complex numbers can be shown as points on an
Argand diagram (a representation of the complex plane) in
which the horizontal axis is the real number line and the
vertical axis represents all possible purely imaginary num-
bers. Any point that appears on the complex plane off-
axis has both real and imaginary parts. On an Argand
diagram a complex number can also be shown as a vector,
or directed line segment (a line of a certain length with an
arrow), extending from the origin (0 + 07) to the number

(a+bi). The absolute value or magnitude of a complex num-
ber z, thought of as a point on a plane, is its Euclidean dis-
tance from the origin, and is denoted |z; this is always a
nonnegative real number. Algebraically, if z=a + ib, we
can define |z| = M(@® + ?). If the complex number z is
written in polar coordinates z=r¢", then || =

Complex numbers are a natural extension of real num-
bers and form what is called an algebraically closed field.
Because of this, mathematicians sometimes consider the
complex numbers to be more “natural” than the real
numbers: all polynomial equations have solutions
among the complex numbers, which is not true for the
real numbers. Complex numbers are used in electrical
engineering and other branches of physics as a conve-
nient description for periodically varying signals. In an
expression z = re’” one may think of 7 as the amplitude
and ¢ as the phase of a sine wave of given frequency. In
special and general relativity theory, some formulas for
the metric on space-time become simpler if the time
variable is taken to be imaginary.

complex plane
See Argand diagram.

complex system

A collection of many simple nonlinear units that operate
in parallel and interact locally with each other so as to
produce emergent (see emergence) behavior.

complexity
A phenomenon that has two distinct and almost opposite
meanings. The first, and probably the oldest mathemati-
cally, goes back to Andrei Kolmogorov’s attempt to give
an algorithmic foundation to notions of randomness and
probability and to Claude Shannon’s study of communica-
tion channels via his notion of information. In both cases,
complexity is synonymous with disorder and a lack of struc-
ture. The more random a process, the greater its complexity.
An ideal gas, for example, with its numerous molecules
bouncing around in complete disarray, is complex as far as
Kolmogorov and Shannon are concerned. Thus, in this
sense, complexity equates to the degree of complication.
The second, and more recent notion of complexity
refers instead to how structured, intricate, hierarchical,
and sophisticated a natural process is. In particular, it’s a
property associated with dynamical systems in which
new, unpredictable behavior arises on scales above the
level of the constituent components. The distinction
between these two meanings can be revealed by answer-
ing a simple question about a system: Is it complex or is
it merely complicated? Measures of complexity include
algorithmic complexity, fractal dimensionality; Lya-
punov fractals, and logical depth.
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complexity theory

A part of the theory of computation that has to do with
the resources needed to solve a given problem. The most
common resources are fime (how many steps it takes to
solve a problem) and space (how much memory it takes to
solve a problem). Complexity theory differs from com-
putability theory, which deals with whether a problem
can be solved at all, regardless of the resources required.

composite number

A positive integer that can be factored into smaller posi-
tive integers, neither of which is one. If a positive integer
is not composite (4, 6, 8, 9, 10, 12, .. .) or one, then it is
a prime number (2, 3, 5,7, 11, 13,17, . . .). As Karl Gauss
put it in his Disquisitiones Arithmeticae (1801): “The prob-
lem of distinguishing prime numbers from composite
numbers and of resolving the latter into their prime fac-
tors is known to be one of the most important and useful
in arithmetic.” One reason for its importance today is
that many secret codes and much of the security of the

Internet depends in part on the relative difficulty of fac-
toring large numbers. But more basic to a mathematician
is that this problem has always been central to number
theory. Numbers that, for their size, have a lot of factors
are sometimes referred to as highly composite numbers.
Examples include 12, 24, 36, 48, 60, and 120.

compound polyhedron

An assemblage of two or more polyhedra, usually inter-
penetrating and having a common center. There are two
types: a combination of a solid with its dual and an inter-
penetrating set of several copies of the same polyhedron.
The simplest example of a compound polyhedron is the
compound of two tetrahedra, known as the stella octan-
gula and first described by Johannes Kepler. This shape is
unique in that it falls under both of the above classes,
because the tetrahedron is the only self-dual uniform
polyhedron; the edges of the two tetrahedra form the
diagonals of the faces of a cube in which the stella octan-
gula can be inscribed.

compound polyhedron A compound of duals: the cube and the octahedron. Robert Webb, www.software3d.com; created using Webb's Stella
program
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compound polyhedron A compound polyhedron of three cubes (left), such as that used in Escher’s picture “Waterfall.” The
compound of four cubes (right) is also known as Bakos's compound. Robert Webb, www.software3d.com; created using Webb’s Stella program

Another example of a compound follows from an
important Platonic relationship: a cube can be inscribed
within a dodecahedron. There are five different posi-
tions for a cube within a dodecahedron; superimposing
all five gives the compound known as the rhombic triacon-
tabedron.

compressible
Having a description that is smaller than itself; not ran-
dom; possessing regularity.

computability theory

The part of the theory of computation that deals with
problems that are solvable by algorithms or—what
amounts to the same thing—by Turing machines. Com-
putability theory is concerned with four main questions:
What problems can Turing machines solve? What other
systems are equivalent to Turing machines? What prob-
lems require more powerful machines? What problems can

be solved by less powerful machines? Not all problems can
be solved computationally. An wundecidable problem is one
that can’t be solved by any algorithm, no matter how much
time, processing speed, or memory is available. Many
examples are known, one of the most famous of which is
the Halting problem. See also cellular automaton.

computable number

A real number for which there is an algorithm that,
given 7, calculates the nth digit. Alan Turing was the first
to define a computable number and the first to prove
that almost all numbers are uncomputable. An example
of a number that, even though well-defined, is uncom-
putable is Chaitin’s constant.

concave

Curved inward, like the inner surface of a sphere; the word
comes from the Latin concavus for “hollow.” A figure, such
as a polygon or polyhedron, is said to be concave if a line
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segment joining any points inside the figure goes outside
the figure. Similarly, a set is concave if it doesn’t contain
all the line segments connecting any pair of its points.

conchoid

A shell-shaped curve. Given a point 4 and a curve C, if we
pick a point Q on C and draw a line L through A4 and O
and mark points P and P’ on L at some fixed distance in
either direction from O, then the locus of P and P’ as O
moves on Cis a conchoid. The conchoid of Nichomedes is a
conchoid in which the given line is a straight line; that is,
given a line C and a point A4 we pick a point 0 on C, draw
a line L through A and 0, and mark P and P’ on L at
some fixed distance from Q, The conchoid of Nicomedes
is the locus of P and P’ as Q moves along C. It has the
polar equation R=a sec0 + k. The conchoid of de Sluze is the
curve with the Cartesian equation a(x — a)(x* + y°) = k’x”.

cone

A shape (its name comes from the Greek konos for
pinecone) that has a circular or elliptical base and a ver-
tex, also known as an apex, lying outside the plane of the
base and that is formed from all the line segments joining
points on the edge of the base to the vertex. If the base is
a circle, the shape is a circular cone; if the line, or axis, from
the center of the base to the vertex is perpendicular to the
base, then it is a 7ight cone (an ice-cream cone is a right cir-
cular cone); otherwise it’s an oblique cone. The curved lat-
eral surface of the cone is called a nappe. If the cone is
extended in both directions from the vertex, the result is a
double cone or bicone. A section through a double cone that
has been extended indefinitely in both directions to form
a conic surface is known as a conic section. Another way to
think of a cone is as a surface of revolution generated by
a line that rotates around a fixed point, at a fixed angle
from another line (the axis), both lines passing through
that fixed point. The volume of a cone, of perpendicular
height 4 and circular base of radius 7 is ' 7%

Take a solid cylinder of radius 7 and height 27 Remove
the right double cone that passes through the center of
the cylinder and extends to meet the circular disks on the
cylinder’s top and bottom. Interestingly, the volume of
the remaining object and the volume of a sphere of
radius 7 are the same.

PUZZLE
The Cone Puzzle (no. 202) from Henry Dudeney’s
Amusements in Mathematics® runs as follows: “I have
a wooden cone. How am | to cut out of it the greatest
possible cylinder?”

Solutions begin on page 369.

conformal mapping

A map from the plane to itself that preserves angles. Con-
formal mapping results in the angle between any two
curves being the same as the angle between their images.
The Mercator map is a conformal map of Earth’s surface.

congruent
In the case of geometric figures, having exactly the same
shape and size.

congruum problem

Find a square number x* such that, when a given number
b is added or subtracted, new square numbers are
obtained, so that x> + b= &* and x* — 5= 4. This problem
was posed by the mathematicians Théodore and Jean de
Palerma in a mathematical tournament organized by
Frederick II in Pisa in 1225. The solution is x = # + #*
and b = 4mn(m* — n?), where m and 7 are integers.

conic section

An important, familiar, and ubiquitous family of curves
obtained by slicing a right circular double cone, extended
indefinitely in both directions, with a plane. Depending
on the angle of the slice to the axis of the cone, the result-
ing curve may be a circle, an ellipse, a parabola, or a
hyperbola. The circle is a limiting case of the ellipse,
when the slice is made at right angles to the axis, while the
parabola is the limiting case of both the ellipse and the
hyperbola, when the slice is made parallel to the side of
the cone. The name conic sections comes from the eight-
volume work Conics (Kwvika) by Apollonius, who also
gave us the names ellipse, parabola, and hyperbola.

Another geometric way to define the conics is as the
locus of all points in the plane whose distances, 7 from a
fixed point called the focus, and 4, from a given straight
line called the directrix, have a constant ratio. This ratio,
r/a, is known as the eccentricity, e. The circle has an eccen-
tricity of zero. As the eccentricity increases from near
zero, corresponding to a nearly circular ellipse, the ellipse
stretches until the right-hand side of it disappears to
infinity, ¢ becomes 1, and the ellipse turns into a
parabola, with just one open branch. Like the circle, the
parabola has only one shape, though it may look differ-
ent depending on how much it is enlarged or diminished.
As the eccentricity increases beyond 1, the “lost” right-
hand end of the ellipse reappears from the other side of
infinity, so to speak, and turns into the left-hand branch
of a hyperbola.

Because a hyperbola is effectively an ellipse split in two
by infinity, it comes as no surprise that these curves
are related in an inverse way. An ellipse consists of all
points whose distances from two foci have a constant
sum, while a hyperbola is made from all points whose
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hyperbola

circle

ellipse

parabola

hyperbola

conic section The circle, ellipse, parabola, and hyperbola,
obtained by slicing a right double cone in various ways.

distances from two foci have a constant difference. These
definitions also apply to the circle and the parabola, if
the two foci are considered to coincide in the case of the
circle and to be separated by an infinite distance in the
case of the parabola.

In terms of algebra, the family of conics represents all
the possible real number solutions to the general qua-
dratic equation ax’ + bxy + ¢y’ + dx + ey + f= 0. In other
words, the graph of any quadratic with real solutions is
always a conic section. The key quantity is the difference
b* — 4ac. If this is less than zero, the graph is an ellipse, a
circle, a point, or no curve. If > — 4ac = 0, the graph is a
parabola, two parallel lines, one line, or no curve; if it is
greater than zero, the graph is a hyperbola or two inter-
secting lines.

conical helix
See helix.

conjecture

A mathematical statement that has been put forward as a
true statement, but that no one has yet been able to
prove or disprove; in mathematics, a conjecture and a
hypothesis are essentially the same thing. When a con-
jecture has been proven to be true, it becomes known as
a theorem. Famous conjectures include the Riemann
hypothesis, the Poincaré conjecture, the Goldbach
conjecture, and the twin primes conjecture. Just to show
how terminology can be used inconsistently, however,
the most famous of all conjectures, for centuries before
its proof in 1995, was always known as Fermat’s last the-
orem!

conjugate

(1) Conjugate angles add up to 360°. (2) The complex conju-
gate of a complex number a + bi is a — bi. (3) Conjugate
lines of a conic section have the property that each con-
tains the pole point of the other, while conjugate points of
a conic have the property that each lies on the polar line
of the other. In general, conjugate indicates that there is
a symmetrical relationship between two objects A and B;
in other words, there is an operation that will turn 4 into
B and B into A.

connected

A space § is said to be connected if any two points in §
can be connected by a curve lying wholly within S. Two
spaces can be added by what is called a connected sum.
Roughly speaking, this involves pulling out a disk from
each surface, creating holes, and then sewing the two sur-
faces together along the boundaries of the holes. In this
way, a one-holed torus can be added to a two-holed torus
to give a three-holed torus; alternatively, a projective
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plane can be added to a projective plane to give a Klein
bottle. The operation is commutative and associative
and there is even an identity element: for example,
adding a sphere to any surface simply returns the same
surface. See also simply connected.

connected graph

A graph in which a path exists between all pairs of ver-
tices (see vertex). If the graph is also a directed graph,
and there exists a path from each vertex to every other
vertex, then it is a strongly connected graph. If a connected
graph is such that exactly one edge connects each pair of
vertices, then it is said to be a complete graph. See also
Euler path and Hamilton path.

connectionism

A computational approach to modeling the brain that
relies on the interconnection of many simple units to
produce complex behavior.

connectivity

The amount of interaction in a system, the structure of
the weights in a neural network, or the relative number
of edges in a graph.

consistency

An axiomatic theory is said to be consistent if it’s
impossible (within the confines of the theory) to prove
simultaneously a statement and its negation. Godel’s
incompleteness theorem states that any (sufficiently
powerful) consistent axiomatic theory is incomplete.

constructible

In classical geometry, a figure or length that can be drawn
using only an unmarked straightedge and a compass. The
Greeks were adept at constructing polygons, but the
question of proving which regular polygons are con-
structible and which are not had to wait for the genius of
Carl Gauss. At the age of only 19, Gauss found that a
regular polygon with 7 sides is constructible if and only if
7 is a prime Fermat number. The only known such
primes are 3, 5, 17, 257, 65,537. It is also possible to con-
struct certain numbers, known as constructible numbers,
that correspond to line segments, including rational
numbers and some irrational numbers, but no tran-
scendental numbers. It turns out that all constructions
possible with a compass and straightedge can be done
with a compass alone, as long as a line is considered con-
structed when its two endpoints are located. The reverse
is also true, since Jakob Steiner showed that all construc-
tions possible with straightedge and compass can be
done using only a straightedge, as long as a fixed circle
and its center (or two intersecting circles without their

centers, or three nonintersecting circles) have been drawn
beforehand. Such a construction is known as a Steiner con-
struction. The Greeks were unable to achieve certain con-
structions, such as squaring the circle, duplicating the
cube, and trisecting an angle, despite numerous at-
tempts, but it wasn’t until hundreds of years later that the
problems were proved to be actually impossible under
the limitations imposed.

continued fraction
A representation of a real number in the form

1
X=ay+

a, +

1
a+—

a+ ...

which, mercifully for typesetters, can be written in com-
pact notation as

x=[ay; a, ay, @, . . ],

where the integers 4; are called partial guotients. Although
rarely encountered in school and even college math
courses, continued fractions (CFs) provide one of the
most powerful and revealing forms of numerical expres-
sion. Numbers whose decimal expansions look unre-
markable turn out, when unfolded as CFs, to have
extraordinary symmetries and patterns. CFs also offer a
way of constructing rational approximations to irrational
numbers and of discovering the most irrational num-
bers.

CFs first appeared in the sixth century in the works of
the Indian mathematician Aryabhata, who used them to
solve linear equations. They surfaced in Europe in the fif-
teenth and sixteenth centuries and Fibonacci attempted
to define them in a general way. The term “continued
fraction” first appeared in 1653 in an edition of Arith-
metica Infinitorum by John Wallis. Their properties were
also studied by one of Wallis’s English contemporaries,
William Brouncker, who, along with Wallis, was one of
the founders of the Royal Society. At about the same
time, in Holland, Christiaan Huygens made practical use
of CFs in his designs of scientific instruments. Later, in
the eighteenth and early nineteenth centuries, Carl
Gauss and Leonhard Euler delved into many of their
deeper properties.

CFs can be finite or infinite in length. Finite CFs can
be evaluated level by level (starting at the bottom) and
will always reduce to a rational fraction; for example, the
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CF [1; 3, 2, 4] = 40/31. By contrast, infinitely long CFs
produce representations of irrational numbers. Here are

the leading terms from a few notable examples of infinite
CFs:

e=12;1,2,1,1,4,1,1,6,1,1,8,1,1, 10,.. ]
V2=1{1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,.. ]
V2=1[1;2,1,2,1,2,1,2,1,2,1,2, 1,2, 1,.. ]

n=1[3;7151,292,1,1,1,2,1,3,1,14,2,1, 1,2, 2,
2,2,1,84,2,.. ]

Each of these expansions has a simple pattern except
that for @ (see pi), which has no obvious pattern at all.
There’s also a preference for the quotients to be small
numbers.

If an infinite CF is truncated after a finite number of
steps, the result is a rational approximation to the original
irrational. In the case of t, chopping the CF at [3; 7] gives
the familiar approximation for m of 22/7 = 3.1428571 . . ..
Keeping two more terms leads to [3; 7, 15, 1] =353/113 =
3.1415929 ..., which is an even better approximation to
the true value of m (3.14159265...). The more terms
retained in the CF, the better the rational approximation
becomes. In fact, the CF gives yields the best possible
rational approximations to a general irrational number.
Notice also that if a large number occurs in the expansion
of quotients, then truncating the CF after that will produce
an especially good rational approximation. Most CF quo-
tients are small numbers (1 or 2), so the appearance in the
CF of m of a number as large as 292 so early in the expan-
sion is unusual. It also leads to an extremely good rational
approximation to T = [3; 7, 15, 1, 292] = 103,993/33,102.

continuity

A mathematical property that has to do with how
smooth or “well-behaved” a function or curve is. If two
adjacent points on a graph, for example, are not con-
nected or are separated by a jump, this marks a break-
down of continuity. At such a discontinuity it is
impossible to obtain a derivative, or slope, of the curve.
Usually if a curve does misbehave like this, it is only at
one or two isolated places; elsewhere the curve is likely to
be both continuous and differentiable. However, it is
possible to construct a continuous function that has
“problem points” everywhere and, therefore, is nowhere
differentiable! The first example was found by Karl
Weierstrass in 1872 and came as a total surprise. It is
defined as an infinite series

Sflx)= i B’ cos (A'nx),

where 4 and B can be any numbers such that B is
between 0 and 1, and A x B is bigger than 1 + (37/2).

continuum

Any set that can be brought into one-to-one correspon-
dence with the set of real numbers. Examples include a
finite line segment, a square, a circle, and a disk.

continuum hypothesis

In 1874 Georg Cantor discovered that there is more than
one level of infinity. The lowest level is called countable
infinity; higher levels are known as wuncountable infinities.
The natural numbers are an example of a countably infi-
nite set and the real numbers are an example of an
uncountably infinite set. The continuum hypothesis, put
forward by Cantor in 1877, says that the number of real
numbers is the zext level of infinity above countable infin-
ity. It is called the continuum hypothesis (CH) because
the real numbers are used to represent a linear continuum.
Let ¢ be the cardinality of (i.e., number of points in) a con-
tinuum, aleph-null (y,) be the cardinality of any count-
ably infinite set, and y; be the next level of infinity above
%o CH is equivalent to saying that there is no cardinal
number between ¥, and ¢, and that ¢ = y¢;. CH has been,
and continues to be, one of the most hotly pursued prob-
lems in mathematics.

convergence

A property of some sequences. A sequence #; is said to
be convergent if there exists a value # with the property
that by choosing a large enough value of 7, we can make
u; as close as we wish to x.

convex

Curved outward, like the exterior surface of a sphere; the
word comes from the Latin convexus for “vaulted.” A figure,
such as a polygon or a polyhedron, is said to be convex if
every line segment that joins two interior points remains
inside the figure. Similarly, a set is convex if it contains all
the line segments connecting any pair of its points.

Conway, John Horton (1937-)

A British-born (Liverpool) mathematician, who studied
and taught at Cambridge University and is now a professor
at Princeton University. Conway has been an extraordinar-
ily fertile source of new ideas in mathematics and of math-
ematical games. His most significant contribution was the
discovery of surreal numbers, to which he was led after
watching the British Go champion play at Cambridge. In
1967, he found a cluster of three new sporadic groups, now
sometimes called Conway’s constellation, building on an ear-
lier discovery by John Leech of an extremely dense packing
of unit spheres in a space of 24 dimensions. He has also
been active in the field of knots and in coding theory.
Among amateur mathematicians, Conway is best known as
the inventor of the games of Life, Sprouts, and Phutball,
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as well as for his detailed analyses of many other games and
puzzles, such as the Soma Cube.

Conway'’s chained-arrow notation

One of various methods that have been devised recently for
representing extremely large numbers. Developed by John
Conway, it is based on Knuth’s up-arrow notation but is
even more powerful. The two systems are related thus:

a—>b—>1=alh
a—>b—>2=alTh

a—=b—-3=aTTh
a—=b—c=aTT...TT b (cup arrows)

Longer chains are evaluated by the following general rules:

a—>...ob>c>l=a—>...5b>c

a—>...ob>1-5d+1=a—...5b
and a—...oboc+1->d+1

=a—>...ob>@@—>...ob>c—>d—>d

It’s important to recognize that the Conway arrow isn’t an
ordinary dyadic operator. Where three or more numbers
are joined by arrows, the arrows don’t act separately but
rather the whole chain has to be considered as a unit. The
chain might be thought of as a function with a variable
number of arguments, or as a function whose single argu-
ment is an ordered list or vector. The Ackermann func-
tion is equivalent to a three-element chain: A(m, 7) =
(2 > (m+3) > (m—2)) — 3. It can also be shown that
Graham’s number is bigger than 3 —» 3 — 64 — 2 and
smaller than3 - 3 — 65 — 2.

coordinate

One of a set of variables that specifies the location of a
point in space. If the coordinates are distances measured
along perpendicular axes, they are known as Cartesian
coordinates. See also polar coordinates.

coordinate geometry
See analytical geometry.

coprime
Two or more numbers are coprime if they have no fac-
tors in common other than 1.

cosine
See trigonometric function.

countable set

A set that is either finite or countably infinite. A countably
infinite set is one that can be put in one-to-one corre-
spondence with the natural numbers and thus has a car-
dinal number (“size”) of aleph-null (8;,). Examples of
countable sets include the set of all people on Earth and
the set of all fractions. See also infinity.

counterfeit coin problem

Among 7 coins, identical in size, shape, and appearance,
one is a counterfeit and has a slightly different weight
than the others. Using only a two-pan balance, what is
the smallest number of weighings that would guarantee
finding the fake coin? The problem of the counterfeit
coin (or some other object), especially involving 8, 10,
12, or 13 coins, has cropped up in many guises over the
years. Typically, the problem also involves finding
whether the counterfeit coin is lighter or heavier than the
rest. The answer depends on the specific problem and
can involve quite a number of steps.

covariance

The tendency of two random variables to move in tandem.
This is important in applications such as survey-taking and
sociology, as well as in many branches of science, because if
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two things tend to vary together, there is a good chance they
may be causally linked. See also causality.

Coxeter, Harold Scott MacDonald (1907-2003)

A British-born, Cambridge-educated mathematician who
spent most of his career (from 1936 on) at the University
of Toronto and was regarded as the greatest classical
geometer of his generation. Always known as “Donald,”
he is best known for his work on hyperdimensional
geometries and regular polytopes.

In 1926, at the age of 19, Coxeter discovered a new
regular polyhedron, having six hexagonal faces at each
vertex. He went on to study the mathematics of kaleido-
scopes and, by 1933, had enumerated the #-dimensional
kaleidoscopes. His algebraic equations expressing how
many images of an object may be seen in a kaleidoscope
are now known as Coxeter groups. His research on icosa-
hedral symmetries played an important role in the dis-
covery by scientists at Rice University, Texas, of the
carbon-60 molecule (see buckyball), for which they won
the 1996 Nobel Prize in Chemistry.

Coxeter was a close friend of the artist M. C. Escher,
whom he met in 1954, and also of Buckminster Fuller,
who used Coxeter’s ideas in his architecture. Indeed Cox-
eter’s work was motivated by a strong artistic tempera-
ment and a sense of what is beautiful. He had originally
intended to be a composer but fascination for symmetry
took him toward mathematics and a career about which
he said “T am extremely fortunate for being paid for what
I would have done anyway.”

Several of Coxeter’s books are considered classics,
including The Real Projective Plane (1955), Introduction to
Geometry (1961)," Regular Polytopes (1963), Non-

—

Euclidean Geometry (1965) and, written jointly with S. L.
Greitzer, Geometry Revisited (1967). In 1938, he revised
and updated Rouse Ball’'s Mathematical Recreations and
Essays.*!

Cross

A shape that consists in its most basic form of an upright
section and a transverse section. The Latin cross has the
shape of an irregular dodecahedron with a single (vertical)
line of symmetry, and can be folded up to make a cube.
The Greek cross has the shape of a plus sign, has four lines
of symmetry, and is used as the emblem of the Red Cross
organization. A version of the Greek cross that has flared
ends is also known as the crux immissa or cross patée. A cross
of Saint Andrew is an ordinary Greek cross rotated through
45°, and is also called the crux decussata; it served as the
basis for the multiplication sign. A cross of Saint Anthony
takes the form of a capital T. The Maltese cross is an irregu-
lar dodecahedron whose cross pieces flange out from the
center.

crunode
A point where a curve intersects itself so that two
branches of the curve have distinct tangent lines.

cryptarithm

A number puzzle in which a group of arithmetical oper-
ations has some or all of its digits replaced by letters or
symbols, and where the original digits must be found. In
such a puzzle, each letter or symbol represents a unique
digit. The first example appeared in American Agriculturist
in 1864. Specific types of cryptarithm include the
alphametic, the digimetic, and the skeletal division.

i

cross From left to right: a Latin cross; a crux immissa (a Greek cross with flared ends), also sometimes called a Latin cross; and a

Maltese cross.
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Csaszar polyhedron

cryptography
The science and mathematics of encoding and decoding
information. See also cipher and cryptarithm.

Csaszar polyhedron

A polyhedron, first described in 1949 by the Hungarian
mathematician Akos Csasz4r,” that is a solution to an
interesting problem, namely: How many polyhedra exist
such that every pair of vertices is joined by an edge? The
first clear example is the well known tetrahedron (trian-
gular pyramid). Some simple combinatorics specify how
many vertices, edges, faces, and holes such polyhedra
must have. It turns out that, other than the tetrahedron,
any such polyhedron must have at least one hole. The

first possible polyhedron beyond the tetrahedron has
exactly one hole; this is the Csdszar polyhedron, which is
thus topologically equivalent to a torus (donut). The
Csaszér polyhedron has 7 vertices, 14 faces, and 21 edges,
and is the dual of the Szilassi polyhedron. It isn’t
known if there are any other polyhedra in which every
pair of vertices is joined by an edge. The next possible fig-
ure would have 12 faces, 66 edges, 44 vertices, and 6
holes, but this seems an unlikely configuration—as,
indeed, to an even greater extent, does any more complex
member of this curious family.

cube

(1) The Platonic solid that has a square for every one of its
6 faces; it also has 12 edges and 8 vertices (corners). The
60" x 30" x 30" Double Cube Room of Wilton House (the
seat of the Earl of Pembroke), near Salisbury, is considered,
together with the Single Cube Room of the same domicile,
among the finest surviving rooms in England from the
mid-seventeenth century. A favorite with filmmakers, it has
provided locations for Barry Lyndon by Stanley Kubrick,
The Madness of King George, and Sense and Sensibility. See also
Atomium, the. (2) To cube something is to raise it to the
power of three. The result of cubing is a cube number: 1* =1,
2% =8, 3% =27, and so on. To take the cube root is the reverse
process; thus, 4 cubed (4°) is 64 and the cube root of 64
(*V/64) is 4. For cube dissection problems, sec Hadwiger
problem, Slothouber-Graatsma puzzle and Soma cube.
See also tesseract and Prince Rupert’s problem.

cubic curve
An algebraic curve described by a polynomial equation
of the general form

ax’ + by + ey’ +dy' + e + oy + 9" + hx+ iy +5=0,

where a, b, ¢, d, ¢,/ g b, i, and j are constants, such that at
least one of 4, 4, ¢, and d is nonzero, and x and y are vari-
ables. One of Isaac Newton’s many accomplishments
was the classification of the cubic curves. Newton found
72 different species of curve; later investigators found six
more, and it is now known that there are precisely 78 dif-
ferent types of cubic curves. Interesting examples include
the folium of Decartes and the Witch of Agnesi.

cubic equation
A polynomial equation of the third degree, the general
form of which is

ax® +bxX* + cx+d =0,

where 4, b, ¢, and 4 are constants. There was a great con-
troversy in sixteenth-century Italy between Girolamo
Cardano and Niccolé Tartaglia about who should get
credit for solving the cubic. At this time symbolic algebra
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hadn’t been developed, so all the equations were written
in words instead of symbols. Early studies of cubics
helped legitimize negative numbers, give a deeper in-
sight into equations in general, and stimulate work that
eventually led to the discovery and acceptance of com-
plex numbers. Cardano, in his Ars Magna, found nega-
tive solutions to equations, but called them “fictitious.”
He also noted an important fact connecting solutions of
a cubic equation to its coefficients, namely, that the sum
of the solutions is the negation of 4, the coefficient of the
x” term. At one other point, he mentions that the prob-
lem of dividing 10 into two parts so that their product is
40 would have to be 5 + v(-15) and 5 — v(-15). Cardano
didn’t go further than this observation of what later came
to be called complex numbers, but a few years later
Rafael Bombelli (1526-1672) gave several examples that
involved these strange new mathematical beasts.

cubit

A measure of length used in the ancient world. It is
approximately equal to the length of a person’s forearm,
that is, the part of the arm from the elbow to the fingers.
The Romans used a cubit equal to 17.4 modern inches;
the Egyptians used one of 20.64 inches.

cuboctahedron

A polygon obtained by cutting the corners off a cube or
an octahedron. It has eight faces that are equilateral tri-
angles and six faces that are squares.

cuboid

Also called a rectangular prism, a hexahedron of which all
of the faces are rectangles and all of the opposite faces are
identical. It is not known whether a perfect cuboid, whose
sides, face diagonals, and space diagonals are all integers,
exists. The general suspicion is that it doesn’t, although
several near misses have been found, including one in
which @ =240, b = 117, c = 44, dab = 267, dac = 244, and
dbc = 125. If there is a perfect cuboid, it has been shown
that the smallest side must be at least 2** = 4,294,967,296.

Cullen number

A number of the form (z x 2”) + 1, denoted C,, and
named after the Reverend James Cullen (1867-1933), an
Irish Jesuit priest and schoolmaster. Cullen noticed that
the first, C; = 3, was a prime number, but with the pos-
sible exception of the fifty-third, the next 99 were all
composite. Soon afterward, Cunningham discovered
that 5,591 divides Cs;, and noted that all the Cullen num-
bers are composite numbers for # in the range 2 < n <
200, with the possible exception of 141. Five decades
later Robinson showed that Cy,; is a prime. Currently, the
only known Cullen primes are those with » = 1, 141,

4,713, 5,795, 6,611, 18,496, 32,292, 32,469, 59,656,
90,825, 262,419, 361,275, and 481,899. Although the vast
majority of Cullen numbers are composite, it has been
conjectured that there are infinitely many Cullen primes.
Whether # and C, can simultaneously be prime isn’t
known. Sometimes, the name “Cullen number” is ex-
tended to include the Woodall numbers, W, = (2 x 2") — 1.
Finally, a few authors have defined a number of the form
(mx ") + 1, with n + 2 > b, to be a generalized Cullen
number.

Cunningham chain

A sequence of prime numbers in which each member is
twice the previous one plus one. For example, {2, 5, 11,
23, 47} is the first Cunningham chain of length 5 and {89,
179, 359, 719, 1,439, 2,879} is the first of length 6. In gen-
eral, a Cunningbam chain of length k of the first kind is a
sequence of % prime numbers, each of which is twice the
preceding one plus one. A Cunningham chain of length k of
the second kind is a sequence of k primes, each of which is
twice the preceding one minus one. For example, {2, 3, 5}
is a Cunningham chain of length 3 of the second kind
and {1,531, 3,061, 6,121, 12,241, 24,481} is a Cunning-
ham chain of length 5 of the second kind. Prime chains
of both these forms are said to be complete if they can’t
be extended by adding either the next larger or the next
smaller terms. See also Sophie Germain prime.

cup
The symbol U, which is used to denote the union of two
sets.

curvature
A measure of the amount by which a curve, a surface, or
any other manifold deviates from a straight line, a plane,
or a hyperplane (the multidimensional equivalent of a
plane). For a plane curve, the curvature at a given point has
a magnitude equal to one over the radius of an osculating
circle (a circle that “kisses,” or just touches, the curve at the
given point) and is a vector pointing in the direction of
that circle’s center. The smaller the radius 7 of the osculat-
ing circle, the greater the magnitude of the curvature (1/7)
will be. A straight line has zero curvature everywhere; a cir-
cle of radius 7 has a curvature of magnitude 1/r everywhere.
For a two-dimensional surface, there are two kinds of
curvature: a Gaussian (or scalar) curvature and a mean cur-
vature. To compute these at a given point, consider the
intersection of the surface with a plane containing a fixed
normal vector (an arrow sticking out perpendicularly) at
the point. This intersection is a plane and has a curva-
ture; if the plane is varied, this curvature also changes,
and there are two extreme values—the maximal and the
minimal curvature—which are known as the main curva-
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tures, 1/R, and 1/R,. (By convention, a curvature is taken
to be positive if its vector points in the same direction as
the surface’s chosen normal, otherwise it is negative.) The
Gaussian curvature is equal to the product 1/R,R,. It is
everywhere positive for a sphere, everywhere negative for
a hyperboloid and pseudosphere, and everywhere zero
for a plane. It determines whether a surface has elliptic
(when it is positive) or hyperbolic (when it is negative)
geometry at a point. The integral of the Gaussian curva-
ture over the whole surface is closely related to the sur-
face’s Euler characteristic. The mean curvature is equal
to the sum of the main curvatures, 1/R; + 1/R,.

A minimal surface, like that of a soap film, has a mean
curvature of zero. In the case of higher-dimensional man-
ifolds, curvature is defined in terms of a curvature tensor,
which describes what happens to a vector that is trans-
ported around a small loop of the manifold.

curve

A continuous mapping from a one-dimensional space to
an n-dimensional space. The most familiar mathematical
curves are two- and three-dimensional graphs. A curve,
such as a circle, that lies entirely in a plane is called a
plane curve; by contrast, a curve that may pass through
any region of three-dimensional space is called a space
curve. See also space-filling curve.

curve of constant width

A curve that, when rotated in a square, makes continuous
contact with all four sides. It may seem, at first sight, as if
there is only one such curve—a circle. But, in fact, there
are infinitely many different curves of constant width.
The circle is the one with the largest area. The simplest
noncircular one, and the one with the smallest area, is the
Reuleaux triangle. Others can be constructed starting
with equilateral (but not necessarily equiangular) stars.
Every curve of constant width is convex. Moreover, Bar-
bier’s theorem states that every curve of constant width =
has the same perimeter, . (The width of a convex figure
is defined as the distance between parallel lines—known as
supporting lines—that bound it.) A curve of constant width
can be used in a special drill chuck to cut square holes. A
generalization gives solids of constant width. These do
not have the same surface area for a given width, but their
shadows are curves of constant width with the same width.

cusp
In mathematics, a point on a curve where two branches,
coming from different directions, meet and have a com-
mon tangent. If the two branches of the curve approach
the tangent from opposite sides the cusp is called a keratoid
(from the Greek kera for “horn”) or first-order cusp. This is
the case, for example, with the curve given by the equation

9?=x’+x. If the two branches of the curve approach the
tangent from the same side the result is a ramphoid or
second-order cusp. “Cusp” derives from the Latin cuspis for
“sharp.” Outside of mathematics, the points of a crescent
moon are called cusps and the sharp pointed premolar
teeth of children are known as bicuspids.

cute number
A number # such that a square can be cut into 7 squares
of, at most, two different sizes. For example, 4 and 10 are
cute numbers.

Cutler, William (Bill)

An Australian puzzle maker and solver who, in 1977,
became the first to completely analyze, using a com-
puter, six-piece burrs used to make solid six-piece burr
puzzles. Martin Gardner devoted his January 1978
“Mathematical Games” column in Scientific American to
this and other of Cutler’s discoveries. In 2003, Cutler
used a computer to enumerate all solutions of the Locu-
lus of Archimedes.

cybernetics

The theoretical study of communication and control
processes in biological, mechanical, and electronic systems,
especially the comparison of these processes in biological
and artificial systems. It was pioneered by Norbert Wiener.

cyclic number

A number with # digits, which, when multiplied by 1, 2,
3, ..., nproduces the same digits in a different order. For
example, 142,857 is a cyclic number: 142,857 x 2 =
285,714; 142,857 x 3 = 428,571, 142,857 x 4 = 571,428;
142,857 x 5 =714,285; 142,857 x 6 = 857,142, and so on.
It has been conjectured, but not yet proven, that an infi-
nite number of cyclic numbers exist.

cyclic polygon

A polygon with vertices (see vertex) that all lie on the
same circle. All triangles are cyclic (but not all of any other
kind of polygon) because any set of three points, not lying
on a single line, can have a circle drawn through it.

cycloid

The shape defined by a fixed point on a wheel as it rolls;
more precisely, it is the locus of a point on the rim of a
circle rolling along a perfectly straight line. The cy-
cloid was named by Galileo in 1599. It is the solution to
both the tautochrone problem and the brachistochrone
problem. In 1634, the French mathematician Gilles de
Roberval (1610-1675) showed that the area under a
cycloid is three times the area of its generating circle. In
1658, the English architect Christopher Wren showed
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cycloid An ordinary cycloid is traced out by a point on a
wheel as it rolls along a flat surface (a). A curtate cycloid is
traveled by a point on the wheel that is inside the circumfer-
ence (b). If the point lies outside the circumference of the
wheel, the result is a prolate cycloid (c).

that the length of a cycloid is four times the diameter of
its generating circle. But there was a lot of bickering and
a lack of public sharing of information around this time
that led to much duplication of effort, particularly over
questions related to the cycloid. In fact, the confusion

was so bad that the curve was nicknamed the Helen of
Geometers, and Jean Montucla referred to it as “/a pomme
de discorde” (the apple of discord).

As well as the ordinary cycloid there is the curtate
cycloid, which is the path traced out by a point on the
inside of a rolling circle, and the prolate cycloid, which is
followed by a point on the outside of the circle. A prolate
cycloid is traced out, for example, by points on the flange
of the wheels of a locomotive, which extends below the
top of the tracks. This leads to the surprising conclusion
that even as the locomotive is moving forward there are
always parts of its wheels that are going backward for
a moment before moving forward again. See also epi-
cycloid and hypocycloid.

cylinder

A three-dimensional surface described by the Cartesian
equation (x/a)* + (y/by’ = 1. If a= b then the surface is a
circular cylinder, otherwise it is an elliptic cylinder. The cylin-
der is a degenerate quadric because at least one of the coor-
dinates (in this case z) doesn’t appear in the equation,
though by some definitions the cylinder isn’t considered
to be a quadric at all. In common usage, a ¢plinder is taken
to mean a finite section of a right circular cylinder with
its ends closed to form two circular surfaces. If the cylin-
der has a radius 7 and a length 4, then its volume is
V = nr*h and its surface area is 4 = 2nr? + 2nrh. For a
given volume, the cylinder with the smallest surface area
has / = 2r. For a given surface area, the cylinder with the
largest volume has = 2. More unusual types of cylinder
include the imaginary elliptic cylinder: (x/a)* + (y/b)* = -1,
the hyperbolic cylinder: (x/a)* — (y/bY = 1, and the parabolic
oylinder: ¥ + 2y = 0.



d’Alembert, Jean Le Rond (1717-1783)

A French mathematician named for the church of St.
Jean Baptiste de Rond upon whose steps he was aban-
doned as a baby, the illegitimate son of a Parisian society
hostess. He clarified the concept of a limit in calculus,
discovered the Cauchy-Riemann equations decades before
Augustin Cauchy or Bernhard Riemann, was the first to
find and solve the wave equation, and recast Newton’s
third law in a new and powerful form through what has
become known as dAlembert’s principle.

Dandelin spheres

If a cone is sliced through by a plane, the two spheres
that just fit inside the cone, one on each side of the plane
and both tangent to it and touching the cone, are known
as Dandelin spheres. They are named after the Belgian
mathematician and military engineer Germinal Pierre
Dandelin (1794-1847) who gave an elegant proof that
the two spheres touch the conic section at its foci. In
1826, Dandelin showed that the same result applies to
the plane sections of a hyperboloid of revolution.

dart
Also known as an arrowhead, a special kind of quadrilat-
eral that has one reflex angle. See also Penrose tiling.

de L'Hopital, Guillaume Francois Antoine,
Marquis de (1661-1704)

A French mathematician who wrote the first textbook
on differential calculus, Analyse des infiniment petits pour
“intelligence des lignes courbes (1696). This contains the
rule, now known as L’Hépital’s rule, for finding the limit
of a rational function whose numerator and denomina-
tor tend to zero at a point. Along with Isaac Newton,
Gottfried Leibniz, and Jacob Bernoulli (see Bernoulli
family), de CHopital was among the first to solve the
brachistochrone problem.

de L'Hépital’s cubic
See Tschirnhaus’s cubic.

de Malves's theorem

Given a tetrahedron in which the edges meeting at one
vertex, X, form three right angles (i.e., the tetrahedron is
the result of chopping off the corner of a cuboid), the
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square of the face opposite X is equal to the sum of the
squares of the other three faces.

de Méré’s problem

A question posed in the mid-seventeenth century to
Blaise Pascal by a French nobleman and inveterate gam-
bler, the Chevalier de Méré, which marked the birth of
probability theory. One of de Méré’s favorite bets was
that at least one six would appear during a total of
four rolls of a die. From past experience, he knew that
this gamble paid off more often than not. Then, for a
change, he started betting that he would get a double-six
on 24 rolls of two dice. However, he soon realized that
his old approach to the game was more profitable. He
asked his friend Pascal why. Pascal showed that the prob-
ability of getting at least one six in four rolls of a die is
1 — (%)* = 0.5177, which is slightly higher than the prob-
ability of at least one double-six in 24 throws of two
dice, 1 — (*46)* = 0.4914. This problem and others
posed by de Méré are thought to have been the original
inspiration for a fruitful exchange of letters on probabil-
ity between Pascal and Pierre de Fermat. To tackle these
problems, Fermat used combinatorial analysis (find-
ing the number of possible outcomes in ideal games of
chance by computing permutation and combination
numbers), while Pascal reasoned by recursion (an itera-
tive process that determines the result of the next case by
the present case). Their combined work laid the founda-
tions for probability theory as we know it today.

de Moivre, Abraham (1667-1754)

A French-British mathematician who founded analytical
trigonometry and stated what has become known as de
Moivre’s theorem. He also worked on probability theory
and the normal distribution, and was a good friend of
Isaac Newton. In 1698 he wrote that the theorem had
been known to Newton as early as 1676.

de Moivre’s theorem

A theorem, named after Abraham de Moivre, that links
complex numbers and trigonometry. It states that for
any real number x and any integer 7,

(cosx + zsinx)” = cos(nx) + isin (7x).

By expanding the left-hand side and then comparing
real and imaginary parts, it is possible to derive useful
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expressions for cos(zx) and sin(zx) in terms of sin(x) and
cos(x). Furthermore, the formula can be used to find
explicit expressions for the nth root of unity: complex
numbers z such that z” = 1. It can be derived from (but
historically preceded) Euler’s formula ¢* = cos x + 7 sin x
and the exponential law (™) = ¢,

de Morgan, Augustus (1806-1871)

A British mathematician, born in India, who was an
important innovator in the field of mathematical logic.
The system he devised to express such notions as the con-
tradictory, the converse, and the transitivity of a relation,
as well as the union of two relations, laid some of the
groundwork for his friend George Boole. De Morgan lost
the sight of his right eye shortly after birth, entered Trin-
ity College, Cambridge, at the age of 16, and received his
B.A. However, he objected to a theological test required
for the M.A. and returned to London to study for the bar.
In 1827, he applied for the chair of mathematics in the
newly founded University College, London and, despite
having no mathematical publications, he was appointed.
In 1831, he resigned on principle (after another professor
was fired without explanation) but regained his job five
years later when his replacement died in an accident. He
resigned again in 1861.

His most important published work, Formal Logic,
included the concept of the guantification of the predicate,
an idea that solved problems that were impossible under
the classic Aristotelian logic. De Morgan coined the
phrase “universe of discourse,” was the first person to
define and name mathematical induction, and devel-
oped a set of rules to determine the convergence of a
mathematical series. In addition, he devised a decimal
coinage system, an almanac of all full moons from 2000
B.C. to A.D. 2000, and a theory on the probability of life
events that is still used by insurance companies. De Mor-
gan was also deeply interested in the history of mathe-
matics. In Arithmetical Books (1847) he describes the work
of over fifteen hundred mathematicians and discusses
subjects such as the history of the length of a foot, while
in A Budget of Paradoxes he gives a marvelous compen-
dium of eccentric mathematics including the poem

Great fleas have little fleas upon their backs to bite
‘em,

And little fleas have lesser fleas, and so ad infini-
tum,

And the great fleas themselves, in turn, have greater
fleas to go on,

While these again have greater still, and greater
still, and so on.

The first lines of this poem paraphrase a similar rhyme by
Jonathan Swift.

PUZZLE

On one occasion, when asked his age, de Morgan
replied: “I was x years old in the year x." How old must
he have been at the time?

Solutions begin on page 369.

decagon
A polygon with 10 sides.

decimal

The commonly used number system, also known as
denary, in which each place has a value 10 times the value
of the place at its right. For example, 4,327 in the decimal
(base 10) system is shorthand for (4 x 10%) + (3 x 10%) +
(2 x 10" + (7 x 10°, where 10° = 1. “Decimal” comes
from the Latin decimus for “tenth.” The verb decimare, lit-
erally “to take a tenth of,” was used to describe a form of
punishment applied to mutinous units in the Roman
army. The men were lined up and every tenth soldier was
killed as a lesson to the rest. From this custom comes our
word decimate, which we use more loosely—in fact, incor-
rectly—to indicate near-total destruction. The Latin deci-
mare was also used in a less ferocious sense to mean “to
tax to the amount of one tenth.” However, the usual
word describing a one-tenth tax in English is #ithe, which
comes from the Old English teogotha, a form of tenth.

decimal fraction

A number consisting of an integer part, which may be
zero, and a decimal part less than unity that follows the
decimal marker (which may be a point or a comma). A
finite or terminating decimal fraction has a sequence of deci-
mals with a definite break-off point after which all the
places are zeros. Other fractions produce endless sequences
of decimals that are periodic nonterminating.

Dedekind, (Julius Wilhelm) Richard (1831-1916)
A German mathematician whose most important contri-
bution was the discovery of what became known as the
Dedekind cut. He realized that every real number r divides
the rational numbers into two subsets: those greater
than 7 and those less than 7. Dedekind’s brilliant idea was
to represent the real numbers by such divisions of the
rationals. He also provided important support for Georg
Cantor’s set theory, which was highly controversial at the
time.

Dee, John (1527-1609)

A notable English alchemist, mathematician, and astron-
omer, sometimes referred to as the “last magician” be-
cause of his astrological services to Queen Elizabeth I;
Dee may also have influenced the writings of Shake-
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speare. He enrolled at St. Johns College, Cambridge, at
age 15, but found the atmosphere there stifling and later
went to the Continent to study and lecture. Upon his
return to England, Dee cast the horoscope for Queen
Mary and later visited Mary’s half-sister Elizabeth in jail
to determine when Mary would die. Accused of black
magic, he was jailed and then released in 1555, three
years before Mary’s death. When Elizabeth came to the
throne she consulted Dee on many matters, including
the geography of newly discovered lands, and paid him
well. Some of his income he spent on extensive traveling,
which may have involved some spying on behalf of his
sponsor.

Dee had a large library of books on witchcraft, the
occult, and magic, and he wrote 79 manuscripts, only a
few of which were published. He married three times and
fathered eight children. He also struck up an uneasy part-
nership with Edward Kelly, a bad-tempered Irishman
who claimed to have discovered the alchemical secret of
transmuting base metal into gold but had lost his ears for
forgery. In 1585 Dee and Kelly went on a four-year trek
across the Continent conducting astrological readings for
nobility and royalty. But Dee and Kelly had many argu-
ments and eventually parted company. Back in England
Dee found his house ransacked and many of his posses-
sions stolen or destroyed. Elizabeth helped pay for the
damage and made him warden of Christ’s College in
Manchester in 1595. However, Elizabeth died in 1603
and her successor James I opposed magic. Dee was forced
to retire, his life ending in poverty.

deficient number
See abundant number.

degree

(1) The unit of measurement for angles; one degree is %360
of a circle. (2) The exponent of a variable. For example,
the degree of 7x’ is 5. See also degree of freedom.

degree of freedom
A positive integer that gives the number of pieces of data
that are independent.

deletable prime
See truncatable prime.

delta curve

A curve that can be turned inside an equilateral triangle
while continuously making contact with all three sides.
There are an infinite number of delta curves, but the sim-
plest are the circle and lens-shaped delta-biangle. All the
delta curves of height 4 have the same perimeter 21th/3.
See also Reuleaux triangle and rotor.

deltahedron

A polyhedron whose faces consist of equilateral triangles
that are all the same size. Although there are an infinite
number of different deltahedra, only eight of them are
convex, as O. Rausenberger first showed in 1915. Among
this group of eight, faces made of coplanar equilateral tri-
angles sharing an edge (such as the rhombic dodecahe-
dron) aren’t allowed. The eight convex deltahedra have
4,6, 8,10, 12, 14, 16, and 20 faces.

deltoid

A hypocycloid with three cusps, also known as a #ricus-
poid or Steiner’s hypocycloid after the Swiss mathematician
Jakob Steiner who investigated the curve in 1856. The
deltoid, so-named because it looks like an uppercase
Greek delta, A, is formed by a point on the circumference
of a circle rolling inside another circle with a radius three
times as large. While working on a problem in optics in
1745, Leonhard Euler was among the first to study its
properties. The parametric equations of the cycloid with
inner circle of radius 7 are:

x(t) = 2rcost + rcos2t
y(t) = 2rsint — rsin2¢

The length of the path of the deltoid is 167/3, and the
area inside the deltoid is 277>, If a tangent is drawn to the
deltoid at some point, P, and the points where the tan-
gent crosses the deltoids other two branches are called
points A and B, then the length of AB equals 47 If the
deltoid’s tangents are drawn at points 4 and B, they will

deltoid The deltoid curve. © Jan Wassenaar, www.2dcurves.com
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be perpendicular, and they will intersect at a point inside
the deltoid that is the 180° rotation of point P about the
center of the fixed circle.

denominator
In a rational number, the number below the fraction
bar; it indicates into how many parts the whole is

divided.

derivative
The result of differentiating a function; that is, the infin-
itesimal change in a function caused by an infinitesimal
change in the variable(s) upon which it depends. The
derivative gives the rate of change of a function (the
slope of its curve) at a particular point. Second and third
derivatives give the rate at which the rate of change is
changing and the rate at which the rate of rate of change
is changing, respectively. In an article in 1996, Hugo
Rossi wrote: “In the fall of 1972 President Nixon an-
nounced that the rate of increase of inflation was decreas-
ing. This was the first time a sitting president used the
third derivative to advance his case for reelection.”?*
Here is a fallacious “proof ” that x = 2x based on deriv-
atives. Consider the function f(x) = x?, the derivative of
which is 2x. What is wrong with the following?

x*=x+x+...+x (repeated x times)
Taking the derivative of both sides gives
@ =1+1+...+1=x

But we have already said that the derivative of x* is 2x.
Therefore, x = 2x. The error stems from taking the deriv-
ative of x different x’s. Each of the terms depends not
only on x, which was accounted for in taking the deriva-
tive, but also on the number of terms (which could be
fractional) which depends on x, too, and this was not
accounted for. Put another way, the derivative measures
the rate of change of x” as x changes, but as x changes, the
number of terms on the right, as well as the terms them-
selves, increases. For positive x, the correct answer must
be larger than x—as indeed it is.

Desargues, Girard (1591-1661)

A French mathematician who is regarded as the chief
founder of perspective geometry. His 12-page treatise La
perspective (1636) consists of a single worked example in
which Desargues sets out a method for constructing a per-
spective image without using any point lying outside the
picture field. He considers the representation in the pic-
ture of a plane of lines that meet at a point and also of
lines that are parallel to each another. In the last paragraph
of the work he considers the problem of finding the per-
spective image of a conic section. Three years later, he

wrote his treatise on projective geometry Brouillon project
d’une atteinte aux evenemens des rencontres du cone avec un plan
(Rough draft for an essay on the results of taking plane
sections of a cone). The first part of this deals with the
properties of sets of straight lines meeting at a point and
of ranges of points lying on a straight line. In the second
part, the properties of conics are investigated in terms of
properties of ranges of points on straight lines and the
modern term “point at infinity” appears for the first time.
Desargues shows that he has completely grasped the con-
nection between conics and perspective; in fact he treats
the fact that any conic can be projected into any other
conic as obvious. Given such innovative work it may
seem surprising that the subject didn’t develop rapidly in
the following years. That may be partly due to mathe-
maticians failing to recognize the power of what had been
put forward. On the other hand, the algebraic approach
to geometry put forward by René Descartes at almost
exactly the same time (1637) may have diverted attention
from Desargues’s projective methods.

Descartes, René (1596-1650)

Ifyou would be a real seeker after truth, it is neces-
sary that at least once in your life you doubt, as far
as possible, all things.

A hugely influential philosopher and mathematician,
born in La Haye (now named Descartes after its most
famous son), Indre-et-Loire, France, who is often referred
to as the father of modern philosophy and one of the
founders of modern mathematics. He studied law at the
University of Poitiers but never practiced it, served in
the military for a while, and then lived in Holland for 20
years where he did the bulk of his great work. In his Med-
itations on First Philosophy, he tried to establish what can
be known as true beyond doubt. His tool was method-
ological skepticism: the assumption that any idea that
can be doubted is false. He gives the example of dream-
ing: in a dream, one senses things that seem to be real,
but that don’t actually exist. Thus, the data of the senses
can’t be fully trusted. Then again, he mused, perhaps
there is an “evil genius”—a supremely powerful and devi-
ous being who sets out to prevent anyone from knowing
the true nature of reality. Given these possibilities, what
is it that one can know for certain? Descartes argues that
if “I” am being deceived, then surely “I” must exist—the
statement famously referred to as cogito ergo sum (“I think,
therefore I am”), though these words don’t actually
appear anywhere in the Meditations. Descartes concludes
that he can be certain that he exists. But in what form? If
the senses are unreliable, Descartes reasons, all he can say
for sure is that he is a thinking thing. He then proceeds to
build a system of knowledge, discarding perception as
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unreliable and instead admitting only deduction as a
method. Halfway through the Meditations he also claims
to prove the existence of a benevolent God who has pro-
vided him with a working mind and sensory system, and
who cannot desire to deceive him, and thus, finally, he
establishes the possibility of acquiring knowledge about
the world based on deduction and perception.

In mathematics, Descartes is important for his discovery
of analytical geometry. Up to Descartes’s time, geometry,
dealing with lines and shapes, and algebra, dealing with
numbers, were regarded as completely independent aspects
of mathematics. Descartes showed how almost all prob-
lems in geometry can be translated into problems in alge-
bra, by regarding them as questions asking for the length of
a line segment, and using a coordinate system to describe
the problem. Descartes’s theory provided the basis for cal-
culus, developed by Isaac Newton and Gottfried Leibniz,
and thus for much of modern mathematics. This is partic-
ularly amazing when you consider that Descartes intended
it merely as an example to support his Discours de la méthode
pour bien conduire sa raison, et chercher la verité dans les sciences
(Discourse on the method to rightly conduct the reason
and search for the truth in sciences), better known under
the shortened title Discours de la méthode.

Descartes died of pneumonia in Stockholm, where he
had been invited to serve as tutor to the energetic 19-year-
old Queen Christina of Sweden. Accustomed to working
in a warm bed till noon, he was shocked into a rapid
decline by having to teach philosophy at 5 A.M. in a freez-
ing library. Seventeen years after his death, the Roman
Catholic Church placed his works on the Index of Pro-
hibited Books.

Descartes’s circle theorem
See Soddy’s formula.

determinant

A quantity obtained from a square (7 X z) array of num-
bers that can be useful, among other things, in solv-
ing systems of linear equations (equations in which the
unknowns are raised to at most the first power). More
generally, a determinant transforms a square matrix into
a scalar—an operation that has many important proper-
ties. Two-by-two determinants were considered by Giro-
lamo Cardano at the end of the sixteenth century and
ones of arbitrary size by Gottfried Leibniz about a cen-
tury later. Determinants are so named because, when
applied to systems of linear equations, they “determine”
if the systems are singular—that is, have multiple solu-
tions. They also have important geometric applications,
because they describe the area of a parallelogram and,
more generally, the volume of a parallelepiped. A three-
rowed determinant is defined by:

ay ap d an X dyp X dsz + dp X dyz X ds
ay Ay Ay = Tt daiXdy Xdyp —diz X dy X d
ay1 dy Az —dp X dy X ds3 — dy Xdy X ds .

deterministic system
A system in which the later states of the system follow
from, or are determined by, the earlier ones. Such a sys-
tem contrasts with a stochastic or random system in which
future states are not determined from previous ones. An
example of a stochastic system would be the sequence of
heads or tails of an unbiased coin, or radioactive decay.
If a system is deterministic, this doesn’t necessarily
imply that later states of the system are predictable from
a knowledge of the earlier ones. In this way, chaos is sim-
ilar to a random system. Chaos has been termed “deter-
ministic chaos” since, although it is determined by
simple rules, its property of sensitive dependence on ini-
tial conditions makes a chaotic system, in practice,
largely unpredictable.

devil’s curve
Also known as the devil on two sticks, a curve with the
Cartesian equation

yA _ ﬂzyz = xt — b2
and the polar equation
? (sin’@ — cos’®) = a%sin’® — b’cos’O).

Early studies of it were carried out in 1750 by the Swiss
mathematician Gabriel Cramer (1704-1752), who is

devil's curve © Jan Wassenaar, www.2dcurves.com



92 Dewdney, Alexander Keewatin

most famous for his work on determinants, and in
1810 by Lacroix. For a = 2%4, the curve is called the elec-
tric motor curve.

Dewdney, Alexander Keewatin (1941-)

A Canadian computer scientist and mathematician at the
University of Western Ontario, Canada, best known for his
popular books and articles, most notably The Planiverse:
Computer Contact with a Two-dimensional World, first pub-
lished in 1984.®" For several years, Dewdney wrote the
“Mathematical Recreations” column for Scientific American.

diagonal

A line that joins any two vertices of a polygon, if the ver-
tices are not next to each other; or a line that joins two
vertices of a polyhedron that are not on the same face.

diagonal matrix

A matrix that has zero entries along all nondiagonal
entries, that is, only the main diagonal may have nonzero
values.

diameter
The distance across a circle through the center.

dice

Small polyhedra (see polyhedron), usually cubes, whose
faces are numbered from one to six by patterns of dots,
with opposite sides totaling seven. They are thrown,
singly or in groups, from the hand or from a cup, onto a
flat surface, to provide random numbers for gambling
and other games. The face of each die that is uppermost
when it comes to rest provides the value of the throw.
Typical of their use today is the game of craps, in which
two dice are thrown together, and bets placed on the total
face-up value. Dice probably evolved from knuckle-
bones, which are approximately tetrahedral. Even today,
dice are sometimes colloquially referred to as “bones.”
Ivory, bone, wood, metal, and stone materials have been
commonly used to make dice, though the use of plastics
is now nearly universal.

Dice found in ancient tombs in the Orient point to an
Asiatic origin and dicing is mentioned as an Indian game
in the Rig-veda. In its primitive form, knucklebones was
essentially a game of skill, played by women and chil-
dren; gradually, a derivative form evolved for gambling
in which four sides of the bones received different values
and were counted like dice. Gambling with three, some-
times two, dice was a popular form of amusement in
Greece, especially with the upper classes, and was an
almost invariable accompaniment to the symposium, or
drinking banquet. The Romans were passionate gam-
blers, and dicing was a favorite form, though it was for-

bidden except during the festival of Saturnalia (Decem-
ber 17). Throwing dice for money led to many special
laws in Rome, one of which decreed that no suit could be
brought by a person who allowed gambling in his house,
even if he’d been cheated or assaulted! Professional gam-
blers were common, and some of their loaded dice are
preserved in museums.

The Roman historian Tacitus states that the Germans
also were passionately fond of dicing—so much so, that,
having lost everything, they would even stake their per-
sonal liberty. Centuries later, in medieval times, dicing
became the favorite pastime of knights, and both dicing
schools and guilds of dicers flourished.

Dice are frequently used to randomize allowable
moves in board games such as backgammon. Loaded
dice can be made in many ways to cheat at such games.
Weights can be added, or some edges made round while
others are sharp, or some faces made slightly off-square,
to make some outcomes more likely than would be pre-
dicted by pure chance. Dice with non-cubical shapes
were once almost exclusively used by fortune-tellers and
in other occult practices, but they have become popular
lately among players of role-playing and war-games.

difference equation

An equation that describes how something changes in
discrete time steps. Numerical solutions to integrals are
usually realized as difference equations.

differential

A term such as dx used in an expression such as ydx — xdy
to denote first-order small changes in the variable. Differ-
entiation is the method by which a differential is found.

differential equation

A description of how something continuously changes
over time (see continuity). Some differential equations
have an exact analytical solution such that all future states
can be known without simulating the time evolution of
the system. However, most have a numerical solution with
only limited accuracy. A differential equation involves
the first or higher derivatives of the function to be solved
for. If the equation only involves first derivatives, it is
known as an equation of order one, and so on. If only nth
powers of the derivatives are involved, the equation is
said to have degree n. Equations of degree one are called
linear. Equations in only one variable are called ordinary
differential equations to distinguish them from partial
differential equations, which have two or more.

differential geometry
The study of geometry using calculus; it has many appli-
cations in physics, especially in relativity theory. The
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objects studied by differential geometry are known as Rize-
mannian manifolds. These are geometrical objects, such
as surfaces, that locally look like Euclidean space and
therefore allow the definition of analytical concepts such
as tangent vectors and tangent space, differentiability
(see differential), and vector and tensor fields. Rieman-
nian manifolds have a metric, which opens the door to
measurement because it allows distances and angles to be
evaluated locally and concepts such as geodesics, curva-
ture, and torsion to be defined.

differential topology

A branch of topology concerned with those properties of
differential geometry that are preserved by continuous
transformation.

differentiation
The method by which the derivative of a function is
found.

digimetic
A cryptarithm in which digits are used to represent other
digits.

digit

A symbol or numeral that is used to represent an integer
in a positional number system. Examples of digits include
the decimal characters 0 through 9, the binary characters
0 or 1, and the hexadecimal digits 0...9, A...E The
word comes from the Latin digitus for “finger” or “toe,”
and retains this meaning, reminding us of the origins of
our base 10 number system. The earlier Indo-European
root deik is related to many other words that hark back to
the use of the hands and fingers to “point” out objects,
including index, indicate, token, and teach.

digital root

Take a number, 7, add its digits, then add the digits of
numbers derived from it, and so on, until the remaining
number has only one digit. This single digit result is
called the digital root of z. For example, in the case of
5381:5+3+8+1=19;1+9=10;1+ 0= 1; thus, the
digital root of 5381 is 1. See also casting out nines.

digraph
A graph in which each edge has a direction associated
with it.

dihedral angle
The angle defined by two given faces meeting at an edge;
for example, all the dihedral angles of a cube are 90°. An
almost-spherical polyhedron (with many faces) has small
dihedral angles.

dimension

An extension in some unique direction or sense; the word
comes from the Latin dimetiri for “measured out.” The
most common way to think of a dimension is as one of
the three spatial dimensions (up-down, left-right, back-
forth) in which we live. Mathematicians and science fic-
tion writers alike have long imagined what it would be like
in a world with a different number of spatial dimensions.
Speculation has particularly focused on two-dimensional
worlds and, to an even greater extent, on the fourth
dimension. Time is also thought of as a dimension; in-
deed, in relativity theory and as a component of space-
time, it is treated almost exactly the same as a dimension
of space. The universe may have additional spatial dimen-
sions—a total of 10, 11, or 26 are especially favored—
according to some theories of the subatomic world (see
string theory and Kaluza-Klein theory), though the
additional ones are “curled up” incredibly small and only
become important at scales far smaller than those that can
be experimentally probed today.

In mathematics, the term dimension is used in many dif-
ferent ways. Some of these correspond to the everyday
idea of an extension in physical space or to some of the
more esoteric meanings in physics. Others are purely
abstract and exist only in certain types of theoretical,
mathematical space. There are, for example, Hamel dimen-
stons, Lebesgue covering dimensions, and Hilbert spaces. So-
called Hausdorff dimensions are used to characterize
fractals—mathematical objects that have fractional dimen-
sions—by giving a precise meaning to the idea of how well
something, such as an extremely “wriggly” curve or sur-
face, fills up the space in which it is embedded.

dinner party problem
See Ramsey theory.

Diocles (c. 240-c. 180 B.c.)

A Greek mathematician and contemporary of Apollo-
nius who studied the cissoid as part of an attempt to
duplicate the cube and also was the first to prove the
focal property of a parabolic mirror.

Diophantine approximation
The approximation of a real number by a rational
number.

Diophantine equation

An equation that has integer coefficients and for which
integer solutions are required. Such equations are named
after Diophantus. The best known examples are those
from Pythagoras’s theorem, 4 = 4* + ¢?, when 4, 4, and
¢ are all required to be whole numbers—a Pythagorean
triplet. Despite their simple appearance Diophantine
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equations can be fantastically difficult to solve. A no-
torious example comes from Fermat’s last theorem
(recently solved), a” = &" + ¢" for n > 2. To give a specific
example, suppose we want to find integer values for x and
y such that

X2 =1620p% + 1.

A trial-and-error approach using a computer would
quickly find the solution: y = 4, x = 161. However, just a
slight change to the equation to make it

x*=1621y" + 1

would leave the trial-and-error method floundering, even
with the resources of the most powerful computers on
Earth. The smallest integer solution to this innocent look-
ing formula involves a y-value that is on the order of a
thousand trillion trillion trillion trillion trillion trillion!
One of the challenges (the tenth one) that David Hilbert
threw down to twentieth-century mathematicians in his
famous list was to find a general method for solving equa-
tions of this type. In 1970, however, the Russian mathe-
matician Yu Matijasevic showed that there is no general
algorithm for determining whether a particular Diophan-
tine equation is soluble: the problem is undecidable.?"* ¥

Diophantus of Alexandria (A.p. c. 200-c. 284)

A Greek mathematician who developed his own alge-
braic notation and is sometimes called “the father of
algebra.” His works were preserved by the Arabs and
translated into Latin in the sixteenth century, when they
served to inspire momentous new advances. Diophan-
tine equations are named in his honor. It was in the
margin of a French translation of Diophantus’s work
Aritmetike from c. 250 that Pierre de Fermat scribbled his
famous comment that became known as Fermat’s last
theorem.

Diophantus’s riddle

One of the oldest known age problems (see age puzzles
and tricks). It comes from the Greek Anthology, a collec-
tion of puzzles compiled by Metrodorus in about A.D.
500, and purports to tell how long Diophantus lived in
the form of a riddle engraved on his tombstone:

God vouchsafed that he should be a boy for the sixth
part of his life; when a twelfth was added, his cheeks
acquired a beard; He kindled for him the light of
marriage after a seventh, and in the fifth year after his
marriage He granted him a son. Alas! late-begotten
and miserable child, when he had reached the mea-
sure of half his father’s life, the chill grave took him.
After consoling his grief by this science of numbers
for four years, he reached the end of his life.

If 4 and s are the ages of Diophantus and his son when
they died, then the epitaph boils down to these two equa-
tions,

d= Y+ +Y7)d+5+s5+4
s=hd

which can be solved simultaneously to give s = 42 years
and d = 84 years.

Dirac, Paul Adrien Maurice (1902-1984)

A British theoretical physicist who played a major role
in the development of quantum mechanics and pre-
dicted the existence of antiparticles. He made his first
great breakthrough at Cambridge University in 1928,
when he found a wave equation for the electron. This
explained aspects of the electron that had previously
been observed but not understood, and, incidentally, is
the only equation to appear in Westminster Abbey,
where it is engraved on Dirac’s commemorative plaque.
Dirac’s electron equation also made the remarkable pre-
diction that there exists a previously unseen type of
matter—a particle like the electron, but with the oppo-
site charge. This was startling at the time because only
two subatomic particles, the electron and the proton,
were known, and there was no suspicion that
others might be waiting in the wings. The prediction
was fulfilled four years later when the positron, as it is
now called, was first seen. A central theme of Dirac’s
work was his belief that beauty and mathematics go
hand in hand. When a journalist once asked him to
explain the concept of mathematical beauty, Dirac
asked the journalist “Do you know mathematics?” and
when the journalist replied “No,” Dirac said, “Then you
can’t understand the concept of mathematical beauty.”
A shy, retiring person, Dirac is not as famous as his
achievements warrant.

Dirac string trick

Take a cardboard square and tie the four corners to
another larger square by loose string. Rotate the small
square by 360° about a vertical axis, that is, in a horizon-
tal plane. The strings will become somewhat tangled, and
it is not possible to untangle them without rotating the
square. Turn the square through another 360°, for a total
of 720°. Contrary to all expectations, it is now possible to
untangle the string, without further rotation of the
square, simply by allowing enough space for the strings
to be looped over the top of the square!

Another version of the Dirac string trick has been
called the Philippine wineglass trick. A glass of water held
in the hand can be rotated continuously through 720°
without spilling any water. Surprisingly, these geometri-
cal demonstrations are related to the physical fact that an
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Dirac string trick The equipment needed to simulate an
electron'’s spin property.

electron has spin . A particle with spin % is something
like a ball attached to its surroundings with string. Its
amplitude changes under a 360° (2m) rotation and is
restored on rotation to 720° (4m).

direct proportion

The relationship two quantities have if the graph of one
against the other is a straight line through the origin; so
if one doubles then the other doubles, and so forth.

directed graph

Also known as a digraph, a graph in which each edge is
replaced by a directed edge, indicated by an arrow. A
directed graph having no multiple edges or loops is
called a simple directed graph. A complete graph in which
each edge is bidirected is called a complete directed
graph. A directed graph having no symmetric pair of
directed edges (i.e., no bidirected edges) is known as
an oriented graph. A complete oriented graph (i.e., a
directed graph in which each pair of vertices is joined by
a single edge having a unique direction) is called a tour-
nament.

directrix
The line that, together with a point called the focus,
serves to define a conic section as the locus of points

whose distance from the focus is proportional to the hor-
izontal distance from the directrix. If the ratio r = 1, the
conic is a parabola, if r < 1, it is an ellipse, and if > 1, it
is a hyperbola.

Dirichlet, Peter Gustav Lejeune (1805-1859)

A German mathematician who made significant contri-
butions to number theory, analysis, and mechanics, and
who is credited with the modern formal definition of a
function. He taught at the universities of Breslau (1827)
and Berlin (1828-1855) and in 1855 succeeded Carl
Gauss at the University of Gottingen but died of a heart
attack only three years later. Dirichlet continued Gauss’s
great work on number theory, publishing on Diophan-
tine equations of the form x° + y° = kz°. His book Lectures
on Number Theory (published posthumously in 1863) is
similar in stature to Gauss’s earlier Disquisitiones and
founded modern algebraic number theory. In 1829 he
gave the conditions sufficient for a Fourier series to con-
verge (though the conditions necessary for it to converge
are still undiscovered).

Dirichlet’s theorem

For any two positive coprime integers, 4 and 4, there are
infinitely many prime numbers of the form an + 4, where
n > 0. This theorem was first conjectured by Karl Gauss
and proved by Peter Dirichlet in 1835.

discontinuity
Also called a jump, a point at which a function is not
continuous.

discrete
Taking only noncontinuous values, for example, Boolean
or natural numbers.

discriminant

A quantity that gives valuable information about the
solutions of an equation. In the case of the quadratic
equation ax* + bx + ¢ = 0, the discriminant is given by
d=U —4ac. If d > 0, the roots of the equation are two dif-
ferent real numbers; if 4= 0, the roots are real and equal,;
if d < 0, the roots are complex numbers. The concept of
discriminant can also be applied in the case of polyno-
mials, elliptic curves, and metrics.

disk

Roughly speaking, the “filling” of a circle. A flat (two-
dimensional) disk of radius 7 consists of all the points
that are at a distance < 7 (closed disk) or < r (open disk)
from a fixed point in the plane. More generally, an 7
dimensional disk of radius 7 is the set of all points at a
distance < 7 (closed) or < r (open) from a fixed point in
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Euclidean #n-space. A disk is the two-dimensional analog

of a ball.

disme

An old word for “tenth.” A notation for decimal frac-
tions was introduced for the first time in 1585 in a pam-
phlet called La Disme by Simon Stevin of Holland.

dissection

Cutting apart one or more figures and rearranging the
pieces to make another figure. Dissection puzzles have
been around for thousands of years. The problem of dis-
secting two equal squares to form one larger square using
four pieces dates back to at least the time of Plato
(427-347 B.C.). In the tenth century, Arabian mathe-
maticians described several dissections in their com-
mentaries on Euclid’s Elements. The eighteenth-century
Chinese scholar Tai Chen presented an elegant dissec-
tion for approximating the value of pi. Others worked
out dissection proofs of the Pythagoras’s theorem. In
the nineteenth century, dissection puzzles by Sam Loyd,
Henry Dudeney, and others became tremendously pop-
ular in magazine and newspaper columns. A classic
example is the Haberdasher’s puzzle. Dissections can
get quite elaborate: an eight-piece octahedron becomes a
hexagon, a nine-piece five-pointed star becomes a penta-
gon, and so on. See also tangrams and Loculus of
Archimedes.”*" >

dissipative system

A dynamical system that contains internal friction
that deforms the structure of its attractor. Dissipative
systems often have internal structure despite being
far from equilibrium, like a whirlpool that preserves
its basic form despite being in the midst of constant
change.

distortion illusion

An illusion that distorts an image’s shape and/or size.
Famous examples include Poggendorff illusion, Zéllner
illusion, Titchener illusion, irradiation illusion, Fraser
spiral, Miiller-Lyer illusion, Orbison’s illusion, verti-
cal-horizontal illusion, and Ames room.

distributive
Three numbers x, y, and z are said to be distributive over
the operation + if they obey the identity

x(y+2)=xy+xz

Compare with associative and commutative.

diverge

If a sequence doesn’t converge it is said to diverge (see
convergence). This can be if it goes to infinity, or if it
simply cycles between two or more values without ever
staying on one of them. For example, the sequences: 1, 2,
4,8,16,32,...and 1,0,1,0, 1,0, ... are both divergent.

division

A counterpart to multiplication defined so that if
axb=c

where b is nonzero, then
a=c/b.

In this equation, « is the guotient, b is the drvisor, and c is
the dividend. A skeletal division is a long division in
which most or all of the digits are replaced by a symbol
(usually asterisks) to form a cryptarithm.

dodecagon
A polygon with 12 sides.

dodecahedron

A polyhedron with 12 faces. A regular dodecabedron is
made from faces that are identical regular pentagons and
is one of the Platonic solids.

dodecahedron A mechanical puzzle in the form of a dodeca-
hedron. Mr. Puzzle Australia, waww.mrpuzzle.com.au
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Dodgson, Charles Lutwidge
See Carroll, Lewis.

dollar

The elaborate designs on the various denominations of
American dollar bills can be used for some amusing
games of the “Can you find . . . ?” variety. On a $1 bill,
there is an owl in the upper left-hand corner of the “1”
encased in the shield, and a spider hidden in the front
upper right-hand corner. There are also at least nine
occurrences of thirteen things: 13 steps on the pyramid,
13 letters in the Latin above the pyramid, 13 letters in “E
Pluribus Unum,” 13 stars above the eagle, 13 plumes of
feathers on each span of the eagle’s wing, 13 bars on the
shield, 13 leaves on the olive branch, 13 fruits, and 13
arrows. On the back of a $5 bill the number 172 can be
found in the bushes at the base of the Lincoln Memorial,
while on the back of the old $10 bill are four cars and
eleven light posts. On the new $100 dollar bill the time
on the clock tower of Independence Hall reads 4:10.

domain
The set of numbers x for which the function f(x) is
defined. See also codomain and range.

domino

A small rectangular tile, marked with spots, that is used
to play games. There are many varieties of dominoes
and games based on them. Most domino tiles, however,
have roughly 2-to-1 proportions and each half of each
domino has spots arranged as on a six-sided die; the set
generally contains tiles with all possible combinations
of two numbers. A tile is identified by the number of
spots on each half: for example, “1-6” or “3-3.” Eng-
lish/American dominoes include blank sides; Chinese
dominoes don’t but do duplicate some whole tiles. Eng-
lish/American dominoes can also be bought in larger
sets with numbers of spots up to nine or twelve per side.
Other than games of strategy, there are many mathe-
matical puzzles that involve dominoes. Some of these
puzzles involve tiling variations on the standard 8 x 8
chessboard.

PUZZLE
A standard chessboard can easily be tiled by using four
dominos in each row. But what if two squares are
removed, one each from diagonally opposite corners of
the chessboard? Can this reduced board be completely
tiled by nonoverlapping dominoes?

Solutions begin on page 369.

Another common pastime using domino tiles is to
stand them on edge in long lines, then topple the first
tile, which falls on and topples the second, and so forth,
resulting in all of the tiles falling. Arrangements of thou-
sands of tiles have been made that take several minutes to
fall. By analogy, phenomena of chains of small events
each causing similar events leading to eventual catastro-
phe are called domino effects. The word domino was first
used to refer to the hooded black cape worn by priests,
and later to black masks (of the Lone Ranger type) worn
at masquerade balls. The domino is the simplest form of
polyomino.

domino problem

Is there an algorithm (a set of instructions) that, when
given a particular shape as an input, decides if the shape
can be used to tile the entire plane? The solution to this
unresolved problem is tied up with Heesch numbers.
The domino problem in turn has a deep connection with
the Einstein problem.

dozen
See twelve.

dragon curve

A classic example of a recursively generated fractal shape.
Benoit Mandelbrot called it the “Harter-Heighway”
dragon curve and it formed the subject of one of Martin

dragon curve

Jos Leys, wwwijosleys.com
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Gardner’s Mathematical Games columns in Scientific Amer-
ican in 1967 The dragon curve fills out an “island” of
positive area with a fractal boundary.

dual

(1) The dual of a solid is formed by joining the centers of
adjacent faces with straight lines. In the resulting dual
solid, each vertex of the dual corresponds to a face on
the original, each face on the dual to an original vertex,
while the edges match, one for one. (2) The dual of a tes-
sellation is obtained by replacing each tile with a point at
its center, and each edge between tiles with an edge join-
ing vertices. The dual of a regular tessellation is a regular
tessellation; the dual of a semi-regular tessellation is not
semi-regular.

Dudeney, Henry Ernest (1857-1930)

An English writer and puzzle-maker who became one of
the greatest exponents of recreational mathematics of
his time. Chess and chess problems captivated him
from an early age and he was only 9 when he started
contributing puzzles to a local newspaper. His educa-
tion was limited and he started work as a clerk in the
civil service at the age of 13. However, he kept up his
interest in math and chess, wrote articles for magazines
under the pseudonym “Sphinx,” and joined a literary
circle that included Arthur Conan Doyle. In 1893 he
struck up a correspondence with the American puzzle-
maker Sam Loyd, the other leading mathematical recre-
ationist of the day, and the two shared many ideas.
However, a rift developed after Dudeney accused Loyd
of publishing many of Dudeney’s puzzles under his
own name. One of Dudeney’s daughters “recalled her
father raging and seething with anger to such an extent
that she was very frightened and, thereafter, equated
Sam Loyd with the devil.” Dudeney was a columnist for
the Strand Magazine for over 30 years and wrote six
books. The first of these, The Canterbury Puzzles,”™ pub-
lished in 1907, purports to include a collection of prob-
lems posed by the characters in Chaucer’s The Canterbury
Tales. The answer to the so-called Haberdasher’s puzzle
is Dudeney’s best known geometrical discovery. His
other books include Amusements in Mathematics
(1917)® and The World’s Best Word Puzzles (1929). See
also spider-and-fly problem and polyomino.*!

Dunsany, Lord Edward Plunkett (1878-1957)

An Irish writer who was one of the founders of the fan-
tasy genre of literature. Edward John Moreton Drax Plun-
kett was born in London to a family whose roots in
Ireland predate the Norman invasion. He inherited his
father’s title in 1899, fought in the Boer War, and

Dunsany, Lord Edward Plunkett 7he Dunsany Estate

returned to the ancestral home, Dunsany Castle, in 1901.
Lord Dunsany was a keen marksman and hunter, a fine
player of cricket (Dunsany had its own cricket ground
near the village), tennis (there is a court beside the Cas-
tle), and chess (he was an amateur champion and once
drew with Grand Master Capablanca. He also wrote chess
puzzles for the Times over many years and invented his
own variant of the game. His first of many books, The
Gods of Pegana, was published in 1905. In writings that
spanned fantasy, drama, poetry, and science fiction, he
was an early explorer of such ideas as chess-playing com-
puters (in “The Three Sailors’ Gambit” from The Last
Book of Wonder and, again, in his 1951 novel The Last Rev-
olution) and paradoxes in time travel (e.g., in “Lost” from
The Fourth Book of Jorkens and “The King That Was Not”
from Time and the Gods).

Dupin cyclide

The envelope of all spheres touching three given fixed
spheres. (Each of the fixed spheres is to be touched in an
assigned manner, either externally or internally.) Equiva-
lently, the envelope of all spheres whose centers lie on a
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given conic section and which touch a given sphere.
Also equivalently, the inverse of a torus.

duplicating the cube

A classical mathematical challenge of antiquity: using
only a straightedge and compass, construct a cube whose
volume is exactly twice that of a given cube. It is often
called the “Delian” problem because of a legend that sur-
rounds its origin. The citizens of Athens were being dev-
astated by a plague so that, in 430 B.C., they sought
advice from the oracle at Delos on how to rid their com-
munity of this pestilence. The oracle replied that the altar
of Apollo, which was in the form of a cube, had to be
doubled in size. Thoughtless builders merely doubled the
edges of the cube, failing to appreciate that this increased
the volume of the altar eightfold. The oracle said the
gods had been angered; the plague grew worse. Other del-
egations consulted Plato. When informed of the oracle’s
admonition, Plato told the citizens “the god has given
this oracle, not because he wanted an altar of double the
size, but because he wished in setting this task before
them, to reproach the Greeks for their neglect of mathe-
matics and their contempt of geometry.” Many Greek
mathematicians attacked the problem. All failed, because
the so-called Delian constant, \/2 (the required ratio of
sides of the original cube and that to be constructed),
needed for the duplication can’t be constructed as pre-
scribed. Cube duplication is possible, however, using a
Neusis construction. See also cissoid of Diocles.

Diirer, Albrecht (1471-1528)

Sane judgment abhors nothing so much as a picture
perpetrated with no technical knowledge, although
with plenty of care and diligence. Now the sole rea-
son why painters of this sort are not aware of their
own error is that they have not learnt Geometry,
without which no one can either be or become an
absolute artist.

—from The Art of Measurement, 1525

A German printmaker who, through applying mathemat-
ics to art, brought important ideas to mathematics itself
especially in the area of perspective geometry. Diirer was
born in Niremberg, one of 18 children, and showed an
early talent for art. After a four-year apprenticeship in
painting and woodcutting, he began traveling Europe,
especially Italy, in search of new styles and ideas. Back in
Niremberg, he began a serious study of mathematics,
absorbing Elements by Euclid and De architectura by the
great Roman architect Vitrivius, and studying the work of
Leone Alberti (1404-1472) and Luca Pacioli on mathe-
matics and art, in particular their work on proportion. His
mastery of perspective is clear in woodcuts Life of a Virgin

(1502-1505). In about 1508, Diirer began to collect mate-
rial for a major work on mathematics and its applications
to the arts. This work was never finished but Diirer did use
parts of the material in later published work. One of his
most famous engravings Melancholia, produced in 1514,
contains the first magic square to be seen in Europe,
cleverly including the date 1514 as two entries in the mid-
dle of the bottom row. Also of mathematical interest in
Melancholia is the polyhedron in the picture, the faces of
which appear to consist of two equilateral triangles and six
somewhat irregular pentagons. In 1825 Diirer published a
four-volume treatise, Underweysung der Messung (available
in English translation as Painter’s Mannal), which dealt
with, among other things, the construction of various
curves, polygons, and other solid bodies. One of the first
books to teach the methods of perspective, it was highly
regarded throughout the sixteenth century and presents
the earliest known examples of polyhedral nets, that is,
polyhedra unfolded to lie flat for printing.

Diirer traveled to Italy to learn about perspective and
was keen to publish the methods so they weren’t kept
secret among a few artists. Who he learned from is not
known, but Luca Pacioli is a likely possibility. Some of

Diirer, Albrecht The famous woodcut Melancholia, by Albrecht
Diirer, features a magic square and an unusual polyhedron.
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the techniques and illustrations also follow closely the
work of Piero della Francesca.

Diirer’s final work, his Treatise on Proportion, was pub-
lished posthumously and laid the groundwork for descrip-
tive geometry and its rigorous mathematical treatment by
Gaspard Monge.

Diirer’s shell curve

Given a parabola and a line that is tangent to the
parabola, the glissette of a point on a line sliding
between the parabola and the tangent. It has the equa-
tion (x*+ xy+ax—b>) = (b* — x*)(x -y +a).

dynamical system

A nonlinear, interactive system that evolves over time,
showing transformations of behavior and an increase in
complexity. Key to this evolution is the presence and
emergence of attractors, most notably chaotic attractors.

The changes in the system’s organization and behavior are
known as bifurcations. Dynamical systems are determin-
istic systems, although they can be influenced by random
events. Times series data of dynamical systems can be
graphed as phase portraits in phase space in order to indi-
cate the qualitative or topological properties of the system
and its attractors. For example, various physiological sys-
tems, such as the heart, can be conceptualized as dynami-
cal systems. Seeing physiological systems as dynamical
systems opens up the possibility of studying various
attractor regimes. Moreover, certain diseases can be
understood now as “dynamical diseases,” meaning that
their temporal phasing can be a key to understanding
pathological conditions.

dynamics
Pertaining to the change in behavior of a system over
time.



Pi goes on and on and on . . .
And e is just as cursed.
1 wonder: Which is larger
When their digits are reversed?
—Martin Gardner

Possibly the most important number in mathematics.
Although pi is more familiar to the layperson, e is far
more significant and ubiquitous in the higher reaches of
the subject. One way to think of ¢ is as the number of
dollars you would have in the bank at the end of a year
if you invested $1 at the start of the year and the bank
paid an annual interest rate of 100% compounded con-
tinnously. Compound interest doesn’t behave in quite
the way intuition suggests. Because more frequent com-
pounding causes the principal to grow faster, it might
seem that continuous compounding would make the
investor very rich in short order. But the effect tails off.
At the end of one year, the $1 would have grown to a
mere $2.72, rounded to the nearest cent. To a better
approximation, e is 2.718281828459045 . . . , its decimal
expansion stretching out forever, never repeating in any
permanent pattern, because ¢ is a transcendental num-
ber. It is the base of natural logarithms, which is equiv-
alent to the fact that the area under the curve (the
integral of) y = 1/x between x = 1 and x = ¢ is exactly
equal to one unit. It also features in the exponential
function y = ¢*, which is unique in that its value (y) is
exactly equal to its growth rate (dy/dx in calculus no-
tation) at every point. As well as showing up in prob-
lems involving growth or decay (including compound
interest) or in calculus, whenever logarithmic or expo-
nential functions are involved, ¢ is at the heart of the
statistical bell curve; the shape of a hanging cable,
known as a catenary; the study of the distribution of
prime numbers; and Stirling’s formula for approximat-
ing factorials.

Like 7, ¢ pops up as the limit of many continued frac-
tions and infinite series. Leonhard Euler, who was the
first to study and to use the symbol ¢ (in 1727), found it
could be expressed as the curious fraction:

1+1

0+1

1+1

1+1

2+1

1+1

1+1

4+1

1+1

1+1

6+...

No less remarkable is this infinite series of which ¢ is the
sum:

1+1/1'+1/2'+ 1/31+ 174! + . ..

But of all the places that e appears in mathematics none
is more extraordinary than Euler’s formula from which
comes the most profound relationship in mathematics:
¢"+ 1 =0, linking ¢ and 7 with complex numbers.”"!

Earthshapes

A series of 12 hypothetical Earths as conceived by Amer-
ican airman Joseph Portney in 1968 during a flight to the
North Pole onboard a U.S. Air Force KC-135. As the
North Pole was reached, Portney looked on the icy ter-
rain below and asked himself, “What if the Earth
were . .. ?” The hypothetical Earths, cylindrical, conic,
donut-shaped, and so forth, were sketched and cap-
tioned by Portney and given to the Litton Guidance &
Control Systems graphic arts group to create models.
These models were then photographed and became
the theme of a Litton publication entitled Pilots and
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Navigators Calendar for 1969. Each month was intro-
duced with a different one of the 12 hypothetical Earths.
The result was an international sensation, attracting
awards and heavy fan mail.

eccentricity
See conic section.

economical number

A number that has no more digits than there are digits in
its prime factorization (including powers). If a number
has fewer digits than are in its prime factorization it is
known as a frugal number. The smallest frugal is 125,
which has three digits, but can be written as 5°, which
has only two. The next few frugals are 128 (27), 243 (3°),
256 (2%, 343 (7%), 512 (2°), 625 (5%, and 729 (3°). An
equidigital number is an economical number that has the
same number of digits as make up its prime factoriza-
tion. The smallest equidigitals are 1, 2, 3, 5, 7, and 10
(=2 x 5). All prime numbers are equidigital. An extrav-
agant number is one that has fewer digits than are in its
prime factorization. The smallest extravagant number is
4 (= 2%, followed by 6, 8, and 9. There are infinitely
many of each of these kinds of numbers. Are there also
arbitrarily long sequences of consecutive ones? Seven-
member strings of consecutive economical numbers
start at each of 157; 108,749; 109,997; 121,981; and
143,421. On the other hand, the longest string of con-
secutive frugal numbers up to 1 million is just two (for
example, 4374 and 4375). Even so, it has been proved
that if a certain conjecture about prime numbers known
as Dickson’s conjecture is true, then there are arbitrarily
long strings of frugals.

Eddington number

“I believe there are 15,747,724,136,275,002,577,605,653,
961,181,555,468,044,717,914,527,116,709,366,231,425,
076,185,631,031,296 protons in the universe and the
same number of electrons.” So wrote the English astro-
physicist Sir Arthur Eddington (1882-1944) in his book
Mathematical Theory of Relativity (1923). Eddington ar-
rived at this outrageous conclusion after a series of
convoluted (and wrong!) calculations in which he first
“proved” that the value of the so-called fine-structure
constant was exactly %36. This value appears as a factor in
his prescription for the number of particles (protons +
electrons; neutrons were not discovered until 1930) in
the universe: 2 X 136 x 2%¢ =17 x 2°° = 3.149544 . . . X
10” (double the number written out in full in the quote
above). This is the Eddington number, notable for being
the largest specific integer (as opposed to an estimate or

approximation) ever thought to have a unique and tan-
gible relationship to the physical world. Unfortunately,
experimental data gave a slightly lower value for the fine-
structure constant, closer to %137. Unfazed, Eddington
simply amended his “proof” to show that the value had
to be exactly Y137, prompting the satirical magazine
Punch to dub him “Sir Arthur Adding-One.” See also
large number.

edge
A line segment where two faces meet. A cube, for exam-
ple, has 12 edges.

edge coloring theorem
See Tait’s conjecture.

edge of chaos

The hypothesis that many natural systems tend toward
dynamical behavior that borders static patterns and the
chaotic regime. See also chaos.

egg

Specifically, a chicken’s egg and its mathematical equiva-
lent. Eggs are often described as being oval in shape,
which is effectively tautological since “oval” comes from
the Latin ovus for “egg.” Strictly speaking, an oval is a flat
two-dimensional curve, so it is more accurate to say that
an egg is shaped like the surface of revolution of an oval.
In real life, eggs, like ovals, come in a variety of forms all
of which can be loosely described as “like an ellipsoid
but with one end more pointed than the other.” Because
eggs vary in shape, so too do their mathematical descrip-
tions. Having said this, there are a variety of ways to
approximate the shape of a hen’s egg by modifying the
equation of an ellipsoid, x*/a* + y*/b* + z*/c* = 1, so as to

egg A good egg shape is obtained by drawing four circle arcs
of different radii. © Jan Wassenaar, www.2dcurves.com



eight curve 103

introduce an asymmetry about the long (say, z-) axis.
These involve multiplying z?/c* by a suitable term, so
that y becomes larger on the right side of the y-axis and
smaller on the left side. For example, x*/a’ + y*/b* + z*/¢*
(1 — kx) = 1 gives a good egg. Other useful egg approxi-
mations come from surfaces of revolution of Cartesian
ovals, Cassinian ovals, and sections through cones and
cylinders. In France, where tennis first became popular, a
zero on the scoreboard looked like an egg and was called
Loenf; which is French for “egg.” When tennis was intro-
duced in the United States, Americans pronounced it
“love.”

Why is a hen’s, or other bird’s, egg shaped as it is?
Because it gives strength even though the eggshell is thin
enough to allow the young bird to peck its way out when
ready. To demonstrate this strength, try balancing a pile
of books on four half egg shells. It is even possible for a
person’s weight to be supported in this way.

Another trick with eggs is to distinguish between a
raw egg and a hardboiled one without cracking them
open to see which is which. Lay both eggs on their sides
on a table, and spin them as you would a spinning top.
With a bit of practice, the cooked egg will be made to
rise up for a few seconds, while the raw one will remain
on its side. The physics of this odd behavior was finally
cracked by two mathematicians, Keith Moffat of Cam-
bridge University and Yutaka Shimomura of Keio Uni-
versity, who reported their findings in 2002. They
concluded that friction between the egg and the surface
produces a gyroscopic effect, which causes some of the
kinetic energy of the object to be translated into poten-
tial energy, raising its center of gravity (see also Tippee
Top). As the hardboiled egg spins, its curved surface
causes it to touch the tabletop at only one point. The
contact point changes and traces out a little circle. If the
texture of the tabletop is just right (neither too slippery
nor too sticky) the egg will slide a bit as it spins. This
sliding slows the spin a bit and causes a wobble. This in
turn tilts the egg, lifting one end off the table more than
the other, at which point the gyroscopic effect kicks in
and swaps some of the kinetic energy of the spinning
egg into potential energy and raises its center of gravity
in a seemingly paradoxical way. This effect is height-
ened by the fact that as the end of the egg rises, the egg
draws in closer to the axis of spin, causing it to spin
more quickly—just as figure-skaters can make themselves
pirouette faster by raising their arms above their heads.
Why doesn’t the effect occur with a raw egg? Because
the inside of the egg is runny and it lags behind the
shell. This lag serves as a drag, which reduces the spin
rate and dissipates the egg’s kinetic energy. This in turn
reduces the friction between the egg and tabletop, and

means that not enough energy is available to be turned
into potential energy to raise the egg’s center of gravity.
As well as solving the mystery of the balancing egg,
Moffat also found time to write a limerick to commem-
orate the event:

Place a hard-boiled egg on a table,

And spin it as fast as you're able;

It will stand on one end

With vectorial blend

Of precession and spin that’s quite stable.

See also superegg.

Egyptian fraction

A unit fraction; in other words, a fraction in which the
numerator (the number on top) is one. This type of frac-
tion was the only kind used by the ancient Egyptians and
appears extensively in the Rhind papyrus. Other fractions
can be obtained by adding Egyptian fractions together; for
example, %7 =% + % + ‘1. In 1201 Fibonacci proved that
every rational number can be written as a sum of Egypt-
ian fractions.

eigenvalue

A complex number, A, that satisfies the equation Ax = Ax,
where A is an # X # matrix and x is some vector. In this
case, x is called an eigenvector.

eight

The second smallest cube number (after 1°): 8 =2° =2 x
2 % 2. A queen or king in chess can move in eight differ-
ent directions, in the same way that a compass has eight
principal points: north, northeast, east, southeast, south,
southwest, west, and northwest. In three dimensions,
there are eight diagonal ways to move, corresponding to
the eight octants into which three-dimensional space is
divided by three mutually perpendicular planes. Add a
fourth dimension and movement becomes possible
back and forth along four directions at right angles to
each other: up and down, left and right, forward and
back, and to one other! The Spanish dollar was a gold
coin with a value of eight reales, and was sometimes ac-
tually cut into eight wedge-shaped pieces—“pieces of
eight”—to make change.

eight curve
A curve, also known as the lemniscate of Gerono, that has
the Cartesian equation

= aZ(xZ _yZ)

and the appearance of a figure eight lying on its side.



104 Einstein problem

Einstein problem

(1) Is there a single shape that will tile a plane aperiodi-
cally (see aperiodic tiling)? An answer of “no” would
imply the existence of a decision method for the domino
problem. This problem, which is named because of the
German translation (ezz = “one,” stein = “stone”) and
was not an invention of the famous scientist, remains
unsolved. (2) A logic problem, invented by Albert Ein-
stein, who claimed that 98% of the people in the world
couldn’t solve it.

PUZZLES

1. There are 5 houses (along a street) in 5 different
colors: blue, green, red, white, and yellow.

2. In each house lives a person of a different nation-
ality: Briton, Dane, German, Norwegian, and
Swede.

3. These 5 owners drink a certain beverage: beer,
coffee, milk, tea, or water; smoke a certain brand
of cigar: Blue Master, Dunhill, Pall Mall, Prince, or
blend; and keep a certain type of pet: cat, bird,
dog, fish, or horse.

4. No owners have the same pet, smoke the same
brand of cigar, or drink the same beverage.

5. The Briton lives in a red house. The Swede keeps
dogs as pets. The Dane drinks tea. The green
house is on the left of the white house (next to
it). The green house owner drinks coffee. The per-
son who smokes Pall Mall rears birds. The owner
of the yellow house smokes Dunhill. The man liv-
ing in the house right in the center drinks milk.
The Norwegian lives in the first house. The man
who smokes blend lives next to the one who
keeps cats. The man who keeps horses lives next
to the man who smokes Dunbhill. The owner who
smokes Blue Master drinks beer. The German
smokes Prince. The Norwegian lives next to the
blue house. The man who smokes blend has a
neighbor who drinks water.

The question is: Who keeps the fish?
Solutions begin on page 369.

elementary function
Any real-value algebraic function or transcendental func-
tion (trigonometric, hyperbolic, exponential, logarithmic).

eleven

A palindromic number, the smallest integer that is not a
Harshad number, a prime number that is a member of
a twin prime (11 and 13), and the largest integer that is
not the sum of two or more distinct primes. There are 11

players on a soccer team and on a cricket team. Strange
but true: the youngest pope was 11 years old.

ellipse

A shape that looks like a squashed circle. It is one of the
conic sections and can be defined as the locus of all
points in a plane that have the same sum of distances
from two given fixed points known as_focz. If the two foci
coincide then the ellipse is a circle. The line segment
connecting the foci is called the major axis of the ellipse;
half this is the semimajor axis, a. The line passing through
the center of the ellipse (the midpoint of the foci) at right
angles to the major axis is called the minor axis, half of
which is the semiminor axis, b. An ellipse centered at the
origin of an x- coordinate system with its major axis
along the x-axis is defined by the equation

x*a’+ b =1.

The shape of an ellipse is expressed by a number called
the eccentricity, e, which is related to a4 and & by the for-
mula 4% = 2’(1 — ¢?). The eccentricity is a positive number
less than 1, or 0 in the case of a circle. The greater the
eccentricity, the larger the ratio of 4 to 4, and therefore
the more elongated the ellipse. The distance between the
foci is 2ae. The area enclosed by an ellipse is mab. The cir-
cumference of an ellipse is 44E(e), where the function E
is the complete elliptical integral of the second kind.

ellipse Nails mark the foci, F, and F., of an ellipse that is
drawn by pencil whose moving tip, P, keeps the string
threaded around the nails taut.
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ellipsoid

A quadratic surface that is the three-dimensional analog
of an ellipse. The general equation of an ellipsoid in
Cartesian coordinates is

x*a*+ b+ 2% P =1,

where a4, b, and ¢ are positive real numbers determining
the shape. If two of these numbers are equal, the ellipsoid
is a spheroid; if all three are equal, it is a sphere. The
intersection of an ellipsoid with a plane is a single point
or an ellipse. Ellipsoids can also be defined in higher
dimensions.

elliptic curve

The set of solutions to a type of cubic equation whose
solutions lie on a torus (a donut-shaped surface). The
particular type of cubic equation whose solutions lead to
elliptic curves takes the form

Y raxy+by=x+c +dx+e

Elliptic curves, which are said to have a genus of 1, have
an unusually rich theory and structure, and their study is
linked to many other important areas of mathematics
and their applications. For example, it was work done on
elliptic curves by Andrew Wiles that finally led to a proof
of Fermat’s last theorem.

elliptic function

In complex analysis, a function defined on the com-
plex plane that is periodic in two directions. The elliptic
functions can be thought of as analogs of the trigono-
metric functions (which have only a single period).
Leading eighteenth-century mathematicians, including
Leonhard Euler and Joseph Lagrange, had studied ellip-
tic integrals, such as the integral that gives the arc length
of an ellipse; however, these cannot be expressed in
terms of the elementary functions (polynomials, expo-
nentials, and trigonometric functions). It was the insight
of Karl Jacobi, and also of Karl Gauss and Niels Abel,
that the inwverse functions of elliptic integrals are much
easier to study. They turn out to be doubly periodic
functions of a complex variable. While a singly periodic
function like sine has a number 4 (specifically 2 = 2w) so
that sin(x + 4) = sin(x), a doubly periodic function f has
the property that there are two numbers 4, 4, not rational
multiples of each other, so that f(x + ) = f(x + &) = f(x).
As Jacobi proved in 1834, the ratio /b is necessarily an
imaginary number.

elliptical geometry
One of the two most important types of non-Euclidean
geometry: the other is hyperbolic geometry. In ellipti-

cal geometry, Euclid’s parallel postulate is broken
because no line is parallel to any other line. The original
form of elliptical geometry, known as spherical geometry
or Riemannian geometry, was pioneered by Bernhard Rie-
mann and Ludwig Schldfli and treats lines as great
circles on the surface of a sphere. The most familiar
example of such circles, which are geodesics (shortest
routes) on a spherical surface, are the lines of longitude
on Earth. In spherical geometry any two great circles
always intersect at exactly two points. Two lines of lon-
gitude, for example, meet at the North and South Poles.
Working in spherical geometry produces some surpris-
ing, nonintuitive results. For instance, it turns out that
the shortest flying distance from Florida to the Philip-
pine Islands is a path across Alaska—even though the
Philippines are at a more southerly latitude than Florida!
The reason is that Florida, Alaska, and the Philippines lie
on the same great circle and so are collinear in spherical
geometry. Another odd property of spherical geometry
is that the sum of the angles of a triangle is greater than
180°. This is always the case on a surface that bulges out
or, in mathematical parlance, has positive curvature. It
was Felix Klein who first saw clearly how to rid spherical
geometry of its one blemish: the fact that two lines have
not one but two common points. He redefined the
notion of a point as a set of antipodal points. With this
definition, any two points determine a unique line so
that the traditional form of Euclid’s first postulate is
restored. Thus modified, spherical geometry became
what Klein called elliptical geometry.

embedding

Putting one mathematical object inside another, such as a
subgroup within a group or one topological space inside
another, while preserving all topological properties.

emergence

The arising of new, unexpected structures, patterns,
or processes in a self-organizing system (see self-
organization). These emergents have their own rules, laws,
and possibilities, and can be understood as existing on a
higher level than that of the components from which
they came. The term was first used by the nineteenth-
century philosopher G. H. Lewes and came into greater
currency in the scientific and philosophical movement
known as emergent evolutionism in the 1920s and 1930s.

emirp

A prime number that becomes a different prime number
when its digits are reversed (“emirp” is “prime” spelled
backward). The first twenty emirps are 13, 17, 31, 37, 71,
73,79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347,



106 empty set

359, and 389. Compare with a palindromic prime (see
palindromic number), which gives the same prime when
reversed.

empty set

The set, denoted by & or {}, that has no members; also
known as the null set. This is not the same as zero, which
is the number of members of &. Nor is & the same as
nothing because a set with nothing in it is still a set, and
a set is something. The empty set, for example, is the set
of all triangles with four sides, the set of all numbers
that are bigger than nine but smaller than eight, and the
set of all opening moves in chess that involve a king.
Applying the concept of the empty set helps distinguish
between the different ways that “nothing” is used in
everyday language. In his book What Is the Name of This
Book? (1978), Raymond Smullyan wrote:**! “Which is
better, eternal happiness or a ham sandwich? It would
appear that eternal happiness is better, but this is really
not so! After all, nothing is better than eternal happi-
ness, and a ham sandwich is certainly better than noth-
ing. Therefore a ham sandwich is better than eternal
happiness.”

What is wrong with this declaration? The first state-
ment is equivalent to “The set of things that are better
than eternal happiness is &.” The second statement is
equivalent to “The set {ham sandwich} is better than the
set &.” The confusion arises because the first is compar-
ing individual things, while the second is comparing sets
of things, and & plays a different role in each.

enantiomorph
The mirror image of a given chiral polyhedron or other
figure.

enormous theorem

The largest theorem in mathematics; it concerns the clas-
sification of finite simple groups and encapsulates the
work of hundreds of mathematicians over many years.

entropy
A measure of a system’s degree of randomness or disorder.

envelope
A curve or a surface that touches every member of a fam-
ily of lines, curves, planes, or surfaces.

epicycloid

The path traced out by a point on the circumference of a
circle of radius & rolling on the outside of a circle of
radius 4. It is described by the parametric equations:

x=(a+b)cos(t) — b cos((a’b + 1)1)
y=(a+b)sin() — bsin((a/b + 1)1).

An epicycloid is like a cycloid on the circumference of a
circle and is closely related to the epitrochoid, hypocy-
cloid, and hypotrochoid. An epicycloid with one cusp is
called a cardioid, one with two cusps is called a nephroid,
and one with five cusps is called a ranunculoid (after the
buttercup genus Ranunculus).

Epimenides paradox
See liar paradox.

epitrochoid

A curve traced out by a point that is a distance ¢ from the
center of a circle of radius 4, where ¢ < 4, that is rolling
around the outside of another circle of radius 4. It is
described by the parametric equations

x = (a+b) cos(t) — ¢ cos((a/b— 1)2)
y=(a+b)sin(?) — csin((a/b + 1)0).

Closely related to the epitrochoid are the epicycloid,
hypocycloid, and the hypotrochoid. An example of an
epitrochoid appears in Albrecht Diirer’s work Iustruction
in Measurement with Compasses and Straightedge (1525).

EPORN

An equal product of reversible numbers; defined by the
Indian recreational mathematician Shyam Sunder Gupta
as a number that can be expressed as the product of two
reversible numbers (numbers whose digits are reversed)
in two different ways. For example: 4,030 = 130 x 031 =
310 x 013 and 144,648 = 861 x 168 = 492 x 294. The
smallest EPORN, 2,520 = 120 x 021 =210 x 012, 1s also
the least common multiple of all single digit natural
numbers in decimal system. The digital root, i.e. the ulti-
mate sum of digits, of all EPORN:Ss is always 1, 4, 7, or 9.
For example, 2,520 =2+5+2+0=9;4,030=4+0+
3+0=7;9,949,716=9+9+4+9+7+1+6=36and
3+6=9.

equichordal point
A point inside a closed convex curve in the plane, all the
chords through which have the same length.

equilateral

Having sides of equal length, as in the case of an equilat-
eral polygon. The equilateral triangle, with its three
equal angles of 60°, is widely found in historic buildings
and structures across Europe. See Triangular Lodge.



Escher, Maurits Cornelius 107

equilibrium

A term indicating a rest state of a system, for example,
when a dynamical system is under the sway of a fixed-
point attractor or periodic attractor. The concept origi-
nated in ancient Greece when Archimedes experimented
with levers in balance, literally “equilibrium.” The idea
was elaborated through the Middle Ages, the Renaissance,
and the birth of modern mathematics and physics in the
seventeenth and eighteenth centuries. “Equilibrium” has
come to mean pretty much the same thing as stability, that
is, a system that is largely unaffected by internal or exter-
nal changes since it easily returns to its original condition
after being perturbed.

equivalent numbers

Numbers such that the sums of their aliquot parts
(proper divisors) are the same. For example, 159, 559,
and 703 are equivalent numbers because their aliquot
parts all sum to 57.

Eratosthenes of Cyrene (c. 276-194 B.c.)

A Greek mathematician, astronomer, and geographer
who was born in Cyrene, a Greek colony to the west of
Egypt. He studied at Plato’s school in Athens and even-
tually became the chief librarian of the great Library at
Alexandria. He wrote works on geography, philosophy,
history, astronomy, mathematics, and literary criticism.
One of Eratosthenes’ contributions to mathematics
was his measurement of Earth’s circumference, which
he calculated to be about 252,000 stadii, or 24,700
miles (about one-tenth the actual value, but still a big
improvement on earlier estimates). Eratosthenes is also
known in number theory for his sieve of Eratos-
thenes, which finds all prime numbers less than a
given integer 7.

Eratosthenes’s sieve
See sieve of Eratosthenes.

Erdos, Paul (1913-1996)

A Hungarian mathematician (his name is pronounced
“AIR-dosh”), one of the greatest mathematicians of the
twentieth century and, in terms of the number of papers
published (more than 1,500), the most prolific in his-
tory—beating out even Leonhard Euler and inspiring
the term “Erddés number.” A mathematician has an
Erdos number of 1 if he or she has published a paper
with Erdés, of 2 if he or she has published with some-
one who published a paper with Erdos, and so on.
Erdds worked almost nonstop, 19 hours a day, 7 days a
week. “A mathematician,” he quipped, “is a machine for
turning coffee into theorems.” At age 20, Erdos discov-

ered an elegant proof of a famous theorem in number
theory, known as Chebyshev’s theorem, which says that for
each number greater than one, there is always at least
one prime number between it and its double. Number
theory remained one of his chief interests, though his
work spread across many fields, and he became re-
nowned for posing and solving problems that were
often simple to state but notoriously difficult to solve.
He did groundbreaking work in a branch of mathemat-
ics known as Ramsey theory long before it became
fashionable in the late 1950s. Bent and slight, often
wearing sandals, Erdos had no time for the material side
of life. “Property is nuisance,” he said. Focused totally
on mathematics, Erdos traveled from meeting to meet-
ing, carrying a half-empty suitcase and staying with
mathematicians wherever he went. His colleagues took
care of him, lent him money, fed him, bought him
clothes, and even did his taxes. In return, he showered
them with ideas and challenges—with problems to be
solved and brilliant ways of attacking them. Ernst
Straus, who worked with both Albert Einstein and
Erdds, wrote a tribute to Erdds shortly before his own
death in 1983. He said of Erdos: “In our century, in
which mathematics is so strongly dominated by ‘theory
doctors,” he has remained the prince of problem solvers
and the absolute monarch of problem posers.”!'"

ergodic

The property of a dynamical system such that all regions
of a phase space are visited with similar frequency and
that all regions will be revisited (within a small proxim-
ity) if given enough time.

Escher, Maurits Cornelius (1898-1972)
My work is a game, a very serious game.

A Dutch artist whose graphic explorations of tiling, figure-
ground ambiguities, impossible figures, and regression
has attracted the interest of mathematicians and scien-
tists. His experiences of Moorish art (see Alhambra) and
his contact with mathematicians, most notably Harold
Coxeter, led him to explore the way repetitive shapes can
be used to tile the plane, and from this to ideas about
duality and transformation. Escher’s preoccupation with
dualities is a constant presence in his work in the form of
foreground/background, light and dark, flatness and
dimensionality, representation and decoration, frame
and scene, large and small, viewpoint and vanishing
point, form and negative space, positive and negative,
observer and observed, as well as the metaphysical
aspects of good and evil. Self-referential images (see
self-referential sentence) resonate throughout Escher’s
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works—reflections of the artist, hands that draw them-
selves, the visitor in a picture gallery who looks at a print
that contains him. It was for this reason that Douglas
Hofstadter wove Escher, along with Kurt Godel and
Bach, into the “eternal golden braid” at the heart of his
Pulitzer Prize-winning book.'” Having seen some of
Escher’s art, Roger Penrose was inspired to devise impos-
sible figures, including the Penrose triangle, which
Escher then incorporated into several of his later works.
After the artist’s death Penrose regretted that Escher had
not lived long enough to take advantage of the discovery
of Penrose tiling.

escribed circle
A circle that is tangent to one side of a triangle and to the
extensions of the other sides.

Eternity Puzzle

An enormously difficult jigsaw consisting of 209 pieces,
each one different and each made from a unique con-
figuration of equilateral triangles and half-triangles with
the same total area as six triangles. The puzzle was to
fit them together into an almost-regular 12-sided fig-
ure aligned to a triangular grid. The puzzle’s inventor,
Christopher Monckton, announced a prize of $1 mil-
lion when the puzzle was released commercially in June
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1999, for the first correct solution submitted, assuming
there was one, when all the solutions were opened in
September 2000. Monckton had run computer searches
on much smaller versions of the puzzle, which had con-
vinced him that the sheer size of Eternity would make it
intractable. However, the prize was won by two British
mathematicians, Alex Selby and Oliver Riordan, with
the help of a couple of computers, who sent in a correct
tiling on May 15, six weeks ahead of the only other puz-
zler known to have found a correct solution. Early on,
Selby and Riordan made a surprising discovery. As the
number of pieces in an Eternity-like puzzle increased,
so did the difficulty—but only up to a point. The critical
size is about 70 pieces, which would be almost impossi-
ble to solve. For larger puzzles, however, the number of
possible correct solutions increases. In the case of Eter-
nity itself, with its 209 pieces, there are thought to be at
least 10 solutions—far more than the number of sub-
atomic particles in the universe but far, far less than the
number of nonsolutions. The puzzle itself is much too
large to solve by an exhaustive search but not, as it turns
out, by more savvy methods that take into account
what shaped regions are easiest to tile and what shaped
pieces are easiest to fit. By steadily refining their search
algorithm, Selby and Riordan were able to prune out
the vast majority of nonsolutions and, with a bit of

Eternity Puzzle The solution to the Eternity
Puzzle that was awarded a $1 million prize. Eter-
nity pieces are copyright © 1999 by Christopher Monckton
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good fortune, to hit upon a correct solution and claim
the prize.

Euclid of Alexandria (c. 330-270 B.c.)

A Greek mathematician who compiled and systemati-
cally arranged the geometry and number theory of his
day into the famous text Elements. This text, used in
schools for about 2,000 years, earned him the name
“the father of geometry.” Even today, the geometries
that don’t satisfy the fifth of Euclid’s “common no-
tions” (now called axioms or postulates) are called non-
Euclidean geometries. When, according to the Greek
philosopher Proclus, the Egyptian ruler Ptolemy asked if
there was a shorter way to the study of geometry than the
Elements, Euclid told the pharaoh that “there is no royal
road to geometry.” Little is known of Euclid’s life. Pro-
clus wrote (c. A.D. 350) that Euclid lived during the reign
of Ptolemy and founded the first school of mathematics
in Alexandria—the site of the most impressive library of
ancient times with perhaps as many as 700,000 volumes.
He wrote books on other subjects such as optics and
conic sections, but most of them are now lost. See also
Euclidean geometry.

Euclidean geometry

Geometry of the type described originally by Euclid in
his book Elements and based on five axioms (see Euclid’s
postulates), one of which is the controversial parallel
postulate. Various forms of non-Euclidean geometry
began to emerge in the nineteenth century, with enor-
mous implications for science and philosophy. See also
Euclidean space.

Euclidean space

Any n-dimensional mathematical space that is a general-
ization of the familiar two- and three-dimensional spaces
described by the axioms of Euclidean geometry. The
term “z-dimensional Euclidean space” (where # is any
positive whole number) is usually abbreviated to
“Euclidean n-space”, or even just “z-space”. Formally,
Euclidean n-space is the set R” (where R is the set of real
numbers) together with the distance function, which is
obtained by defining the distance between two points
(x5, x,) and (91, ..., ) to be the square root of
3(x;, — y;)’, where the sum is over 7 =1, ..., z This dis-
tance function is based on Pythagoras’s theorem and is
called the Euclidean metric.

Euclid’s postulates

The five postulates, which together with 23 definitions
and five “common notions,” form the basis of Euclid’s
great work on geometry, Elements. The postulates are:

1. A straight line may be drawn from any one point to
any other point.

2. A finite straight line may be produced to any length
in a straight line.

3. A circle may be described with any center at any dis-
tance from that center.

4. All right angles are equal.

5. If a straight line meets two other lines, so as to make
the two interior angles on one side of it together less
than two right angles, the other straight lines will
meet if produced on that side on which the angles
are less than two right angles.

The last postulate is not as obvious as the other four, and
Euclid himself was reluctant to use it. Later mathemati-
cians, finding the fifth postulate to be complicated,
thought it might be possible to derive it from the other
four. However, they only succeeded in replacing it with
equivalent statements. The most common of these is the
parallel postulate.

Eudoxus of Cnidus (c. 408-c. 355 B.c.)

A Greek astronomer, mathematician, and physician whose
work on ratios formed the basis for Book V of Euclid’s
Elements and anticipated some aspects of algebra, such as
cross multiplying, which is otherwise absent from ancient
Greek mathematics. Eudoxus constructed many geometric
proofs, found formulas for measuring pyramids, cones,
and cylinders, and developed the method of exhaustion,
a forerunner of integration, later extended by Archimedes.
He also studied the kampyle curve, often known as the
kampyle of Eudoxus, in connection with the classical
problem of duplicating the cube.

Euler, Leonhard (1707-1783)

A great Swiss mathematician; the second most prolific
mathematician in history, after Paul Erdos. His greatest
contributions were to number theory, but Euler also did
important work in calculus, geometry, algebra, probabil-
ity, acoustics, optics, mechanics, astronomy, artillery, nav-
igation, and finance. He had a knack for coming up with
important results by intuition, he cast calculus and
trigonometry in their modern forms, and he showed the
importance of the number e. Even the amusing puzzles
he invented and, in some cases, solved have opened up
new mathematical fields. The bridges of Konigsberg
problem, for example, heralded the beginning of graph
theory and topology, while his thirty-six officers prob-
lem stimulated important work in combinatorics. Euler
also worked on magic squares and the problem of the
knight’s tour. Having learned some math from his father,
a Calvinist preacher, Euler studied at the University of
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Basle where he became close friends with members of the
Bernoulli family. In 1727, he moved to St. Petersburg, to
the court of Catherine the Great, becoming professor of
physics (1730) and of mathematics (1733). While in Rus-
sia, Euler, a devout Christian, met the encyclopedist and
philosopher René Diderot, a notorious atheist. When
Diderot heard that Euler had a mathematical proof of the
existence of God, he asked for it and was quoted the equa-
tion now often referred to as Euler’s formula.

Upon losing the use of his right eye, Euler said “Now I
will have less distraction.” Indeed, the quantity of his
output seemed to be inversely proportional to the quality
of his sight, because his rate of publication increased after
he became almost totally blind in 1766. Euler died
moments after calculating the orbit of Uranus on Sep-
tember 18, 1783.

Euler characteristic

An important kind of number, known as a topological
invariant, that describes a closed surface. In the case of
polyhedra, the Euler characteristic is the number of ver-
tices and faces minus the number of edges (see Euler’s
formula for polyhedra).

Euler circuit

A connected graph such that starting at a vertex 4, one
can traverse every edge of the graph once to each of the
other vertices and return to vertex 4. In other words a
Euler circuit is a Euler path that is a circuit. Thus, using
the properties of odd and even degree vertices given in
the definition of a Euler path, a Euler circuit exists if and
only if every vertex of the graph has an even degree. See
also mazes.

Euler line
A line that connects the centroid and the circumcenter
of a triangle.

Euler path

A path along a connected graph that connects all the
vertices (see vertex) and that traverses every edge of the
graph only once. Note that a vertex with an odd degree
allows one to travel through it and return by another
path at least once, while a vertex with an even degree
only allows a number of traversals through, but one can-
not end a Euler path at a vertex with even degree. Thus, a
connected graph has a Euler path which is a circuit (a
Euler circuit) if all of its vertices have even degree. A
connected graph has a Euler path which is non-circuitous
if it has exactly two vertices with odd degree. See also
Hamilton path.

Euler square

A square array made by combining # objects of two types
such that the first and second elements form a Latin
square. Euler squares are also known as Graeco-Latin
squares, Graeco-Roman squares, or Latin-Graeco squares. For
many years, Euler squares were known to exist for n =
3, 4, and for every odd # except # = 3k. Euler’s Graeco-
Roman squares conjecture maintained that there are no
Euler squares of order n =4k + 2 fork=1, 2,.... How-
ever, such squares were found to exist in 1959 by Bose
and Shrikande, refuting the conjecture.

Euler-Mascheroni constant (y)
Also known as Euler’s constant or Mascheroni’s constant, the
limit (as 7 goes to infinity) of

1+%+B+Y+Ys+...+1/n-logn

It is often denoted by a lowercase gamma, v, and is ap-
proximately 0.5772156649 . ... Even though over one
million digits of this number have been calculated, it
isn’t yet known if it is a rational number (the ratio of two
integers a/b). If it is rational, the denominator (4) must
have more than 244,663 digits. The constant y crops up
in many places in number theory. For example, in 1898,
the French mathematician Charles de la Vallée Poussin
(who proved the prime number theorem) proved the
following: Take any positive integer » and divide it by
each positive integer 7 less than z. Calculate the average
(mean) fraction by which the quotient 7/ falls short of
the next integer. The larger 7 gets, the closer the average
gets to gamma.

Euler’s conjecture

It always takes 7 terms to sum to an nth power: two
squares, three cubes, four fourth powers, and so on. This
hypothesis is now known to be wrong. In 1966, L. J. Lan-
der and T. R. Parkin found the first counterexample: four
fifth powers that sum to a fifth power. They showed that
27° + 84° + 110° + 133° = 144°. In 1988, Noam Elkies of
Harvard University found a counterexample for fourth
powers: 2,682,440* + 15,365,639 + 187,960% = 20,615,673".
Subsequently, Roger Frye of Thinking Machines Corpora-
tion did a computer search to find the smallest example:
95,800* + 217,519* + 414,560* = 422,481%.

Euler's constant
See Euler-Mascheroni constant.

Euler's formula
For any real number x, Euler’s formula is

e®=cos x+17sin x
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where e is a fundamental constant (the base of natural
logarithms) and ="V -1. If we now put x = 7, we get

e™=cos T+ sin T,
and since cos(r) = —1 and sin(r) = 0, this reduces to
em=-1
so that
e™+1=0.

This most extraordinary equation first emerged in
Leonhard Euler’s Introductio, published in 1748. It is
remarkable because it links the most important math-
ematical constants, ¢ and &, the imaginary unit z and
the basic numbers used in counting, 0 and 1. In
describing the equation to students, the Harvard math-
ematician Benjamin Peirce said: “Gentlemen, that is
surely true, it is absolutely paradoxical; we cannot
understand it, and we don’t know what it means, but
we have proved it, and therefore, we know it must be
the truth.”

Euler’'s formula for polyhedra

The eatliest known equation in topology. If F is the
number of faces of a polygon, E the number of edges,
and V the number of vertices, Euler’s formula can be
written as

F-E+V=2

where F — E + V is known as the Euler characteristic.
For example, the surface of a cube has six (square)
faces, twelve edges, and eight vertices and, sure enough,
6—-12+8=2.

even function
A function f{(x) such that f(x) = f(—x) for all x.

evolute

The locus of the centers of curvature (the envelope) of a
plane curve’s normals. The original curve is then said to
be the involute of its evolute. For example, the evolute of
an ellipse is a Lamé curve and the evolute of a tractrix is
a catenary.

excluded middle law

A law in (two-valued) logic which states that there is no
third alternative to truth or falsehood. In other words, for
any statement A, either A4 or not-4 must be true and the
other must be false. This law no longer holds in three-

valued logic, in which “undecided” is a valid state, nor
does it hold in fuzzy logic.

existence

A term that has several different meanings within
mathematics. In the broadest sense there is the ques-
tion of what it means for certain concepts, such as pi,
to exist. Was T, for example, invented or discovered? In
other words, does T exist only as an intellectual con-
struct or was it somehow already “out there” waiting
for people to find it. If it does exist independently of
the human mind, when did its existence start? Does 1
predate the physical universe? Such ontological ques-
tions become even more difficult when applied to
more complex or abstract mathematical concepts such
as the Mandelbrot set, surreal numbers, or infinity. A
narrower and more technical type of “existence” in
math is implied by an existence theorem. Such a theorem
is used to prove that a number or other object with par-
ticular properties definitely exists, but does not neces-
sarily give a specific example. Finally, there is existence
in the sense of particular solutions to problems. If at
least one solution can be determined for a given prob-
lem, a solution to that problem is said to exist. Some-
thing of the flavor of all three types of mathematical
existence mentioned here are captured in the following
anecdote:

An engineer, a chemist, and a mathematician are
staying in three adjoining cabins at an old motel.
First the engineer’s coffee-maker catches fire. He
smells the smoke, wakes up, unplugs the coffee
maker, throws it out the window, and goes back to
sleep. Later that night the chemist smells smoke,
too. He wakes up and sees that a cigarette butt has
set the trash can on fire. He thinks to himself, “How
does one put out a fire? One can reduce the temper-
ature of the fuel below the flash point, isolate the
burning material from oxygen, or both. This could
be accomplished by applying water.” So he picks up
the trash can, puts it in the shower stall, turns on the
water, and, when the fire is out, goes back to sleep.
The mathematician has been watching all this out
the window. So later, when he finds that his pipe
ashes have set the bed sheet on fire, he’s not in the
least taken aback. “Aha!” he says, “A solution exists!”
and goes back to sleep.

exponent

A number that gives the power to which a base is
raised. For example, in 3* the base is 3 and the exponent
is 2.
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exponential

Who has not been amazed to learn that the function
y = €, like a phoenix rising again from its own
ashes, s its own dertvative?

—Francois le Lionnais

Anything that grows at a rate proportional to its size is
said to grow exponentially. The simplest form of the
exponential function is just y = e*, where e is about

2.712 . .. The exponential function to base « can be writ-
ten as f(x) = a".

extrapolate
See interpolate.

extravagant number
See economical number.



face
A polygon bounding a polyhedron. A cube, for exam-
ple, has six square faces. The plane angle formed by adja-
cent edges of a polygonal angle in space is called a face
angle.

factor

Also known as a drvisor; a number or variable that divides
evenly into another number or algebraic expression. For
example, the factors of 28 are 1, 2, 4, 7, 14, and 28.
Although it is true that 28 is also divisible by the negative
of each of these, “factors” is usually taken to mean only the
positive divisors. Factorization, or factoring, is the decompo-
sition of an object into a product of factors. For example,
the number 15 factorizes into prime numbers as 3 x 5;
and the polynomial x* — 4 factorizes as (x — 2)(x + 2). The
aim of factoring is usually to reduce something to basic
building blocks, such as numbers to prime numbers, or
polynomials to linear expressions. Factoring integers is
covered by the fundamental theorem of arithmetic and
factoring polynomials by the fundamental theorem of
algebra. Integer factorization for large integers appears to be
a difficult problem; there are no known methods for solv-
ing it quickly, and, for this reason, it has formed the basis
of some public key cryptography algorithms.

factorial

The function, denoted 7/, that is the product of the posi-
tive integers less than or equal to 7. For example, 1! = 1;
51=5x4x3%x2x1=120;10!=10x9%x8x7x 6 X
5x4x3x%x2x1=3,628,800. 0! is defined to be 1, by
working the relationship 7! = # X (# — 1)! backward. An
interesting equality is 1! 10! 22! 11=11!0! 2! 21! in which
the same digits are broken up two different ways into fac-
torials. This may be the smallest such example. Factorials
are important in combinatorics because there are 7! dif-
ferent ways (permutations) of arranging # distinct objects
in a sequence. They also turn up in formulas in calculus,
for instance in Taylor’s theorem, because the nth derivative
of the function «” is 7!.

factorion

A natural number that equals of the sums of the facto-
rials of its digits in a given base. The only known deci-
mal factorions are 1 = 1!, 2 =2!,145=1! + 4! + 5!, and
40,585 =4!+0!+ 5!+ 8!+ 5!.
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Fadiman, Clifton (1904-1999)

An American essayist, literary critic, and noted intellec-
tual who, among many other works, edited Fantasia
Mathematica® and The Mathematical Magpie.” He
became well known for the encyclopedic knowledge he
displayed on the Information Please radio programs in the
1930s and *40s.

Fagnano’s problem

In a given acute triangle ABC, find the inscribed triangle
whose perimeter is as small as possible. The answer is the
orthic triangle of ABC, that is, the triangle whose vertices
are endpoints of the altitudes from each of the vertices of
ABC. The problem was proposed and solved using cal-
culus by Giovanni Fagnano (1715-1797) in 1775. Once
the answer became known, several purely geometric solu-
tions were also discovered.

fair division
See cake-cutting.

Farey sequence

A sequence of numbers named after the English geologist
John Farey (1766-1826) who wrote about such sequences
in an article called “On a curious property of vulgar frac-
tions” in the Philosophical Magazine in 1816. Farey says
that he noted the “curious property” while examining the
tables of Complete decimal quotients produced by Henry
Goodwin. To obtain the Farey sequence for a fixed num-
ber 7, consider all rational numbers between 0 and 1
which, when expressed in their lowest terms, have a
denominator (the number on the bottom of a fraction)
not exceeding 7. Write the sequence in ascending order
of magnitude beginning with the smallest. The “curious
property” is that each member of the sequence is equal to
the rational number whose numerator (the number on
top of a fraction) is the sum of the numerators of the frac-
tions on either side, and whose denominator is the sum
of the denominators of the fractions on either side. For
example, the Farey sequence for z =5 is (%, %, %, 5, %,
1o, %, %5, 3, %%, 1), from which it can be seen that % =
1+1)/B+2),%B=0+2)/@4+5),%=@2+3)/(5+5),
% = (3 + 3)/(5 + 4), and so forth. Farey wrote: “I am
not acquainted whether this curious property of vulgar
fractions has been before pointed out?; or whether it may
admit of some easy or general demonstration?; which are
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points on which I should be glad to learn the sentiments
of some of your mathematical readers.”

One “mathematical reader” was Augustin Cauchy,
who gave the necessary proof in his Exercises de mathé-
matique, published in the same year as Farey’s article.
Farey was not the first to notice the property. C. Haros,
in 1802, wrote a paper on the approximation of decimal
fractions by common fractions. He explains how to
construct what is in fact the Farey sequence for » = 99
and Farey’s “curious property” is built into his con-
struction.

Fechner, Gustav Theodor (1801-1887)

A German physicist and psychologist who studied aes-
thetic aspects of the golden ratio and published his find-
ings in Vorschule der Aesthetik (Introduction to aesthetics)
(1876), arguing that this ratio turns up commonly in
human-made rectangular objects and is judged by people
to be the most pleasing to the eye (though some later
researchers have called his results into question).

Federov, E. S. (1853-1919)

A Russian geologist and crystallographer who helped lay
the theoretical foundations for modern crystallography.
In his famous two-part paper “Symmetry of Regular Sys-
tems of Figures” published in 1891, he proved that there
are exactly 17 distinct symmetries in the wallpaper

group.

feedback

The mutually reciprocal effect of one system or subsys-
tem on another. Negative feedback is when two subsystems
act to dampen the output of the other. For example, the
relation of predators and prey can be described by a neg-
ative feedback loop since more predators lead to a
decline in the population of prey, but when prey decrease
too much so does the population of predators since they
don’t have enough food. Positive feedback means that two
subsystems are amplifying each other’s outputs, e.g., the
screech heard in a public address system when the mike is
too close to the speaker. The microphone amplifies the
sound from the speaker which in turn amplifies the signal
from the microphone, and so on. Feedback is a way of
talking about the nonlinear interaction among the ele-
ments or components in a system and can be modeled by
nonlinear differential or difference equations as well as
by the activity of cells in a cellular automaton array.

Feigenbaum’s constant

A universal constant, denoted §, that governs the behav-
ior of systems that are approaching chaos; it was discov-
ered by the American mathematical physicist Mitchell
Feigenbaum (1944-) in 1975 and has the value & =

4.6692 . ... All one-dimensional chaotic systems have a
behavior, as they approach instability, known as period
doubling. The Feigenbaum constant gives the rate at
which the period of the system doubles.

Fermat, Pierre de (1601-1665)

A French lawyer, magistrate, and gentleman scholar,
often called the “Prince of Amateurs,” who is best known
for the conjecture, now proved, known as Fermat’s last
theorem. Although employed as a senior government
official, Fermat somehow managed to find time to do an
astonishing amount of math, for which he sought little
acclaim or acknowledgment. In fact, he published only
one important manuscript in his entire lifetime and even
then used fake initials. When his fellow French mathe-
matician Gilles Roberval offered to edit and publish
some of his works, Fermat replied, “Whatever of my
works is judged worthy of publication, I do not want my
name to appear there.” Most of his results are known
through letters to friends, notes in book margins, and
challenges to other mathematicians to find proofs for
theorems he had devised.

Fermat was one of the founders, with René Decartes,
of analytical geometry and, with Blaise Pascal, of prob-
ability theory. His work on the maxima and minima of
curves and tangents to them was seen, by Isaac Newton,
as a starting point for calculus. Yet his greatest love was
for number theory. In 1640, while studying perfect
numbers, Fermat wrote to Mersenne that if p is prime,
then 2p divides 2 — 2. Shortly after he expanded this into
what is now called Fermat’s little theorem. As usual, Fer-
mat stated “I would send you a proof, if I did not fear its
being too long.” His most famous statement of this form
accompanied his hasty notes on the “last theorem.” See
also Fermat number.

Fermat number

A number defined by the formula F, = 2% + 1 and
named after Pierre Fermat who conjectured, wrongly,
that all such numbers would be prime. The first five Fer-
mat numbers, Fy, =3, F, =5, F, =17, F, =257, and F, =
65,537, are prime. However, in 1732, Leonhard Euler
discovered that 641 divides F;. It takes only two trial
divisions to find this factor because Euler showed that
every factor of a Fermat number F, with 7 greater than 2
has the form £ x 2”2 + 1. In the case of F this is 128% +
1, so we would try 257 and 641 (129, 385, and 513 are
not prime). It is likely that there are only finitely many
Fermat primes. Gauss proved that a regular polygon of
n sides can be inscribed in a circle with Euclidean meth-
ods (e.g., by straightedge and compass) if and only if 7 is
a power of two times a product of distinct Fermat
primes.
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Fermat, Pierre de

Fermat’s last theorem

A challenge for many long ages
Had baffled the savants and sages.
Yet at last came the light:
Seems old Fermat was right—
1o the margin add 200 pages.
—Paul Chernoff

A conjecture put forward by Pierre de Fermat in 1637 in
the form of a note scribbled in the margin of his copy of
the ancient Greek text Arithmetica by Diophantus. The
note was found after his death, and the original is now
lost. However, a copy was included in the appendix to a
book published by Fermat’s son. Fermat’s note read: “It
is impossible to write a cube as a sum of two cubes, a

fourth power as a sum of fourth powers, and, in general,
any power beyond the second as a sum of two similar
powers. For this, I have found a truly wonderful proof,
but the margin is too small to contain it.”

Fermat claimed that the Diophantine equation x” +
" =z" has no integer solutions for 7 > 2. It turns out he
was right. But the proof had to wait 350 years and
involved such advanced techniques, virtually none of
which existed in the seventeenth century, that is seems
very unlikely that Fermat really had found an elementary
proof. Fermat’s last theorem—now truly a theorem—was
finally proved correct by Andrew Wiles in 1994.5%! In
order to reach that dizzy height, however, Wiles had to
draw on and extend several ideas at the core of modern
mathematics. In particular, he tackled the Shimura-
Taniyama-Weil conjecture, which provides links between
the branches of mathematics known as algebraic geome-
try and complex analysis. This conjecture dates back to
1955, when it was published in Japanese as a research
problem by the late Yutaka Taniyama. Goro Shimura of
Princeton and Andre Weil of the Institute for Advanced
Study provided key insights in formulating the conjec-
ture, which proposes a special kind of equivalence
between the mathematics of objects called elliptic curves
and the mathematics of certain motions in space. Inter-
estingly, the Wiles proof of Fermat’s last theorem was a
byproduct of his deep inroads into proving the Shimura-
Taniyama-Weil conjecture. Now, the Wiles effort could
help point the way to a general theory of three variable
Diophantine equations. Historically, mathematicians
have always had to state and solve such problems on a
case-by-case basis. An overarching theory would repre-
sent a tremendous advance. See also ABC conjecture.

Fermat's little theorem

If P is a prime number then for any number 4, (2” — 4)
must be divisible by P. This theorem is useful for testing
if a number is not prime, though it can’t tell if a number
is prime. As usual, Pierre de Fermat didn’t provide a
proof (this time saying “I would send you the demon-
stration, if I did not fear its being too long”). Leonhard
Euler first published a proofin 1736, but Gottfried Leib-
niz left virtually the same proof in an unpublished man-
uscript from sometime before 1683.

Fermat's spiral
A parabolic spiral.

Fibonacci (c. 1175-1250)

The pen name of Leonardo of Pisa, one of the greatest
mathematicians of the Middle Ages. The son of a Pisan
merchant who also served as a customs officer in North
Africa, he traveled widely in Barbary (Algeria) and was
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later sent on business trips to Egypt, Syria, Greece, Sicily,
and Provence. In 1200 he returned to Pisa and used the
knowledge gained on his travels to write Liber Abaci (The
book of the abacus), published in 1202, which intro-
duced to western Europe the Hindu-Arabic numerals and
decimal number system that remain in use today. The
first chapter of Part 1 begins: “These are the nine figures
of the Indians: 9 8 7 6 54 3 2 1. With these nine figures,
and with this sign 0 which in Arabic is called zephirum,
any number can be written, as will be demonstrated.”

Fibonacci also showed he was capable of some amaz-
ing feats of calculation. For example, he found the posi-
tive solution of the cubic equation x° + 2x* + 10x = 20
using the Babylonian number system with base 60 (a
strange choice, in view of his public advocacy of the dec-
imal system!). He gave the result as 1, 22, 7, 42, 33, 4, 40
which is equivalent to

2 7 42 33 4 40
T e T oo T oo T a0 T a0

How on Earth he obtained this, nobody knows; it was
300 years before anyone else could obtain such accurate
results. As well as serious mathematics, Liber Abaci con-
tains many playful passages and it is for one of these,
concerning a problem about counting the offspring of a
pair of rabbits, that Fibonacci became best known after
Edouard Lucas called the sequence of numbers discussed
by the rabbit problem the Fibonacci sequence.

Fibonacci sequence

The sequence that arises in answer to this problem posed
in Fibonacci’s great work Liber Abaci: “A certain man put
a pair of rabbits in a place surrounded on all sides by a
wall. How many pairs of rabbits can be produced from
that pair in a year if it is supposed that every month each
pair begins a new pair which from the second month on
becomes productive?”

The number of pairs of rabbits in the #th month
begins 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . ., where each
term is the sum of the two terms preceding it. This
sequence can be defined recursively as follows: F(1) =
FQ2)=1,F(n+ 1)= F(n) + F(n — 1) for n > 2, where F(n)
is the »#th Fibonacci number. Johannes Kepler was the
first to point out that the growth rate of the Fibonacci
numbers, that is, F(n + 1) / F(n), converges to the golden
ratio, ¢ (phi).

In the nineteenth century Fibonacci numbers were dis-
covered in many natural forms. For example, many types
of flower have a Fibonacci number of petals: certain types
of daisies tend to have 34 or 55 petals, while sunflowers
have 89 or, in some cases, 144. The seeds of sunflowers
spiral outward both to the left and the right in a Fibonacci

number of spirals. Similarly, the whorls on a pinecone,
the numbers of rings on the trunks of palm trees, the pat-
terns of snail shells, and the genealogy of the male bee all
follow a sequence of Fibonacci numbers. The arrange-
ment of plant leaves, or phyllotaxis, unfolds to the same
pattern because this results in an optimal solution in
terms of the spacing of the leaves or the amount of light
that can reach them. A familiar spiral form, known as the
logarithmic spiral, emerges when seeds on a plant grow
and space themselves according the Fibonacci sequence.
The logarithmic spiral is approximated by the rule: start at
the origin of the Cartesian coordinate system, move F(1)
units to the right, move F(2) units up, move F(3) units to
the left, move F(4) units down, move F(5) units to the
right, and so on. By growing in this way, on structures
such as sunflowers, pinecones, and pineapples, seeds are
able to pack themselves together most efficiently.
Fibonacci numbers have so many interesting mathe-
matical properties that an entire journal, The Fibonacci
Quarterly, is devoted to them. The sequence of final digits
in Fibonacci numbers repeats in cycles of 60. The last two
digits repeat in 300, the last three in 1,500, the last four in
15,000, etc. The product of any four consecutive Fibonacci
numbers is the area of a Pythagorean triangle. The shal-
low (least steep) diagonals of Pascal’s triangle sum to
Fibonacci numbers. Let 7 and # be positive integers, then

F(n) divides F(mn)

gcd(F(n), F(m)) = F(ged(m, n)), where “gcd” stands for
“greatest common divisor.”

(F(n))’ — F(n+ V)F(n — 1) = (-1)"" .

FO)+FQ3)+F(5)+...+ F2n—1)=F(2n).

For every #, there are » consecutive composite Fibo-
nacci numbers.

An interesting use of the Fibonacci sequence is for
converting miles to kilometers. For instance, if you want
to know about how many kilometers 5 miles is, take the
Fibonacci number (5) and look at the next one (8) (5
miles is about 8 kilometers). This works because it hap-
pens that the conversion factor between miles and kilo-
meters is roughly equal to the Golden Ratio.

The first few Fibonacci numbers that are also prime
numbers are 3; 5; 13; 89; 233; 1,597; 28,657; 514,229; . . ..
It seems likely that there are infinitely many Fibonacci
primes, but this has yet to be proven. However, it is rela-
tively easy to show that for 7 >4, #,+ 1 is never prime. The
Fibonacci sequence is a special case of the Lucas
sequence.

The tribonacci series is made by adding the last two
digits: 1, 1, 2, 4, 7, 13, 24, 44, 81, ... and from this the
quadbonacci series, the pentbonacci series, and the
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Fibonacci sequence The number of spirals of seeds on a sunflower is always a Fibonacci number—an arrangement that keeps
the seeds uniformly packed no matter how large the seed head. Thomas Stromberg

hexbonacci series, all the way up to the n-bonacci series.
Each ratio of successive terms forms a special constant,
analogous to 0.

field

A number system in which addition, subtraction, multi-
plication, and division (except by zero) are always
defined, and the associative and distributive laws are
valid. For example, the set of rational numbers is a field,
whereas the set of integers is not a field, because the
result of dividing one integer by another is not necessar-
ily an integer. The real numbers also constitute a field, as
do the complex numbers. Compare with ring.

Fields Medal

By convention, the most prestigious award for research in
mathematics. It is awarded every four years to between
two and four mathematicians under the age of 40.

Fifteen Puzzle

A sliding-tile puzzle invented by Sam Loyd in the 1870s
that became a worldwide obsession, much as Rubik’s
cube did a century later. Fifteen little tiles, numbered 1 to
15, were placed in a four by four frame in serial order
except for tiles 14 and 15, which were swapped around;
the lower right-hand square was left empty. The object of
the puzzle was to get all the tiles in the correct order; the
only allowed moves were sliding counters into the empty
square. Everyone it seemed was caught up with the
craze—playing the game in horse-drawn trams, during
their lunch breaks, or when they were supposed to be
working. The game even made its way into the solemn
halls of the German parliament. “I can still visualize
quite clearly the gray-haired people in the Reichstag
intent on a square small box in their hands,” recalled the
geographer and mathematician Sigmund Gunter who
was a deputy during the puzzle epidemic. “In Paris the
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Fifteen Puzzle A version of the Fifteen Puzzle produced in England by Fairylite. Sue & Brian Young/Mr. Puzzle Australia,

Wwvv.mrpuzz/e.com.au

puzzle flourished in the open air, in the boulevards, and
proliferated speedily from the capital all over the
provinces,” wrote a contemporary French author. “There
was hardly one country cottage where this spider hadn’t
made its nest lying in wait for a victim to flounder in its
web.” Loyd offered a $1,000 reward for the first correct
solution. But, although many claimed it, none were able
to reproduce a winning series of moves under close
scrutiny. There is a simple reason for this, which is also
the reason that Loyd was unable to obtain a U.S. patent
for his invention. According to regulations, Loyd had to
submit a working model so that a prototype batch could
be manufactured from it. Having shown the game to a
patent official, he was asked if it were solvable. “No,” he
replied. “It’s mathematically impossible.” Upon which
the official reasoned there could be no working model
and thus no patent!

The puzzle’s theory reveals that the more than 20 bil-

lion possible starting arrangements of the tiles fall into
just two groups: one in which all the tiles can be maneu-
vered into ascending numerical order (call this group I),
and one in which tiles 14 and 15 will be inverted (group
II). It’s impossible to combine arrangements from these
two groups and impossible to turn a group I arrangement
into a group II, or vice versa, using the normal rules of
the game. Given a random arrangement of tiles, can we
know in advance if we have the unsolvable kind? Very
easily. Simply count how many instances there are of a
tile numbered # appearing after the tile numbered 7 + 1.
If there are an even number of such inversions, the puz-
zle is solvable, otherwise you are wasting your time!

figurate number

A number sequence found by creating consecutive geo-
metrical figures from arrangements of equally spaced
points. Here is an example:
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The points can be arranged in one, two, three, or more
dimensions. There are many different kinds of figurate
numbers, such as polygonal numbers and tetrahedral
numbers.

films and plays involving mathematics
Mathematicians and mathematics rarely make an
entrance on the silver screen or the stage, unless as paro-
dies in the form of mad professors and meaningless
scrawled equations. A notable exception is A Beautiful
Mind (2001), directed by Ron Howard and starring Rus-
sell Crowe as the brilliant but mentally troubled mathe-
matician John Nash. Although a fine love story and a
well-crafted film, which won four Oscars, A Beautiful
Mind is weak on math and inaccurate in many of its
details of Nash’s life and his battle with schizophrenia.
Rain Man (1988), also based on a true story, costars
Dustin Hoffman as an autistic savant with a photo-
graphic memory and a genius for mental arithmetic.
Good Will Hunting (1997), written by and starring Matt
Damon and Ben Affleck, and also starring Robin
Williams, is about a young man who has led a troubled
life but has an amazing talent for mathematics. His abili-
ties are discovered when he comes into conflict with the
law, and he soon has to decide if he should pursue his
mathematical future and leave his family and friends
behind. In Darren Aronofsky’s disturbing independent
film P7 (1998), the main character is a mathematician
obsessed with his search for patterns within pi’s infinite
decimal places. He believes they can be used to predict
chaotic behaviors, including that of the stock market.
Throughout the film he is pursued by ruthless stock mar-
ket players and by rabbis trying to find a mathematical
way to communicate with God. In the science fiction film
Cube (1997), six people awake to find themselves trapped
in a deadly maze, and one of the characters uses mathe-
matical skills to solve the puzzle and find a way to escape.
Lesser known films with strong mathematical themes
include Mario Martone’s Death of a Neapolitan Mathe-
matician; Peter Greenaway’s Drowning by Numbers;
George Csicsery’s N Is a Number; and Moebins, made by
students and faculty at the Universidad del Cine of
Buenos Aires. Mathematics has also found its way onto
the stage. The musical Fermat’s Last Tango (2000), a fic-
tionalized account of Andrew Wiles’s struggle to prove
Fermat’s last theorem, was performed in New York by
the York Theatre company. It followed the Pulitzer

prize-winning play Proof by David Aubern, about the
death of a brilliant mathematician and the repercussions
for his daughters and his student.

finite

Limited in extent or scope. In mathematics, a finite set is
such that the number of elements it contains can be
described by a natural number. For instance, the set of
integers between —18 and 5 is finite, because it has a nat-
ural number (17) of elements. The set of all prime num-
bers, on the other hand, is not finite. In physics, “finite”
is used to mean both “not infinite” and “nonzero.”

finite-state automaton (FSA)

The simplest computing device. Although it is not nearly
powerful enough to perform universal computation, it
can recognize regular expressions. FSAs are defined by a
state transition table that specifies how the FSA moves
from one state to another when presented with a particu-
lar input. FSAs can be drawn as graphs.

Fisher, Adrian

A British professional designer and constructor of mazes;
his company, Adrian Fisher Maze Design, has built a
huge variety of mazes in Britain, continental Europe, the
United States, and elsewhere. These include the formal
hedge maze at Leeds Castle and the largest brick pave-
ment maze in the world at Kentwell Hall in Long
Melford. The latter is based on a Tudor rose and has 15
sepals used as locations for a board game in which live
players take part in Tudor costume.""

Fitchneal

An Trish version of the Viking game Hnefa-Tafl; played
on a 7 X 7 board (as was the Scottish equivalent, known
as Ard-Ri, “High King”), it is mentioned in the Mabino-
gion and Cormac’s Glossary of the ninth century.

five

The length of the hypotenuse of the smallest
Pythagorean triangle (a right triangle having integral
sides). Five is the only prime number that is a member of
two pairs of twin primes. Every integer is the sum of five
positive or negative cubes in an infinite number of ways.
Five is the smallest degree of a polynomial equation for
which there is no general formula for the solutions (see
quintic).

fixed-point attractor

An attractor that is represented by a particular point in
phase space, sometimes called an equilibrium point. As a
point it corresponds to a very limited range of possible
behaviors of the system. For example, in the case of a
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pendulum, the fixed-point attractor represents the pen-
dulum when the bob is at rest. This state of rest attracts
the system because of gravity and friction.

Flatland: A Romance of Many Dimensions

A satirical novel by Edwin A. Abbott,™ first published in
1884, that portrays a two-dimensional world, like the
surface of a map, over which its inhabitants move. Flat-
landers have no concept of up and down, and appear to
each other as mere points or lines. From our three-
dimensional perspective we can look down on Flatland
and see that its people are “really” a variety of shapes,
including straight lines (females), narrow isosceles trian-
gles (soldiers and workmen), equilateral triangles (lower
middle-class men), squares and pentagons (professional
men, including the pseudonymous author of the tale, A.
Square), hexagons and other regular polygons with still
more sides (the nobility), and circles (priests). Abbott
uses these geometrical distinctions, especially the appear-
ance of Flatland females and the working class, as a com-
mentary on the discrimination against women, the rigid
class stratification, and the lack of tolerance for “irregu-
larity” that was prevalent in Victorian Britain.

In a dream, A. Square visits the one-dimensional world
of Lineland where he tries, unsuccessfully, to persuade
the king that there is such a thing as a second dimension.
In turn, the narrator is told of three-dimensional space by
a sphere who moves slowly through the plane of Flat-
land, growing and shrinking as his cross-section changes
in size. (If a hypersphere were to move through our
three-dimensional world, we would see a sphere appear,
grow to a maximum size, and then shrink again before
disappearing.) Abbott is aware that he cheats a little in his
description of what the inhabitants of Flatland actually
see. In his preface to the second edition, he gives a
lengthy but not-too-convincing reply to the objection,
raised by some readers, that a Flatlander, “seeing a Line,
sees something that must be thick to the eye as well as long
to the eye (otherwise it would not be visible . . .).” The
curious and often-neglected fact is that we are just as
unable to imagine what it would truly be like to see in
two dimensions as we are to conceive of four dimen-
sions! No matter how hard we try we cannot imagine
being able to see a line of zero thickness.

flexagon

A flat model constructed from a folded strip of paper,
which, when flexed, can be made to reveal a number of
hidden faces. Flexagons are amusing toys but they have
also caught the interest of mathematicians. They are usu-
ally square or rectangular (tetraflexagons) or hexagonal
(hexaflexagons). A prefix can be added to the name to
indicate the number of faces that the model can display,

including the two faces (back and front) that are visible
before flexing. For example, a hexaflexagon with a total
of six faces is called a hexahexaflexagon. The discovery of
the first flexagon, a trihexaflexagon, is credited to the
British student Arthur H. Stone who was studying at

A

[N/

flexagon Two nets for folding into hexaflexagons: the
4-flexagon (top) and the 6-flexagon (bottom). To use the nets,
photocopy and enlarge them, and label each side with these
numbers:

4-flexagon (2231 2231 2231),

3144 3144 3144
6-flexagon (662554 662554 662554).
231431 231431 231431

Start at A using the top row of numbers. Number the other
side of the net with the bottom row of numbers so that the
top and bottom numbers appear on either side of the first tri-
angle, and so on. Jill Russell
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Princeton University in 1939. Stone’s colleagues Bryant
Tuckermann, Richard P. Feynman, and John W. Tukey
became interested in the idea. Tuckerman worked out a
topological method, called the Tickerman traverse, for
revealing all the faces of a flexagon. Tukey and Feynman
developed a complete mathematical theory that has not
been published. Flexagons were introduced to the gen-
eral public by Martin Gardner writing in Scientific Ameri-
can.M

floor function
The greatest integer in x, that is, the largest integer less
than or equal to x.

Flower of Life

One of the beautiful arrangements of circles found at the
Temple of Osiris at Abydos, Egypt. The pattern also
appears in Phoenician art from the ninth century B.C.
The circles are placed with six-fold symmetry, forming a
mesmerizing pattern of circles and lenses. A related
design from the same temple, which recurs in Italian art
from the thirteen century, is called the Seed of Life.

fly between trains problem

Two trains are approaching each another and a fly is
buzzing back and forth between the two trains. Given the
(constant) speed of the trains and their initial separation
distance, and the (constant) speed of the fly, calculate
how far the fly will travel before the trains collide. This
problem appears to have been first posed by Charles
Ange Laisant (1840-1921) in his Initiation Mathématique.
There is a long-winded method of getting the answer and
a much shorter way. Suppose the trains start out 200
miles apart and are each traveling at 50 miles per hour,
and the fly—a speedster of its kind—is moving at 75 miles
per hour. The long method involves considering the
length of the back-and-forth path that the fly takes and
evaluating this as the sum of an infinite series. The quick
solution is to notice that the trains will collide in 2 hours
and that in this time the fly will travel 2 x 75 = 150 miles!
When this problem was put to John von Neumann, he
immediately gave the correct answer. The poser, assum-
ing he had spotted the shortcut, said: “It is very strange,
but nearly everyone tries to sum the infinite series.” Von
Neumann replied: “What do you mean, strange? That’s
how I did it!”

focal chord
A chord of a conic section that passes through a focus.

focal radius
A line segment from the focus of an ellipse to a point on
the perimeter of the ellipse.

focus

A defining point in the construction of a conic section.
The word comes from the Latin for hearth or fireplace
and appears to have been first used in mathematics, in
describing an ellipse, by Johannes Kepler.

foliation

A decoration of a manifold in which the manifold is par-
titioned into sheets of some lower dimension, and the
sheets are locally parallel. More technically, the foliated
manifold is locally homeomorphic to a vector space
decorated by cosets of a subspace.

folium
A curve, first described by Johannes Kepler in 1609, that
corresponds to the general equation

(x* + %) (»* + x(x + b)) = 4axy’, in Cartesian form, or
r==b cosO + 4a cos0 sin’0, in polar coordinates.

The Latin folium means “leaf-shaped.” Three types,
known as the simple folium, the bifolium (or double
folium), and the trifolium, correspond to the cases when
b=4a,b=0, and b= a, respectively. The folium of Descartes
is given by the Cartesian equation x* + y° = 3axy and was
first discussed by René Descartes in 1638. Although he
found the correct shape of the curve in the positive quad-
rant, he wrongly thought that this leaf shape was repeated
in each quadrant like the four petals of a flower. The
problem to determine the tangent to the curve was pro-
posed to Gilles de Roberval who, having made the same
incorrect assumption, called the curve fleur de jasmin after
the four-petal jasmine bloom, a name that was later
dropped. The folium of Descartes has an asymptote x +
y+a=0.

formal system

A mathematical formalism in which statements can be
constructed and manipulated with logical rules. Some
formal systems, such as Euclidean geometry, are built
around a few basic axioms and can be expanded with
theorems that can be deduced through proofs.

formalism

A mathematical school of thought that was headed by
the German mathematician David Hilbert. Formalists
argue that mathematics must be developed through
axiomatic systems. Formalists agree with Platonism on
the principles of mathematical proof, but Hilbert’s fol-
lowers don’t recognize an external world of mathematics.
Formalists argue that mathematical objects don’t exist
until we define them. Humans create the real number
system, for example, by establishing axioms to describe
it. All that mathematics needs are inference rules to
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progress from one step to the next. Formalists tried to
prove that within the framework of established axioms,
theorems, and definitions, a mathematical system is con-
sistent and, in the mid-twentieth century, formalism
became the predominant philosophical attitude in math
textbooks. However, it was undermined by Godel’s
incompleteness theorem and also the general recogni-
tion that results can be usefully applied without having
to be proved or derived axiomatically.

Fortune’s conjecture

A conjecture about prime numbers made by the New
Zealander social anthropologist Reo Fortune (1903-1979),
who had a reputation for unstable behavior bordering on
the psychotic. He once attempted to settle an academic
dispute with a colleague, Thomas Mcllwraith, at the Uni-
versity of Ontario, by challenging him to a duel with any
weapon of his choice from the collections of the Royal
Ontario Museum. Fortune proposed that if 4 is the small-
est prime greater than P+ 1, where Pis the product of the
first # primes, then ¢ — P is prime. For example, if 7 is 3,
then Pis 2 x 3 X 5 =30, 4 =37, and 4 — P is the prime 7.
These numbers, 4 — P, are now known as Fortunate numbers.
The conjecture remains unproven but is generally thought
to be true. The sequence of Fortunate numbers begins

3,5,7,13,23,17,19, 23,37, 61, 67, . ..

four

The smallest composite number, the second smallest
square number, the first non-Fibonacci number (see
Fibonacci sequence), the smallest Smith number, and
the smallest number that can be written as the sum of
two prime numbers. Four is the number of dimensions
that make up space-time (three of space and one of
time). It is the most number of colors needed to color
any map so that no two neighboring areas are the same
color (see four-color map problem). There are four car-
dinal points on the compass, four Riders of the Apoca-
lypse, and four Gospels.

four-color map problem

A long-standing problem that dates back to 1852 when
Francis Guthrie, while trying to color a map of the coun-
ties of England noticed that four colors were enough to
ensure that no adjacent counties were colored the same.
He asked his brother Frederick if it was true that a7y map
could be colored using four colors in such a way that
adjacent regions (i.e., those sharing a common boundary
segment, not just a point) receive different colors. Freder-
ick Guthrie then passed on the conjecture to Augustus de
Morgan. The first printed reference is due to Arthur Cay-
ley in 1878. A year later the false “proof,” by the English

barrister Alfred Kempe, appeared; ifs incorrectness was
pointed out by Percy Heawood 11 years later. Another
failed proof is due to Peter Tait in 1880, a gap in Ais argu-
ment being pointed out by Julius Petersen in 1891. Both
false proofs did have some value, though. Kempe discov-
ered what became known as Kempe chains, and Tait found
an equivalent formulation of the four-color theorem in
terms of three-edge coloring.

The next major contribution came from George Birk-
hoff whose work allowed Philip Franklin in 1922 to prove
that the four-color conjecture is true for maps with at most
25 regions. It was also used by other mathematicians to
make various forms of progress on the four-color problem.
In the 1970s, the German mathematician Heinrich Heesch
developed the two main ingredients needed for the ulti-
mate proof—reducibility and discharging. While the con-
cept of reducibility was studied by other researchers as
well, it seems that the idea of discharging, crucial for the
unavoidability part of the proof, is due to Heesch, and that
it was he who conjectured that a suitable development of
this method would solve the four-color problem. This was
confirmed by Kenneth Appel and Wolfgang Haken of the
University of Illinois in 1977, when they published their
proof of the four-color theorem.” Their controversial
proof challenges the basic assumptions of what mathemat-
ical proof is. They used more than 1,200 hours of super-
computer time to analyze 1,478 different configurations
that in turn can produce every possible map on a plane.
Not everyone was happy with the method of the break-
through, as Appel himself pointed out:

For almost a century and a half, a Holy Grail of
graph theory has been a simple incisive proof of the
Four Color Theorem. It has troubled our profession
that a problem that can be understood by a school
child has yet to be solved in a way that better illu-
minates the reason that only four colors are needed
for planar maps. The feelings of many mathemati-
cians were summed up for me by Herb Wilf’s
response to being told that it appeared that one
could prove the theorem by a long reducibility argu-
ment which used computers to test the reducibility
of a large number of configurations. He simply said,
“God would not allow such a beautiful theorem to
have such an ugly proof.”

Martin Gardner commented, “Whether a simple, elegant
proof not requiring a computer will ever be found, is still
an open question.” It’s interesting that such a simple,
intuitive puzzle can be so difficult to settle! The four-
color theorem is true for maps on a plane or on a sphere.
The answer is different for geographic maps on a torus:
in this case, seven colors are necessary and sufficient.”””!
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four-color map problem Martin Gardner's spoof counterexample to the four-color theorem (left) and a solution using four
colors (right). The different colors are represented here in black, white, and gray.

four coins problem

Given three coins of possibly different sizes, which are
arranged so that each is tangent to the other two, find the
coin that is tangent to the other three coins. The solution
is the inner Soddy circle.

four fours problem

Using arithmetic combinations of four 4’s, express all the
numbers from 1 to 100. For example, 1 =44/44 and 2 =
(4 x 4)/(4 + 4). The problem was first presented in The
Schoolmaster’s Assistant: Being a Compendium of Arithmetic
Both Practical and Theoretical (first edition c. 1744), a pop-
ular textbook by the English schoolteacher and cleric
Thomas Dilworth (d. 1780). Operations and symbols
that are allowed include the four arithmetic operations
(+, X, =, /), concatenation (e.g., the use of 44), decimal
points (e.g., 4.4), powers (e.g., 4%), square roots, factorials
(e.g., 4!), and overbars for repeating digits (e.g., .4 with an
overbar to express %9). Ordinary use of parentheses are
allowed. One of the trickiest numbers to represent in this
way is 73, which calls for something as contorted as

VVN@E)+47 4

(where .4’ is shorthand for .444 . . .). Of course, the prob-
lem can be extended to represent integers greater than
100. The highest value achievable in the four four’s puz-

. 44
Zle is 108.0723047260281><10153 — 44 .

four knights puzzle

On a 3 X 3 chessboard are two white knights at the top
left-hand and top right-hand squares and two black
knights at the bottom left-hand and bottom right-hand
squares. The problem is to exchange the black knights
with the white knights in the minimum possible number
of moves. One move is a normal knight’s move on any
vacant cell of the board, which renders the center square
inaccessible.

Fourier, (Jean Baptiste) Joseph, Baron
(1768-1830)

A French mathematician known chiefly for his contribu-
tion to the mathematical analysis of heat flow. Although
he trained for the priesthood, Fourier didn’t take his
vows but instead turned toward mathematics. He first
studied and later taught mathematics at the newly created
Ecole Normale. In 1798 he joined Napoleon’s army in its
invasion of Egypt as scientific advisor, to help establish
educational facilities there and to carry out archaeologi-
cal explorations. After his return to France in 1801 he was
appointed prefect of the department of Isere. Fourier
became famous for his Theorie analytique de la Chalenr
(1822), a mathematical treatment of how heat conducts
in solid bodies. He established the partial differential
equation governing heat flow and solved it by using an
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infinite series of trigonometric functions, now known as
Fourier series. Though these series had been used
before, Fourier investigated them in much greater detail
and prepared the way for later work on trigonometric
series and the theory of functions of a real variable.
Fourier’s belief that his health would be improved by
wrapping himself up in blankets proved fatal: thus
encumbered he tripped down the stairs of his house and

died.

Fourier series

Named after Joseph Fourier, the expansion of a periodic
function as an infinite sum of sines and cosines of vari-
ous frequencies and amplitudes. This is similar to the
approximation of an irrational number by a sum of a
series of rational numbers (or a decimal expansion).
Human ears effectively produce Fourier series automati-
cally from complex sounds. Tiny hairs, known as cilia,
vibrate at different specific frequencies. When a wave
enters the ear, the cilia vibrate if the wave function con-
tains any component of the corresponding frequency.
This enables the hearer to distinguish sounds of various
pitches. Fourier series are used a great deal in science and
engineering to find solutions to partial differential equa-
tions, such as those in problems involving heat flow.
They can also be used to construct some pathological
functions such as ones that are continuous but nowhere
differentiable. The study and computation of Fourier
series is known as harmonic analysis.

fourth dimension
“Do you think that there are things which you cannot
understand, and yet which are; that some people see
things that others cannot?” said Dr. Van Helsing in Bram
Stoker’s Dracula. Instead of vampires, he may just as eas-
ily have been talking about the fourth dimension—an
extension at right-angles to the three familiar directions
of up-down, forward-backward, and side-to-side. In
physics, especially relativity theory, time is often
regarded as the fourth dimension of the space-time con-
tinuum in which we live. But what meaning can be
attached to a fourth spatial dimension? The mathematics
of the fourth dimension (4-d) can be approached
through a simple extension of either the algebra or the
geometry of one, two, and three dimensions.
Algebraically, each point in a multidimensional space
can be represented by a unique sequence of real num-
bers. One-dimensional space is just the number line of
real numbers. Two-dimensional space, the plane, corre-
sponds to the set of all ordered pairs (x, y) of real num-
bers, and three-dimensional space to the set of all ordered
triplets (x, 3, z). By extrapolation, four-dimensional space
corresponds to the set of all ordered quadruplets (x,

z, w). Linked to this concept is that of quaternions, which
can also be viewed as points in the fourth dimension.

Geometric facts about the fourth dimension are just as
easy to state. The fourth dimension can be thought of as
a direction perpendicular to every direction in three-
dimensional space; in other words, it stretches out along
an axis, say the w-axis, that is mutually perpendicular to
the familiar x-, y-, and z-axes. Analogous to the cube is a
hypercube or tesseract, and to the sphere is a 4-d hyper-
sphere. Just as there are five regular polygons, known as
the Platonic solids, so there are six four-dimensional reg-
ular polytopes. They are: the 4-simplex (constructed
from five tetrahedra, with three tetrahedra meeting at an
edge); the tesseract (made from eight cubes, meeting
three per edge); the 16-cell (made from 16 tetrahedra,
meeting four per edge); the 24-cell (made from 24 octa-
hedra, meeting three per edge); the 120-cell (made from
120 dodecahedra, meeting three per edge); and the mon-
strous 600-cell (made from 600 tetrahedra, meeting five
per edge).

Geometers have no difficulty in analyzing, describing,
and cataloging the properties of all sorts of 4-d figures.
The problem starts when we try to visualize the fourth
dimension. This is a bit like trying to form a mental pic-
ture of a color different from any of those in the known
rainbow from red to violet, or a “lost chord,” different
from any that has ever been played. The best that most of
us can hope for is to understand by analogy. For example,
just as a sketch of a cube is a 2-d perspective of a real
cube, so a real cube can be thought of as a perspective of
a tesseract. At a movie, a 2-d picture represents a 3-d
world, whereas if you were to watch the action live, in
three-dimensions, this would be like a screen projection
in four dimensions.

Many books have been written and schemes devised
to nudge our imaginations into thinking four-
dimensionally. One of the oldest and best is Edwin
Abbott’s Flatland written more than a century ago,
around the time that mathematical discussion of higher
dimensions was becoming popular. H. G. Wells also
dabbled in the fourth dimension, most notably in The
Time Machine (1895), but also in The Invisible Man (1897),
in which the central character drinks a potion “involving
four dimensions,” and in “The Plattner Story” (1896), in
which the hero of the tale, Gottfried Plattner, is hurled
into a four-spatial dimension by a school chemistry
experiment that goes wrong and comes back with all his
internal organs switched around from right to left.”®!
The most extraordinary and protracted attack on the
problem, however, came from Charles Hinton, who
believed that, through appropriate mental practice
involving a complicated set of colored blocks, a higher
reality would reveal itself, “bring[ing] forward a complete
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system of four-dimensional thought [in] mechanics, sci-
ence, and art.”

Victorian-age spiritualists and mystics also latched on
to the idea of the fourth dimension as a home for the
spirits of the departed. This would explain, they argued,
how ghosts could pass through walls, disappear and reap-
pear at will, and see what was invisible to mere three-
dimensional mortals. Some distinguished scientists lent
their weight to these spiritualist claims, often after being
duped by clever conjuring tricks. One such unfortunate
was the astronomer Karl Friedrich Zollner who wrote
about the four-dimensional spirit world in his Transcen-
dental Physics (1881) after attending séances by Henry
Slade, the fraudulent American medium.

Art, too, became enraptured with the fourth dimen-
sion in the early twentieth century. When the Cubist
painter and theorist Albert Gleizes said, “Beyond the
three dimensions of Euclid we have added another, the
fourth dimension, which is to say, the figuration of space,
the measure of the infinite,” he united math and art and
brought together two major characteristics of the fourth
dimension in early Modern Art theory—the geometric
orientation as a higher spatial dimension and the

metaphorical association with infinity."*” See also Klein
bOtth [25, 156, 163, 212, 213, 231, 254, 267, 271, 273, 340]

Fox and Geese

An English board game that dates back to the Middle
Ages and is unusual in that the two sides are unequal,
thus making this an example of a Tafl game. The lone fox
attempts to capture 13 (or, in later versions, 17) geese,
while the geese try to hem the fox in so that it can’t
move. The geese start out by filling up all the points on
one side of the cross-shaped grid on the board. The fox—
the one counter of a different color—begins on any
vacant point remaining. The fox moves first. Each side, in
its turn, may move one counter. Both fox and geese can
move along a line, forwards, backwards, or sideways, to
the next contiguous point. The fox may move along a
line or jump over a goose to an empty point, capturing
the goose and removing it from the board. Two or more
geese may be captured by the fox in one turn, provided
that he is able to jump to an empty point after each one.
The fox wins if he depletes the gaggle of geese to a num-
ber that makes it impossible for them to trap him. The
geese can’t jump over the fox or capture the fox but
instead must try to mob him and trap him in a corner.
The geese win if they make it impossible for the fox to
move. A modification of this game spread with the
British to India, where during the Great Mutiny the game
became known as “Officers and Sepoys.” In this variant,
two officers in a fort attempt to hold off 24 sepoys, who
must storm the fort.

fractal

A geometric shape that can be subdivided at any scale
into parts that are, at least approximately, reduced-size
copies of the whole. The name “fractal,” from the Latin
fractus meaning a broken surface, was coined by Benoit
Mandelbrot in 1975. The key property of fractals is self-
similarity, which means that zooming in or zooming out
of a fractal produces no overall change in appearance.

One of several technical definitions of a fractal is “a set
of points whose topological dimension is less than its
Hausdorff dimension.” The topological dimension is an
object’s ordinary dimensionality—one in the case of a
curve, two in the case of a surface, and so forth—and is
always a whole number. The Hausdorff dimension, on
the other hand, measures how much space an object fills,
and can take non-integer values if the object is very com-
plex and twisty.

Some fractals show a strong regularity and rigid self-
similarity and are produced by the repeated application
of a set of rules that may be quite simple. Among the best
known of these “iterated function” systems are the Koch
snowflake, the Peano curves, the Sierpinski carpet, and
the Sierpinski gasket. Other fractals, defined by a recur-
rence relation at each point in space, are among the most
complex, beautiful, and beguiling mathematical struc-
tures known. They include the well-known Mandelbrot
set and Lyapunov fractals. Finally, there are random
fractals generated by stochastic rather than deterministic
processes, for example fractal landscapes. Random frac-
tals have the greatest practical use, and can be used to
describe many highly irregular real-world objects, includ-
ing clouds, mountains, coastlines, and trees. See also
fractal dimension.

fractal dimension

A non-integer measure of the irregularity or complexity
of a system; it is an extension of the notion of dimension
found in Euclidean geometry. Knowing the fractal
dimension helps one determine the degree of irregularity
and pinpoint the number of variables that are key to
determining the dynamics of the system.

fraction

A number that represents a part, or several equal parts, of
a whole; examples include one-half, two-thirds, and
three-fifths. The word comes from the Latin frangere,
meaning “to break.” A simple, common, or vulgar fraction is
of the form a/b, where @ may be any integer and 4 may be
any integer greater than 0. If 2 < 4, the fraction is said to
be proper (“bottom heavy”); otherwise it is improper (“top
heavy”). A decimal fraction has a denominator (number
on the bottom) of 10, 100, 1000, and so forth. See also
continued fraction.
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fractal A deep zoom of part of the Mandelbrot set. Christopher Rowley

Fraser spiral

A distortion illusion in which overlapping black arc seg-
ments appear to form a spiral but are in reality a series of
overlapping concentric circles. This is easily demon-
strated by following one of the curves with your finger.
The illusion is named after the British psychologist James
Fraser (1863-1936) who first published it in 1908.1'*

Fredholm, Erik Ivar (1866-1927)

A Swedish mathematician who founded the modern the-
ory of integral equations. This became a major research
topic in the first quarter of the twentieth century and
underpinned important theoretical developments in
physics; David Hilbert, in particular, extended Fred-
holm’s work to arrive at the concept of Hilbert space.
Fredholm also devoted time to actuarial science and
made a particularly important contribution by proposing

an elegant formula to determine the surrender value of a
life insurance policy. He earned his Ph.D. from the Uni-
versity of Uppsala but then spent the rest of his academic
career at the University of Stockholm.

Freemish crate
See impossible figure.

Freeth’s nephroid
See nephroid.

Frege, Friedrich Ludwig Gottlob (1848-1925)

A German mathematician and philosopher who virtually
founded the modern discipline of mathematical logic. In
Die Grundlagen der Arithmetik (The foundations of arith-
metic, 1884), he used set theory to define the cardinal
number of a given class as the class of all classes that are
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similar (i.e. can be placed in a one-to-one correspon-
dence) to the given class. In Grundgeseize der Arithmetik
(The basic laws of arithmetic, 2 vols., 1893 and 1903),
Frege began attempting to build up mathematics from
arithmetic and symbolic logic on a rigorous and contra-
diction-free basis. When the second volume was in the
process of being printed, Bernard Russell pointed out a
paradox in Frege’s work. The paradox, which became
known as Russell’s paradox, stems from the question:
“Is the class of all classes that are not members of itself a
member of itself or not?” The question leads to a contra-
diction and cannot be resolved. Frege was thus forced to
admit that the foundation of his reasoning was worthless.
As he stated at the end of his work, “A scientist can
hardly encounter anything more undesirable than to
have the foundation collapse just as the work is finished.
I was put in this position by a letter from Mr. Bertrand
Russell when the work was almost through the press.”

Frénicle de Bessy, Bernard (1602-1675)

An eminent French amateur mathematician who exten-
sively researched magic squares; his Des quassez ou tables
magiques, published posthumously in 1693, first identi-
fied all 880 magic squares of the fourth order. Frénicle
also corresponded with Descartes, Fermat, Huygens,
and Mersenne, mostly on number theory, the work for
which he is best known.

frequency

The number of times a value occurs in some time interval.

friendly number
See amicable numbers.

Frogs and Toads

A puzzle in which three counters or pegs representing
frogs are placed on three successive positions on the left
of a string of seven squares, and three different tokens
representing toads are placed on the three rightmost
squares. Frogs only move to the right, toads only to the
left. Every move is either a slide to the adjacent square or
ajump over one position, which is allowed only if the lat-
ter is occupied by a member of the other species. No two
animals are ever allowed on the same square. The goal is
to move the toads into the three leftmost positions and
the frogs into three rightmost positions in the fewest pos-
sible moves. Many different versions of this puzzle have
appeared over the centuries and it may be Arabic in ori-
gin. The number of pieces on each side may vary, as may
the number of empty starting places in the middle; other
names for the puzzle have included Sheep and Goats and
Sphinxes and Pyramids.

frugal number
See economical number.

frustum

Part of a solid cut off between two parallel planes; in par-
ticular, for a cone or a pyramid, a frustum is determined
by the plane of the base and a plane parallel to the base.
Frustum is Latin for “a piece broken off.”

function

Old mathematicians never die; they just lose some of
their functions.
—Anonymous

A way of expressing the dependence of one quantity on
another quantity or quantities. Traditionally, functions
were specified as explicit rules or formulas that converted
some input value (or values) into an output value. If fis
the name of the function and x is a name for an input
value, then f(x) denotes the output value corresponding
to x under the rule £ An input value is also called an
argument of the function, and an output value is called a
value of the function. The graph of the function fis the
collection of all pairs (x, f(x)), where x is an argument of
- For example, the circumference C of a circle depends
on its diameter 4 according to the formula C = nd; there-
fore, one can say that the circumference is a function of
the diameter, and the functional relationship is given by
C(d) = nd. Equally well, the diameter can be considered
a function of the circumference, with the relationship
given by 4(C) = d/m. In modern mathematics, the insis-
tence on specifying an explicit effective rule has been
abandoned; all that is required is that a function fassoci-
ate with every element of some set X a unique element of
some set Y. This makes it possible to prove the existence
of a function without necessarily being able to calculate
its values explicitly. Also, it enables general properties of
functions to be proved independently of their form. The
set X of all admissible arguments is called the domain of
f; the set Y of all admissible values is called the codomain
of [ We write f: X - Y.

fundamental group

A group of a topological space X that is constructed by
looking at how closed paths in X can be combined to get
new paths. Under a suitable way of identifying paths
(known as homotopy) one can get a group structure on
the set which gives an algebraic invariant of the space X.

fundamental theorem of algebra
The result that any polynomial with real or complex
coefficients has a root in the complex plane.
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fundamental theorem of arithmetic

Every positive integer greater than 1 is a prime number
or can be expressed as a unique product of primes and
powers of primes.

fuzzy logic

A departure from classical two-valued logic in which
something is either true or false, to allow a continuous
range of truth values. Fuzzy logic was introduced by Lotfi
Zadeh of the University of California at Berkeley in the
1960s as a means to model the uncertainty of natural lan-

guage.



Gabriel’s horn
The surface of revolution of

y=1/x

for x greater than 1. Surprisingly this has a finite volume
of pi cubic units but an infinitely large surface area!
Gabriel’s horn is also known as Torricelli’s trumpet because
it was investigated by the Italian Evangelista Torricelli
(1608-1647). As a young man Torricelli studied in
Galileo’s home at Arcetri, near Florence, and then, upon
Galileo’s death, succeeded his teacher as mathematician
and philosopher for their good friend and patron, the
grand duke of Tuscany. Torricelli was amazed by the
strange property of his mathematical trumpet and tried
various ways to avoid the conclusion that a finite vol-
ume could be enclosed by a vessel with an infinite sur-
face area. Unfortunately, he lived before calculus came
along to explain the apparent paradox in terms of infin-
itesimals.

Galois, Evariste (1811-1832)

A French mathematician who led a short, dramatic life
and is often credited with founding modern group the-
ory, though the Italian Paolo Ruffini (1765-1822) came
up with many of the ideas first. Galois’s work wasn’t
widely acknowledged by his contemporaries, partly be-
cause he didn’t present his material very well and partly
because he held unpopular political views. In fact, he was
a republican revolutionary who was twice imprisoned
because of his activities. During his second incarceration
he fell in love with the daughter of the prison physician,
Stephanie-Felice du Motel, and after being released, was
killed in a duel over her with Perscheux d’Herbinville.
His death started republican riots and rallies which lasted
for several days. See also Galois theory.

Galois theory
The study of certain groups, known as Galois groups, that
can be associated with polynomial equations. Whether

Gabriel’s horn The horn for x values between 1 and 10.
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or not the solutions to an equation can be written down
using rational functions and square roots, cube roots, and
so forth depends on certain group-theoretic properties of
Galois groups.

game
A conflict, with formal rules and a finite number of
choices of what to do at each stage, between two or more
players. The study of games belongs to a branch of math-
ematics and logic known as game theory. If a game is sim-
ple enough, it can be solved for all possible outcomes.
This is the case, for example, with tic-tac-toe and Nim. By
harnessing the power of computers to check through vast
numbers of moves, even more complicated games are suc-
cumbing to a complete analysis. In the 1990s, nine men’s
morris was shown, by searching through billions of possi-
ble endgames, to be a certain draw if both players work to
an optimal strategy. Checkers may be the next to be fully
determined: its roughly 500 million trillion possible posi-
tions may soon be within reach of the most powerful
supercomputers. See also blackjack, chess, Frogs and
Toads, Ovid’s game, TacTix, and Wythoff’s game.

game theory

A mathematical formalism used to study human games,
economics, military conflicts, and biology. The goal of
game theory is to find the optimal strategy for one player
to use when his opponent also plays optimally. A strategy
may incorporate randomness, in which case it is referred
to as a mixed strategy.

Early ideas of game theory can be found in writings
throughout history as diverse as the Bible and works by
René Descartes, Sun Tzu (author of the 2,400-year-old
The Art of War), and Charles Darwin. The basis of mod-
ern game theory is an outgrowth of several books that
deal with related subjects such as economics and proba-
bility. These include Augustin Cournot’s Researches into
the Mathematical Principles of the Theory of Wealth (1838),
which gives an intuitive explanation of what would
eventually be formalized by John Nash as Nash equilib-
rium; Francis Edgeworth’s Mathematical Psychics, which
explored the notion of competitive equilibria in a two-
type (or two-person) economy; and Emile Borel’s Alge-
bre et calcul des probabilites (1927), which gave the first
insight into so-called mixed strategies.*”” Game theory
finally came of age through the efforts of two European
immigrants to the United States working at the Institute
of Advanced Studies in Princeton. Around 1940, the
idea of the utility function was taken up by John von
Neumann, who had been forced to flee his native Hun-
gary when the Nazis invaded, and the economist Oskar
Morgenstern (1902-1976), who had left Austria because
he loathed the National Socialists. In Princeton the

two immigrants worked together on what they initially
thought would be a short paper on the theory of games,
but that kept growing until it finally appeared in 1944 as
an opus of 600 pages with the title Theory of Games and
Economic Behavior.”™"

GLOSSARY OF GAME THEORY
categorical game A game in which a tie is impossi-
ble.

finite game A game in which each player has a
finite number of moves and a
finite number of choices at each
move.

futile game A game that allows a tie when

played properly by both players.

A game in which the possible
moves are the same for each
player in any position.

A collection of moves together
with a corresponding set of
weights which are followed proba-
bilistically in the playing of a game.
A game for which each player has
a different set of moves in any
position.

An m x n matrix that gives the pos-
sible outcome of a two-person
zero-sum game when player A has
m possible moves and player B
has n moves.

A set of moves that a player plans
to follow while playing a game.

A game in which players make
payments only to each other. One
player’s loss is the other player's
gain, so the total amount of
“money” available is constant.

impartial game

mixed strategy

partisan game

payoff matrix

strategy

Zero-sum game

gamma
See Euler-Mascheroni constant.

gamma function
A generalization of the factorial function to the real line
and to the complex plane. It is defined by:

Tr+1)= f x" e dx
0
If 7 is an integer, then T'(z + 1) = #! See also beta function.

Gardner, Martin (1914-)
An American recreational mathematician best known for
his “Mathematical Games” column, which ran in Scien-
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tific American for 25 years. Through this column he intro-
duced many subjects, including flexagons, polyominos,
Piet Hein’s Soma Cube, and John Conway’s Game of
Life, to a wider audience. He is also an accomplished
amateur magician and an active member of the skeptical
movement associated with James Randi. Gardner is the
author of more than 60 books, including various collec-
tions of his Scientific American columns, The Ambidextrous
Universe, and The Annotated Alice."*"3!

gauge theory

A force field in nature, or an analogous vector field in
mathematics with an enormous amount of symmetry that
expresses the redundancy or ambiguity of many param-
eters. The simplest example is the electromagnetic field.

Gauss, Carl Friedrich (1777-1855)

A German mathematician, often called the “Prince of
Mathematics,” whose stature and range of interests rivaled
those of Aristotle and Isaac Newton. Some inkling of
what was in store came when, as a 3-year-old, he corrected
a mistake in one of his father’s lengthy payroll calcula-
tions. In school, at age 10, when his teacher gave the class
the task of adding all the integers from 1 to 100, Gauss
immediately wrote down the correct answer, 5050, on his
slate. He had spotted that the numbers can be paired off
as (100 + 1), (99 +2), (98 +3), .. ., (51 + 50) so that the
problem reduces to multiplying 101 by 50. At age 19,
Gauss found a way to construct a heptadecagon (a regular
polygon with 17 sides) using only a straightedge and com-
pass—a feat that had eluded the Greeks. Then Gauss
entered the mathematical stratosphere of his time by
proving what is now called the fundamental theorem of alge-
bra, namely, that every polynomial has at last one root
that is a complex number; in fact, he gave four different
proofs, the first of which appeared in his dissertation. In
1801, he proved the findamental theorem of arithmetic (that
every natural number can be represented as the product of
prime numbers in only one way); published a brilliant
tour de force on the properties of integers in his Disquisi-
tiones Arithmeticae, which systematized the study of num-
ber theory; and showed that every number is the sum of
at most three triangular numbers. In the same year, he
also developed the method of least squares fitting and,
though he didn’t publish it, used it to calculate the orbit
of the asteroid Ceres, that had recently been discovered
by Piazzi, from only three observations. Gauss published
his monumental treatise on celestial mechanics Theoria
Motus in 1806. He became interested in the compass
through surveying, and developed the magnetometer, an
instrument with which, together with Wilhelm Weber, he
measured the intensity of magnetic forces. With Weber,
he also built the first successful telegraph.

Unfortunately for mathematics, Gauss reworked and
improved papers incessantly, and, in keeping with his
motto “pauca sed matura® (few but ripe), he published
only a fraction of his work. Many of his results were
subsequently repeated by and attributed to others, since
his terse diary remained unpublished for years after his
death. Only 19 pages long, this diary later confirmed his
priority on many breakthroughs, including work on an
alternative to the parallel postulate, which really makes
him the earliest pioneer of non-Euclidean geometry
despite the fact that Janos Boélyai and Nikolai Loba-
chevsky are normally given this accolade. Gauss did,
however, publish his seminal treatment on differen-
tial geometry in Disquisitiones circa superticies curvas, and
Gaussian curvature is named for him. Gauss wanted a
heptadecagon placed on his gravestone, but the carver
refused, saying it would be indistinguishable from a cir-
cle. The heptadecagon appears in the shape of a pedestal
with a statue erected in his honor in his hometown of
Braunschweig.

Gaussian

Normally distributed (with a bell-shaped curve) and hav-
ing a mean at the center of the curve with tail widths pro-
portional to the standard deviation of the data about the
mean.

Gelfond’s theorem

Also known as the Gelfond-Schneider theorem: 4" is a tran-
scendental number if (1) 4 is an algebraic number and
not equal to either 0 or 1, and (2) & is algebraic and
also an irrational number. Gelfond’s theorem enables
the seventh of David Hilbert’s famous problems to be
solved.

general relativity
See relativity theory.

general topology
See point-set topology.

genetic algorithm

A type of evolving computer program, developed by the
computer scientist John Holland, whose strategy of ar-
riving at solutions is based on principles taken from
genetics. Basically, the genetic algorithm utilizes the
mixing of genetic information in sexual reproduction,
random mutations, and natural selection at arriving at
solutions.

genus
In topology, roughly speaking, the number of holes in a
surface. Spheres, bowling balls (the finger holes aren’t
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true holes because they don’t go all the way through),
and wine glasses have a genus of 0 and can be represented
by quadratic equations. Bagels, inner tubes, and teacups
have a genus of 1 and can be described by cubic equa-
tions. Humans are more difficult to specify. However,
you will certainly increase your genus by one if you have
your ear pierced! Different definitions of genus apply to
other types of mathematical objects such as a curve, a
knot, or a set.

geoboard

A device commonly used in elementary schools to aid in
the teaching of basic geometric concepts. A simple geo-
board can be made from a square piece of wood and 25
nails arranged in an evenly spaced grid of 5 vertical lines
and 5 horizontal lines. These nails represent the lattice
points in the plane. Figures are made on the geoboard by
stretching rubber bands from one nail to another until the
desired shape is formed.

geodesic

A path on a given surface that is as straight as possible; in
other words, a path that doesn’t deviate either to the left
or to the right, and only bends when forced to do so by
the curvature (if any) of the surface. If the surface is an
ordinary plane, the geodesics are straight lines; on a
sphere the geodesics are great circles.

geometric magic square

A square array of # X z cells each occupied by a distinct
geometrical figure (or piece or tile), such that the »
pieces contained in every row, column, and diagonal
can be fitted together to produce (i.e., tile or pack) a
constant shape known as the target. The figures may be
of any dimension, but are normally planar (topological
disks). In tessellating the target, which may be of any
shape, planar pieces are allowed to be flipped. Pieces of
three or more dimensions are considered distinct from
their mirror images. Geometric magic squares using
one-dimensional entries have been known for centuries;
they are the traditional magic squares in which straight
lines pave a constant length, as usually represented by
numbers adding to a constant total. The properties of
generalized geometric magic squares were first investi-
gated by Lee Sallows.

geometric mean
The geometric mean of #» numbers is the #th root of the
product of the numbers.

geometric sequence
Also known as a geometric progression, a finite sequence of
at least three numbers, or an infinite sequence, whose

terms differ by a constant multiple, known as the common
ratio. For example, starting with 3 and using a common
ratio of 2 leads to the finite geometric sequence: 3, 6, 12,
24, 48, and also to the infinite sequence 3, 6, 12, 24,
48, ..., (3% 2"....In general, the terms of a geometric
sequence have the form a,=a” (=0, 1, 2, .. .) for fixed
numbers « and 7. If the terms of a geometric sequence are
added together the result is a geometric series. If it is a
finite series, then we add its terms to get the series sum,
S,=a+arta’+...+ar"=(a—a’"")/(1-7). In the case
of an infinite series, if |7] < 1, the sum is a/(1 — 7). If
|7 = 1, however, the series diverges and thus has no sum.
See also arithmetic sequence.

geometry
The study of the properties of shapes and of spaces. See
also Euclidean geometry and non-Euclidean geometry.

geometry puzzles

One of the attractions of puzzles involving shapes, espe-
cially dissection problems, is that they appeal to the eye
and very often don’t call for much ability in solving equa-
tions and the like. Anyone can try to assemble the pieces
of a jigsaw, whether it be of a picture or of a geometric
shape, so a mathematical game such as tangrams or the
Soma cube is within everyone’s reach. On the other
hand, some geometric puzzles call for a basic knowledge
of more abstract fields such as algebra and calculus. They
may also exploit our sometimes faulty intuition about
how different quantities vary in one, two, and three
dimensions and about how much information is needed
to solve a problem.

As an example of faulty intuition, imagine that Earth,
taken to be a perfect sphere with a radius r of 6,378 km, is
completely covered by a thin membrane. Now suppose
that 1 square meter is added to the area of this membrane
to form a larger sphere. By how much does the radius and
the volume of this membrane increase? This can be
worked out from the formulae for the volume of a sphere
(V= (4/3)nr*) and the area of a sphere (A = 47ntr?), respec-
tively. It turns out that if the area of the cover is increased
by 1 square meter, then the volume it contains is
increased by about 3.25 million cubic meters. This seems
like a huge amount. However, the new cover wouldn’t be
very high above the surface of the planet—only about 6
nanometers! As an example of a problem that is both
counterintuitive and seems to lack sufficient data for its
solution see hole-through-a-sphere problem.

Gergonne point

In a triangle, the point at which the lines from the ver-
tices (see vertex) to the points of contact of the opposite
sides with the inscribed circle meet.
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Germain, Sophie (1776-1831)

A French mathematician who made notable contributions
to number theory and to mathematical physics despite a
lack of formal training and the social prejudices of her day.
She taught herself, against her parents’ wishes, often at
night, during the Reign of Terror following the French Rev-
olution, with books from her father’s library. When
deprived of heat and light, she would wrap herself in quilts
and use candles. Finally her parents acquiesced to her
“incurable” passion for mathematics and let her study.
Through Joseph Lagrange, to whom she had originally
submitted work under a pseudonym, she gained access to
a circle of distinguished mathematicians, including Carl
Gauss. Among her most important work was an analysis
of Ernst Chladni’s studies of vibrating surfaces, and her
proof that if x, y, and z are integers and if x° + y° =z’ then
at least one of x, y, or z must be divisible by 5 (a result now
known as Germain’s theorem); this was an important early
step towards proving Fermat’s last theorem.

Get Off the Earth

A famous vanishment puzzle by Sam Loyd. The picture
is made from a rectangular background topped with a cir-
cular card, representing the world, that can be rotated.
Parts of a number of Chinese men are on each piece. With
the world orientated so that the large arrow on it points to

THE DISAPPEARING BICYCLIST!
Turn the disc 3o the arrow points to A — and count 13 boys.
Then move arrow to B — and there are only 12 boys in view.
Which boy has vanished? Where does he go?

Get Off the Earth An unusual variant of Loyd's Get Off the
Earth puzzle called “The Disappearing Bicyclist" Ffrom the collec-
tion of William Waite

the N.E. point on the background, 13 Chinamen can be
counted. But when the earth is turned slightly, so that the
arrow points N.W., there are only 12 characters. Where
did the thirteenth Chinaman go? The cleverness of the
puzzle is that there are many bits of Chinamen—arms,
legs, bodies, heads, and swords—and each has tiny slivers
missing. When the earth is turned, these pieces get slightly
rearranged. In particular, each of the 12 Chinamen gains a
sliver of a Chinaman from his neighbor.

Gettier problem

A thought experiment in philosophy that throws into
question the long-held supposition that to know some-
thing is equivalent to holding a belief about something
that is both true and for which there is justification. Con-
sider a case in which a lecturer has two students in her class
called Mr. Havenot and Mr. Havegot. Mr. Havenot claims
to own a Ferrari, drives one around, and has papers that
state that the car is his. But in fact he does not actually own
the car. Mr. Havegot, on the other hand, who shows no
sign of Ferrari ownership, secretly has one of these rare
cars. On the basis of the evidence, the teacher concludes
that one of her students owns a Ferrari—and is correct in
this belief. However, there is something wrong. Despite
the combination of truth, justification, and belief, it seems
that there is no real knowledge. The first examples of such
problems were published in 1963 by the American
philosopher Edmund Gettier (1927-).

Giant’'s Causeway

A natural structure that occurs on the coast in County
Antrim, Ireland; it is one of the few places in the world
where volcanic basalt has cooled in a columnar forma-
tion. The columns approximately form a hexagonal tes-
sellation (see tiling) and tend to break off to produce a
pavement with this pattern. The full length of the
columns can’t be seen, but it is estimated that they may
be 20 feet (about 6 meters) high before merging into the
underlying irregular basaltic mass. About 99% of the
columns are believed to be hexagonal and only one tri-
angular column is known. Though many of the hexa-
gons are fairly regular, some have a side twice as long as
their smallest side. Side lengths vary from 8 to 18 inches
(20 to 46 cm) and the pillars break up into sections 6 to
36 inches (15 to 90 cm) long, with a concavo-convex
junction rather than a plane junction. Other examples of
such formations occur at Kirkjubaejarklaustri, in Iceland,
and the Devil’s Postpile, in California.

Gilbreath’s conjecture

A strange hypothesis concerning prime numbers that was
first suggested in 1958 by the American mathematician
and amateur magician Norman L. Gilbreath following
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Giant’'s causeway Hexagonal paving on the Giant's Causeway. Martin Melaugh, University of Ulster

some doodlings on a napkin. Gilbreath started by writing
down the first few primes:

2,3,5,7,11,13, 17,19, 23, 29, 31, . ..
Under these he put their differences:
1,2,2,4,2,4,2,4,6,2,...

Under these he put the unsigned difference of the differ-
ences:

1,0,2,2,2,2,2,2,4,...

And he continued this process of finding iterated differ-
ences:

1,2,0,0,0,0,0,2,...
1,2,0,0,0,0,2,...
1,2,0,0,0,2,...
1,2,0,0,2,...
1,2,0,2,...
1,2,2,...

1,0,...

1,...

Gilbreath’s conjecture is that, after the initial two rows,
the numbers in the first column are all one. No exception
has been found to date, despite searches out to several
hundred billion rows, and the conjecture is generally
assumed to be true. However, it may have nothing to do
with primes as such. The English mathematician Hallard
Croft has suggested the conjecture may apply to any
sequence that begins with 2 and is followed by odd num-
bers that increase at a “reasonable” rate and with gaps of
“reasonable” size. If this is the case, Gilbreath’s conjec-
ture may not be as mysterious as it first seems, though it
may be very difficult to prove.

glissette

If there are two fixed curves, and a curve S of fixed shape
and length that slides with its ends on the fixed curves,
then the locus of a point moving with S is called a glis-
sette. An example is the locus of the midpoint of a line
segment sliding with its ends on two perpendicular lines;
this locus is a circle.

gnomon magic square
A 3 x 3 array in which the elements in each 2 x 2 corner
have the same sum. See also magic square.
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Go

A two-player board game that originated in China in
about 2000 B.c. It is often compared and contrasted with
chess. Go is played on a board marked with 19 x 19 lines.
Round, lens-shaped pieces called stones are placed, one
per move, on the intersections of this grid, of which there
are 361. As in chess, the pieces are colored black and
white, but in Go black plays first. The board starts blank
and pieces once played are not thereafter moved except
to be taken off as prisoners. Pieces are captured singly or
en masse by being surrounded so that they are not con-
nected to any adjacent open intersection. The player with
highest score at the end of the game, or following resig-
nation or time expiry, wins. Go is considered to be a
deeply strategic game, unlike chess, which is largely tacti-
cal. There are 32,940 opening moves, after symmetry is
taken into account, 992 of which are deemed strong. Esti-
mates of the number of possible board configurations
vary but are typically on the order of 10",

God

D'm still an atheist, thank God.
—Luis Bufiuel (Spanish film director, 1900-1983)

Mathematicians, logicians, and scientists have long de-
bated the nature, existence, and dice-playing ability of a
Higher Power. The pre-Renaissance French philosopher
Jean Buridan (c. 1295-1358) used a version of the Zar
paradox to “prove” the existence of God. He wrote these
two sentences:

God exists.

None of the sentences in this pair is true.

The only consistent way to have these two sentences be
either true or false is for “God exists” to be true. (How-
ever, there is nothing to say that such consistency is
necessary.) Blaise Pascal gave a more persuasive argu-
ment, not for the existence of God but for why we
should believe in that existence: “If I believe in God
and life after death and you do not, and if there is
no God, we both lose when we die. However, if there
is a God, you still lose and I gain everything.” Pierre
Laplace, on the other hand, replying to Napoleon
Bonaparte, who had asked why his celestial mechanics
made no mention of God, said: “Sir, I have no need of
this hypothesis.” The German mathematician Leopold
Kronecker thought that “God made the Integers, all the
rest is the work of man.” In The City of God, however,
Saint Augustine seems to imply that the integers were
independent of God. He wrote: “Six is a number perfect
in itself, and not because God created the world in six
days; rather the contrary is true. God created the world

in six days because this number is perfect, and it would
remain perfect, even if the work of the six days did not
exist.” Augustine’s statement can be taken to suggest
that six would be a perfect number not only if the uni-
verse didn’t exist, but even if God didn’t exist. As to
God’s mathematical specialty, Plato said, “God ever
geometrizes” while Charles Jacobi insisted that “God
ever arithmetizes.” James Jeans thought, “The Great
Architect of the Universe now begins to appear as a pure
mathematician,” and Einstein (“God does not play
dice”) was sure He wasn’t a probabilist.

Godel, Kurt (1906-1978)

An Austrian-American mathematician and logician who,
in 1931, proved that within a formal system questions
exist that are neither provable nor disprovable on the
basis of the axioms that define the system. This is known
as Godel’s undecidability theorem. He also showed that
in a sufficiently rich formal system in which decidability
of all questions is required, there will be contradictory
statements. This is called Gédel’s incompleteness theo-
rem. In establishing these theorems Gddel showed that

Gddel, Kurt
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there are problems that can’t be solved by any set of rules
or procedures; instead, for these problems one must
always extend the set of axioms. This disproved a com-
mon belief at the time that the different branches of
mathematics could be integrated and placed on a single
logical foundation. Godel was a close friend of Albert
Einstein at Princeton and contributed to his general rela-
tivity theory and cosmology. The so-called Gidel universe
is a rotating model of the universe in which it is theoreti-
cally possible to travel into the past (see time travel).

Godel's incompleteness theorem
In a nutshell: All consistent axiomatic systems contain
undecidable propositions. What does this mean? An
axiomatic system consists of some undefined terms, a
number of axioms that refer to those terms and partially
describe their properties, and a rule or rules for deriving
new propositions from already existing propositions.
Axiomatic systems are powerful because they reduce
large bodies of math to a simple description. Also,
because they’re very abstract, they allow all, and only,
the results that follow from things having the formal
properties specified by the axioms to be derived. An
axiomatic system is consistent if, given the axioms and the
derivation rules, it doesn’t lead to any contradictions.
One of the first modern axiomatic systems was a formal-
ization of simple arithmetic (adding and multiplying
whole numbers) by Giuseppe Peano and now known as
Peano arithmetic. Kurt Godel showed that every syntacti-
cally correct proposition in Peano arithmetic can be rep-
resented by a unique integer, called its Gidel number. The
trick is to replace each symbol in the proposition, includ-
ing numerals, by a different string of digits. If we represent
“1” by 01, “2” by 02, “+” by 10, and “=” by 11, then the
Godel number of “1 + 1 = 2” is 0110011102. This al-
lowed Godel to write down, unambiguously, proposi-
tions about propositions. In particular, he was able to
write down self-referential (see self-referential sentence)
propositions—ones that include their own Gédel num-
ber. Godel was then able to prove that, either the system
of Peano arithmetic is inconsistent, or there are true
propositions that can’t be reached from the axioms by
applying the derivation rules. The system is thus incom-
plete, and the truth of those propositions is #ndecidable
(within that system). Such undecidable propositions are
known as Gadel propositions or Gidel sentences. Nobody
knows what the Godel sentences for Peano arithmetic
are, though people have their suspicions about the
Goldbach conjecture (every even number is the sum of
two prime numbers).

The results of an axiomatic system pertain to more
than just Peano arithmetic, they apply to all kinds of

things that satisfy the axioms. There are an immense
number of other axiomatic systems, which either include
Peano numbers among their basic entities or can be con-
structed from them. It follows that these systems, too,
contain undecidable propositions, and are incomplete.

A common misconception is that Godel’s theorem
imposes some profound limitation on knowledge, sci-
ence, and mathematics. In the case of science, this ig-
nores that Godel’s theorem applies to deduction from
axioms, which is only one source of knowledge and not
even a very common mode of reasoning in science. More
generally, Godel’s incompleteness result doesn’t touch
directly on the most important sense of completeness
and incompleteness, namely, descriptive completeness
and incompleteness—the sense in which an axiom system
describes a given field. In particular, the result represents
no threat to the notion of truth.

Goldbach conjecture

One of the oldest and easiest-to-understand hypotheses
in mathematics that remains unproven. In its original
form, now known as the weak Goldbach conjecture, it was
put forward by the Prussian amateur mathematician and
historian Christian Goldbach (1690-1764) in a letter
dated June 7, 1742, to Leonhard Euler. In this guise it
says that every whole number greater than five is the sum
of three prime numbers. Euler restated this, in an equiv-
alent form, as what is now called the strong Goldbach con-
Jecture or, simply, the Goldbach conjecture: every even
number greater than two is the sum of two primes.
Thus,4=2+2,6=3+3,8=3+5,10=3+7...,
100 = 53 + 47,. ... In fact René Descartes knew about
the two-prime version of Goldbach’s conjecture before
either Goldbach or Euler did. So, is it misnamed? Paul
Erd6s said, “It is better that the conjecture be named
after Goldbach because, mathematically speaking, Des-
cartes was infinitely rich and Goldbach was very poor.” In
any event, there is a much more important question,
namely, is the conjecture true? The general assumption is
that it is, but no one knows for sure. The most significant
step toward a proof came in 1966 when the Chinese
mathematician Chen Jing-Run showed that every suffi-
ciently large even integer is the sum of a prime and a
number that has at most two prime factors. Using power-
ful computers, the Goldbach conjecture has been checked
out to about 400 trillion. But there is no great optimism
among mathematicians that a final breakthrough is on
the horizon. Even a reward of $1 million dollars for a
proof offered by the publishing house Faber & Faber in
2000, to help publicize the novel Uncle Petros and Gold-
bach’s Conjecture by the Greek mathematician and author
Apostolos Doxiadis, went unclaimed.®
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golden ratio A golden rectangle and a logarithmic spiral
emerge from a whirling pattern of squares built up from two
small squares of equal size at the spiral’s center.

golden ratio (phi, ¢)

A remarkable number that, like pi and e, pops up all over
the place in mathematics but, in some ways, has a more
“human” connection, in that it seems to be linked to aes-
thetics. Its name, which is also given as the golden mean,
the golden section, the golden number, and the divine propor-
tion, reflects this sense of a harmonious or pleasing ideal.
The golden ratio is an irrational number of the type
known as an algebraic number (in contrast with wand ¢,
which are transcendental) and is represented by the
Greek letter ¢ (phi). It can be defined in various ways. For
example, it is the only number equal to its own recipro-
cal plus 1, that is, ¢ = (1/9) + 1, so that ¢* = ¢ + 1. From
this comes the quadratic equation ¢* — ¢ — 1 = 0 of which
the golden ratio is the positive solution, (1 + V/5) / 2 =
1.6180339887 . . .. The golden ratio is also approximated
by the ratio of successive terms in the Fibonacci se-
quence; in fact, F(n + 1) / F(n) gets closer and closer to ¢
as 7 tends to infinity. Because 1/(1 — ¢) = ¢, the contin-
ued fraction representation of ¢ is

o0=1+1/1+1/0+1/QA+1/1+1/...
=[1;1,1,1,1,. . ].

Two quantities are said to be in the golden ratio, if the
ratio of the larger one, 4, to the smaller one, 4, is the same
as the ratio of the smaller one to their difference, that is,
a/b=b/(a—b). The so-called golden rectangle is one whose
sides @ and & stand in the golden ratio. It is famously said
to have great aesthetic appeal and is closely approxi-
mated by the dimensions of the front of the Parthenon in
Rome. Leonardo da Vinci’s masterpiece the Mona Lisa is
said to have a face that is framed by a golden rectangle;
what is certain is that Leonardo was a close personal
friend of Luca Pacioli, who published a three-volume
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golden ratio The corners of an icosahedron meet the
corners of three orthogonal golden rectangles.

treatise on the golden ratio, Diwina Proportione, in 1509.
The Swiss-French architect and painter Le Corbusier
designed an entire proportional system called the “Mod-
ulor,” that was based on the golden ratio. The Modulor
was supposed to provide a standardized system that
would automatically confer harmonious proportions to
everything, from door handles to high-rise buildings.
Another artist who deliberately used the golden ratio is
the surrealist Salvador Dali. The ratio of the dimensions
of Dali’s Sacrament of the Last Supper is equal to the golden
ratio. Dali also incorporated in the painting a huge
dodecahedron (a twelve-faced Platonic solid in which
each side is a pentagon) engulfing the supper table. The
dodecahedron, which according to Plato is the solid
“which the god used for embroidering the constellations
on the whole heaven,” is intimately related to the golden
ratio—both the surface area and the volume of a dodeca-
hedron of unit edge length are simple functions of the
golden ratio. In fact, ¢ turns up frequently in figures
that have pentagonal symmetry. For instance the ratio
of a regular pentagon’s side and diagonal is equal to
¢, and the vertices of a regular icosahedron are located
on three orthogonal golden rectangles. The golden
ratio is also related to Penrose tiling and to the plastic
number.?"”
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Golomb, Solomon W. (1932-)

A mathematician and electrical engineer at the Univer-
sity of Southern California who is best known for his
seminal studies of polyominos. His article “Checker
Boards and Polyominos,” published in the American
Mathematical Monthly in 1954 when Golomb was a 22-
year-old graduate student at Harvard, defined a poly-
omino as a simply connected set of squares (i.e., a set of
squares joined along their edges). Golomb also originated
the idea of graceful graphs.!™”"

golygon

A series of straight-line segments that have lengths of
one, two, three, and so on, up to some finite number of
units, with the property that every segment connects at a
right angle to the segment that is one unit larger, except
the longest segment, which meets the shortest segment at
a right angle. The name “golygon” was invented by Lee
Sallows. Golygons have inspired some interesting puz-
zles as well as some intriguing research problems.

googol

A named coined in 1938 by Milton Sirotta, the 9-year-
old nephew of the mathematician Edward Kasner, when
the child was asked by his uncle to come up with a name
for a very large number; at the same time, googolplex was
suggested for a still larger number. Kasner defined these
numbers as follows:

1 googol = 10'° (i.e., 1 followed by 100 zeros);
1 googolplex = 102 = 10" (i.e., 1 followed by a
googol number of zeros)

A googol is very roughly the number of years thought to
be needed for all the black holes in the universe to evap-
orate by a process known as Hawking radiation. It is
much larger than the number of protons and neutrons in
the known universe (about 10%°), but much smaller than
the number of protons and neutrons needed to pack
every cubic centimeter of the known universe (about
10"). The googolplex is the largest number with a proper
name of which many people have heard. It is dwarfed,
however, by such esoterica as Graham’s number.

Gordian knot

The earliest reference to a string puzzle. In Greek
mythology, a Phrygian peasant called Gordius, the father
of Minos (see maze), became king because he was first to
arrive in town after an oracle commanded the Phrygians
to select as ruler the first person to drive into the public
square in a wagon. In gratitude, Gordius dedicated his
wagon to Zeus and placed it in the temple grove, tying
the wagon pole to the yoke with a rope of bark. The knot
was so intricately entwined that no one could undo it. A

saying developed that whoever succeeded in untying the
knot would become ruler of all Asia. Many tried, but all
failed. According to legend, even Alexander the Great
was unable to untie the Gordian knot, so he drew his
sword and cut it through with a stroke. The expression
“to cut the Gordian knot” is used to refer to a situation in
which a difficult problem is solved by a quick and deci-
sive action.

graceful graph

A graph of points and connecting lines that can be num-
bered in a certain way. Say the graph has p points and ¢
lines (“¢” for edges) connecting them. Each of the points
is assigned an integer; the lowest integer (by convention)
is taken to be 0, and no two integers may be alike. Each
of the lines is labeled with the difference between the two
integers of the points that it connects. Then, if the num-
bers corresponding with the lines run from 0 through e,
the graph is said to be graceful. Graceful graphs were orig-
inally defined and developed by Solomon Golomb.

gradient

A vector of partial derivatives of a function that oper-
ates on vectors. Intuitively, the gradient represents the
slope of a high-dimensional surface.

Graham, Ronald L. (1936-)

An American mathematician and leading combinatorialist
after whom Graham’s number is named. Graham is also
one of the country’s best jugglers and former president of
the International Juggler’s Association. In his youth, he and
two friends were professional trampolinists who performed
with a circus as the Bouncing Baers. His office ceiling is
covered with a large net that he can lower and attach to his
waist so that when he practices juggling with six or seven
balls, any that are dropped will roll back to him. Graham is
a professor in the department of computer science and
engineering at the University of California at San Diego.

Graham’s number

A stupendously large number that found its way in to the
Guinness Book of Records as the biggest number ever ob-
tained as part of a mathematical proof; it is named after
its discoverer, Ronald Graham. Graham’s number is the
upper bound solution to a very exotic problem in Ramsey
theory, namely: What is the smallest dimension 7 of a
hypercube such that if the lines joining all pairs of corners
are two-colored, a planar complete graph K, of one color
will be forced? This is exactly equivalent to a problem that
can be stated in plain language: Take any number of peo-
ple, list every possible committee that can be formed from
them, and consider every possible pair of committees.
How many people must be in the original group so that no
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matter how the assignments are made, there will be four
committees in which all the pairs fall in the same group,
and all the people belong to an even number of commit-
tees. Graham’s number is the greasest value that the answer
could take. It is so large that it can only be written using
special big-number notation, such as Knuth’s up-arrow
notation. Even then, it must be built up in stages. First,
construct the number G, = 3TT ... T13, where there are
3TTTT3 up-arrows. This, in itself, is a number far, far
beyond anyone’s ability to even remotely comprehend.
Next, construct G, = 3TT ... T13, where there are G, up-
arrows; then construct G, = 3TT ... 713, where there are
G, up-arrows; then continue this pattern until the number
G,, has been made. Graham’s number G = 3TT ... T13,
where there are G, up-arrows. While the unthinkably large
upper boundary to the problem described earlier is given
by Graham’s number, nobody, including Graham himself,
believes the solution is nearly so large. In fact, it is thought
that the actual answer is probably 6!

grandfather paradox

One of the most powerful and commonly used arguments
against time travel. It points out that if you were able to
travel into the past you could (if you were so inclined) kill
your grandfather when he was very young and thus render
your own birth impossible. A simpler version is that you
could kill a younger version of yourself so that you would
not be alive in the future to travel back in time. The grand-
father paradox shows how one form of time travel could
violate causality by eliminating the cause of a phenome-
non that has already taken place in the present.

The most bizarre adaptation of the grandfather para-
dox is found in Robert Heinlein’s classic short story “All
You Zombies.” A baby girl is mysteriously left at an
orphanage in Cleveland in 1945. “Jane” grows up lonely
and dejected, not knowing who her parents are, until one
day in 1963 she is strangely attracted to a drifter. She falls
in love with him. But just when things are finally looking
up for Jane, a series of disasters strike. First, she becomes
pregnant by the drifter, who then disappears. Second,
during the complicated delivery, doctors find that Jane
has both sets of sex organs, and to save her life, they are
forced to surgically convert “her” to a “him.” Finally, a
mysterious stranger kidnaps her baby from the delivery
room. Reeling from these disasters, rejected by society,
scorned by fate, “he” becomes a drunkard and drifter.
Not only has Jane lost her parents and her lover, but he
has lost his only child as well. Years later, in 1970, he
stumbles into a lonely bar, called Pop’s Place, and spills
out his pathetic story to an elderly bartender. The bar-
tender offers the drifter the chance to avenge the stranger
who left her pregnant and abandoned, on the condition
that he (Jane) join the “time travelers corps.” Both of

them enter a time machine, and the bartender drops
off the drifter in 1963. The drifter is strangely attracted to
a young orphan woman, who subsequently becomes
pregnant. The bartender then goes forward nine months,
kidnaps the baby girl from the hospital, and drops off the
baby in an orphanage back in 1945. Then the bartender
drops off the thoroughly confused drifter in 1985, to
enlist in the time travelers corps. The drifter eventually
gets his life together, becomes a respected and elderly
member of the time travelers corps, and then disguises
himself as a bartender and has his most difficult mission:
a date with destiny, meeting a certain drifter at Pop’s
Place in 1970. The question is: who is Jane’s mother,
father, grandfather, grandmother, son, daughter, grand-
daughter, and grandson? The girl, the drifter, and the bar-
tender, of course, are all the same person. As an exercise
(on the road to insanity) try drawing Jane’s family tree.
You will find that not only is she her own mother and
father, she is an entire family tree unto herself!

graph

I'll do algebra, 'll do trig, and I'll even do statistics,
but graphing is where I draw the line!
—Anonymous

(1) In common usage, a plot of x values (the domain)
against y values (the codomain) for a given function, y =
S(x). Such a graph is also known as a function graph or the
graph of a function. (2) In strict mathematical usage, any
set of dots, known as nodes or wvertices, in which at least
some pairs are joined by lines known as edges or arcs.
What follows applies only to this second definition.
Often the lines on a graph are used to represent rela-
tionships between objects (represented by dots). Depend-
ing on the application, edges may or may not have a
direction, as indicated by an arrow (see directed graph);
edges joining a node to itself may or may not be allowed,
and nodes and/or edges may be assigned weights. A path
is a series of nodes such that each node is adjacent to
both the preceding and succeeding node. A path is con-
sidered simple if none of the nodes in the path is repeated.
The length of a path is the number of edges that the path
uses, counting multiple edges multiple times. If it’s possi-
ble to establish a path from any node to any other node
of a graph, the graph is said to be a connected graph. A
circuit or ¢ycle is a path that begins and ends with the same
node and has a length of at least two. A #ree is a connected
acyclic graph, that is, a graph without any circuits. A
complete graph is one in which every node is adjacent to
every other node. An Euler path in a graph is a path that
uses each edge precisely once. If such a path exists, the
graph is said to be traversable. An Euler circuit is a path
that traverses each edge precisely once. A Hamilton path
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Great Monad

in a graph is a path that visits each node once and only
once; a Hamilton circuit is a circuit that visits each node
once and only once. Well known problems whose solu-
tion involves graphs and graph theory include the four-
color problem and the traveling salesman problem.

graph theory

The study of graphs, either for their own sake, or as mod-
els of such diverse things as groups (in pure mathematics)
or computer networks.

great circle
A circle that goes all the way around a sphere and is cen-
tered at the center of the sphere. The shortest route
between two points on a sphere, such as Earth, is along
the great circle that connects these points. A great circle
is a geodesic.

Great Monad

Also known as T°a-Chi, an important and ubiquitous
symbol in traditional Chinese philosophy and cosmol-
ogy. It represents the underlying harmony of the universe
when its opposites or dualities—male and female (yang
and yin), hard and soft, sun and moon, and so forth—are
in balance. It occurs everywhere in Chinese art: in books,
on walls, porcelain, tablets, and stitched into brocade.

greatest common divisor
The largest integer that divides each of a sequence of inte-
gers exactly. Also called the greatest common factor.

greatest lower bound
The largest real number that is smaller than each of the
numbers in a set of real numbers.

Green, George (1793-1841)

An English mathematician who published work in the
fields of hydrodynamics, electricity, and magnetism, but
is best known for his theorem (see Green’s theorem),
which is the basis of potential theory. Green took over a
bakery and adjoining windmill after the death of his
father, but studied mathematics in his spare time. In
1828, he wrote his most important paper, “An Essay on
the Application of Mathematical Analysis to the Theo-
ries of Electricity and Magnetism,” which, though gener-
ally overlooked at the time, is now regarded as the
beginning of mathematical physics in England.

Green'’s theorem

A connection between path integrals over a well-connected
region in the plane and the area of the region bounded in
the plane. Green’s theorem is a form of the fundamental the-
orem of calculus, and is used today in almost all computer
codes that solve partial differential equations.

Grelling’s paradox

An equivalent, from the world of words and grammar, of
Russell’s paradox. Grelling’s paradox involves dividing
all adjectives into two sets: self-applicable and not self-
applicable. Words like “English,” “written,” and “short”
are self-applicable, while “Russian,” “spoken,” and “long”
are not self-applicable. Now, define the adjective heterolog-
ical to mean “not self-applicable.” To which set of adjec-
tives does “heterological” belong? This strange quandry
was devised by the logician and philosopher Kurt Grelling
(1886-1941/2), who was persecuted by the Nazis; it is not
certain whether he died with his wife in the Auschwitz
concentration camp in 1942, or whether he was killed in
1941 in the Pyrenees while trying to escape into Spain.

gross

A group of 144 items. The word comes from the Latin
grossus, for “thick” or “large,” via the Old French gross
douzaine or “large dozen” (12 dozen), though this group-
ing may have started out in Germany. “Grocer” has the
same origins as “gross” because a grocer is someone who
deals in large quantities of food. A great gross, or a dozen
gross, is 1728. See also twelve.

group

Wherever groups disclosed themselves, or could be
introduced, simplicity crystallized ont of compara-
tive chaos.

—Eric Temple Bell
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An abstract and crucially important way of representing
symmetry and one of the most fundamental concepts in
modern algebra. Groups were brought into mathematics
in the early nineteenth century by the radical young
French student Evariste Galois as a tool to help solve
one of the outstanding problems of his day: to find a
formula for solving polynomial equations of order five—
quintics—and higher. Galois showed, in notes scribbled
down the night before he died in a duel, that no such
formula exists. The reason for this is that the possible
symmetries, or permutations, of the roots of fifth-degree
polynomial equations are more complex than are the
symmetries that can be represented by arithmetical for-
mulas. This fact emerged from the development of the
idea of a permutation group by Galois and, independently
at about the same time, by Niels Abel. Half a century
later, another Norwegian, Sophus Lie, showed how
important groups are to the whole of mathematics. The
theory of what became known as Lie groups links the
discrete structure of permutations with the continuous
variation of differential equations. Not surprisingly,
because group theory forms a common underpinning to
algebra and to geometric features such as rotation, reflec-
tion, and symmetry, it crops up routinely in modern
physics, from the classification of elementary particles to
crystallography.

A group is a set whose elements are defined by a single
operation. The group is called additive if the symbol for
the operation is “+” and is called multiplicative if the sym-
bol is “-” for multiplication. But any other symbol can be
substituted for these. There is always a unique element
(1, for multiplicative, and 0, for additive, groups) that
leaves elements unchanged under the defined operation,
like 2 + 0 = a. Also, for every element a there exists a
unique inverse & such that, for example, in the case of the
additive symbol, 2+ &= 0 and b+ a = 0. Most often, how-
ever, the inverse is denoted as a7'. Lastly, the group oper-
ation must be associative asina - (b -¢c)=(a-b) -c A
group is commutative or Abelian if its operation is sym-
metric, as in a+b=56+a.

Groups come in two types: finite and infinite. The sym-
metry group of the roots of a polynomial equation is a

finite group, because there is only a limited number of
permutations possible among the roots of a given poly-
nomial. In contrast, the Lie groups that represent symme-
tries of solutions of differential equations are infinite
because they represent continuous transformations, and
continuity carries the potential of an infinite number of
changes. Finite groups can be built up from combinations
of smaller groups by a process analogous to multiplica-
tion. In the same way that a whole number can be written
as a product of prime numbers, a finite group can be
expressed as a combination of certain factors known as
simple groups. Most simple groups belong to one of three
families: the cyclic groups, the alternating groups, or the
groups of Lie type. Cyclic groups consist of cyclic permuta-
tions of a prime number of objects. Alternating groups
consist of even permutations—those formed by inter-
changing the positions of two objects an even number of
times. Sixteen subfamilies make up the simple groups of
Lie type, each associated with a family of infinite Lie
groups. (Confusingly, a Lie group is not a group of Lie
type, since the former is infinite and the latter is finite!)
Altogether, there are 18 specific families of finite simple
groups. There are also 26 simple groups, known as sporadic
groups, that are highly irregular and fall outside these fam-
ilies. Five sporadic groups were found in the nineteenth
century by Emile Mathieu. Then came a hiatus until the
1960s, when suddenly a rush of new sporadics came to
light. The most remarkable of these is the so-called mon-
ster group, which appears to be intimately related to the
structure of the universe at the subatomic level.

Grundy’'s game
See Nim.

Guy, Richard Kenneth (1916-)

A British-born mathematician who is professor emeritus
of mathematics at the University of Calgary, Canada,
and an expert in combinatorics and in number theory.
Guy is the author of more than 250 papers and 10 books,
including (as a coauthor) the game theory classic Win-
ning Ways. He has been an editor of the “Problems” sec-
tion of the American Mathematical Monthly since 1971.



Haberdasher's puzzle

The greatest mathematical discovery of Henry Dudeney,
it was first published in the Weekly Dispatch in 1902 and
then as problem no. 26 in his The Canterbury Puzzles
(1907).%" One must decide how to cut an equilateral tri-
angle into four pieces that can be rearranged to make a
square. The accompanying diagram shows the solution,
which Dudeney describes as follows:

Bisect AB in D and BC in E; produce the line AE to
F making EF equal to EB; bisect AF in G and
describe arc AHF; produce EB to H, and EH is the
length of the side of the required square; from E
with distance EH, describe the arc HJ, and make JK
equal to BE; now from the points D and K drop per-
pendiculars on EJ at L and M.

A remarkable feature of the solution is that each of the
pieces can be hinged at one vertex, forming a chain that
can be folded into the square or the original triangle. Two
of the hinges bisect sides of the triangle, while the third
hinge and the corner of the large piece on the base cut

2 \1
3 J4

Haberdasher’s puzzle The puzzle and its solution as
illustrated by Henry Dudeney.

the base in the approximate ratio 0.982:2:1.018. Dude-
ney showed just such a model of the solution, made of
polished mahogany with brass hinges, at a meeting of the
Royal Society on May 17, 1905.

Hadwiger problem

In 4 dimensions, define L(d) to be the largest integer 7 for
which a cube cannot be cut into # cubes (not necessarily
different). The Hadwiger problem is to find L(d). Defi-
nite solutions are only known in two and three dimen-
sions: L(2) =5 and L(3) = 47. However, it is known that
L(4) < 853 and L(5) < 1,890, and it is considered likely
that L(d) is odd for all values of 4. See also dissection.

hailstone sequence

A sequence of numbers produced by the rules of the Col-
latz problem; in other words, a sequence formed in the
following way: Start with any positive integer 7. (1) If 7 is
even, divide it by 2; if # is odd, multiply it by 3 and add
1. (2) If the result is not 1, repeat step (1) with the new
number. For 7 =5, this produces the sequence 5, 16, 8, 4,
2,1,4,2,1,....Forn=11, the resulting sequence is 11,
34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8,4,2,1,4,2,1, . ...
The name “hailstone” comes from the fact that the num-
bers in these sequences rise and fall like hailstones in a
cloud before finally falling to Earth. It seems from exper-
iment that such a sequence will always eventually end in
the repeating cycle 4, 2, 1, 4, 2, 1, ..., but some values
for n generate many values before the repeating cycle
begins. An unsolved mystery is whether all such
sequences eventually hit 1 (and then 4,2, 1,4,2,1,...)
or whether there are some sequences that never settle
down to a repeating cycle.

hairy ball theorem

If a sphere is covered with hair or fur, like a tennis ball, the
hair cannot be brushed so that it lies flat at every point. In
mathematical terms: any continuous tangent vector field
on the sphere must have a point where the vector is zero.
This theorem also means that somewhere on Earth’s sur-
face there has to be a point where the horizontal wind
speed is zero, even if it’s windy everywhere else. Does the
same apply to a torus? Is there a hairy donut theorem?
No! The number of “problem points,” where the hair
would stick up on a surface, is related to a quantity called
the Euler characteristic of that surface. Basically, every
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point on a surface has an index that describes how many
times the vector field rotates in a neighborhood of the
problem point. The sum of the indices of all the vector
fields is the Euler characteristic. Since the torus has Euler
number 0, it is possible to have a covering of hair—a vec-
tor field—on it that lies flat at every point.

half-line
A ray.

half-plane

The part of a plane that lies on one side of a given line.

halting problem

Given a program and inputs for it, decide whether it will
run forever or will eventually stop. This is not the same
thing as actually running a given program and seeing
what happens. The halting problem asks whether there is
any general prescription for deciding how long to run an
arbitrary program so that its halting or non-halting will
be revealed. In a celebrated 1936 paper,”™”! Alan Turing
proved that the halting problem is undecidable: there’s
no way to construct an algorithm that is afways able to
determine whether another algorithm halts or not. From
this it follows that there can’t be an algorithm that de-
cides whether a given statement about natural numbers
is true or not. The undecidability of the halting problem
provides an alternative proof of Godel’s incompleteness
theorem. This is because if there were a complete and
consistent axiomatization of all true statements about
natural numbers, then we would be able to create a set of
rules that decides whether such a statement is true or not.
Another amazing consequence of the undecidability of
the halting problem is Rice’s theorem, which states that the
truth of any nontrivial statement about the function that
is defined by an algorithm is undecidable. So, for exam-
ple, the decision problem “will this algorithm halt for the
empty string” is already undecidable. Note that this the-
orem holds for the function defined by the algorithm and not
the algorithm itself. It is, for example, quite possible to
decide if an algorithm will halt within 100 steps, but this
isn’t a statement about the function that is defined by the
algorithm. Many problems can be shown to be undecid-
able by reducing them to the halting problem. However,
Gregory Chaitin has given an undecidable problem in
algorithmic information theory that doesn’t depend on
the halting problem.

While Turing’s proof shows that there can be no gen-
eral method or algorithm to determine whether algo-
rithms halt, individual instances of that problem may very
well be susceptible to attack. Given a specific algorithm,
one can often show that it must halt, and in fact computer
scientists often do just that as part of a correctness proof.

But every such proof requires new arguments: there is no
mechanical, general way to determine whether algorithms
halt. And there’s another caveat. The undecidability of
the halting problem relies on the fact that computers are
assumed to have a memory of potentially infinite size. If
the memory and external storage of a machine is limited,
as it is for any real computer, then the halting problem for
programs running on that machine can be solved with a
general algorithm (albeit an extremely inefficient one).

ham sandwich theorem

Given a sandwich in which bread, ham, and cheese (three
finite volumes) are mixed up, in any way at all, there is
always a flat slice of a knife (a plane) that bisects each of
the ham, bread, and cheese. In other words, however
messed up the sandwich—even if it’s been in a blender—
you can always slice through it in such a way that the two
halves have exactly equal amounts, by volume, of the
three ingredients. This theorem generalizes to higher-
dimensional ham sandwiches, when it essentially becomes
the Borsuk-Ulam theorem: in #-dimensional space in
which there are 7 globs of positive volume, there is always
a hyperplane that cuts all the globs exactly in half.

Hamilton, William Rowan (1805-1865)
An Irish mathematician who, among other things, in-
vented quaternions and a new theory of dynamics. Hav-
ing excelled in Greek and mathematical physics at Trinity
College, Cambridge, Hamilton was appointed Astron-
omer Royal of Ireland; in this position he served from
1827 to his death and, during all that time, lived in Dun-
sink Observatory, Dunsink Lane, to the northwest of
Dublin. However, he quickly lost interest in staying up at
nights to make observations—he hired three of his sisters
to help run the place—and preferred instead to write
poetry (badly). He was friends with Samuel Coleridge,
who introduced him to the philosophy of Kant, which
had a great influence on him, and with William Words-
worth, who advised him against writing any more poems.
Hamilton did early work on caustic curves and was led
from this to his discovery of the law of least action, which
enabled many physical problems to be expressed more ele-
gantly. One of his greatest triumphs was his treatment of
complex numbers as pairs of real numbers, an approach
that finally exorcised long-standing suspicions about the
reality of imaginary numbers, and helped clear the way
for other algebras. From this he was led to consider
ordered quartets of numbers, which he called quaternions.
The idea for quaternions came to Hamilton suddenly on
October 16, 1843, while he was standing on Brougham
(“Broom”) Bridge, where Broombridge Street crosses the
Royal Canal, Dublin. A commemorative plaque under the
bridge, on the towpath, was unveiled by the Taoiseach
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(head of the Irish parliament), Eamon De Valera, on No-
vember 13, 1958. Of his invention, Hamilton wrote:

The quaternion was born, as a curious offspring of a
quaternion of parents, say of geometry, algebra,
metaphysics, and poetry. . . . I have never been able
to give a clearer statement of their nature and their
aim than [ have done in two lines of a sonnet
addressed to Sir John Herschel:

“And how the One of Time, of Space the Three

Might in the Chain of Symbols girdled be.”

Hamilton’s interest in complex numbers was stimulated
by his friend and compatriot John Graves, who pointed
Hamilton in the direction of John Warren’s A Treatise on
the Geometrical Representation of the Square Root of Negative
Quantities. This book explained the concept of the com-
plex plane, which Hamilton turned from geometry into
algebra. One of Hamilton’s last inventions was a curios-
ity called the icosian calculus, which was another outcome
of his friendship with Graves. After a visit to the latter’s
house, Hamilton wrote: “Conceive me shut up and rev-
elling for a fortnight in John Graves’ Paradise of Books!
of which he has really an astonishingly extensive collec-
tion, especially in the curious and mathematical kinds.
Such new works from the Continent he has picked up!
and such rare old ones too!” Graves posed some puzzles
to Hamilton, and either Graves or his books got Hamil-
ton to thinking about regular polyhedra. When Hamil-
ton returned to Dublin he thought about the symmetry
group of the icosahedron, and used it to invent an alge-
bra he called the “icosians” and also a game called the
Icosian game. The only complete example of this game,
inscribed to Graves, is now in the keeping of the Royal
Irish Academy, of which Hamilton was the president
from 1837 to 1847. (In early 1996, a second example of
the Icosian game came to light but only included the
board.)

In some ways, Hamilton was too far ahead of his
time. The operator now referred to as the Hamiltonian
and the so-called Hamilton-jacobi equation that relates
waves and particles only became important when quan-
tum mechanics came along, and Felix Klein introduced
Wernher Schrodinger, the father of wave mechanics, to
Hamilton’s work.

Hamilton’s personal life was not always happy. He fell
deeply in love with a woman named Catherine Disney,
who was forced by her parents to marry a wealthy man 15
years older than her. Hamilton remained hopelessly in
love with her the rest of his life, though he eventually
married someone else. He became an alcoholic, then
foreswore drink, then relapsed. Many years after their
early romance, Catherine began a secret correspondence
with Hamilton. Her husband became suspicious, and she

attempted suicide by taking laudanum. Five years later,
she became seriously ill. Hamilton visited her and gave
her a copy of his Lectures on Quaternions. They kissed at
last, and she died two weeks later. He carried her picture
with him ever afterward and talked about her to anyone
who would listen.!*

Hamilton circuit
A Hamilton path that starts and ends at the same vertex.
See also traveling salesman problem.

Hamilton path

Named after William Hamilton, a path that traverses
every vertex of a connected graph once and only once.
The problem of the knight’s tour is equivalent to finding
a Hamilton path (or, in the case of a reentrant tour, a
Hamilton circuit) that corresponds to the legal moves of
the knight. Compare with Euler path.

Hankel matrix
A matrix in which all the elements are the same along
any diagonal that slopes from northeast to southwest.

happy number

If you iterate the process of summing the squares of the
decimal digits of a number and if this process terminates
in 1, then the original number is called a happy number.
For example 7 — (7%) 49 — (4*+ 99 97 — (9" + 7% 130
— (1 + 3% 10 — 1. See also amicable number.

Hardy, Godfrey Harold (1877-1947)

One of the most prominent English mathematicians of
the twentieth century; his legendary collaboration with
John Littlewood lasted 35 years and produced nearly 100
papers. Hardy was a precocious child, whose tricks in-
cluded factorizing hymn numbers during sermons. In
1919, he became Savilian Professor of Geometry at
Oxford but returned to Cambridge in 1931 as professor
of pure mathematics. His work was mainly in analysis
and number theory.

Hardy had only one other passion in his life—the game
of cricket. His daily routine would begin with reading The
Times and studying the cricket scores over breakfast. Then
he would do mathematical research from 9 o’clock till 1
o’clock. After a light lunch, he would walk down to the
university cricket ground to watch a game. In the late
afternoon he would walk slowly back to his rooms at the
college, and take dinner followed by a glass of wine.
Hardy was known for his eccentricities. He couldn’t
stand having his photo taken and only five snapshots of
him are known to exist. He also hated mirrors and his
first action on entering any hotel room was to cover any
mirror with a towel.
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Hardy’s book A Mathematician’s Apology (1940) is
one of the most vivid descriptions of how a mathemati-
cian thinks and the pleasure of mathematics. But the
book is more, as C. P. Snow writes:

A Mathematician’s Apology is . . . a book of haunting
sadness. Yes, it is witty and sharp with intellectual
high spirits: yes, the crystalline clarity and candor are
still there: yes, it is the testament of a creative artist.
But it is also, in an understated stoical fashion, a pas-
sionate lament for creative powers that used to be
and that will never come again. I know nothing like
it in the language: partly because most people with
the literary gift to express such a lament don’t come
to feel it: it is very rare for a writer to realise, with the
finality of truth, that he is absolutely finished.

See also Ramanujan.

harmonic analysis
The method of expressing periodic functions as sums of
sines and cosines.

harmonic division
The division of a line segment by two points such that it
is divided externally and internally in the same ratio.

harmonic mean
The harmonic mean of two numbers 4 and & is 246/ (a + b).

harmonic sequence

The sequence: 1, %, 15, Y4, ¥ . . . . Added together, these
become the terms of the harmonic series: 1+ Yo + Y5 + Ya +
Ys + ... . This series diverges (has no finite sum), though
very slowly—a result first proved by the French philoso-
pher and theologian, Nichole d’ Oresme (c. 1325-1382).
In fact, it still diverges if you take away every other term,
and even if you take away nine out of every ten terms.
However, if you take the sum of reciprocals of all natural
numbers that do not contain the number nine (when
written in decimal expansion) the series converges! To
show this, group the terms based on the number of digits
in their denominator. There are eight terms in (Y1 +. ..+
1%), each of which is no larger than 1. Consider the next
group (Y10 +. . . + %8). The number of terms is at most the
number of ways to choose two ordered digits out of the
digits 0 . . . 8, and each such term is clearly no larger than
0. So this group’s sum is no larger than 9%/10. Similarly,
the sum of the terms in (Y100 +...+ %99) is at most
9°/10%, etc. So the entire sum is no larger than

9x1+9x% (%0)+9%x (910 +...+9x (9/10") +. ..

This is a geometric series that converges. Thus by the
comparison test, the original sum (which is smaller term-
by-term) must converge.

Harshad number

A number that is divisible by the sum of its own digits;
also known as a Niven number. For example, 1,729 is a
Harshad number because 1 + 7 +2 + 9 =19 and 1,729 =
19 x 91. A Harshad amicable pair is an amicable pair (1, )
such that both 7 and # are Harshad numbers (see amica-
ble numbers). For example, 2,620 and 2,924 are a Har-
shad amicable pair because 2,620 is divisible by 2 + 6 +
2+ 0=10 and 2,924 is divisible by 2 + 9 + 2 + 4 = 17
(2,924/17 = 172). There are 192 Harshad amicable pairs
in the first 5,000 amicable pairs.

hat problem

A team of three contestants, Alice, Bob, and Cedric,
enter a room and a hat is placed on each one’s head so
that he or she can’t see it. The color of each hat is based
on a coin toss—blue (B) for heads, red (R) for tails. After
all the contestants enter the room, they look at the colors
of one anothers’ hats and, based on this information,
they guess the color of their own hat. Each can guess red
or blue, or, if she can’t make up her mind, she can pass.
No communication is allowed during the competition,
but the players are allowed to agree on a strategy before
play begins. The team wins if at least one of them guesses
correctly, and none of them guesses incorrectly. What is
the team’s best strategy? At first sight, it may seem as if
no effective strategy is possible beyond each contestant
guessing his or her own hat color. In fact, this is the very
worst approach since, to succeed, it requires that every-
one guess correctly and the probability of this is only
o x Yo x Yo =14, A far better plan is for the contestants to
agree that two of them will pass while the third takes a
stab at the color of his own hat. Then the odds improve
to one in two. Beyond this it’s hard to see any way that
the probability of success could be increased. Yet there is
an even better strategy. The key is to realize that there are
only two cases (RRR and BBB) where everyone’s hat is
the same color but six cases where two hats are the same
color and the other hat is a different color (RRB, RBR,
BRR, BBR, BRB, and RBB). This suggests the following
strategy for members of the team: if you see two hats of
opposite colors, pass. If you see two hats of one color, guess that
your hat is the other color. If everyone’s hat is the same
color, all players on the team will guess wrong and the
team will lose. But the chance of this happening is only
% (= Y). In every other possible case, the odd person out
will guess correctly and their teammates will pass, so the
team will win. This strategy wins % (= %) of the time, and
can’t be improved upon. Since half of each player’s
guesses will be wrong, it’s impossible to do better than a
strategy in which each player in turn guesses correctly
alone three times out of four, and the fourth time all
guess wrong.
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What if there are more players in the team? Say the
number of players is 7. By the reasoning described previ-
ously, it’s clear that the team can’t hope to win more than
n/(n + 1) of the time. Yet it isn’t obvious that it can do
this well. Having more people, it seems, might make it
harder for them to synchronize their wrong guesses.
However, it turns out that, if the number of people in the
team is one less than a power of 2, this best-possible value
can be achieved. For example, with a team of 7, the team
can win 75 of the time, and with a team of 15, they can
win %46 of the time. The strategy involved is complicated
but is closely linked to Hamming codes (see coding the-
ory), which are a method of encoding and transmitting
information so that even if a small number of errors
occur during transmission, the original information can
be entirely recovered. For teams of other sizes, such as 9,
10, or 13, mathematicians have yet to find an optimal
strategy or establish what proportion of the time the
team can be expected to win.

Hausdorff, Felix (1868-1942)

A German mathematician who is considered to be one of
the founders of modern topology and who also did sig-
nificant work in set theory and functional analysis.
Among several concepts named after him is the Haus-
dorff dimension, which gives a way of assigning a frac-
tional dimension to a curve or shape. Hausdorff also
published philosophical and literary works under the
pseudonym “Paul Mongré.” He studied at Leipzig and
taught mathematics there until 1910, when he became
professor of mathematics at Bonn. When the Nazis came
to power, Hausdorff, a Jew, felt that as a respected uni-
versity professor he would be safe from persecution.
However, his abstract mathematics was denounced as
useless and “un-German” and he lost his position in
1935. He sent his daughter to Britain but stayed with his
wife in Germany. In 1942, when he could no longer
avoid being sent to a concentration camp, he committed
suicide together with his wife and sister-in-law.

Hausdorff dimension

A way to accurately measure the dimension of compli-
cated sets such as fractals. The Hausdorff dimension,
named after Felix Hausdorff, coincides with the more
familiar notion of dimension in the case of well-behaved
sets. For example, a straight line or an ordinary curve,
such as a circle, has a Hausdorff dimension of 1; any
countable set has a Hausdorff dimension of 0; and an
n-dimensional Euclidean space has a Hausdorff dimen-
sion of 7. But a Hausdorff dimension is not always a nat-
ural number. Think about a line that twists in such a
complicated way that it starts to fill up the plane. Its
Hausdorff dimension increases beyond 1 and takes on

values that get closer and closer to 2. The same idea of
ascribing a fractional dimension applies to a plane that
contorts more and more in the third dimension: its
Hausdorff dimension gets closer and closer to 3. As a spe-
cific example, the fractal known as the Sierpinski carpet
has a Hausdorff dimension of just over 1.89.

Heesch number

The maximum number of times that a closed plane
figure—a tile—can be completely surrounded by copies of
itself. The Heesch number of a triangle, quadrilateral, reg-
ular hexagon, or any other single shape that can com-
pletely tile the plane (see tiling), is infinity. Heesch’s
problem is to find the largest possible finite Heesch num-
ber, or, more generally, what values other than zero and
infinity can Heesch numbers take. In considering this
problem, it’s helpful to define the Heesch number more
precisely. In a tiling, the first corona of a tile is the set of all
tiles that have a common boundary point with the tile,
including the original tile itself. The second corona is the
set of tiles that share a point with anything in the first
corona; and so on. The Heesch number is the maximum
value of coronas (k) that can surround a shape. For a long
time the record holder for the largest finite value of &
was a shape found by the American computer scientist

Heesch number A tiling in which copies of the same shape
are used out to the fourth surrounding layer, or corona. David
Eppstein
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Robert Ammann, which consists of a regular hexagon
with small bumps on two sides and matching notches on
three sides. This was thought to have a Heesch number of
three; however, in 2000, Alex Day argued that the
Ammann hexagon actually has a Heesch number of four,
though it isn’t clear whether the difference has to do with
a definition of tiling. In any event, it has since been
shown by Casey Mann, of the University of Arkansas
that there exists an infinite family of tiles (consisting of
indented and outdented pentahex) with Heesch number
five (or six by Day’s reckoning)—the largest finite value
currently known. Are there any polygons that have
higher Heesch numbers? The answer is unknown but
Mann thinks that more rounded polyominos than the
long skinny ones he’s been using may have a better
chance of giving unbounded Heesch numbers.

The Heesch number question is connected to two
other famous unsolved tiling problems: the domino
problem and the Einstein problem. Aperiodic tiling
seems to act as a barrier to the existence of tiling algo-
rithms, so it isn’t expected that both of these problems
have the same answer. On the other hand, if there’s a
maximum finite Heesch number %, then it seems that
this could be used as the basis of an algorithm to test
whether a shape tiles: simply attempt to fill out a tiling
to the (% + 1)st corona; if successful, the shape must tile
the plane, and if not, the shape will not tile. Similar
questions can be asked about Heesch numbers for tilings
in higher dimensions.

Hein, Piet (1905-1996)

An extraordinarily creative Danish mathematician, scien-
tist, inventor, and poet who often wrote under the Old
Norse pseudonym Kumbel, meaning “tombstone.” A
direct descendant of the Dutch naval hero of the six-
teenth century who had the same name, Piet Hein was
born in Copenhagen and studied at the Institute for The-
oretical Physics of the University of Copenhagen (later
the Niels Bohr Institute), the Technical University of
Denmark, and the Royal Swedish Academy of Fine Art.
He was later awarded an honorary doctorate by Yale Uni-
versity. A good friend of Albert Einstein, he is famed for
his many mathematical games, including Hex, Tang-
loids, Polytaire, TacTix, and the Soma cube. These
games were featured in numerous columns of Martin
Gardner’s “Mathematical Recreations” column in Scien-
tific American and often achieved worldwide attention in
this way. As an artist and constructor, Hein gave form, in
the 1950s and 1960s, to elegant pieces of furniture that
helped “Scandinavian design” attract international recog-
nition. These pieces, including a dining-room table cre-
ated in cooperation with the Swedish designer Bruno
Mathsson, were based on the superellipse curve—a shape

that Hein also brought to bear in applications as varied as
city planning (it’s the basis for Sergel’s Square in the cen-
ter of Stockholm) and toy making (see superegg). Hein
was a prolific and excellent writer of light verse, produc-
ing thousands of short, aphoristic poems known as
Grooks. For him there was no unbridgeable gap between
the subjectivity of fine art and the objective world of sci-
ence. “Art,” he said, “is a solution to problems which can-
not be formulated clearly before they have been solved.”
His philosophy of life was summed up by his aphorism
“co-existence or no existence.”

helicoid

The second oldest known minimal surface; it was dis-
covered by Jean-Baptiste Meusnier in 1776, thirty years
after the catenoid. It is the only minimal surface, apart
from the simple plane, that is also a ruled surface. The
helicoid is the surface swept out by a line that always
intersects a fixed axis at right angles and that rotates uni-
formly as its point of intersection moves uniformly along
the axis. This line intersects any cylinder concentric with
the axis in a helix. The helicoid has a wide variety of
shapes and is a familiar sight in everyday life, taking the
form of many things from spiraling parking ramps to
screw threads.

helix

A curve in three dimensions, the tangent to which makes
a constant angle with a fixed line. A circular belix is
formed by winding a line around a cylinder so the radius
is always the same. A conical belix is formed by winding a
line around a cone, so that, consequently, its radius con-
stantly changes. Springs often take the form of various
kinds of helices. In nature, the DNA molecule is in the
shape of a double helix.

helicoid Richard Palais
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Henon, Michele

An astronomer at the Nice Observatory in southern
France. For a number of years, particularly during the
1960s, he studied the dynamics of stars moving within
galaxies, using computers as a way to understand the
stability of their motions. His work was very much in
the spirit of Henri Poincaré’s approach to the classical
three-body problem: What important geometric struc-
tures govern their behavior? The main property of these
systems is that the energy of their motion is constant to a
very good approximation. Consequently, their chaotic
dynamics are not described by simple attractors, but
by objects that are markedly more difficult to analyze
and visualize, existing on energy “surfaces” in three and
higher dimensions. During the 1970s, Henon discovered
a very simple iterated mapping that showed a chaotic
attractor, now called Henon’s attractor, that allowed him
to make a direct connection between deterministic data
and fractals. The Henon attractor is self-similar (see self-
similarity): if you zoom in on the attractor in its state
space you find more and more layers, much like filo
dough or a croissant.

Henstock integration
See integration.

heptagon
A polygon with 7 sides.

Hermann grid illusion

An illusion first described by the German physiologist
Ludimar Hermann (1838-1914) in 1870. While reading a
book on sound by the Irish physicist John Tyndall, Her-
mann saw gray spots in the intersections of spaces among
the figures that Tyndall had arranged in a matrix. Despite
the fact that the same intensity of light is reflected all the
way along the white spaces in the Hermann Grid, the
intersections appear gray. To explain this, consider two
regions of the retina. One region views an intersection of
a white horizontal and vertical band, while the other
views a white band between two intersections (the region
going away from the intersection). Although the two
regions themselves receive the same amount of light, the
situation in their neighboring regions is different. At
the intersection, light comes in from all four sides, but
the white band that lies between the two intersections is
surrounded by two dark sides. This leads to an effect
called lateral inhibition, which causes a bright surround to
an area appear darker and, conversely, a dark surround to
an area appear lighter. A similar but more powerful illu-
sion, known as the Lingelbach illusion or the Scintillating
grid illusion, was discovered in 1994 by Elke Lingelbach,
the wife of a German mathematics professor, and has not

Hermann grid illusion The original illusion, in which the
viewer sees gray spots at the intersections.

Hermann grid illusion The more striking and recently dis-
covered “scintillating” version of the illusion.
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yet been fully explained.” Curiously, the effect of the
scintillation is lessened by tilting the head through 45°!

Hermite, Charles (1822-1901)

A French mathematician whose work in the theory of
functions includes the application of elliptic functions
to provide the first solution to the general equation of
the fifth degree, the quintic equation. He also showed
that e is a transcendental number, studied a class of dif-
ferential equations now known as Hermite polynomials,
which later proved to be of importance in some applica-
tions of quantum mechanics, and discovered the proper-
ties of Hermitian matrices.

Heron of Alexandria (c. A.p. 60)

Also called Hero, a Greek geometer and inventor whose
writings have helped preserve a knowledge of the mathe-
matics and engineering of Babylonia, ancient Egypt, and
the Greco-Roman world. His most important geometric
work, Metrica, was lost until a fragment was discovered in
1894, followed by a complete copy in 1896. It is a com-
pendium, in three books, of geometric rules and formu-
las, the best known of which is Proposition 1.8, now
known as Heron’s formula. He invented many devices
operated by water, steam, or compressed air, including a
fountain, a fire engine, siphons, and an engine in which
the recoil of steam revolves a ball or a wheel.

Heron'’s formula

An important formula in plane geometry that allows the
area of any triangle to be calculated without knowing the
altitude (perpendicular height) of any of its sides. Let 4, 5,
and ¢ be the side lengths of a triangle and A its area.
Heron’s formula states that

A =s(s—a)(s—b)(s—o),

where s = (a+ b+ ¢)/2. The origin of this formula is his-
torically obscure. A medieval Arab source, for example,
ascribes it to Archimedes. However, the first definite ref-
erence we have to it is by Heron of Alexandria. His
proof is extremely convoluted, and it seems clear that it
must have been determined by an entirely different
thought process, and then dressed up in the usual syn-
thetic form that the classical Greeks preferred for their
presentations. Heron’s formula contains Pythagoras’s
theorem as a degenerate case. A Heronian triangle is one
with integer sides and integer area.

Herring illusion

A distortion illusion first published in 1861 by the Ger-
man psychologist Ewald Herring (1834-1918), and now
named after him. As in the case of the Z6llner illusion
and others, it shows how geometrical relationships can
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Herring illusion

seem to be distorted by their background (a lined back-
ground can make circles, squares, and triangles seem
distorted, too). The straight horizontal lines in the illu-
sion appear to bow out in the center. This can be
explained if the brain interprets the radiating lines in
terms of depth, making the central spot in the Herring
diagram, and thus also the heavy black lines near the
center of the diagram, appear to be farther away than
the edges. Because the heavy black lines are the same
thickness at the center as at the edges but are assumed to
be farther away, the brain thinks they must be more
widely spaced at the center.

heuristic argument
An educated guess: something that helps in finding the
solution to a problem but is otherwise unjustified or inca-
pable of justification.

Hex

A board game played by two players on a hexagonal grid,
usually in the shape of an 11 x 11 rhombus. It was
invented by Piet Hein in 1942 and independently by John
Nash in 1948. Hein said that the game occurred to him
while contemplating the four-color problem and it soon
became popular in Denmark under the name Polygon.
Nash’s version was played by math students at Princeton
and a number of other American campuses. Players use
differently colored pieces—say, red and blue. They take
alternate turns placing a piece of their color inside a hexa-
gon, filling in that hexagon with their color. Red’s goal is
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Hex A position in a game of Hex.

to form a red path connecting the top and bottom sides of
the parallelogram; Blue’s goal is to form a path connect-
ing the left and right sides. The game can never end in a
tie, a fact found by Nash. The only way to prevent your
opponent from forming a connecting path is to form a
path yourself. When the sides of the grid are equal, the
game favors the first player and the first player has a win-
ning strategy. There are two ways to make the game fairer.
One is to make the second player’s sides closer together,
playing on a parallelogram rather than a thombus; how-
ever, this has been proven to result in a win for the second
player, so it theoretically doesn’t improve matters. A bet-
ter way is to allow the second player to choose his color
after the first player makes the first move or to make the
first three moves, which encourages the first player to
intentionally even out the game.

hexa-

The Greek prefix meaning “six.” A hexagon is a six-sided
polygon. A hexabedron is a six-sided polyhedron, other-
wise known as a cube if it is regular. Hexadecimal is the
number system with base 16 (i.e., six more than the dec-
imal system) and is used mostly in computing (because

four binary digits can represent 16 different numbers).
Hexagonal numbers are figurate numbers (numbers that
can be represented by a regular geometric arrangement
of equally spaced points) of the form 7(2% — 1); the first

few are 1, 6, 15, 28, 45,.... For hexaflexagon see
flexagon. For hexomino see polyomino. See also Giant’s
Causeway.

higher dimensions

Dimensions beyond the familiar three spatial dimensions
(up-down, left-right, back-forth) of which we are aware in
every-day life. Intense speculation, both scientific and fic-
tional, has naturally been directed toward the possibility of
a fourth dimension. One way to think of points in four-
dimensional space is as ordered sets of four numbers.
Clearly, this algebraic representation can be extended to
many arbitrary dimensions: z-dimensional space is defined
as the set of the set of points (4, 4,, . . ., a,) where 4, to a,
can take any real number value. There has been much
conjecture that the universe in which we live contains
many more than three spatial dimensions. This specula-
tion began with the Kaluza-Klein theory but is now
firmly embedded in modern string theory.™ > %!
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Hilbert, David (1862-1943)

One can measure the importance of a scientific work
by the number of earlier publications rendered super-

Sluous by it.

A great German mathematician who was one of the colossi
in the field in the twentieth century. His most important
discovery was of what is now called Hilbert space. He was
also a master of mathematical organization. During the
early phase of his career, Hilbert reorganized number the-
ory, crystallizing his conclusions in the classic book Der
Zablbericht (The theory of algebraic number fields, 1897).
He then moved into geometry and performed a similar ser-
vice by setting forth the first rigorous set of geometrical
axioms in his Grundlagen der Geometrie (Foundations of
geometry, 1899). He invented a simple space-filling curve
now known as the Hilbert curve and also proved Waring’s
conjecture. At the Paris International Congress of 1900,
Hilbert proposed 23 outstanding problems in mathemat-
ics to whose solutions he believed twentieth-century math-
ematicians should devote themselves. These problems
have come to be known as Hilbert’s problems, and a number
still remain unsolved today. Hilbert’s mathematical phi-
losophy is partly re-vealed by a couple of remarks, one of
which he made after learning that a student in his class had
dropped the subject in order to become a poet. “Good,”
he said. “He did not have enough imagination to become
a mathematician.” Whether he really believed the second
is open to question: “Mathematics is a game played
according to certain simple rules with meaningless marks
on paper.”

Hilbert space

A space of infinite dimensions, named after David Hil-
bert, in which distance is preserved by making the sum of
squares of coordinates a convergent sequence; it is of cru-
cial importance in the mathematical formulation of
quantum mechanics. See also Fredholm, Erik Ivar.

Hinton, Charles Howard (1853-1907)

An English-born mathematician best known for his writ-
ings and inventions aimed at helping to visualize the
fourth dimension; he may also have coined the name
tesseract for the four-dimensional analogue of a cube. Hin-
ton matriculated at Oxford and continued to study there,
earning a B.A. (1877) and an M.A. (1886), while he also
taught, first at Cheltenham Ladies’ School and then, from
1880 to 1886, at Uppingham School. At this time, another
teacher at Uppingham was Howard Candler, who was a
friend of Edwin Abbott and thus provides a possible link
between these two explorers of other dimensions. In the
early 1880s, Hinton published a series of pamphlets start-

ing with “What Is the Fourth Dimension?” and “A Plane
World” (a contemporary of Abbott’s Flatland: A Romance
of Many Dimensions), which were reprinted in the two-
volume Scientific Romances (1884). Hinton’s descriptions
owed much to the mathematical models of William Clif-
ford, whose theories about four-dimensional spaces were
then in vogue. But Hinton went much further in his
attempts to break free of three-dimensional thought. He
devised an elaborate set of small colored cubes to represent
the various cross sections of a tesseract and then memo-
rized the cubes and their many possible orientations in
order to gain a window on the fourth dimension.

At the time he was teaching in England, Hinton mar-
ried Mary Everest Boole, the eldest daughter of George
Boole, the founder of mathematical logic. Regrettably,
he also married a Maud Wheldon and was tried at the
Old Bailey in London for bigamy. After serving a day in
prison for the offence, he fled with his (first) family to
Japan, where he taught for some years, before taking up a
post at Princeton University. There, in 1897, he designed
a species of baseball gun which, with the help of gun-
powder charges, would shoot out balls at speeds of 40 to
70 miles per hour. It was used by the Princeton team for
several seasons before being abandoned by the players in
fear of their lives.

After a brief spell at the University of Minnesota, Hin-
ton joined the Naval Observatory in Washington, D.C.
At the same time, he more rigorously developed his
ideas on the fourth dimension and presented his results
before the Washington Philosophical Society in 1902.
Hinton asked: What would prove the existence of a real
fourth spatial dimension? He offered three possibilities,
two of which involved a specific molecular structure and
a particular case of electrical induction, and have since
been explained by science in more mundane ways. How-
ever, Hinton’s other case, pertaining to right- and left-
handedness remains open because there are instances of
right- and left-handedness in nature, such as the spin of
elementary particles, to which his example could be
applied. In any event, Hinton’s final assessment that we
can only regard a four-dimensional space as possible if
three-dimensional mechanics fails to explain known
physical phenomena still rings true today.!'® ' 2 See
also Boole (Stott), Alicia.

Hippias of Elis (c. 5th century B.c.)

An itinerant Greek philosopher who contributed signifi-
cantly to mathematics by discovering the quadratrix, a
special curve he may have used to trisect an angle (see
quadratrix of Hippias). Hippias is one of the first mathe-
maticians about whom a good deal is known. He came
from a state in the northwest corner of Peloponnesia that
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was the home of the Olympic games. According to Plato,
Hippias boasted, during one of his visits to the Olympics,
that everything he wore—his clothing, sandals, ring, and
oil flask—he’d made himself. Later, in Athens, Hippias
became one of the first to teach for money, a practice for-
bidden by the Pythagoreans and scorned by Plato. He and
other paid teachers became known as “sophists,” which
was a derogatory term at the time but has since come to
mean “wise man.”

hippopede

A quartic curve described by the equation
(x> + % + 4b(b — a)(x* +y7) — 4b*x* = 0,

where 4 and & are positive constants. Hippopede means
“foot of a horse.” It is often known as the hippopede of Pro-
clus, after Proclus who was the first to study it (together
with Eudoxus, who used it in his theory of how the planets
move), and also the borsefetter and the curve of Booth because
of work done on it by J. Booth (1810-1878). Any hip-
popede is the intersection of a torus (donut) with one of its
tangent planes—that is, a plane parallel to its axis of rota-
tional symmetry. The curve takes any of a variety of forms
depending on where the donut is sliced. It may be a simple
oval; an indented oval or elliptical lemniscate of Booth (0 < b<
a); two isolated circles; a figure-eight curve or lemniscate
of Bernoulli (the only hippopede that is also a Cassinian
oval); or a hyperbolic lemniscate of Booth (0 < a< b).

Hi-Q

See peg solitaire.

Hnefa-Tafl

The Viking equivalent of chess and a particular form of a
Tafl game. It effectively models the kind of internal con-
flict familiar to the Vikings and recounted in Njal’s Saga,
the best known of the Icelandic sagas. The king or chief-
tain sits in his hall, surrounded by his thanes. His enemies
gather in secret, and in numbers sufficient to overwhelm
the king’s standing forces in a lightning raid. They gather
around the king’s hall and set it alight, forcing the defend-
ers to fight in the open or burn in the hall. If the king can,
by some desperate stratagem, break free and escape the
trap, he can rally his people and strike back at his enemies.
If not, he dies. Hnefa-Tafl reflects this mode of contest.
The board has 19 x 19 grid lines (though sometimes has
as few as 7 x 7 grid lines), and the pieces are placed at the
points of the intersections (curiously analogous to the ori-
ental game of Go, which also uses 19 x 19 lines and where
play occurs at the intersections). The opposing forces are
unequal in size, and have different objectives: the attack-
ers attempt to trap the king in his hall, while the defend-
ers try to open an escape route for him.

Hoffmann, Louis “Professor” (1839-1919)

The pseudonym of Angelo John Lewis, an English barris-
ter who was the leading writer on magic, cards, and “par-
lor amusements” at the turn of the twentieth century. His
Puzzles Old and New"™ (1893) is a major source of infor-
mation about mathematical recreations.

Hofstadter, Douglas R. (1945-)

A physicist and philosopher best known for his 1980
Pulitzer Prize-winning book Gddel, Escher, Bach: An Eternal
Golden Braid™™ He is currently a professor of cognitive
science and computer science at Indiana University, Bloom-
ington, and has particular interests in themes of the mind,
consciousness, self-reference, translation, and mathemati-
cal games. He is the son of the Nobel Prize-winning physi-
cist Robert Hofstadter.

Hofstadter’s law
It always takes longer than you think, even when you take
Hofstadter’s law into account.

Hogben, Lancelot Thomas (1895-1975)

An English zoologist and geneticist famed for his best-
selling Mathematics for the Million (1933)' of which
Albert Einstein said, “It makes alive the contents of the
elements of mathematics” and H. G. Wells said, “A great
book, a book of first class importance.” Hogben was born
in Southsea, Hampshire, and studied at Cambridge and
London. Imprisoned in 1916 as a conscientious objector
during World War I, he was released only when his health
went into serious decline. He held various academic
posts in Britain, Canada, and South Africa, becoming
professor of social biology at London University in 1930.
During World War II he was put in charge of the medical
statistics records for the British Army. After the war he
became professor of medical statistics at the University of
Birmingham, where he remained until his retirement in
1961. Hogben first began to apply mathematical princi-
ples to the study of genetics in the 1930s, focusing on the
study of generations of the fruit fly Drosophila and how it
related to research on heredity in humans. In addition to
Mathematics for the Million, he authored half a dozen
other books, including the popular Science for the Citizen.
Though trained as a scientist, Hogben was passionately
interested in linguistics. In The Loom of Language, which
he edited, he set out the principles of his own invented
language, “Interglossa,” based on Greek and Latin roots
but with a syntax resembling that of Chinese.

hole

A topological structure (see topology) that prevents any
object in which it occurs from being continuously shrunk
to a point. A sphere has no holes; a torus and a teacup
each have one hole. See also genus.
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hole-in-a-postcard problem Photocopy the diagram, cut
along the lines, and step through the postcard!

hole-in-a-postcard problem

With a pair of scissors, make cuts in a regular-sized post-
card to create a hole large enough for a person to step
through it. The solution is shown in the diagram. The
number of lines determines the size of the resulting aper-
ture. With enough cuts you could literally drive a horse
and cart through the card!

hole-through-a-sphere problem

A number of geometry puzzles hinge on a surprising
fact about spheres that have had holes bored through
them. Imagine you have a round bead that is 1 inch
(about 2.5 cm) in diameter and that you drill a hole
exactly through the middle of this so that the remaining
part of the sphere is only half an inch thick. Now imagine
that an enormously large drill has been used to bore a
hole though Earth so large that the part of Earth that is
left behind is only half an inch thick. Amazingly, the
residual volumes of these two holey spheres, the drilled
bead and the drilled Earth, are exactly the same! It just
happens that even though Earth is vastly larger than the
bead, the drill has to take out proportionately more in
order to make the thickness of the hole the same, so that
the volume left doesn’t depend separately on the initial
size of the sphere or of the hole, but only on their rela-
tion, which is forced by requiring the hole to be half an
inch long. This fact enables the following poem-problem
to have a solution even though its seems as if not enough
information has been provided:

Old Boniface he took his cheer,

Then he bored a hole through a solid sphere,
Clear through the center, straight and strong,
And the hole was just six inches long.

Now tell me, when the end was gained,
What volume in the sphere remained?

Sounds like I haven’t told enough,
But I have, and the answer isn’t tough.

Having already learned the secret that the volume that
remains of a drilled sphere doesn’t depend on the initial
size of the sphere, we can cheat and give a kind of meta-
argument that is much shorter than the geometric proof.
The volume left behind of any sphere with a 6-inch-long
hole through it must be the same as the volume left
behind of a 6-inch-diameter sphere with a hole of 0 diam-
eter drilled through it. This is equal to 43 (n6?), or approx-
imately 905 cubic inches.

hole-through-the-earth problem

L wonder if I shall fall right through the earth!
—Alice in Alice in Wonderland

Imagine there is a hole going from one point on Earth’s
surface, all the way through the center of Earth, to the
exact opposite (antipodal) point on the other side. What
would happen if you dropped something into this hole?
The Greek historian Plutarch considered the problem
some 2,000 years ago. In 1624, van Etten argued that a
millstone dropped down such a hole at 1 mile per minute
would take more than 2% days to reach the center, where
“it would hang in the air.” The first correct answer was
given by Galileo is his Dialogue Concerning the Two Chief
World Systems (1632). Galileo realized a dropped object
would accelerate until it reached the center of Earth, travel
through to the other side, then oscillate back and forth.

holism

The idea that the whole is greater than the sum of the
parts. Holism is credible on the basis of emergence alone,
since reductionism and bottom-up descriptions of nature
often fail to predict complex higher-level patterns.

homeomorphic

In topology, two objects are said to be homeomorphic if
they can be smoothly deformed into each other. See also
homeomorphism.

homeomorphism
A one-to-one continuous transformation that preserves
open and closed sets.

homology

A way of attaching Abelian groups, or more elaborate
algebraic objects, to a topological space so as to obtain
algebraic invariants. In a sense, it detects the presence of
“holes” of various dimensions in the space. The methods
developed to handle this led to what is now called homo-
logical algebra, a subject in which homological invariants
are calculated for many purely algebraic structures.
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homomorphism
A function that preserves the operators associated with
the specified structure.

homotopy

A continuous transformation from one path in a topo-
logical space to another, or more generally, of one func-
tion to another (see continuity). Paths connected by a
homotopy are called homotopic and are said to be in the
same homotopy class. Properties left unchanged by such
homotopies are known as homotopy invariants. Homotopy
classes of paths can be composed to form the fundamen-
tal group, or first homotopy group. Other maps can be used
to form higher homotopy groups.

Hordern, L. Edward (d. 2000)
An English puzzlist and leading authority and writer on
sliding-piece puzzles.'™

hundred

The smallest three-digit number in the decimal system
and the smallest square of a two-digit number (10). A
hundred today means 100 but, over the years and in dif-
ferent places, it has stood for different values including
112, 120, 124, and 132. The remnants of these old mea-
sures still persist in the hundredweight of some countries
representing 112 or 120 pounds. A hundred is also a mea-
sure of land area, frequently used in colonial America
and in England to signify a division of a county or a shire
having its own court. A strange custom is invoked if a
member of the English Parliament’s lower house, the
House of Commons, wishes to resign his seat (something
that is technically illegal). That member accepts steward-
ship of the “Chiltern Hundreds,” an area of chalk hills
near Oxford and Buckingham, which effects his release
from Parliament. The “Hundred Years’ War” between the
English and the French actually lasted 116 years.

hundred fowls problem

A Chinese puzzle found in the sixth-century work of the
mathematician Zhang Qiujian. Similar problems involv-
ing two constraints and three unknowns are found in
early European and Arabic mathematics from about the
eighth century A.D. on.

PUZZLE

If a rooster is worth five coins, a hen three coins, and
three chicks together are worth one coin, how many
roosters, hens, and chicks totaling 100 can be bought
for 100 coins? It turns out that there are three different
solutions. These can be found the long way, by trial
and error, or by using algebra. Call the number of
roosters R, the number of hens H, and the number of

chicks C. The problem gives two constraints. First, the
total number of fowl must be 100, so R + H + C = 100.
Second, the total cost of the fowl must be 100. The
cost of roosters is 5R, the cost of hens is 3H, and the
cost of chicks is ('5)C, so 5R + 3H + ('5)C = 100. These
two equations can be used to get rid of one of the
unknowns; then it's a question of guess and check.
Solutions begin on page 369.

Hunter, James Alston Hope

An American mathematician and puzzlist who has writ-
ten numerous articles and several books on recreational
mathematics (two in partnership with Joseph Madachy),
and was the author of a syndicated puzzle column read
throughout the United States and Canada. In 1955, he
coined the name “alphametic” and is probably the most
prolific producer of cryptarithms.

Huygens, Christiaan (1629-1695)

A Dutch scientist and mathematician who solved the tau-
tochrone problem, proposed a new wave theory of light,
designed a new pendulum clock, discovered Saturn’s
largest moon (Titan), and sketched the first feature on the
surface of another planet (Syrtis Major on Mars). In his
final years Huygens composed one of the earliest discus-
sions of extraterrestrial life, published after his death as
the Cosmotheoros (1698).

Hypatia of Alexandria (c. A.p. 370-417)

The first woman known to have made a significant con-
tribution to mathematics. Although there is no evidence
that Hypatia did any original research, she assisted her
father, Theon of Alexandria, in writing his 11-part com-
mentary on Ptolemy’s great work on astronomy and
mathematics, the Almagest. 1t’s thought that she also
helped in producing a new version of Euclid’s Elements,
which formed the basis for all later editions of Euclid.
Hypatia became head of the Platonist school at Alexan-
dria in about A.D. 400 and, as a pagan, represented a men-
ace to some Christian sects who felt threatened by her
learning and depth of scientific knowledge. In the end,
although the exact circumstances are unclear, she was
murdered by a mob. The event served as a trigger for the
departure of many scholars and the beginning of the
decline of Alexandria as a major academic center.

hyperbola

One of the conic section family of curves, which also
includes the circle, the ellipse, and the parabola; it is
obtained if a double cone is cut by a plane inclined to the
axis of the cone such that it meets both branches of the
cone. Of the four conic curves, the hyperbola is the one
least encountered in everyday life. A rare chance to see
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the complete shape is when a lamp with a cylindrical or
conical shade throws shadows on a nearby wall. Part of a
hyperbola is produced by the liquid that climbs by capil-
lary action between two microscope slides held vertically
and almost touching.

A hyperbola is the path followed by a smaller object
that is traveling fast enough to escape completely from
the gravitational pull of a larger object. Some comets, for
example, have hyperbolic or “open” orbits so that, after
one swing around the Sun, they head off into interstellar
space never to return. It can be difficult to tell, in some
cases, whether a comet’s orbit is hyperbolic or is highly
elliptical and, therefore, closed. In fact, one way to think
of a hyperbola is as a kind of ellipse that is split in half by
infinity. Not surprisingly, the hyperbola and the ellipse
share many inverse relationships. For example, whereas
the eclipse is the locus of all points whose distances from
two fixed points, called foci, have a constant sum, the
hyperbola is the locus of all points whose distances, 7, and
75, from two fixed points, £, and F,, is a constant differ-
ence, 7, — r; = k. If a is the distance from the origin to
either of the x intercepts of the hyperbola, then & = 2a.
Also, let the distance between the foci, F, — F, = 2¢. Then
the eccentricity, a measure of the flatness of the hyperbola,
is given by e= c¢/a. For all hyperbolas, ¢ > 1; the larger the
value of ¢, the more the hyperbola resembles two parallel
lines. Just as the circle (for which ¢ = 0) is the limiting case
of the ellipse (for which 0 < ¢ < 1), so the parabola (e =1)
is the limiting case of both the ellipse and the hyperbola.

A hyperbola has two asymptotes: the never-quite-

hyperbola © Jan Wassenaar, www.2dcurves.com

attainable limits of the curve’s branches as they run away
to infinity. The fransverse axis of the hyperbola is the line
on which both foci lie and that also intersects both ver-
tices (turning points); the conjugate axis goes through the
center and is perpendicular to the transverse axis.

A rectangular hyperbola has an eccentricity of V2,
asymptotes that are mutually perpendicular, and the
property that when stretched along one or both of its
asymptotes remains unchanged. This special case of the
hyperbola was first studied by Menaechmus. Euclid and
Aristaeus wrote about the general hyperbola but only
studied one branch of it, while Apollonius was the first
to study the two branches of the curve of the hyperbola
and is generally thought to have given it its present name.

The pedal curve of a hyperbola with one focus as the
pedal point is a circle. The pedal of a rectangular hyper-
bola with its center as pedal point is a lemniscate of
Bernoulli. The evolute of a hyperbola is a Lamé curve. If
the center of a rectangular hyperbola is taken as the center
of inversion, the rectangular hyperbola inverts to a lem-
niscate. If the vertex is used as the center of inversion, the
rectangular hyperbola inverts to a right strophoid. If the
focus of a hyperbola is taken as the center of inversion,
the hyperbola inverts to a limagon (see limagon of Pas-
cal). In this last case if the asymptotes of the hyperbola
make an angle of /3 with the axis that cuts the hyper-
bola, then it inverts to the Maclaurin trisectrix. See also
hyperboloid.

hyperbolic geometry

One of the two main types of non-Euclidean geometry
and the first to be discovered. It is concerned with saddle-
surfaces, which have negative curvature and on which
the geodesics are hyperbolas. In hyperbolic geometry,
contrary to the parallel postulate, there exists a line 7
and a point p not on m such that at least two distinct lines
parallel to m pass through p. As a result, the sum of the
angles of a triangle is less than 180° and, for a right trian-
gle, the square of the hypotenuse is greater than the sum
of the squares of the other two sides. See also elliptical
geometry.

hyperbolic spiral

The curve whose equation in polar coordinates is 70 = a.

hyperboloid

A quadratic surface of which there are two basic forms: a
hyperboloid of one sheet, generated by spinning a hyperbola
around its conjugate axis, and a hyperboloid of two sheets
produced by rotating a hyperbola about its transverse
axis. The hyperboloid of one sheet, first described by
Archimedes, has some particularly remarkable proper-
ties. In 1669 Christopher Wren, the architect who de-
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hyperboloid The McDonnell Planetarium in St. Louis is an
example of a hyperboloid. Courtesy of the St. Louis Science Center

signed St. Paul’s Cathedral in London, showed that this
kind if hyperboloid is what mathematicians now call a
ruled surface—a surface composed of infinitely many
straight lines. This fact enables a close approximation to
a hyperboloid to be made in the form of a string model.
Two circular disks, of the same size, are held parallel, one
exactly above the other, by a framework. Strings are then
run through holes near the circumference of one circle to
corresponding holes in the other circle that are a fixed
distance farther around the circumference. Each string is
perfectly straight but the surface that emerges takes the
curved form of a hyperboloid. For the same reason, a
cube spun rapidly on one of its corners will appear to
describe a hyperbolic curve when viewed side-on.

Prominent examples of hyperboloids can be seen in
the form of cooling towers at power stations and, most
strikingly, in the shape of the McDonnell Planetarium in
St. Louis, Missouri. The designer of this building, Gyo
Obata, chose the design because the hyperbolic paths of
some comets suggest “the drama and excitement of space
exploration.”

hypercube
A higher dimensional analog of a cube. A four-
dimensional hypercube is known as a tesseract.

hyperellipse

See superellipse.

hyperfactorial
A number such as 108, which is equal to 3* x 2 x 1'. In
general, the nth hyperfactorial H(z) is given by

Hn)=n" (n-1y""...3 22 1.

The first eight hyperfactorials are 1, 4, 108, 27,648,
86,400,000, 4,031,078,400,000, 3,319,766,398,771,200,000,
and 55,696,437,941,726,556,979,200,000. See also large
numbers and superfactorials.

hypergeometric function
The sum of the hypergeometric series:
ab ala+1)b(b+1)

Fla; b;c;x)=1+ 15t 1.2.c(c+1)

2

Many common functions can be written as hypergeo-
metric functions.

hyperreal number
Any of a colossal set of numbers, also known as ronstan-
dard reals, that includes not only all the real numbers but
also certain classes of infinitely large (see infinity) and
infinitesimal numbers as well. Hyperreals emerged in the
1960s from the work of Abraham Robinson who showed
how infinitely large and infinitesimal numbers can be rig-
orously defined and developed in what is called nonstan-
dard analysis. Because hyperreals represent an extension
of the real numbers, R, they are usually denoted by *R.
Hyperreals include all the reals (in the technical sense
that they form an ordered field containing the reals as a
subfield) and they also contain infinitely many other
numbers that are either infinitely large (numbers whose
absolute value is greater than any positive real number)
or infinitely small (numbers whose absolute value is less
than any positive real number). No infinitely large num-
ber exists in the real number system and the only real
infinitesimal is zero. But in the hyperreal system, it turns
out that each real number is surrounded by a cloud of
hyperreals that are infinitely close to it; the cloud around
zero consists of the infinitesimals themselves. Con-
versely, every (finite) hyperreal number x is infinitely
close to exactly one real number, which is called its stan-
dard part, st(x). In other words, there exists one and only
one real number st(x) such that x — st(x) is infinitesimal.

hypersphere

A four-dimensional analog of a sphere; also known as a
4-sphere. Just as the shadow cast by a sphere is a circle, the
shadow cast by a hypersphere is a sphere, and just as the
intersection of a sphere with a plane is a circle, the inter-
section of a hypersphere with a hyperplane is a sphere.
These analogies are reflected in the underlying mathe-
matics.

x* + y* = r* is the Cartesian equation of a circle of
radius 7;

x* + y* + z2 = r* is the corresponding equation of a
sphere;
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TRIALL Y

hyperboloid A hyperboloidal sculpture at the Fermi 