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Mathematics is not a careful march down a 
well-cleared highway, but a journey into a strange
wilderness, where the explorers often get lost. Rigor
should be a signal to the historian that the maps have
been made, and the real explorers have gone elsewhere.

—William S. Anglin

But leaving those of the Body, I shall proceed to such
Recreation as adorn the Mind; of which those of the
Mathematicks are inferior to none.

—William Leybourn (1626–1700)

The last thing one knows when writing a book is what
to put first.

—Blaise Pascal (1623–1662)





Contents

Acknowledgments ix

Introduction 1

Mathematics Entries A to Z 3

References 359

Solutions to Puzzles 369

Category Index 373

vii





Acknowledgments

M
any people have helped me enormously in assem-
bling this collection of mathematical oddities,

delights, whimsies, and profundities. Thanks especially
go to Jan Wassenaar (www.2dcurves.com) for drawing
many of the plane curves that are featured in the book;
Robert Webb (www.software3d.com) for numerous pho-
tos of his wonderful, homemade polyhedra; Jos Leys
(www.josleys.com) for his mesmerizing fractal artwork;
Xah Lee (www.xahlee.org) for a variety of ingenious digi-
tal imagery; Sue and Brian Young at Mr. Puzzle Australia
(www.mrpuzzle.com.au) and Kate and Dick Jones at
Kadon Enterprises (www.gamepuzzles.com) for their ad-
vice and photos of puzzles from their product lines and
personal collections; Gideon Weisz (www.gideonweisz
.com) and Istvan Orosz for stunning recursive and ana-
morphic art images; my good friend Andrew “Dogs”

Barker for stimulating discussions and the solution to
one of the problems; William Waite for pictures from his
antique math collection; and Peter Cromwell, Lord &
Lady Dunsany, Peter Knoppers, John Lienhard, John
Mainstone, David Nicholls, Paul and Colin Roberts,
Anders Sandberg, John Sullivan, and others for their
valuable contributions.

I’m greatly indebted to Stephen Power, senior editor,
and to Lisa Burstiner, senior production editor, at John
Wiley & Sons, for their encouragement and unfailing
attention to detail, and even proffering of alternative,
clever solutions to some of the problems in the book.
Any errors that remain are entirely my own responsibil-
ity. Thanks also to my marvelous agent, Patricia Van der
Leun. And last but most of all, thanks to my family for
letting me pursue a career that is really a fantasy.

ix





Introduction

shining student, I realize what a profound effect those
two deeply imaginative, thoughtful men had on my
future career. I did become an astronomer. I did perse-
vere with math to a certain level of competence. But,
much more than that, my curiosity was fired by the won-
derful and weird possibilities of these subjects: curved
space, Möbius bands, parallel universes, patterns in the
heart of chaos, alternative realities. These strange possi-
bilities, and a thousand others, make up the stuffing of
this book. If you want a comprehensive, academic dictio-
nary of mathematics, look elsewhere. If you want rigor
and proof, try the next shelf. Herein you will find only
the unusual and the outrageous, the fanciful and the fan-
tastic: a compendium of the mathematics they didn’t
teach you in school.

Entries range from short definitions to lengthy articles
on topics of major importance or unusual interest. These
are arranged alphabetically according to the first word of
the entry name and are extensively cross-referenced.
Terms that appear in bold type have their own entries. A
number of puzzles are included for the reader to try; the
answers to these can be found at the back of the book.
Also at the back are a comprehensive list of references
and a category index. Readers are invited to visit the
author’s Web site at www.daviddarling.info for the latest
news in mathematics and related subjects.

Y
ou are lost in a maze: How do you find your way out?
You want to build a time machine, but is time travel

logically possible? How can one infinity be bigger than
another? Why can’t you drink from a Klein bottle? What
is the biggest number in the world to have a proper
name, and how can you write it? Who claimed he could
see in the fourth dimension? And what does “iteration”
mean? And what does “iteration” mean?

Mathematics was never my strong point in school, but
because I wanted to become an astronomer, I was told 
to stick with it. Fortunately, in my last two years be-
fore heading off to university, I had a wonderful old-
fashioned, eccentric teacher (he actually wore a black
gown when teaching), called Mr. Kay (known to one and
all as “Danny”), who would suddenly divert from the
chalk and blackboard to ask, “But how did the universe
come to be asymmetric—that’s what I want to know,” or
“These imaginary numbers are very interesting; in part,
because they are so remarkably real.” During lunch-
break, Danny and the senior chemistry teacher, Mr. Erp
(whose nickname I need hardly spell out), would always
meet in the chemistry prep room for a game of chess.
They looked and acted very much like characters from a
Wellsian science fiction tale, and I sometimes imagined
them musing on formulas for invisibility or doorways to
higher dimensions. At any rate, though I was never a
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abacus
A counting frame that started out, several thousand years
ago, as rows of pebbles in the desert sands of the Middle
East. The word appears to come from the Hebrew âbâq
(dust) or the Phoenician abak (sand) via the Greek abax,
which refers to a small tray covered with sand to hold the
pebbles steady. The familiar frame-supporting rods or
wires, threaded with smoothly running beads, gradually
emerged in a variety of places and mathematical forms.

In Europe, there was a strange state of affairs for more
than 1,500 years. The Greeks and the Romans, and then
the medieval Europeans, calculated on devices with a
place-value system in which zero was represented by an
empty line or wire. Yet the written notations didn’t have
a symbol for zero until it was introduced in Europe in
1202 by Fibonacci, via the Arabs and the Hindus.

The Chinese suan pan differs from the European aba-
cus in that the board is split into two decks, with two
beads on each rod in the upper deck and five beads, rep-
resenting the digits 0 through 4, on each rod in the bot-
tom. When all five beads on a rod in the lower deck are
moved up, they’re reset to the original position, and one
bead in the top deck is moved down as a carry. When
both beads in the upper deck are moved down, they’re
reset and a bead on the adjacent rod on the left is moved
up as a carry. The result of the computation is read off
from the beads clustered near the separator beam
between the upper and lower decks. In a sense, the aba-
cus works as a 5-2-5-2-5-2 . . . –based number system in
which carries and shifts are similar to those in the deci-
mal system. Since each rod represents a digit in a deci-
mal number, the capacity of the abacus is limited only
by the number of rods on the abacus. When a user runs
out of rods, she simply adds another abacus to the left of
the row.

The Japanese soroban does away with the dual repre-
sentations of fives and tens by having only four counters
in the lower portion, known as “earth,” and only one
counter in the upper portion, known as “heaven.” The
world’s largest abacus is in the Science Museum in Lon-
don and measures 4.7 meters by 2.2 meters.

Abbott, Edwin Abbott (1838–1926)
An English clergyman and author who wrote several the-
ological works and a biography (1885) of Francis Bacon,
but is best known for his standard Shakespearian Grammar
(1870) and the pseudonymously written Flatland: A
Romance of Many Dimensions (by A Square, 1884).[1]

ABC conjecture
A remarkable conjecture, first put forward in 1980 by
Joseph Oesterle of the University of Paris and David
Masser of the Mathematics Institute of the University of
Basel in Switzerland, that is now considered one of the
most important unsolved problems in number theory. If
it were proved correct, the proofs of many other famous
conjectures and theorems would follow immediately—in
some cases in just a few lines. The vastly complex current
proof of Fermat’s last theorem, for example, would
reduce to less than a page of mathematical reasoning.
The ABC conjecture is disarmingly simple compared 
to most of the deep questions in number theory and,

A
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abacus A special form of the Chinese abacus (c. 1958) consist-
ing of two abaci stacked one on top of the other. Luis Fernandes



4 Abel, Niels Henrik

moreover, turns out to be equivalent to all the main
problems that involve Diophantine equations (equa-
tions with integer coefficients and integer solutions).

Only a couple of concepts need to be understood to
grasp the ABC conjecture. A square-free number is an inte-
ger that isn’t divisible by the square of any number. For
example, 15 and 17 are square-free, but 16 (divisible by
42) and 18 (divisible by 32) are not. The square-free part of
an integer n, denoted sqp(n), is the largest square-free
number that can be formed by multiplying the prime fac-
tors of n. For n = 15, the prime factors are 5 and 3, and 
3 × 5 = 15, a square-free number, so that sqp(15) = 15.
On the other hand, for n = 16, the prime factors are all 2,
which means that sqp(16) = 2. In general, if n is square-
free, the square-free part of n is just n; otherwise, sqp(n)
represents what is left over after all the factors that create
a square have been eliminated. In other words, sqp(n) is
the product of the distinct prime numbers that divide n.
For example, sqp(9) = sqp(3 × 3) = 3 and sqp(1,400) =
sqp(2 × 2 × 2 × 5 × 5 × 7) = 2 × 5 × 7 = 70.

The ABC conjecture deals with pairs of numbers that
have no common factors. Suppose A and B are two such
numbers that add to give C. For example, if A = 3 and 
B = 7, then C = 3 + 7 = 10. Now, consider the square-free
part of the product A × B × C: sqp(ABC ) = sqp(3 × 7 ×
10) = 210. For most values of A and B, sqp(ABC ) > C, as
in the prior example. In other words, sqp(ABC )/C > 1.
Occasionally, however, this isn’t true. For instance, 
if A = 1 and B = 8, then C = 1 + 8 = 9, sqp(ABC ) =
sqp(1 × 8 × 9) = sqp(1 × 2 × 2 × 2 × 3 × 3) = 1 × 2 × 3 = 6,
and sqp(ABC )/C = 6⁄9 = 2⁄3. Similarly, if A = 3 and 
B = 125, the ratio is 15⁄64.

David Masser proved that the ratio sqp(ABC )/C can
get arbitrarily small. In other words, given any number
greater than zero, no matter how small, it’s possible to find
integers A and B for which sqp(ABC )/C is smaller than 
this number. In contrast, the ABC conjecture says that
[sqp(ABC )]n/C reaches a minimum value if n is any num-
ber greater than 1—even a number such as 1.0000000001,
which is only barely larger than 1. The tiny change in the
expression results in a huge difference in its mathematical
behavior. The ABC conjecture in effect translates an infi-
nite number of Diophantine equations (including the
equation of Fermat’s last theorem) into a single mathe-
matical statement.[144]

Abel, Niels Henrik (1802–1829)

The divergent series are the invention of the devil,
and it is a shame to base on them any demonstra-
tion whatsoever. By using them, one may draw
any conclusion he pleases and that is why these

series have produced so many fallacies and so
many paradoxes.

A Norwegian mathematician who, independently of his
contemporary Évariste Galois, pioneered group theory
and proved that there are no algebraic solutions of the
general quintic equation. Both Abel and Galois died
tragically young—Abel of tuberculosis, Galois in a sword
fight.

While a student in Christiania (now Oslo), Abel
thought he had discovered how to solve the general quin-
tic algebraically, but soon corrected himself in a famous
pamphlet published in 1824. In this early paper, Abel
showed the impossibility of solving the general quintic by
means of radicals, thus laying to rest a problem that had
perplexed mathematicians since the mid-sixteenth cen-
tury. Abel, chronically poor throughout his life, was
granted a small stipend by the Norwegian government that
allowed him to go on a mathematical tour of Germany
and France. In Berlin he met Leopold Crelle (1780–1856)
and in 1826 helped him found the first journal in the
world devoted to mathematical research. Its first three vol-
umes contained 22 of Abel’s papers, ensuring lasting fame
for both Abel and Crelle. Abel revolutionized the impor-
tant area of elliptic integrals with his theory of elliptic
functions, contributed to the theory of infinite series, and
founded the theory of commutative groups, known today
as Abelian groups. Yet his work was never properly appre-
ciated during his life, and, impoverished and ill, he
returned to Norway unable to obtain a teaching position.
Two days after his death, a delayed letter was delivered in
which Abel was offered a post at the University of Berlin.

Abelian group
A group that is commutative, that is, in which the result
of multiplying one member of the group by another is
independent of the order of multiplication. Abelian
groups, named after Niels Abel, are of central impor-
tance in modern mathematics, most notably in algebraic
topology. Examples of Abelian groups include the real
numbers (with addition), the nonzero real numbers
(with multiplication), and all cyclic groups, such as the
integers (with addition).

abracadabra
A word famously used by magicians but which started
out as a cabalistic or mystical charm for curing various
ailments, including toothache and fever. It was first men-
tioned in a poem called “Praecepta de Medicina” by the
Gnostic physician Quintus Severus Sammonicus in the
second century A.D. Sammonicus instructed that the let-
ters be written on parchment in the form of a triangle:
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A   B   R   A   C   A   D   A   B   R   A
A   B   R   A   C   A   D   A   B   R

A   B   R   A   C   A   D   A   B
A   B   R   A   C   A   D   A

A   B   R   A   C   A   D
A   B   R   A   C   A

A   B   R   A   C
A   B   R   A

A   B   R
A   B

A

This was to be folded into the shape of a cross, worn for
nine days suspended from the neck, and, before sunrise,
cast behind the patient into a stream running eastward. It
was also a popular remedy in the Middle Ages. During
the Great Plague, around 1665, large numbers of these
amulets were worn as safeguards against infection. The
origin of the word itself is uncertain. One theory is that it
is based on Abrasax, the name of an Egyptian deity.

PUZZLE

A well-known puzzle, proposed by George Polya

(1887–1985), asks how many different ways there are

to spell abracadabra in this diamond-shaped arrange-

ment of letters:

A

B   B

R   R   R

A   A   A   A

C   C   C   C   C

A   A   A   A   A   A

D   D   D   D   D

A   A   A   A

B   B   B

R   R

A

Solutions begin on page 369.

abscissa
The x-coordinate, or horizontal distance from the y-axis,
in a system of Cartesian coordinates. Compare with
ordinate.

absolute
Not limited by exceptions or conditions. The term is
used in many different ways in mathematics, physics,
philosophy, and everyday speech. Absolute space and
absolute time, which, in Newton’s universe, form a
unique, immutable frame of reference, blend and be-
come deformable in the space-time of Einstein. See also

absolute zero. In some philosophies, the absolute stands
behind the reality we see—independent, transcendent,
unconditional, and all-encompassing. The American phi-
losopher Josiah Royce (1855–1916) took the absolute to
be a spiritual entity whose self-consciousness is imper-
fectly reflected in the totality of human thought. Mathe-
matics, too, reaches beyond imagination with its absolute
infinity. See also absolute value.

absolute value
The value of a number without regard to its sign. The
absolute value, or modulus, of a real number, r, is the dis-
tance of the number from zero measured along the real
number line, and is denoted |r|. Being a distance, it can’t
be negative; so, for example, |3| = |−3| = 3. The same 
idea applies to the absolute value of a complex number
a + ib, except that, in this case, the complex number is
represented by a point on an Argand diagram. The
absolute value, |a + ib|, is the length of the line from the
origin to the given point, and is equal to !(a 2 + b"2)".

absolute zero
The lowest possible temperature of a substance, equal to 0
Kelvin (K), −273.15°C, or −459.67°F. In classical physics,
it is the temperature at which all molecular motion ceases.
However, in the “real” world of quantum mechanics it
isn’t possible to stop all motion of the particles making up
a substance as this would violate the Heisenberg uncer-
tainty principle. So, at 0 K, particles would still vibrate
with a certain small but nonzero energy known as the zero-
point energy. Temperatures within a few billionths of a
degree of absolute zero have been achieved in the labora-
tory. At such low temperatures, substances have been seen
to enter a peculiar state, known as the Bose-Einstein con-
densate, in which their quantum wave functions merge
and particles lose their individual identities. Although it is
possible to approach ever closer to absolute zero, the
third law of thermodynamics asserts that it’s impossible to
ever attain it. In a deep sense, absolute zero lies at the
asymptotic limit of low energy just as the speed of light
lies, for particles with mass, at the asymptotic limit of high
energy. In both cases, energy of motion (kinetic energy) is
the key quantity involved. At the high energy end, as the
average speed of the particles of a substance approaches
the speed of light, the temperature rises without limit,
heading for an unreachable ∞ K.

abstract algebra

To a mathematician, real life is a special case.
—Anonymous

Algebra that is not confined to familiar number systems,
such as the real numbers, but seeks to solve equations
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that may involve many other kinds of systems. One of
its aims, in fact, is to ask: What other number systems
are there? The term abstract refers to the perspective
taken on the subject, which is very different from that of
high school algebra. Rather than looking for the solu-
tions to a particular problem, abstract algebra is inter-
ested in such questions as: When does a solution exist?
If a solution does exist, is it unique? What general prop-
erties does a solution possess? Among the structures it
deals with are groups, rings, and fields. Historically,
examples of such structures often arose first in some
other field of mathematics, were specified rigorously
(axiomatically), and were then studied in their own right
in abstract algebra.

Abu’l Wafa (A.D. 940–998)
A Persian mathematician and astronomer who was the
first to describe geometrical constructions (see con-
structible) possible only with a straightedge and a fixed
compass, later dubbed a “rusty compass,” that never al-
ters its radius. He pioneered the use of the tangent func-
tion (see trigonometric function), apparently discovered
the secant and cosecant functions, and compiled tables
of sines and tangents at 15′ intervals—work done as part
of an investigation into the orbit of the Moon.

abundant number
A number that is smaller than the sum of its aliquot parts
(proper divisors). Twelve is the smallest abundant num-
ber; the sum of its aliquot parts is 1 + 2 + 3 + 4 + 6 = 16,
followed by 18, 20, 24, and 30. A weird number is an abun-
dant number that is not semiperfect; in other words, n is
weird if the sum of its divisors is greater than n, but n is
not equal to the sum of any subset of its divisors. The
first few weird numbers are 70, 836, 4,030, 5,830, and
7,192. It isn’t known if there are any odd weird numbers.
A deficient number is one that is greater than the sum of its
aliquot parts. The first few deficient numbers are 1, 2, 3,
4, 5, 8, and 9. Any divisor of a deficient (or perfect)
number is deficient. A number that is not abundant or
deficient is known as a perfect number.

Achilles and the Tortoise paradox
See Zeno’s paradoxes.

Ackermann function
One of the most important functions in computer sci-
ence. Its most outstanding property is that it grows aston-
ishingly fast. In fact, it gives rise to large numbers so
quickly that these numbers, called Ackermann numbers,
are written in a special way known as Knuth’s up-arrow
notation. The Ackermann function was discovered and
studied by Wilhelm Ackermann (1896–1962) in 1928.

Ackermann worked as a high school teacher from 1927
to 1961 but was also a student of the great mathemati-
cian David Hilbert in Göttingen and, from 1953, served
as an honorary professor in the university there.
Together with Hilbert he published the first modern
textbook on mathematical logic. The function he dis-
covered, and that now bears his name, is the simplest
example of a well-defined and total function that is also
computable but not primitive recursive (PR). “Well-
defined and total” means that the function is internally
consistent and doesn’t break any of the rules laid down
to define it. “Computable” means that it can, in prin-
ciple, be evaluated for all possible input values of its
variables. “Primitive recursive” means that it can be
computed using only for loops—repeated application of a
single operation a predetermined number of times. The
recursion, or feedback loop, in the Ackermann function
overruns the capacity of any for loop because the number
of loop repetitions isn’t known in advance. Instead, this
number is itself part of the computation, and grows as
the calculation proceeds. The Ackermann function can
only be calculated using a while loop, which keeps repeat-
ing an action until an associated test returns false. Such
loops are essential when the programmer doesn’t know
at the outset how many times the loop will be traversed.
(It’s now known that everything computable can be pro-
grammed using while loops.)

The Ackermann function can be defined as follows:

A(0, n) = n + 1 for n = 0
A(m, 0) = A(m − 1, 1) for m = 1
A(m, n) = A(m − 1, A(m, n − 1)) for m, n = 1.

Two positive integers, m and n, are the input and A(m, n)
is the output in the form of another positive integer. The
function can be programmed easily in just a few lines of
code. The problem isn’t the complexity of the function
but the awesome rate at which it grows. For example, the
innocuous-looking A(4,2) already has 19,729 digits! The
use of a powerful large-number shorthand system, such
as the up-arrow notation, is indispensable as the follow-
ing examples show:

A(1, n) = 2 + (n + 3) − 3
A(2, n) = 2 × (n + 3) − 3
A(3, n) = 2↑(n + 3) − 3
A(4, n) = 2↑(2↑(2↑ ( . . . ↑2))) − 3 (n + 3 twos) 

= 2↑↑(n + 3) − 3
A(5, n) = 2↑↑↑(n + 3) − 3, etc.

Intuitively, the Ackermann function defines generaliza-
tions of multiplication by 2 (iterated additions) and
exponentiation with base 2 (iterated multiplications) to
iterated exponentiation, iteration of this operation, and
so on.[84]



Agnesi, Maria Gaetana 7

acre
An old unit of area, equal to 160 square rods, 4,840
square yards, 43,560 square feet, or 4,046.856 square
meters.

acute
From the Latin acus for “needle” (which also forms the
root for acid, acupuncture, and acumen). An acute angle is
less than 90°. An acute triangle is one in which all three
angles are acute. Compare with obtuse.

adjacent
Next to. Adjacent angles are next to each other, and thus
share one side. Adjacent sides of a polygon share a vertex.

affine geometry
The study of properties of geometric objects that remain
unchanged after parallel projection from one plane to
another. During such a projection, first studied by Leon-
hard Euler, each point (x, y) is mapped to a new point
(ax + cy + e, bx + dy + f ). Circles, angles, and distances are
altered by affine transformations and so are of no inter-
est in affine geometry. Affine transformations do, how-
ever, preserve collinearity of points: if three points
belong to the same straight line, their images (the points
that correspond to them) under affine transformations
also belong to the same line and, in addition, the middle
point remains between the other two points. Similarly,
under affine transformations, parallel lines remain par-
allel; concurrent lines remain concurrent (images of in-
tersecting lines intersect); the ratio of lengths of line
segments of a given line remains constant; the ratio of
areas of two triangles remains constant; and ellipses, par-
abolas, and hyperbolas continue to be ellipses, parabo-
las, and hyperbolas.

age puzzles and tricks
Problems that ask for a person’s age or, alternatively,
when a person was a certain age, given several round-
about facts. They go back at least 1,500 years to the time
of Metrodorus and Diophantus’s riddle. A number of
distinct types of age puzzles sprang up between the six-
teenth and early twentieth centuries, in most cases best
solved by a little algebra. One form asks: if X is now a
years old and Y is now b years old, when will X be c
times as old as Y? The single unknown, call it x, can be
found from the equation a + x = c(b + x). Another type
of problem takes the form: if X is now a times as old as
Y and after b years X will be c times as old as Y, how old
are X and Y now? In this case the trick is to set up and
solve two simultaneous equations: X = aY and X + b =
c(Y + b).

PUZZLES

Around 1900, two more variants on the age puzzle

became popular. Here is an example of each for the

reader to try.

1. Bob is 24. He is twice as old as Alice was when

Bob was as old as Alice is now. How old is Alice?

2. The combined ages of Mary and Ann are 44 years.

Mary is twice as old as Ann was when Mary was

half as old as Ann will be when Ann is three times

as old as Mary was when Mary was three times as

old as Ann. How old is Ann?”

Solutions begin on page 369.

Various mathematical sleights of hand can seem to
conjure up a person’s age as if by magic. For example, ask
a person to multiply the first number of his or her age by
5, add 3, double this figure, add the second number of
his or her age to the figure, and tell you the answer.
Deduct 6 from this and you will have their age.

Alternatively, ask the person to pick a number, multi-
ply this by 2, add 5, and multiply by 50. If the person
has already had a birthday this year and it’s the year
2004, she should add 1,754, otherwise she should add
1,753. Each year after 2004 these numbers need to be
increased by 1. Finally, the person should subtract the
year they were born. The first digits of the answer are the
original number, while the last two digits are the per-
son’s age.

Here is one more trick. Take your age, multiply it by 7,
then multiply again by 1,443. The result is your age
repeated three times. (What you have actually done is
multiplied by 10,101; if you multiply by 1,010,101, the
repetition is fourfold, and so on.)

Agnesi, Maria Gaetana (1718–1799)
An Italian mathematician and scholar whose name is
associated with the curve known as the Witch of Agnesi.
Born in Milan, Maria was one of 24 children of a pro-
fessor of mathematics at the University of Bologna. A
child prodigy, she could speak seven languages, includ-
ing Latin, Greek, and Hebrew, by the age of 11 and was
solving difficult problems in geometry and ballistics by
her early teens. Her father encouraged her studies and
her appearance at public debates. However, Maria de-
veloped a chronic illness, marked by convulsions and
headaches, and, from the age of about 20, withdrew
socially and devoted herself to mathematics. Her Insti-
tuzioni analitiche ad uso della gioventu italiana, published
in 1748, became a standard teaching manual, and in
1750, she was appointed to the chair of mathema-
tics and natural philosophy at Bologna. Yet she never
fulfilled her early promise in terms of making new
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breakthroughs. After the death of her father in 1752,
she moved into theology and, after serving for some
years as the directress of the Hospice Trivulzio for Blue
Nuns at Milan, joined the sisterhood herself and ended
her days in this austere order.

The famous curve that bears her name had been
studied earlier, in 1703, by Pierre de Fermat and the
Italian mathematician Guido Grandi (1671–1742).
Maria wrote about it in her teaching manual and re-
ferred to it as the aversiera, which simply means “to
turn.” But in translating this, the British mathema-
tician John Colson (1680–1760), the fifth Lucasian
professor of mathematics at Cambridge University,
confused aversiera with avversiere which means “witch,”
or “wife of the devil.” And so the name of the curve
came down to us as the Witch of Agnesi. To draw it,
start with a circle of diameter a, centered at the point
(0, a/2) on the y-axis. Choose a point A on the line
y = a and connect it to the origin with a line segment.
Call the point where the segment crosses the circle B.
Let P be the point where the vertical line through A
crosses the horizontal line through B. The Witch is the
curve traced by P as A moves along the line y = a. By a
happy coincidence, it does look a bit like a witch’s hat!
In Cartesian coordinates, its equation is

y = a3/(x 2 + a 2).

Ahmes papyrus
See Rhind papyrus.

Ahrens, Wilhelm Ernst Martin Georg (1872–1927)
A great German exponent of recreational mathematics

whose Mathematische Unterhaltungen und Spiele[6] is one of
the most scholarly of all books on the subject.

Alcuin (735–804)
A leading intellectual of his time and the probable 
compiler of Propositiones ad Acuendos Juvenes (Problems to
sharpen the young), one of the earliest collections of rec-
reational math problems. According to David Singmaster
and John Hadley: “The text contains 56 problems, includ-
ing 9 to 11 major types of problem which appear for the
first time, 2 major types which appear in the West for the
first time and 3 novel variations of known problems. . . .
It has recently been realized that the river-crossing prob-
lems and the crossing-a-desert problem, which appear
here for the first time, are probably the earliest known
combinatorial problems.”

Alcuin was born into a prominent family near the east
coast of England. He was sent to York, where he became a
pupil and, eventually, in 778, the headmaster, of Arch-
bishop Ecgberht’s School. (Ecgberht was the last person to
have known the Venerable Bede.) Alcuin built up a superb
library and made the school one of the chief centers of
learning in Europe. Its reputation became such that, in
781, Alcuin was invited to become master of Charle-
magne’s Palace School at Aachen and, effectively, minister
of education for Charlemagne’s empire. He accepted and
traveled to Aachen to a meeting of the leading scholars.
Subsequently, he was made head of Charlemagne’s Palace
School and there developed the Carolingian minuscule, a
clear, legible script that became the basis of how letters of
the present Roman alphabet are written.

Before leaving Aachen, Alcuin was responsible for the
most prized of the Carolingian codices, now called the

Agnesi, Maria Gaetana The Witch of Agnesi curve. John H. Lienhard
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Golden Gospels: a series of illuminated masterpieces writ-
ten largely in gold, on white or purple vellum. The develop-
ment of Carolingian minuscule had, indirectly, a major
impact on the history of mathematics. Because it was a far
more easily readable script than the older unspaced capital,
it led to many mathematical works being newly copied into
this new style in the ninth century. Most of the works of the
ancient Greek mathematicians that have survived did so
because of this transcription. Alcuin lived in Aachen from
782 to 790 and again from 793 to 796. In 796, he retired
from Charlemagne’s Palace School and became abbot of
the Abbey of St. Martin at Tours, where he and his monks
continued to work with the Carolingian minuscule script.

aleph
The first letter of the Hebrew alphabet, ‡. It was first used
in mathematics by Georg Cantor to denote the various
orders, or sizes, of infinity: ‡0 (aleph-null), ‡1 (aleph-
one), etc. An earlier (and still used) symbol for infinity, ∞,
was introduced in 1655 by John Wallis in his Arithmetica
infinitorum but didn’t appear in print until the Ars con-
jectandi by Jakob Bernoulli, published posthumously in
1713 by his nephew Nikolaus Bernoulli (see Bernoulli
Family).

Alexander’s horned sphere
In topology, an example of what is called a “wild” struc-
ture; it is named after the Princeton mathematician James
Waddell Alexander (1888–1971) who first described it in
the early 1920s. The horned sphere is topologically equiv-
alent to the simply connected surface of an ordinary hol-
low sphere but bounds a region that is not simply
connected. The horns-within-horns consist of a recursive
set—a fractal—of interlocking pairs of orthogonal rings
(rings set at right angles) of decreasing radius. A rubber
band around the base of any horn couldn’t be removed
from the structure even after infinitely many steps. The
horned sphere can be embedded in the plane by reducing
the interlock angle between ring pairs from 90° to 0°, then
weaving the rings together in an over-under pattern. The
sculptor Gideon Weisz has modeled a number of approx-
imations to the structure, one of which is shown in the
photograph.

algebra
A major branch of mathematics that, at an elementary
level, involves applying the rules of arithmetic to num-
bers, and to letters that stand for unknown numbers, with
the main aim of solving equations. Beyond the algebra
learned in high school is the much vaster and more pro-
found subject of abstract algebra. The word itself comes
from the Arabic al-jebr, meaning “the reunion of broken
parts.” It first appeared in the title of a book, Al-jebr w’al-
mugabalah (The science of reduction and comparison), 
by the ninth-century Persian scholar al-Khowarizmi—
probably the greatest mathematician of his age, and as
famous among Arabs as Euclid and Aristotle are to the
Western world.

algebraic curve
A curve whose equation involves only algebraic functions.
These are functions that, in their most general form, can
be written as a sum of polynomials in x multiplied by
powers of y, equal to zero. Among the simplest examples
are straight lines and conic sections.

algebraic fallacies
Misuse of algebra can have some surprising and absurd
results. Here, for example, is a famous “proof” that 1 = 2:

Let a = b.
Then a 2 = ab

a2 + a 2 = a 2 + ab
2a 2 = a 2 + ab

2a 2 − 2ab = a2 + ab − 2ab
2a 2 − 2ab = a2 − ab
2(a 2 − ab) = 1(a 2 − ab).

Dividing both sides by a 2 − ab
2 = 1.

Alexander’s horned sphere A sculpture of a five-level
Alexander’s horned sphere. Gideon Weisz, www.gideonweisz.com
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Where’s the mistake? The problem lies with the seem-
ingly innocuous final division. Since a = b, dividing by 
a 2 − ab is the same as dividing by zero—the great taboo of
mathematics.

Another false argument runs as follows:

(n + 1)2 = n 2 + 2n + 1
(n + 1)2 − (2n + 1) = n 2.

Subtracting n(2n + 1) from both sides and factorizing
gives

(n + 1)2 − (n + 1)(2n + 1) = n 2 − n(2n + 1).

Adding 1⁄4(2n + 1)2 to both sides yields

(n + 1)2 − (n + 1)(2n + 1) + 1⁄4(2n + 1)2

= n 2 − n(2n + 1) + 1⁄4(2n + 1)2.

This may be written:

[(n + 1) − 1⁄2(2n + 1)]2 = [(n − 1⁄2(2n + 1)]2.

Taking square roots of both sides,

n + 1 − 1⁄2(2n + 1) = n − 1⁄2(2n + 1).

Therefore,

n = n + 1.

The problem here is that there are two square roots for
any positive number, one positive and one negative: the
square roots of 4 are 2 and −2, which can be written as
!2. So the penultimate step should properly read:

!(n + 1 − 1⁄2(2n + 1)) = !(n − 1⁄2(2n + 1))

algebraic geometry
Originally, the geometry of complex number solutions
to polynomial equations. Modern algebraic geometry is
also concerned with algebraic varieties, which are a gen-
eralization of the solution sets found in the traditional
subject, as well as solutions in fields other than complex
numbers, for example finite fields.

algebraic number
A real number that is a root of a polynomial equation
with integer coefficients. For example, any rational num-
ber a/b, where a and b are nonzero integers, is an alge-
braic number of degree one, because it is a root of the
linear equation bx − a = 0. The square root of two is an
algebraic number of degree two because it is a root of the
quadratic equation x 2 − 2 = 0. If a real number is not alge-
braic, then it is a transcendental number. Almost all real
numbers are transcendental because, whereas the set of
algebraic numbers is countably infinite (see countable

set), the set of transcendental numbers is uncountably
infinite.

algebraic number theory
The branch of number theory that is studied without
using methods such as infinite series and convergence
taken from analysis. It contrasts with analytical number
theory.

algebraic topology
A branch of topology that deals with invariants of 
a topological space that are algebraic structures, often
groups.

algorithm
A systematic method for solving a problem. The word
comes from the name of the Persian mathematician, al-
Khowarizmi, and may have been first used by Gottfried
Liebniz in the late 1600s. It remained little known in
Western mathematics, however, until the Russian mathe-
matician Andrei Markov (1903–1987) reintroduced it.
The term became especially popular in the areas of math
focused on computing and computation.

algorithmic complexity
A measure of complexity developed by Gregory Chaitin
and others, based on Claude Shannon’s information
theory and earlier work by the Russian mathematicians
Andrei Kolmogorov and Ray Solomonoff. Algorithmic
complexity quantifies how complex a system is in terms
of the shortest computer program, or set of algorithms,
needed to completely describe the system. In other
words, it is the smallest model of a given system that is
necessary and sufficient to capture the essential patterns
of that system. Algorithmic complexity has to do with
the mixture of repetition and innovation in a complex
system. At one extreme, a highly regular system can be
described by a very short program or algorithm. For
example, the bit string 01010101010101010101 . . . fol-
lows from just three commands: print a zero, print a one,
and repeat the last two commands indefinitely. The com-
plexity of such a system is very low. At the other extreme,
a totally random system has a very high algorithmic
complexity since the random patterns can’t be con-
densed into a smaller set of algorithms: the program is
effectively as large as the system itself. See also com-
pressible.

Alhambra
The former palace and citadel of the Moorish kings of
Granada, and perhaps the greatest monument to Islamic
mathematical art on Earth. Because the Qur’an consid-



Allais paradox 11

ers the depiction of living beings in religious settings
blasphemous, Islamic artists created intricate patterns to
symbolize the wonders of creation: the repetitive nature
of these complex geometric designs suggests the limitless
power of God. The sprawling citadel, looming high
above the Andalusian plain, boasts a remarkable array of
mosaics with tiles arranged in intricate patterns. The
Alhambra tilings are periodic; in other words, they con-

sist of some basic unit that is repeated in all directions to
fill up the available space. All 17 different groups of
isometries—the possible ways of repeatedly tiling the
plane—are used at the palace. The designs left a deep
impression on Maurits Escher, who came here in 1936.
Subsequently, Escher’s art took on a much more mathe-
matical nature, and over the next six years he produced
43 colored drawings of periodic tilings with a wide vari-
ety of symmetry types.

aliquot part
Also known as a proper divisor, any divisor of a number
that isn’t equal to the number itself. For instance, the
aliquot parts of 12 are 1, 2, 3, 4, and 6. The word comes
from the Latin ali (“other”) and quot (“how many”). An
aliquot sequence is formed by taking the sum of the
aliquot parts of a number, adding them to form a new
number, then repeating this process on the next num-
ber and so on. For example, starting with 20, we get 
1 + 2 + 4 + 5 + 10 = 22, then 1 + 2 + 11 = 14, then 
1 + 2 + 7 = 10, then 1 + 2 + 5 = 8, then 1 + 2 + 4 = 7,
then 1, after which the sequence doesn’t change. For
some numbers, the result loops back immediately to
the original number; in such cases the two numbers are
called amicable numbers. In other cases, where a
sequence repeats a pattern after more than one step,
the result is known as an aliquot cycle or a sociable chain.
An example of this is the sequence 12496, 14288,
15472, 14536, 14264, . . . The aliquot parts of 14264
add to give 12496, so that the whole cycle begins again.
Do all aliquot sequences end either in 1 or in an
aliquot cycle (of which amicable numbers are a special
case)? In 1888, the Belgian mathematician Eugène
Catalan (1814–1894) conjectured that they do, but this
remains an open question.

al-Khowarizmi (c. 780–850)
An Arabic mathematician, born in Baghdad, who is
widely considered to be the founder of modern day alge-
bra. He believed that any math problem, no matter how
difficult, could be solved if broken down into a series of
smaller steps. The word algorithm may have derived from
his name.

Allais paradox
A paradox that stems from questions asked in 1951 by
the French economist Maurice Allais (1911–).[8] Which
of these would you choose: (A) an 89% chance of receiv-
ing an unknown amount and 11% chance of $1 million;
or (B) an 89% chance of an unknown amount (the same
amount as in A), a 10% chance of $2.5 million, and a 1%
chance of nothing? Would your choice be the same if the

Alhambra Computer-generated tilings based on Islamic tile
designs such as those found in the Alhambra. Xah Lee,

www.xahlee.org
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unknown amount was $1 million? What if the unknown
amount was zero?

Most people don’t like risk and so prefer the better
chance of winning $1 million in option A. This choice
is firm when the unknown amount is $1 million, but
seems to waver as the amount falls to nothing. In the lat-
ter case, the risk-averse person favors B because there
isn’t much difference between 10% and 11%, but there’s
a big difference between $1 million and $2.5 million.
Thus the choice between A and B depends on the un-
known amount, even though it is the same unknown
amount independent of the choice. This flies in the face
of the so-called independence axiom, that rational choice
between two alternatives should depend only on how
those two alternatives differ. Yet, if the amounts involved
in the problem are reduced to tens of dollars instead of
millions of dollars, people’s behavior tends to fall back in
line with the axioms of rational choice. In this case, peo-
ple tend to choose option B regardless of the unknown
amount. Perhaps when presented with such huge num-
bers, people begin to calculate qualitatively. For example,
if the unknown amount is $1 million the options are
essentially (A) a fortune guaranteed or (B) a fortune
almost guaranteed with a small chance of a bigger for-
tune and a tiny chance of nothing. Choice A is then
rational. However, if the unknown amount is nothing,
the options are (A) a small chance of a fortune ($1 mil-
lion) and a large chance of nothing, and (B) a small
chance of a larger fortune ($2.5 million) and a large
chance of nothing. In this case, the choice of B is ratio-
nal. Thus, the Allais paradox stems from our limited abil-
ity to calculate rationally with such unusual quantities.

almost perfect number
A description sometimes applied to the powers of 2
because the aliquot parts (proper divisors) of 2n sum to 
2n − 1. So a power of 2 is a deficient number (one that is
less than the sum of its proper divisors), but only just. It
isn’t known whether there is an odd number n whose
divisors (excluding itself) sum to n − 1.

alphamagic square
A form of magic square, introduced by Lee Sallows,[278–280]

in which the number of letters in the word for each number,
in whatever language is being used, gives rise to another
magic square. In English, for example, the alphamagic
square:

5 (five) 22 (twenty-two) 18 (eighteen)
28 (twenty-eight) 15 (fifteen) 2 (two)
12 (twelve) 8 (eight) 25 (twenty-five)

generates the square:

4 9 8
11 7 3
6 5 10

A surprisingly large number of 3 × 3 alphamagic squares
exist—in English and in other languages. French allows just
one 3 × 3 alphamagic square involving numbers up to 200,
but a further 255 squares if the size of the entries is
increased to 300. For entries less than 100, none occurs in
Danish or in Latin, but there are 6 in Dutch, 13 in Finnish,
and an incredible 221 in German. Yet to be determined is
whether a 3 × 3 square exists from which a magic square
can be derived that, in turn, yields a third magic square—a
magic triplet. Also unknown is the number of 4 × 4 and 
5 × 5 language-dependent alphamagic squares. Here, for
example, is a four-by-four English alphamagic square:

26 37 48 59
49 58 27 36
57 46 39 28
38 29 56 47

alphametic
A type of cryptarithm in which a set of words is written
down in the form of a long addition sum or some other
mathematical problem. The object is to replace the let-
ters of the alphabet with decimal digits to make a valid
arithmetic sum. The word alphametic was coined in 1955
by James Hunter. However, the first modern alphametic,
published by Henry Dudeney in the July 1924 issue of
Strand Magazine, was “Send more money,” or, setting it
out in the form of a long addition:

SEND
MORE

——————
MONEY

and has the (unique) solution:

9567
1085

—————
10652

PUZZLES

The reader is invited to try to solve the following ele-

gant examples:

1. Earth, air, fire, water: nature. (Herman Nijon)

2. Saturn, Uranus, Neptune, Pluto: planets. (Peter J.

Martin)

3. Martin Gardner retires. (H. Everett Moore)

Solutions begin on page 369.
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Two rules are obeyed by every alphametic. First, the
mapping of letters to numbers is one-to-one; that is, 
the same letter always stands for the same digit, and the
same digit is always represented by the same letter. Sec-
ond, the digit zero isn’t allowed as the left-most digit in
any of the numbers being added or in their sum. The
best alphametics are reckoned to be those with only one
correct answer.

Altekruse puzzle
A symmetrical 12-piece burr puzzle for which a patent
was granted to William Altekruse in 1890. The Alte-
kruse family is of Austrian-German origin and, curi-
ously, the name means “old cross” in German, which
has led some authors to incorrectly assume that it was a
pseudonym. William Altekruse came to the United
States as a young man in 1844 with his three brothers to
escape being drafted into the German army. The
Altekruse puzzle has an unusual mechanical action in
the first step of disassembly by which two halves move
in opposition to each other, unlike the more familiar
burr types that have a key piece or pieces. Depending
on how it is assembled, this action can take place along
one, two, or all three axes independently but not simul-
taneously.

alternate
A mathematical term with several different meanings: (1)
Alternate angles are angles on opposite sides and opposite
ends of a line that cuts two parallel lines. (2) A well-known
theorem called the alternate segment theorem involves the
segment on the opposite side of a given chord of a circle.
(3) An alternate hypothesis in statistics is the alternative
offered to the null hypothesis. (4) To alternate is to cycle
backward and forward between two different values, for
example, 0, 1, 0, 1, 0, 1, . . . .

altitude
A perpendicular line segment from one vertex of a figure
or solid to an edge or face opposite to that vertex. Also
the length of such a line segment.

ambiguous figure
An optical illusion in which the subject or the perspec-
tive of a picture or shape may suddenly switch in the
mind of the observer to another, equally valid possibil-
ity. Often the ambiguity stems from the fact that the
figure and ground can be reversed. An example of this is
the vase/profile illusion, made famous by the Danish
psychologist Edgar John Rubin (1886–1951) in 1915,
though earlier versions of the same illusion can be

found in many eighteenth-century French prints depict-
ing a variety of vases, usually in a naturalistic setting,
and profiles of particular people. The same effect can be
created in three dimensions with a suitably shaped solid
vase. In some ambiguous figures, the features of a per-
son or of an animal can suddenly be seen as different
features of another individual. Classic examples include
the old woman–young woman illusion and the duck–
rabbit illusion. Upside-down pictures involve a special
case of dual-purpose features in which the reversal is
accomplished not mentally, by suddenly “seeing” the
alternative, but physically, by turning the picture 180°.
Ambiguity can also occur, particularly in some geomet-
ric drawings, when there is confusion as to which are
the front and the back faces of a figure, as in the Necker
cube, the Thiery figure, and Schröder’s reversible
staircase.

ambiguous connectivity
See impossible figure.

Ames room
The famous distorted room illusion, named after the
American ophthalmologist Adelbert Ames Jr. (1880–
1955), who first constructed such a room in 1946 based
on a concept by the German physicist Hermann Helm-
holtz in the late nineteenth century. The Ames room
looks cubic when seen with one eye through a specially
positioned peephole; however, the room’s true shape is
trapezoidal. The floor, ceiling, some walls, and the far
windows are trapezoidal surfaces; the floor appears level
but is actually at an incline (one of the far corners being

ambiguous figure The Rubin vase illusion: one moment a
vase, the next two people face to face.
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much lower than the other); and the walls are slanted
outward, though they seem perpendicular to the floor.
This shape makes it look as if people or objects grow or
shrink as they move from one corner of the room to
another. See also distortion illusion.[142, 178]

amicable numbers
A pair of numbers, also known as friendly numbers, each
of whose aliquot parts add to give the other number.
(An aliquot part is any divisor that doesn’t include the
number itself.) The smallest amicable numbers are 220
(aliquot parts 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, and 110,
with a sum of 284) and 284 (aliquot parts 1, 2, 4, 71,
and 142, with a sum of 220). This pair was known to the
ancient Greeks, and the Arabs found several more. In
1636, Pierre de Fermat rediscovered the amicable pair
17,296 and 18,416; two years later René Descartes
rediscovered a third pair, 9,363,584 and 9,437,056. In
the eighteenth century, Leonhard Euler drew up a list
of more than 60. Then, in 1866, B. Nicolò Paganini
(not the violinist), a 16-year-old Italian, startled the
mathematical world by announcing that the numbers
1,184 and 1,210 were amicable. This second-lowest pair
of all had been completely overlooked! Today, the tally
of known amicable numbers has grown to about 2.5
million. No amicable pair is known in which one of the
two numbers is a square. An unusually high proportion
of the numbers in amicable pairs ends in either 0 or 5.
A happy amicable pair is an amicable pair in which both
numbers are happy numbers; an example is 10,572,550
and 10,854,650. See also Harshad number.

amplitude
Size or magnitude. The origin of the word is the same
Indo-European ple root that gives us plus and comple-
ment. The more immediate Latin source is amplus for
“wide.” Today, amplitude is used to describe, among
other things, the distance a periodic function varies
from its central value, and the magnitude of a complex
number.

anagram
The rearrangement of the letters of a word or phrase into
another word or phrase, using all the letters only once.
The best anagrams are meaningful and relate in some way
to the original subject; for example, “stone age” and
“stage one.” There are also many remarkable examples of
long anagrams. “ ‘That’s one small step for a man; one
giant leap for mankind.’ Neil Armstrong” becomes “An
‘Eagle’ lands on Earth’s Moon, making a first small per-
manent footprint.”

PUZZLES

The reader is invited to untangle the following ana-

grams that give clues to famous people:

1. A famous German waltz god.

2. Aha! Ions made volts!

3. I’ll make a wise phrase.

Solutions begin on page 369.

An antonymous anagram, or antigram, has a meaning
opposite to that of the subject text; for example, “within
earshot” and “I won’t hear this.” Transposed couplets, or
pairagrams, are single word anagrams that, when placed
together, create a short meaningful phrase, such as “best
bets” and “lovely volley.” A rare transposed triplet, or tri-
anagram, is “discounter introduces reductions.” See also
pangram.

anallagmatic curve
A curve that is invariant under inversion (see in-
verse). Examples include the cardioid, Cassinian ovals,
limaçon of Pascal, strophoid, and Maclaurin tri-
sectrix.

analysis
A major branch of mathematics that has to do with
approximating certain mathematical objects, such as
numbers or functions, in terms of other objects that are
easier to understand or to handle. A simple example of
analysis is the calculation of the first few decimal places

Ames room Misleading geometry makes these identical
twins appear totally different in size. Technische Universitat, 

Dresden
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of pi by writing it as the limit of an infinite series. The
origins of analysis go back to the seventeenth century,
when people such as Isaac Newton began investigating
how to approximate locally—in the neighborhood of a
point—the behavior of quantities that vary continuously.
This led to an intense study of limits, which form the
basis of understanding infinite series, differentiation,
and integration.

Modern analysis is subdivided into several areas: real
analysis (the study of derivatives and integrals of real-
valued functions); functional analysis (the study of spaces
of functions); harmonic analysis (the study of Fourier
series and their abstractions); complex analysis (the study
of functions from the complex plane to the complex plane
that are complex differentiable); and nonstandard analy-
sis (the study of hyperreal numbers and their functions,
which leads to a rigorous treatment of infinitesimals and of
infinitely large numbers).

analytical geometry
Also known as coordinate geometry or Cartesian geometry,
the type of geometry that describes points, lines, and
shapes in terms of coordinates, and that uses algebra to
prove things about these objects by considering their

coordinates. René Descartes laid down the foundations
for analytical geometry in 1637 in his Discourse on the
Method of Rightly Conducting the Reason in the Search for
Truth in the Sciences, commonly referred to as Discourse on
Method. This work provided the basis for calculus,
which was introduced later by Isaac Newton and Gott-
fried Leibniz.

analytical number theory
The branch of number theory that uses methods taken
from analysis, especially complex analysis. It contrasts
with algebraic number theory.

anamorphosis
The process of distorting the perspective of an image to
such an extent that its normal appearance can only be
restored by the observer completely changing the way he
looks at the image. In catoptric anamorphosis, a curved
mirror, usually of cylindrical or conical shape, is used to
restore an anamorphic picture to its undistorted form. In
other kinds of anamorphism, the observer has to change
her viewing position—for example, by looking at the pic-
ture almost along its surface. Some anamorphic art 
adds deception by concealing the distorted image in an

anamorphosis “Self-portrait with Albert” is a clever example of anamorphic art by the Hungarian artist Istvan Orosz. The artist’s
hands over his desk and a small round mirror in which the artist’s face is reflected can be seen in the etching. Istvan Orosz

(continued)
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The mirror reveals a previously unsuspected aspect of the picture. The distorting effect of the curved mirror is to undistort a face
hidden amid the shapes on the desk: the face of Albert Einstein. Orosz created this etching for an exhibition in Princeton, where
the great scientist lived. Istvan Orosz

anamorphosis (continued) A cylindrical mirror is placed over the circle. Istvan Orosz
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otherwise normal looking picture. At one time, artists
who had the mathematical knowledge to create ana-
morphic pictures kept their calculations and grids well-
guarded secrets. Now it is relatively easy to create such
images by computer.

angle

My geometry teacher was sometimes acute, and
sometimes obtuse, but he was always right.

—Anonymous

The opening between two lines or two planes that meet;
the word comes from the Latin angulus for “sharp
bend.” Angles are measured in degrees. A right angle
has 90°, an acute angle less than 90°, and an obtuse
angle has between 90° and 180°. If an angle exceeds the
straight angle of 180°, it is said to be convex. Comple-
mentary angles add to 90°, and supplementary angles make
a total of 180°.

angle bisection
See bisecting an angle.

angle trisection
See trisecting an angle.

animals’ mathematical ability
Many different species, including rats, parrots, pigeons,
raccoons, and chimpanzees, are capable of doing simple
calculations. Tests on dogs have shown that they have a
basic grasp of cardinality—the number of things on offer.
If they’re shown a pile of treats and then shown the pile
again after it has been concealed and the number of
treats changed slightly, they will react differently than if
there’s been no change. However, not all purported ani-
mal math talents stand the test of time. At the turn of
the century, a horse named Clever Hans wowed audi-
ences with his counting skills. His trainer would pose a
problem, and the horse would tap out the answer. In the
end, though, it was found that Hans couldn’t really add
or subtract but was instead responding to subtle, unin-
tended clues from its trainer, who would visibly relax
when the horse reached the correct number.

annulus
The region between the smaller and the larger of two cir-
cles that share a common center.

antigravity houses and hills
The House of Mystery in the Oregon Vortex, Gold Hill,
Oregon, built during the Great Depression in the 1930s,
can claim to be the first “antigravity house.” It spawned

many imitators around the United States and in other
parts of the world. Such buildings give rise to some
spectacular visual effects, which seem bewildering until
the underlying cause is revealed. Of course, the visitor
guides are not forthcoming about what is really going
on and make fantastic claims about magnetic or gravita-
tional anomalies, UFOs, or other weird and wonderful
phenomena. The fact is that all the stunning effects
stem from clever construction and concealment that
make an incline seem like a horizontal in the mind of
the visitor. All antigravity houses are built on hills, with
a typical incline of about 25°. But unlike a normal
house on the side of a hill, an antigravity house is built
so that its walls are perpendicular to the (inclined)
ground. In addition, the area around the house is sur-
rounded by a tall fence that prevents the visitor from
establishing a true horizontal. Thus compelled to fall
back on experience, the visitor assumes that the floor of
the house is horizontal and that the walls are vertical
with respect to Earth’s gravity. All the stunning visual
shenanigans follow from this.

In addition to man-made antigravity illusions, there
are also a number of remarkable natural locations
around the world where gravity seems to be out of kilter.
One example is the “Electric Brae,” known locally as
Croy Brae, in Ayrshire, Scotland. This runs the quarter-
mile from the bend overlooking the Croy railway
viaduct in the west (86 meters above sea level) to the
wooded Craigencroy Glen (92 meters above sea level) to
the east. While there is actually a slope of 1 in 86 (a rise
of 1 meter for every 86 meters horizontally) upward
from the bend at the Glen, the configuration of the land
on either side of the road creates the illusion that the
slope runs the other way. The author is among countless
folk who have parked their cars with the brakes off on

antigravity houses and hills Visitors to a “house of mystery,”
believing that the floor of the house is horizontal, may be
astonished by the apparent gravity-defying effects (right). All
these effects are easily understood, however, when it is real-
ized that the entire house tilts at the same angle as a hill on
which it is built.
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this stretch of road and been amazed to see it roll appar-
ently uphill. See also distortion illusion.

antimagic square
An n × n square arrangement of the numbers 1 to n 2 such
that the totals of the n rows and n columns and two long
diagonals form a sequence of (2n + 2) consecutive integers.
There are no antimagic squares of size 2 × 2 and 3 × 3 but
plenty of them for larger sizes. Here is a 4 × 4 example:

1 13 3 12
15 9 4 10
7 2 16 8
14 6 11 5

See also magic square.

antiprism
A semi-regular polyhedron constructed from two n-sided
polygons and 2n triangles. An antiprism is like a prism in
that it contains two copies of any chosen regular polygon,
but is unlike a prism in that one of the copies is given a

slight twist relative to the other. The polygons are con-
nected by a band of triangles pointing alternately up and
down. At each vertex, three triangles and one of the chosen
polygons meet. By spacing the two polygons at the proper
distance, all the triangles become equilateral. Antiprisms
are named square antiprisms, pentagonal antiprisms, and
so on. The simplest, the triangular antiprism, is better
known as the octahedron.

aperiodic tiling
A tiling made from the same basic elements or tiles that
can cover an arbitrarily large surface without ever
exactly repeating itself. For a long time it was thought
that whenever tiles could be used to make an aperiodic
tiling, those same tiles could also be fitted together in a
different way to make a periodic tiling. Then, in the
1960s, mathematicians began finding sets of tiles that
were uniquely aperiodic. In 1966, Robert Berger pro-
duced the first set of 20,426 aperiodic tiles, and soon
lowered this number to 104. Over the next few years,
other mathematicians reduced the number still further.

antiprism A pentagonal antiprism. Robert Webb, www.software3d.com; created using Webb’s Stella program
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In 1971, Raphael Robinson found a set of six aperiodic
tiles based on notched squares; then, in 1974, Roger
Penrose found a set of two colored aperiodic tiles (see
Penrose tilings). The coloring can be dispensed with if
the pieces are notched. There is a set of three convex
(meaning no notches) aperiodic tiles, but it isn’t known
if there is a set of two such tiles or even a single tile (see
Einstein problem). In three dimensions, Robert Am-
mann found two aperiodic polyhedra, and Ludwig
Danzer found four aperiodic tetrahedra.

Apéry’s constant
The number defined by the formula ζ/(3) = #

∞

n = 1 1/n3,
where ζ is the Riemann zeta function: It has the value
1.202056 . . . and gives the odds (1 in 1.202056 . . .) of
any three positive integers, picked at random, having no
common divisor. In 1979, the French mathematician
Roger Apéry (1916–1994) stunned the mathematical
world with a proof that this number is irrational.[11]

Whether it is a transcendental number remains an open
question.

apex
The vertex of a cone or a pyramid.

apocalypse number
See beast number.

Apollonius of Perga (c. 255–170 B.C.)
A highly influential Greek mathematician (born in a
region of what is now Turkey), known as the “Great
Geometer,” whose eight-part work On Conics introduced
such terms as ellipse, parabola, and hyperbola. Euclid and
others had written earlier about the basic properties of
conic sections but Apollonius added many new results,
particularly related to normals and tangents to the vari-
ous conic curves. One of the most famous questions 
he raised is known as the Apollonius problem. He 
also wrote widely on other subjects including science,
medicine, and philosophy. In On the Burning Mirror he
showed that parallel rays of light are not brought to a
focus by a spherical mirror (as had been previously
thought), and he discussed the focal properties of a para-
bolic mirror. A few decades after his death, Emperor
Hadrian collected Apollonius’s works and ensured their
publication throughout his realm.

Apollonius problem
A problem first recorded in Tangencies, written around
200 B.C. by Apollonius of Perga. Given three objects in
the plane, each of which may be a circle C, a point P (a
degenerate circle), or a line L (part of a circle with infinite

radius), find another circle that is tangent to (just
touches) each of the three. There are ten cases: PPP, PPL,
PLL, LLL, PPC, PLC, LLC, LCC, PCC, CCC. The two
easiest involve three points or three straight lines and
were first solved by Euclid. Solutions to the eight other
cases, with the exception of the three-circle problem,
appeared in Tangencies; however, this work was lost. The
most difficult case, to find a tangent circle to any three
other circles, was first solved by the French mathemati-
cian François Viète (1540–1603) and involves the simul-
taneous solution of three quadratic equations, although,
in principle, a solution could be found using just a com-
pass and a straightedge. Any of the eight circles that is a
solution to the general three-circle problem is called an
Apollonius circle. If the three circles are mutually tangent
then the eight solutions collapse to just two, which are
known as Soddy circles. A fractal is produced by starting
with three mutually tangent circles and creating a
fourth—the inner Soddy circle—that is nested between the
original three. The process is repeated to yield three more
circles nested between sets of three of these, and then
repeated again indefinitely. The points that are never
inside a circle form a fractal set called the Apollonian gas-
ket, which has a fractional dimension of about 1.30568.

apothem
Also known as a short radius, the perpendicular distance
from the center of a regular polygon to one of its sides.
It is the same as the radius of a circle inscribed in the
polygon.

Apollonius problem The Apollonian gasket.
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apotome
One of Euclid’s categories of irrational numbers. An
apotome has the form !(√A −"√B)". The corresponding
number with a “+” sign is called a binomial in Euclid’s
scheme.

applied mathematics
Mathematics for the sake of its use to science or society.

Arabic numeral
A numeral written with an Arabic digit alone: 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, or in combination: 10, 11, 12, . . . 594, . . . .

arbelos
A figure bounded by three semicircles AB, BC, and AC,
where ABC is a straight line. Archimedes (about 250 B.C.)
called it an arbelos—the Greek word for a knife of the same
shape used by shoemakers to cut and trim leather—and
wrote about it in his Liber assumptorum (Book of lemmas).
Among its properties are that the sum of the two smaller
arc lengths is equal to the larger; the area of the arbelos is
π/4 times the product of the two smaller diameters (AB
and BC ); and the area of the arbelos is equal to the area of
a circle whose diameter is the length of a perpendicular
segment drawn from the tangent point B of the two
smaller semicircles to the point D, where it meets the larger
semicircle. The circles inscribed on each half of BD of the
arbelos (called Archimedes’s circles) each have a diameter of
(AB)(BC )/(AC ). Furthermore, the smallest circumcircle
of these two circles has an area equal to that of the arbelos.
Pappus of Alexandria wrote on the relations of the chain
of circles, C1, C2, C3, . . . (called a Pappus chain or an arbelos
train) that are mutually tangent to the two largest semicir-
cles and to each other. The centers of these circles lie on an
ellipse and the diameter of the nth circle is (1/n) times the
base of the perpendicular distance to the base of the semi-
circle.

arc
Any part of a curved line or part of the circumference of
a circle; the word comes from the Latin arcus for a bow,
which also gives rise to arch. Arc length is the distance
along part of a curve.

arch
A strong, curved structure, traditionally made from
wedge-shaped elements, that may take many different
forms and that provides both an opening and a support
for overlying material. Two common forms are the semi-
circular arch, first used by the Romans, and the pointed
Gothic arch. The semicircular arch is the weaker of the
two because it supports all the weight on the top and
tends to flatten at its midpoint. It also requires massive
supporting walls since all the stress on the arch acts purely
downward. The pointed arch, by contrast, directs stresses
both vertically and horizontally, so that the walls can be
thinner, though buttressing may be required to prevent
the walls from collapsing sideways. See also Vesica Piscis.

Archimedean dual
See Catalan solid.

Archimedean solid
A convex semi-regular polyhedron; a solid made from
regular polygonal sides of two or more types that meet in
a uniform pattern around each corner. (A regular poly-
hedron, or Platonic solid, has only one type of polygo-
nal side.) There are 13 Archimedean solids (see table
“Archimedian Solids”). Although they are named after
their discoverer, the first surviving record of them is in
the fifth book of the Mathematical Collection of Pappus of
Alexandria. The duals of the Archimedean solids (made
by replacing each face with a vertex, and each vertex with
a face) are commonly known as Catalan solids. Apart
from the Platonic and Archimedean solids, the only
other convex uniform polyhedra with regular faces are
prisms and antiprisms. This was shown by Johannes
Kepler, who also gave the names generally used for the
Archimedean solids. See also Johnson solid.

Archimedean spiral
A spiral, like that of the groove in a phonograph record,
in which the distance between adjacent coils, measured
radially out from the center, is constant. Archimedes was
the first to study it and it was the main subject of his trea-
tise On Spirals. The Archimedean spiral has a very simple
equation in polar coordinates (r, θ):

r = a + b θ

where a and b can be any real numbers. Changing the
parameter a turns the spiral, while b controls the distance

arbelos A Pappus chain of circles, C1, C2, C3, . . . , inside an
arbelos (shaded region).
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Archimedean Solids

Number of

Name Vertices Faces Edges

Truncated tetrahedron 8 = 4 + 4 12 18

Truncated cube 14 = 8 + 6 24 36

Truncated octahedron 14 = 6 + 8 24 36

Truncated dodecahedron 32 = 20 + 12 60 90

Truncated icosahedron 32 = 12 + 20 60 90

Cuboctahedron 14 = 8 + 6 12 24

Icosidodecahedron 32 = 20 + 12 30 60

Snub dodecahedron 92 = 80 + 12 60 150

Rhombicuboctahedron 26 = 8 + 18 24 48

Great rhombicosidodecahedron 62 = 30 + 20 + 12 120 180

Rhombicosidodecahedron 62 = 20 + 30 + 12 60 120

Great rhombicuboctahedron 26 = 8 + 12 + 6 48 72

Snub cube 38 = 32 + 6 24 60

Archimedean solid The complete set of Archimedean solids, starting far left and going clockwise: truncated cube, small rhom-
bicuboctahedron, great rhombicuboctahedron, snub cube, snub dodecahedron, great rhombicosidodecahedron, small rhombi-
cosidodecahedron, truncated dodecahedron, truncated icosahedron (soccer ball), icosidodecahedron, truncated tetrahedron,
cuboctahedron, and truncated octahedron. Robert Webb, www.software3d.com; created using Webb’s Stella program
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between the arms. The Archimedean spiral is distin-
guished from the logarithmic spiral by the fact that suc-
cessive arms have a fixed distance (equal to 2πb if θ is
measured in radians), whereas in a logarithmic spiral
these distances form a geometric sequence. Note that
the Archimedean spiral has two possible arms that coil in
opposite directions, one for θ > 0 and the other for θ < 0.
Many examples of spirals in the man-made world, such
as a watch spring or the end of a rolled carpet, are either
Archimedean spirals or another curve that is very much
like it, the circle involute.

Archimedean tessellation
Also known as a semiregular tessellation, a tiling that uses
only regular polygons arranged so that two or more differ-
ent polygons are around each vertex and each vertex
involves the same pattern of polygons. There are eight
such tessellations, two involving triangles and squares, two
involving triangles and hexagons, and one each involving
squares and octagons; triangles and dodecagons; squares,
hexagons, and dodecagons; and triangles, squares, and
hexagons.

Archimedes of Syracuse (c. 287–212 B.C.)
One of the greatest mathematicians and scientists of all
time. He became a popular figure because of his involve-
ment in the defense of Syracuse against the Roman siege
in the first and second Punic Wars when his war ma-
chines helped keep the Romans at bay. He also devised a
scheme to move a full-size ship, complete with crew and
cargo, by pulling a single rope, and invented the irriga-
tion device known as the Archimedean screw. According
to one of many legends about him, he is said to have dis-
covered the principle of buoyancy while taking a bath
and then ran into the street naked shouting “eureka” (“I
found it!”).

In his book The Sand-Reckoner, he described a posi-
tional number system and used it to write the equiva-
lent of numbers up to 8 × 1064—the number of grains of
sand he thought it would take to fill the universe. He
devised a rule-of-thumb method to do private calcula-
tions that closely resembles integral calculus (2,000
years before its “discovery”), but then switched to geo-
metric proof for his results. He demonstrated that the
ratio of a circle’s perimeter to its diameter is the same as
the ratio of the circle’s area to the square of the radius.
Although he didn’t call this ratio “pi,” he showed how
to work it out to arbitrary accuracy and gave an approx-
imation of it as “exceeding 3 in less than 1⁄7 but more
than 10⁄71.”

Archimedes was the first, and possibly the only,
Greek mathematician to introduce mechanical curves

(those traced by a moving point) as legitimate objects
of study, and he used the Archimedean spiral to
square the circle. He proved that the area and volume
of the sphere are in the same ratio to the area and vol-
ume of a circumscribed straight cylinder, a result that
pleased him so much that he made it his epitaph.
Archimedes is probably also the first mathematical
physicist on record, and the best before Galileo and
Isaac Newton. He invented the field of statics, enunci-
ated the law of the lever, the law of equilibrium of flu-
ids, and the law of buoyancy, and was the first to
identify the concept of center of gravity. He is also,
perhaps erroneously, credited with the invention of
a square dissection puzzle known as the loculus of
Archimedes. Many of his original works were lost
when the library at Alexandria burned down and they
survive only in Latin or Arabic translations. Plutarch
wrote of him: “Being perpetually charmed by his famil-
iar siren, that is, by his geometry, he neglected to eat
and drink and took no care of his person; that he was
often carried by force to the baths, and when there he
would trace geometrical figures in the ashes of the fire,
and with his finger draws lines upon his body when it
was anointed with oil, being in a state of great ecstasy
and divinely possessed by his science.”

Archimedes’s cattle problem
A fiendishly hard problem involving very large num-
bers that Archimedes presented in a 44-line letter to
Eratosthenes, the chief librarian at Alexandria. It ran as
follows:

If thou art diligent and wise, O stranger, compute
the number of cattle of the Sun, who once upon a
time grazed on the fields of the Thrinacian isle of
Sicily, divided into four herds of different colors,
one milk white, another a glossy black, a third yel-
low and the last dappled. In each herd were bulls,
mighty in number according to these proportions:
Understand, stranger, that the white bulls were
equal to a half and a third of the black together
with the whole of the yellow, while the black were
equal to the fourth part of the dappled and a fifth,
together with, once more, the whole of the yellow.
Observe further that the remaining bulls, the dap-
pled, were equal to a sixth part of the white and a
seventh, together with all of the yellow. These were
the proportions of the cows: The white were pre-
cisely equal to the third part and a fourth of the
whole herd of the black; while the black were equal
to the fourth part once more of the dappled and
with it a fifth part, when all, including the bulls,
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went to pasture together. Now the dappled in four
parts were equal in number to a fifth part and a
sixth of the yellow herd. Finally the yellow were in
number equal to a sixth part and a seventh of
the white herd. If thou canst accurately tell, O
stranger, the number of cattle of the Sun, giving
separately the number of well-fed bulls and again
the number of females according to each color,
thou wouldst not be called unskilled or ignorant of
numbers, but not yet shalt thou be numbered
among the wise.

But come, understand also all these conditions
regarding the cattle of the Sun. When the white
bulls mingled their number with the black, they
stood firm, equal in depth and breadth, and the
plains of Thrinacia, stretching far in all ways, were
filled with their multitude. Again, when the yellow
and the dappled bulls were gathered into one herd
they stood in such a manner that their number,
beginning from one, grew slowly greater till it com-
pleted a triangular figure, there being no bulls of
other colors in their midst nor none of them lack-
ing. If thou art able, O stranger, to find out all these
things and gather them together in your mind, giv-
ing all the relations, thou shalt depart crowned with
glory and knowing that thou hast been adjudged
perfect in this species of wisdom.

The answer to the first part of the problem—the smallest
solution for the total number of cattle—turns out to be
50,389,082. But when the extra two constraints in the
second part are factored in, the solution is vastly larger.
The approximate answer of 7.76 × 10202544 was found in
1880 by A. Amthor, having reduced the problem to a
form called a Pell equation.[9] His calculations were con-
tinued by an ad hoc group called the Hillsboro Mathe-
matical Club, of Hillsboro, Illinois, between 1889 and
1893. The club’s three members (Edmund Fish, George
Richards, and A. H. Bell) calculated the first 31 digits
and the last 12 digits of the smallest total number of cat-
tle to be

7760271406486818269530232833209 . . . 719455081800

though the two digits in bold should be 13.[31] In 1931, a
correspondent to the New York Times wrote: “Since it has
been calculated that it would take the work of a thou-
sand men for a thousand years to determine the com-
plete [exact] number [of cattle], it is obvious that the
world will never have a complete solution.” But obvious
and never are words designed to make fools of prognosti-
cators. Enter the computer. In 1965, with the help of an
IBM 7040, H. C. Williams, R. A. German, and 

C. R. Zarnke reported a complete solution to the cattle
problem, though it was 1981 before all 202,545 digits
were published, by Harry Nelson, who used a Cray-1
supercomputer to generate the answer, which begins:
7.760271406486818269530232833213 . . . × 10202544.[341]

Archimedes’s square
See loculus of Archimedes.

area
A measure of surface extension in two-dimensional
space. Area is the Latin word for a vacant piece of level
ground and still carries this common meaning. The
French shortened form are denotes a square of land with
a side length of 10 meters, that is, an area of 100 square
meters. A hectare is a hundred are.

area codes
North American telephone area codes seem to have
been chosen at random. But there was a method to their
selection. In the mid-1950s when direct dialing of long-
distance calls first became possible, it made sense to
assign area codes that took the shortest time to dial to
the larger cities. Almost all calls were from rotary dials.
Area codes such as 212, 213, 312, and 313 took very lit-
tle time for the dial to return to its starting position
compared, for example, to numbers such as 809, 908,
709. The quickest-to-dial area codes were assigned to the
places expected to receive the most direct-dialed calls.
New York City got 212, Chicago 312, Los Angeles 213,
and Washington, D.C., 202, which is a little longer to
dial than 212, but much shorter than others. In order of
decreasing size and estimated amount of telephone traf-
fic, the numbers grew larger: San Francisco got 415,
Miami 305, and so on. At the other end of the spectrum
came places like Hawaii (the last state annexed in 1959)
with 808, Puerto Rico with 809, and Newfoundland with
709. The original plan (still in use until about 1993) was
that area codes had a certain construction to the num-
bers: the first digit is 2 through 9, the second digit is 0 or
1, and the third digit is 1 through 9. Three-digit numbers
with two zeros are special codes, that is, 700, 800, or 900.
Three-digit numbers with two ones are for special local
codes such as 411 for local directory assistance, 611 for
repairs, and so forth.

Argand diagram
A way of representing complex numbers as points on
a coordinate plane, also known as the Argand plane or
the complex plane, using the x-axis as the real axis and
the y-axis as the imaginary axis. It is named for the
French amateur mathematician Jean Robert Argand
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(1768–1822) who described it in a paper in 1806.[14]

John Wallis suggested a similar method 120 years ear-
lier and Casper Wessel extensively developed it. But
Wessel’s paper was published in Danish and wasn’t cir-
culated in the languages more common to mathemat-
ics at that time. In fact, it wasn’t until 1895 that his
paper came to the attention of the mathematical com-
munity—long after the name “Argand diagram” had
stuck.

argument
(1) The input for a function. (2) The angle between ZO,
where Z is the point representing a complex number on
an Argand diagram and O is the origin, and the real
axis. (3) A mathematical proof, possibly an informal
one.

Aristotle’s wheel
A paradox mentioned in the ancient Greek text Mechan-
ica, whose author is unknown but is suspected by some
to have been Aristotle. The paradox concerns two
concentric circles on a wheel, as shown in the diagram. A
one-to-one correspondence exists between points on the
larger circle and those on the smaller circle. Therefore,
the wheel should travel the same distance regardless of
whether it is rolled from left to right on the top straight
line or on the bottom one. This seems to imply that the
two circumferences of the different-sized circles are
equal, which is impossible. How can this apparent con-
tradiction be resolved? The key lies in the (false) assump-
tion that a one-to-one correspondence of points means
that two curves must have the same length. In fact, the
cardinalities of points in a line segment of any length 
(or even an infinitely long line or an infinitely large 
n-dimensional Euclidean space) are all the same. See also
infinity.

arithmetic
A branch of mathematics concerned with doing calcula-
tions with numbers using addition, subtraction, multipli-
cation, and division.

arithmetic mean
The sum of n given numbers divided by n. See also geo-
metric mean and harmonic mean.

arithmetic sequence
Also known as an arithmetic progression, a finite sequence
of at least three numbers, or an infinite sequence, whose
terms differ by a constant, known as the common differ-
ence. For example, starting with 1 and using a com-
mon difference of 4 we can get the finite arithmetic
sequence: 1, 5, 9, 13, 17, 21, and also the infinite
sequence 1, 5, 9, 13, 17, 21, 25, 29, . . . , 4n + 1, . . . . In
general, the terms of an arithmetic sequence with the
first term a0 and common difference d, have the form
an = dn + a0 (n = 1, 2, 3, . . . ). Does every increasing
sequence of integers have to contain an arithmetic pro-
gression? Surprisingly, the answer is no. To construct a
counterexample, start with 0. Then for the next term in
the sequence, take the smallest possible integer that doesn’t
cause an arithmetic progression to form in the sequence
constructed thus far. (There must be such an integer
because there are infinitely many integers beyond the
last term, and only finitely many possible progressions
that the new term could complete.) This gives the nonar-
ithmetic sequence 0, 1, 3, 4, 9, 10, 12, 13, 27, 28, . . . .

If the terms of an arithmetic sequence are added
together the result is an arithmetic series, a0 + (a0 + d ) + . . . +
(a0 + (n − 1)d ), the sum of which is given by:

Sn = n/2 (2a0 + (n − 1)d ) = n/2 (a0 + an).

See also geometric sequence.

around the world game
See Icosian game.

array
A set of numbers presented in a particular pattern, usu-
ally a grid. Matrices (see matrix) and vectors are exam-
ples of arrays.

Arrow paradox
The oldest and best-known paradox related to vot-
ing. The American economist Kenneth Arrow (1921–)
showed that it is impossible to devise a perfect demo-
cratic voting system. In his book Social Choice and Indi-
vidual Values,[16] Arrow identified five conditions that
are universally regarded as essential for any system in

Aristotle’s wheel The outer circle turns once when going
from A to B, as does the inner circle when going from C to D.
Yet AB is the same length as CD. How can this be, since the
circles are a different size?
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which social decisions are based on individual voting
preferences. The Arrow paradox is that these five condi-
tions are logically inconsistent: under certain condi-
tions, at least one of the essential conditions will be
violated.

arrowhead
See dart.

artificial intelligence (AI)
The subject of “making a machine behave in ways that
would be called intelligent if a human were so behaving,”
according John McCarthy, who coined the term in 1955.
How can we tell if a computer has acquired AI at a
human level? One way would be to apply the Turing
test, though not everyone agrees that this test is fool-
proof (see Chinese room). Certainly, AI has not devel-
oped at nearly the rate many of its pioneers expected
back in the 1950s and 1960s. Meanwhile, progress in
fields such as neural networks and fuzzy logic continues
to be made, and most computer scientists have no doubt
that it is only a matter of time before computers are out-
performing their biological masters in a wide variety of
tasks beyond those that call for mere number-crunching
ability.

artificial life
A lifelike pattern that may emerge from a cellular
automaton and appear organic in the way it moves,
grows, changes shape, reproduces, aggregates, and dies.
Artificial life was pioneered by the computer scientist
Chris Langton, and has been researched extensively at
the Santa Fe Institute. It is being used to model various
complex systems such as ecosystems, the economy,
societies and cultures, and the immune system. The
study of artificial life, though controversial, promises
insights into natural processes that lead to the buildup
of structure in self-organizing (see self-organization)
systems.

associative
Three numbers, x, y, and z, are said to be associative under
addition if

x + (y + z) = (x + y) + z,

and to be associative under multiplication if

x × (y × z) = (x × y) × z.

In general, three elements a, b, and c of a set S are asso-
ciative under the binary operation (an operation that
works on two elements at a time) ∗ if

a ∗ (b ∗ c) = (a ∗ b) ∗ c.

The word incorporates the Greek root soci, from which
we also get social, and may have been first used in the
modern mathematical sense by William Hamilton
around 1850. Compare with distributive and commu-
tative.

astroid
A hypocycloid—the path of a point on a circle rolling
inside another circle—for which the radius of the inner cir-
cle is four times smaller than that of the larger circle; this
ratio results in the astroid having four cusps. The astroid
was first studied by the Danish astronomer Ole Römer in
1674, in his search for better shapes for gear teeth, and
later by Johann Bernoulli (1691) (see Bernoulli family),
Gottfried Leibniz (1715), and Jean d’Alembert (1748). Its
modern name comes from the Greek aster for “star” and
was introduced in a book by Karl Ludwig von Littrow
published in Vienna in 1836; before this, the curve had a
variety of names, including tetracuspid (still used), cubo-
cycloid, and paracycle. The astroid has the Cartesian
equation

x 2/3 + y 2/3 = r 2/3

where r is the radius of the fixed outer circle, and r/4 is
the radius of the rolling circle. Its area is 3πr 2/8, or 3⁄2
times that of the rolling circle, and its length is 6r. The
astroid is a sextic curve and also a special form of a
Lamé curve. It has a remarkable relationship with the
quadrifolium (see rose curve): the radial, pedal, and
orthoptic of the astroid are the quadrifolium, while 
the catacaustic of the quadrifolium is the astroid. The

astroid As a small circle rolls around the inside of a larger
one with exactly four times its circumference, a point on the
rim of the small circle traces out an astroid. © Jan Wassenaar,

www.2dcurves.com
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astroid is also the catacaustic of the deltoid and the
evolute of the ellipse.

asymptote
A curve that gets closer and closer to a fixed straight line
without ever actually touching it. Imagine facing along
the direction of a great wall that is just a meter to your
left. Every second, you walk forward a meter and at the
same time move sideways slightly so that you halve the
distance between you and the wall. The path you follow
is an asymptote. The word comes from the Greek roots a
(not), sum (together), and piptein (to fall), so that it liter-
ally means “not falling together” and was originally used
in a wider sense to describe any two curves that don’t
intersect. Proclus writes about both asymptotic lines and
symptotic lines (those that do cross). Nowadays, “symp-
totic” is almost never heard, and “asymptote” is used
mainly to denote lines that serve as a limiting barrier for
some curve as one of its parameters approaches plus or
minus infinity. The “∼” symbol is often used to show that
one function is asymptotic to another. For example, 
f(x) ∼ g(x) indicates that the ratio of the functions f (x) to
g(x) approaches 1 as x tends to infinity. Asymptotes are
not always parallel to the x- and y-axes, as shown by the
graph of x + 1/x, which is asymptotic to both the y-axis
and the diagonal line y = x.

Atiyah, Michael Francis (1929–)
An English mathematician who has contributed to 
many topics in mathematics, notably dealing with the
relationships between geometry and analysis. In topol-
ogy, he developed K-theory. He proved the index theorem
on the number of solutions of elliptic differential equa-
tions, linking differential geometry, topology, and
analysis—a theorem that has been usefully applied to
quantum theory. Atiyah was influential in initiating work
on gauge theories and applications to nonlinear differen-
tial equations, and in making links between topology and
quantum field theory. Theories of superspace and super-
gravity, and string theory, were all developed using ideas
introduced by him.

Atomium, the
A giant steel monument in Heysel Park, Brussels, Bel-
gium, consisting of 9 spheres that represent the body-
centered cubic structure of an iron crystal magnified 150
billion times. Designed by the architect André Waterkeyn
and built for the 1958 World’s Fair, the 103-meter-high
Atomium was originally meant to stand for only 6
months. It may be the world’s largest cube. Each of its
spheres have a diameter of 18 meters and are connected
by escalators. Three of the upper spheres have no vertical

support, and so for safety reasons are not open to the pub-
lic. However, the top sphere offers a panoramic view of
Brussels through its windows, and the lower spheres con-
tain various exhibitions.

attractor
A trajectory, or set of points in phase space, toward
which nearby orbits converge, and which is stable. Spe-
cific types of attractor include fixed-point attractor, peri-
odic attractor, and chaotic attractor.

Aubel’s theorem
Given a quadrilateral and a square drawn on each side of
it, the two lines connecting the centers of the squares on
opposite sides are perpendicular and of equal length.

autogram
See self-enumerating sentence.

automorphic number
Also known as an automorph, a number n whose square
ends in n. For instance 5 is automorphic, because 
52 = 25, which ends in 5. A number n is called trimorphic
if n 3 ends in n. For example 493 = 117,649, is trimor-
phic. Not all trimorphic numbers are automorphic. A
number n is called tri-automorphic if 3n 2 ends in n; for
example 6,667 is tri-automorphic because 3 × 6672 =
133,346,667 ends in 7.

automorphism
An isomorphism from a set onto itself. An automorphism
group of a group G is the group formed by the automor-
phisms of G (bijections from G to itself that preserve the
multiplication). Similarly, one can consider the auto-
morphism groups of other structures such as rings and
graphs, by looking at bijections that preserve their math-
ematical structure.

Avagadro constant
One of the best known examples of a large number in
science. It is named after the Italian physicist Amedio
Avagadro (1776–1856) and is defined as the number of
carbon atoms in 12 grams of pure carbon, or, more gen-
erally as the number of atoms of n grams in an element
with atomic weight n. It has the value 6.02214199 × 1023.

average
A vague term that usually refers to the arithmetic mean
but can also signify the median, mode, geometric mean,
or weighted mean. The word stems from a commercial
practice of the shipping age. The root aver means to
declare, and the shippers of goods would declare the
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value of their goods. When the goods were sold, a deduc-
tion was made from each person’s share, based on their
declared value, for a portion of the loss or “average.”

axiom
A statement that is considered to be true without need 
of proof. The term axiom comes from the Greek axios
meaning “worthy” and was used by many Greek philoso-
phers and mathematicians, including Aristotle. Curi-
ously, Euclid, whose axioms are best known of all, seems
to have favored a more general phrase meaning “com-
mon notion.”

axiom of choice
An axiom in set theory that is one of the most controver-
sial axioms in mathematics; it was formulated in 1904 by
the German mathematician Ernst Zermelo (1871–1953)
and, at first, seems obvious and trivial. Imagine there are
many—possibly an unlimited number of—boxes in front of
you, each of which has at least one thing in it. The axiom
of choice (AC) says simply that you can always choose one
item out of each box. More formally, if S is a collection of
nonempty sets, then there exists a set that has exactly one
element in common with every set S of S. Put another
way, there exists a function f with the property that, for
each set S in the collection, f (S) is a member of S. Bertrand
Russell summed it up neatly: “To choose one sock from
each of infinitely many pairs of socks requires the Axiom
of Choice, but for shoes the Axiom is not needed.” His
point is that the two socks in a pair are identical in
appearance, so, to pick one of them, we have to make an
arbitrary choice. For shoes, we can use an explicit rule,
such as “always choose the left shoe.” Russell specifically
mentions infinitely many pairs, because if the number is
finite then AC is superfluous: we can pick one member
of each pair using the definition of “nonempty” and then
repeat the operation finitely many times using the rules
of formal logic.

AC lies at the heart of a number of important mathe-
matical arguments and results. For example, it is equiv-

alent to the well-ordering principle, to the statement that
for any two cardinal numbers m and n, then m < n or 
m = n or m > n, and to Tychonoff ’s theorem (the product of
any collection of compact spaces in topology is com-
pact). Other results hinge upon it, such as the assertion
that every infinite set has a denumerable subset. Yet AC
was strongly attacked when it was first suggested, and
still makes some mathematicians uneasy. The central
issue is what it means to choose something from the sets
in question and what it means for the choosing func-
tion to exist. This problem is brought into sharp focus
when S happens to be the collection of all nonempty
subsets of the real numbers. No one has ever found a
suitable choosing function for this collection, and there
are good reasons to suspect that no one ever will. AC
just mandates that there is such function. Because AC
conjures up sets without offering workable procedures,
it is said to be nonconstructive, as are any theorems whose
proofs involve AC. Another reason that some mathe-
maticians aren’t greatly enamored with AC is that it
implies the existence of some bizarre counterintuitive
objects, the most famous and notorious example of
which is the Banach-Tarski paradox. The main reason
for accepting AC, as the majority of mathematicians do
(albeit often reluctantly), is that it is useful. However, as
a result of work by Kurt Gödel and, later, by Paul
Cohen, it has been proven to be independent of the
remaining axioms of set theory. Thus there are no con-
tradictions in choosing to reject it; among the alterna-
tives are to adopt a contradictory axiom or to use a
completely different framework for mathematics, such
as category theory.

axis
A line with respect to which a curve or figure is drawn,
measured, rotated, and so forth. The word comes from
the Greek root aks for a point of turning or rotation and
seems to have first been used in English by Thomas
Digges around 1570 in reference to the rotational axis of
a right circular cone.



Babbage, Charles (1791–1871)

On two occasions I have been asked [by members of
Parliament], “Pray, Mr. Babbage, if you put into
the machine wrong figures, will the right answers
come out?” I am not able rightly to apprehend the
kind of confusion of ideas that could provoke such a
question.

An English mathematician who served as Lucasian Pro-
fessor of Mathematics at Cambridge (1828–1839) and
became the most important figure in the prehistory of
computers. Babbage noted that astronomical and other
mathematical tables of the period were riddled with
errors because all the calculations had to be done by
hand. This gave him the idea of building a machine that
would do the tedious work of computation more accu-
rately, faster, and without ever getting tired.

In 1822, Babbage wrote a letter to one of the top
British scientists of the day, Humphrey Davy, in which
he talked about the design of an automatic calculator.
Shortly after, he was given a grant by the British govern-
ment to build this device—an elaborate symphony of
rods and interlocking gear teeth—which Babbage called
the Difference Engine. Construction started but never
finished. Despite heroic efforts to construct a working
model, the critical tolerances were beyond what engi-
neers could provide in the first half of the eighteenth cen-
tury (though the resultant gear-making skills gave Britain
an edge in precision machinery for several decades and
even contributed to the qualitative superiority of the
British navy in World War I). The government had spent
£17,000, and Babbage contributed a similar amount of
his own money, on the project, when Babbage set his
sights on something even more ambitious. He grasped
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Babbage, Charles The realization of Babbage’s dream: the Manchester Mark 1 computer at Manchester University, England, in
1948. This was the first computer that could store both data and programs electronically. Ferranti Electronics Ltd.
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that the basic mechanisms of the Difference Engine
could be generalized to an all-purpose calculating ma-
chine, programmable by a punched-card mechanism like
that of a Jacquard loom. This vastly more powerful
machine was called the Analytical Engine and would
have been the world’s first true computer. But it never
got off the ground. “He was ill-judged enough,” wrote the
secretary of the Royal Astronomical Society, “to press the
consideration of this new machine upon the members of
Government, who were already sick of the old one.”
Prime Minister Robert Peel was less than enthusiastic: “I
would like a little previous consideration before I move
in a thin house of country gentlemen a large vote for the
creation of a wooden man to calculate tables from the
formula x 2

+ x + 41.” The government’s eventual with-
drawal of support for his schemes left Babbage a dis-
appointed and embittered man. However, his ideas
survived and proved to be the forerunner of modern
computers. Parts of his uncompleted mechanisms are on
display in the London Science Museum. In 1991, work-
ing from Babbage’s original plans, a Difference Engine
was completed—and functioned perfectly. Among Bab-
bage’s many lesser known accomplishments was his
cracking of the Vigenère cipher, a discovery that helped
English military campaigns but wasn’t published for sev-
eral years, by which time the credit had gone instead to
Friedrich Kasiski, who broke the code some years after
Babbage.[329] See also Byron, Ada.

Bachet de Méziriac, Claude-Gaspar (1581–1638)
A poet and early mathematician of the French Academy,
best known for his 1621 translation of Diophantus’s
Arithmetica, the book that Pierre de Fermat was reading
when he inscribed the margin with his famous last theo-
rem. Bachet is also remembered as a collector of mathe-
matical puzzles, many of which he published in Problèmes
plaisans et délectables qui font par les nombres (1612) (Pleasant
and delightful problems that involve numbers), including
river-crossing problems, measuring and weighing puz-
zles, number tricks, and magic squares. One of the puz-
zles is to find the least number of weights that can be used
on a scale pan to weigh any integral number of pounds
from 1 to 40 inclusive, if the weights can be placed in
either of the scale pans. The answer is four: 1, 3, 9, and 27
pounds. On a slightly more serious note, Bachet observed
that apparently every positive number can be expressed as
a sum of at most four squares; for example, 5 = 22

+ 12,
6 = 22

+ 12
+ 12, 7 = 22

+ 12
+ 12

+ 12, 8 = 22
+ 22, and 

9 = 32. The case of 7 shows that sometimes three squares
wouldn’t be enough. Bachet said he had checked this for
more than 300 numbers but didn’t know how to prove it.
It wasn’t until the late eighteenth century that Joseph
Lagrange supplied a complete proof.[339]

backgammon
A gambling game for two in which each player seeks to
get a set of pieces from one side of the board to the other,
while trying to prevent the other player from doing the
same. The distance that a piece can be moved at each
turn is determined by the throw of dice.

Backgammon has roots stretching back 5,000 years.
From Mesopotamia, versions of it spread to Greece and
Rome as well as to India and China. The rules of the
modern form of the game were largely established in
England in 1743 by Edmond Hoyle but benefited from
a crucial modification that emerged in American gam-
bling clubs in the 1920s. This final innovation, which
added a new level of subtlety, is known as the doubling
cube.

Backgammon is played with two sets of 15 checkers:
one player has black, the other white. The players’ check-
ers move in opposite directions on a board with 24 spaces
or points. Each player’s goal is to be the first to bring all
their own checkers “home” (into their own quarter of the
board) and then “bear them off” (remove them from the
board altogether). The movement of the checkers follows
the outcome of a roll of two dice, the numbers on the
two dice constituting separate moves.

The actual amount that changes hands at the end of
the game can be more than the initial stake. For instance,
in certain winning positions called gammon and backgam-
mon, the stake is doubled or trebled, respectively. The
other way the stake can change is by means of the dou-
bling cube. If one of the players thinks that she is in a
winning position, she can turn the doubling cube and
announce a double, which means that the total stake will
be doubled. If her opponent refuses the double, he imme-
diately loses his (undoubled) stake and the game is fin-
ished. If he accepts the double, the stakes are doubled and,
as a compensation, the doubling cube is handed over to
him and he gets the exclusive right to announce the next
double. (He is now said to own the cube.) If the luck of the
game changes so that he later judges that he is now win-
ning, he’ll be in a position to announce a redouble, which
means that the stake is doubled again. If the first player
refuses the double, she now loses the doubled stake; if
she accepts, the game goes on with a redoubled stake,
four times the original value. There’s no limit to how
many times the stake can be doubled, but the right to
announce a double switches from one player to the other
every time it’s exercised. (Initially either player can
double—no one owns the cube.) This aspect of the game
adds greatly to the variety of tactical possibilities and
problems.

baker’s dozen
See thirteen.
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Bakhshali manuscript
An early mathematical manuscript, written on birch bark
and found in the summer of 1881 near the village of
Bakhshali in the Yusufzai subdivision of the Peshawar
district (now in Pakistan). A large part of the manuscript
had been destroyed and only about 70 leaves of birch
bark, of which a few were mere scraps, survived to the
time of its discovery. Although its date is uncertain, it is
most commonly put at about the third or fourth century
A.D. and appears to be a commentary on an earlier math-
ematical work. Among the rules and techniques it sets
out for solving problems, mostly in arithmetic and alge-
bra, but also to a lesser extent in geometry and mensura-
tion, is this formula (stated here in modern terms) for
calculating the square root of a nonsquare number Q:

!Q" = !(A2
+ b")" = A + b/2A − (b/2A )2/[2(A + b/2A )]

If Q = 41 (so that A = 6 and b = 5) this gives !Q" =

6.403138528, which compares very favorably with the
correct result of 6.403124237.

ball
Mathematicians, unlike the rest of the human race, draw
a sharp distinction between a sphere and a ball. A sphere
(in mathematics) is only a surface, whereas a ball is every-
thing inside, and possibly including, that surface—the fill-
ing of the sphere. An open ball consists of all the points
that are less than a given distance (the radius) away from
a given point (the center); a closed ball consists of all the
points that are less than or equal to the radius.

Mathematical balls can also exist in any number of
dimensions. A one-dimensional ball of radius r is just a
line segment. It consists of all the points on a line
between −r and r, or, in the case of a one-dimensional unit
ball (a ball with a radius of 1), between −1 and 1. A 1 − d
unit ball thus has a length, or “1 − d volume,” of 2. A 2 − d
unit ball, which is the filling of a unit circle, has an area,
or 2 − d volume, of π. The volume of a unit ball in 3 − d
is 4/3π. In 4 − d it is π2/2. Apparently, as the number of
dimensions increases, so does the volume of the unit
ball. What does this volume tend to do as the dimension
tends to infinity? Intuitively, it might seem that in higher
and higher dimensions there’s more and more “room” in
the unit ball, allowing its volume to become larger and
larger. Does the volume become infinite, or does it
approach a sufficiently large constant as the dimension
increases? The answer is surprising and shows how our
intuition is often misleading. Using a technique called
multivariable calculus the volume of the unit ball in n
dimensions, V(n), can be shown to be πn/2/ Γ(n/2 + 1),
where Γ is the gamma function that generalizes the fac-
torial function (i.e., Γ(z + 1) = z! ). For n even, say n = 2k,
the volume of the unit ball is thus given by V(n) = π

k / k!.

Ball, Walter William Rouse (1850–1925)
A British mathematician who lectured at Trinity College,
Cambridge University, from 1878 to 1905, but is best
known as a historian and as the author of the timeless clas-
sic Mathematical Recreations and Essays.[24] It was first pub-
lished in 1892 and ran to fourteen editions, the last four
with revisions by the great geometer Harold Coxeter.

Banach, Stefan (1892–1945)
A great Polish mathematician who founded functional
analysis and also made important contributions to the
understanding of vector spaces, measure theory, and set
theory. His name is associated with Banach space, Banach
algebra, the Hahn-Banach theorem, and the remarkable
Banach-Tarski paradox. Largely self-taught in mathemat-
ics, Banach was “discovered” by Hugo Steinhaus and
when World War II began was president of the Polish
Mathematical Society and a full professor at Lvov Uni-
versity. Being on good terms with Soviet mathematicians,
he was allowed to hold his chair during the Soviet occu-
pation of Lvov. The German occupation of the city in
1941 resulted in the mass murder of Polish academics.
Banach survived, but the only way he could earn a living
was by feeding lice with his blood in a German institute
where typhoid fever research was conducted. His health
declined during the occupation, and Banach died before
he could be repatriated from Lvov, which was incorpo-
rated into the Soviet Union and returned to Poland after
the war. Théorie des opérations linéaires (The theory of linear
operations) is regarded as his most influential work.

Banach-Tarski paradox

There are more things in heaven and earth, Horatio,
than are dreamt of in your philosophy.

—William Shakespeare

A seemingly bizarre and outrageous claim that it is possi-
ble to take a ball, break it into a number of pieces, and
then reassemble those pieces to make two identical
copies of the ball. The claim can be made even stronger:
it is possible to decompose a ball the size of a marble and
then reassemble the pieces to make another ball the size
of Earth, or, indeed, the size of the known universe!

Before writing off Banach and Tarski as being either
very bad mathematicians or very good practical jokers, it’s
important to understand that this is not a claim about
what can actually be done with a real ball, a sharp knife,
and some dabs of glue. Nor is there any chance of some
entrepreneur being able to slice up a gold ingot and
assemble in its place two new ones like the original. The
Banach-Tarski paradox tells us nothing new about the
physics of the world around us but a great deal about how
volume, space, and other familiar-sounding things can
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assume unfamiliar guises in the strange abstract world of
mathematics.

Stefan Banach and Alfred Tarski announced their
startling conclusion in 1924, having built on earlier
work by Felix Hausdorff, who proved that it’s possible
to chop up the unit interval (the line segment from 0 to
1) into countably many pieces, slide these bits around,
and fit them together to make an interval of length 2.
The Banach-Tarski paradox, which mathematicians
often refer to as the Banach-Tarski decomposition because
it’s really a proof not a paradox, highlights the fact that
among the infinite set of points that make up a mathe-
matical ball, the concepts of volume and measure can’t
be defined for all possible subsets. What this boils
down to is that quantities that can be measured in any
familiar sense are not necessarily preserved when a ball
is broken down into subsets and then those subsets
reassembled in a different way using just translations
(slides) and rotations (turns). These unmeasurable sub-
sets are extremely complex, lacking reasonable bound-
aries and volume in the ordinary sense, and thus are
not attainable in the real world of matter and energy. In
any case, the Banach-Tarski paradox doesn’t give a pre-
scription for how to produce the subsets: it only proves
their existence and that there must be at least five of
them to produce a second copy of the original ball. The
fact that the Banach-Tarski paradox depends on the
axiom of choice (AC), yet is so strongly counterintu-
itive, has been used by some mathematics to suggest
that the AC must be wrong; however, the benefits of
adopting the AC are so great that such black sheep of
the mathematical family as the paradox are generally
tolerated.[324, 340]

Bang’s theorem
If all the faces of a tetrahedron have the same perimeter,
then the faces are all congruent triangles.

banker’s rounding
For banking or scientific purposes it’s often considered
correct to round something 0.5 to the nearest even num-
ber (not always upward). For instance, 5.5 rounds to 6,
but 12.5 rounds to 12. This method avoids introducing a
bias to a large set of numbers, by rounding up more or
less as often as rounding down. Unfortunately, at a lower
level, it is often taught to round something 0.5 upward all
the time. See also round-off error.

Barbaro, Daniele (1513–1570)
A Venetian geometer whose book, La Practica della Per-
spectiva (1568–9), presents the techniques of perspective,
illustrated in part with a range of polyhedra. Partly based
on the methods and writings of the great artist Piero della

Francesca (1416–1492), but written in a more readable
and humanistic style, it includes the earliest drawing of
the truncated icosidodecahedron and one of the earliest rep-
resentations, along with that of the German goldsmith
Wenzel Jamnitzer (1508–1585), of a rhombicosidodecahe-
dron. La Practica was one of the most respected texts on
perspective in the sixteenth century, comparable to
Albrecht Dürer’s Painter’s Manual.

barber paradox
See Russell’s paradox.

Barbier’s theorem
See curve of constant width.

Barlow, Peter (1776–1862)
A self-educated English mathematician who wrote sev-
eral important books on the subject but is best known for
New Mathematical Tables (generally known as Barlow’s
Tables), a compendium of factors, squares, cubes, square
roots, reciprocals, and hyperbolic logarithms of all num-
bers from 1 to 10,000, and his invention of a special tele-
scope lens. “Barlows” are popularly used by amateur
astronomers to this day to multiply the power of other
lenses. Barlow also worked on the design of bridges and
was appointed as royal commissioner for railways, con-
ducting experiments to see if the limitation on gradients
and radius of curvature proposed by George Stephenson
was correct.

Barnsley’s fern
A fractal shape, first explored by Michael F. Barnsley at
the Georgia Institute of Technology in the 1980s, that has
many geometric features in common with a natural fern,

Barnsley’s fern David Nicholls
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most notably the appearance of frondlike forms at differ-
ent scales. As in the case of real ferns, Barnsley’s fern
reveals smaller prominences along the edge of each frond
that are miniature versions of the overall figure. Along
these small prominences are still smaller protuberances,
and so on. Barnsley’s fern is created by the repetitive
application of four relatively simple mathematical rules
and is a type of fractal, introduced by Barnsley, known as
an iterated function system (IFS).[26]

base
(1) The flat plane or straight line upon which a shape or a
solid rests. (2) The number upon which a number system
is based; this is also the number of different characters or
figures needed by the number system. The base, or radix, of
our familiar decimal system is 10. Thus, there are ten sym-
bols, 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, and a decimal number is
written right to left in terms of units, tens, hundreds, and
so on. Each move to the left represents a jump by a power
of 10. The decimal number 375, for example, equals
(3 × 102) + (7 × 10) + (5 × 1). This can easily be written to
another base. Decimal 37510 becomes in octal (base 8)
5678 = (5 × 82) + (6 × 8) + (7 × 1), or in binary (base 2)
1011110012.

basin of attraction
The set of all points in phase space that are under the
influence of an attractor, or, more generally, the initial
conditions of a system that evolve into the range of
behavior allowed by the attractor. If one imagines a com-
plex system as a sink, then the attractor can be consid-
ered the drain at the bottom, and the basin of attraction
is the sink’s basin.

basis
In mathematics, usually associated with linear algebra; a
minimal set of vectors that spans a vector space.

Bayes, Thomas (1702–1761)
An English mathematician and theologian, remembered
chiefly for the theorem named after him (see Bayes’s the-
orem), and the technique of Bayesian inference that
arises from it. Bayes wrote on probability theory, the log-
ical basis of calculus, and asymptotic series.

Bayesian inference
Statistical inference in which probabilities are interpreted
not as frequencies or proportions, but rather as degrees of
belief. A prior distribution for a certain random variable
is assumed; then this is modified, in the light of experi-
mentation, using Bayes’s theorem. Pierre Laplace ap-
plied Bayesian inference to estimate the mass of Saturn
and in a variety of other problems.

Bayes’s theorem
Also known as Bayes’s rule, a result in probability theory,
named after Thomas Bayes, who proved a special case of
it. It is used in statistical inference to update estimates of
the probability that different hypotheses are true, based
on observations and a knowledge of how likely those
observations are, given each hypothesis. In fact, it is
habitually used by scientists in preference to the princi-
ple of induction. Bayes’s theorem says that if an instance
X is actually observed, then the probability of a hypoth-
esis H must be multiplied by the following ratio:

In other words, the probability of a hypothesis H condi-
tional on a given body of data X is equal to the ratio of
the unconditional probability of the conjunction of the
hypothesis with the data to the unconditional probabil-
ity of the data alone.

Beale cipher
One of the greatest unsolved puzzles in cryptography—
or a mere hoax. About a century ago, a fellow by the
name of Thomas Beale supposedly buried two wagon-
loads of pots filled with silver coins in Bedford County,
near Roanoke, Virginia. Local rumors claim the treasure
was buried near Bedford Lake. Beale wrote three encoded
letters telling what was buried, where it was buried, and
to whom it belonged. He entrusted these three letters to
a friend, went west, and was never heard from again. Sev-
eral years later, someone examined the letters and was
able to crack the code in the second one, which turned
out to be based on the text from the Declaration of Inde-
pendence. A number in the letter indicated which word
in the document was to be used. The first letter of that
word replaced the number. For example, if the first four
words of the document were “We hold these truths,” the
number 3 in the letter would represent the letter t. The
second letter translated as follows:

I have deposited in the county of Bedford about four
miles from Bufords in an excavation or vault six feet
below the surface of the ground the following articles
belonging jointly to the parties whose names are given
in number three herewith. The first deposit consisted
of ten hundred and fourteen pounds of gold and thirty
eight hundred and twelve pounds of silver deposited
Nov eighteen nineteen. The second was made Dec
eighteen twenty one and consisted of nineteen hun-
dred and seven pounds of gold and twelve hundred
and eighty eight of silver, also jewels obtained in St.
Louis in exchange to save transportation and valued at
thirteen [t]housand dollars. The above is securely

probability of observing X if H is true
!!!!

probability of observing X
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packed i[n] [i]ron pots with iron cov[e]rs. Th[e] vault
is roughly lined with stone and the vessels rest on solid
stone and are covered [w]ith others. Paper number
one describes th[e] exact locality of the va[u]lt so that
no difficulty will be had in finding it.

One of the remaining letters supposedly contains direc-
tions on how to find the treasure but, to date, no one has
solved the code. One theory is that both the remaining let-
ters are encoded using either the same document in a dif-
ferent way, or another very public document. Or, of
course, this could all be an elaborate, but entertaining,
wheeze. Those interested may wish to contact the Beale
Cypher Association, P.O. Box 975, Beaver Falls, PA 15010.

Beal’s conjecture
In 1997, the Texan financier Andrew Beal offered
$75,000, later increased to $100,000, to the first person
who could prove or provide a counterexample to the fol-
lowing conjecture:

If xm
+ yn

= zr, where x, y, z m, n, and r are all positive
integers, and m, n and r are greater than two, then x,
y, and z have a common factor (greater than one).

Fermat’s last theorem, which was proved in 1994, is a
special case of Beal’s conjecture. However, no one has yet
been able to use this fact to prove or disprove the con-
jecture, nor has anyone been able to come up with a
counterexample as a disproof. It is known that for any set
of three exponents m, n, and r, each greater than two,
there can be at most finitely many solutions. But is this
finite number zero? The prize remains unclaimed.

beast number (666)
Also known as the Apocalypse number, the “number of the
beast” mentioned in the Bible’s book of Revelation, the
relevant verse of which (Rev. 13:18) is often quoted as:

Here is wisdom. Let him that hath understanding
count the number of the beast: for it is the number
of a man; and his number is six hundred threescore
and six.

Leaving aside the thorny issue of what this actually
means, the number 666 does have some interesting math-
ematical properties. Most notably, it is the sum of the first
36 natural numbers (all the numbers on a roulette wheel):
1 + 2 + 3 + . . . + 36, which makes it the thirty-sixth trian-
gular number. It is also the sum of the squares of the first
seven prime numbers, 22

+ 32
+ 52

+ 72
+ 112

+ 132
+ 172.

Other curious representations of “the beast” include:

13
+ 23

+ 33
+ 43

+ 53
+ 63

+ 53
+ 43

+ 33
+ 23

+ 13

36
− 26

+ 16

6 + 6 + 6 + 63
+ 63

+ 63.

Furthermore, 666 is one member of a Pythagorean
triplet (216, 630, 666), which can be written in the
remarkable form:

(6 × 6 × 6)2
+ (666 − 6 × 6)2

= 6662.

In Roman numerals, 666 represents all the numbers from
500 in descending order, namely D (500) + C (100) + L
(50) + X (10) + V (5) + I (1), or DCLXVI. In fact, it’s been
suggested that the Roman representation of 666 may have
something to do with the biblical reference. DCLXVI was
often used as a generic way of referring to any unspecified
or unknown large number—the Roman equivalent of our
“zillion.” Thus, the writer of Revelation might simply
have been using “666” to mean “big but unspecified.”

Beatty sequences
Suppose R is an irrational number greater than 1, and let
S be the number satisfying the equation 1/R + 1/S = 1. Let
[x] denote the floor function of x, that is, the greatest inte-
ger less than or equal to x. Then the sequences [nR] and
[nS ], where n ranges through the set N of positive inte-
gers, are the Beatty sequences determined by R. The inter-
esting thing about them is that they partition N; in other
words, every positive integer occurs exactly once in one
sequence or the other. For example, when R is the golden
ratio (about 1.618), the two sequences begin with

1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, . . . , and
2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34 . . . .

Beatty sequences are named after the American mathe-
matician Samuel Beatty (1881–1970), who introduced
them in 1926 in a problem in the American Mathematical
Monthly. Beatty was the first person to receive a Ph.D. in
mathematics from a Canadian university, and later
became the chairman of the mathematics department
and chancellor of the University of Toronto.

beauty and mathematics
Many mathematicians and scientists have commented
on the beauty they find in the structure and symmetry of
the equations that underpin their work, and that beauty
is often the first sign of truth. In A Mathematician’s Apol-
ogy,[151] G. H. Hardy wrote:

The mathematician’s patterns, like the painter’s or
the poet’s must be beautiful; the ideas, like the col-
ors or the words must fit together in a harmonious
way. Beauty is the first test: there is no permanent
place in this world for ugly mathematics.

The physicist Paul Dirac went even further:

I think that there is a moral to this story, namely 
that it is more important to have beauty in one’s
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equations than to have them fit experiment. If
[Erwin] Schrödinger had been more confident of his
work, he could have published it some months earlier,
and he could have published a more accurate equa-
tion. It seems that if one is working from the point of
view of getting beauty in one’s equations, and if one
has really a sound insight, one is on a sure line of pro-
gress. If there is not complete agreement between the
results of one’s work and experiment, one should not
allow oneself to be too discouraged, because the dis-
crepancy may well be due to minor features that are
not properly taken into account and that will get
cleared up with further development of the theory.[176]

The architect Richard Buckminster Fuller also saw beauty
as an acid test of truth: “When I’m working on a prob-
lem, I never think about beauty. I think only how to
solve the problem. But when I have finished, if the solu-
tion is not beautiful, I know it is wrong.”

Bell, Eric Temple (1883–1960)
A Scottish-born mathematician and writer who, from
1903, spent most of his life in the United States, teaching
at the University of Washington from 1912 until 1926,
then serving as professor of mathematics at the Califor-
nia Institute of Technology. He did work in number the-
ory but is best remembered for his books, including
Algebraic Arithmetic (1927) and The Development of Mathe-
matics (1940), which became classics, and, at a more pop-
ular level, Men of Mathematics (1937)[32] and Mathematics,
Queen and Servant of Science (1951). He was also a prolific
writer of science fiction under the penname John Taine.

bell curve
The characteristic shape of the graph of a normal (Gauss-
ian) distribution.

Bell number
Named after Eric Bell, one of the first to analyze them in
depth, the number of ways that n distinguishable objects
(such as differently colored balls) can be grouped into
sets (such as buckets) if no set can be empty. For example,
if there are three balls, colored red (R), green (G), and
blue (B), they can be grouped in five different ways:
(RGB), (RG)(B), (RB)(G), (BG)(R), and (R)(G)(B), so
that the third Bell number is 5. The sequence of Bell
numbers, 1, 2, 5, 15, 52, 203, 877, 4,140, 21,147, . . . , can
be built up in the form of a triangle, as follows. The first
row has just the number one. Each successive row begins
with the last number of the previous row and continues
by adding the number just written down to the number
immediately above and to the right of it.

1
1   2

2   3   5
5   7   10   15

15   20   27   37   52
52 . . .

The Bell numbers appear down the left-hand side of the
triangle. These normal Bell numbers contrast with ordered
Bell numbers, which count the number of ways of placing
n distinguishable objects (balls) into one or more distin-
guishable sets (buckets). The ordered Bell numbers are 1,
3, 13, 75, 541, 4,683, 47,293, 545,835, . . . . Bell numbers
are related to the Catalan numbers.

Benford’s law
If a number is chosen at random from a large table of data
or statistics, such as stock quotations, populations of towns
in Germany, or half-lives of radioactive atoms, the chance
that the first digit is 1 is about 30.1%, that the first digit is
2 is about 17.6%, that it is 3 is 12.4%, . . . , and that it is 9
is 4.5%. These figures fit the rule that the probability that
the first digit is d is log10(1 + 1/d ). This rule is called Ben-
ford’s law after the American physicist Frank Benford, who
publicized his findings in 1938.[34] The same discovery had
been made 57 years earlier by the astronomer and mathe-
matician Simon Newcomb, who noticed that the front
pages of logarithm tables tended to be more dog-eared
than pages later on.[232]

Benford tested thousands of different collections of
data, including the surface areas of 335 rivers, specific
heats and molecular weights of thousands of chemicals,
baseball statistics, and the street addresses of the first 342
people listed in the book American Men of Science. All
these seemingly unrelated sets of numbers followed the
same first-digit probability pattern as the worn pages of
logarithm tables suggested. In all cases, the number 1
showed up as the first digit about 30% of the time, more
often than any other, and seven times more often than
the number 9.

It seems extraordinary. Why shouldn’t the numbers 1 to
9 take equal turns to be the first digit? Benford’s findings
have been verified by other researchers. The larger and
more varied the sampling of numbers from different data
sets, it has been found, the more closely the distribution of
numbers approaches what Benford’s law predicts. More-
over these probabilities are scale invariant and base invari-
ant. For example, it doesn’t matter whether the numbers
are based on the dollar prices of stocks or their prices in
yen or euros, nor does it matter if the numbers are in terms
of stocks per dollar; provided there are enough numbers in
the sample, Benford’s law will hold.[164, 263]
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Benham’s disk
A disk, marked with a black and white pattern, which,
when spun around, causes people to see colors. Benham’s
disk, also known as Benham’s wheel and Benham’s top, was
invented in 1894 by the toy maker C. E. Benham and orig-
inally sold through Messrs. Newton and Co. as the Artifi-
cial Spectrum Top. It is one of a number of spinning disk
color illusions first described by Gustav Fechner in 1838.
For this reason, the illusory colors are known as Fechner col-
ors. From the beginning, it was realized that the root of the
illusion probably lay in the variation of retinal response
time with wavelength. An online animated version of 
the disk can be seen at http://www.michaelbach.de/ot/
col_benham/index.html.

Bernoulli family
An extraordinary Swiss family from Basle that produced
eight outstanding mathematicians within three genera-
tions. Together with Isaac Newton, Gottfried Leibniz,
Leonhard Euler, and Joseph Lagrange, the Bernoulli
family dominated mathematics and physics in the seven-
teenth and eighteenth centuries, making important con-
tributions to differential calculus, geometry, mechanics,
ballistics, thermodynamics, hydrodynamics, optics, elas-
ticity, magnetism, astronomy, and probability theory.
Unfortunately, the Bernoullis were as conceited and arro-
gant as they were brilliant, and engaged in bitter rivalries
and rows with one another.

The patriarchs of this mathematical dynasty were Jakob
I (1654–1705) and his brother Johann I (1667–1748). (The

Roman numerals are used to tell fathers, brothers, sons,
and cousins apart, as the same Christian names were used
repeatedly.) Next came Jakob’s son, Nikolaus I, and
Johann’s three sons, Nikolaus II, Daniel (1700–1772), and
Johann II. Finally, came Johann II’s mathematical off-
spring, Johann III and Jakob II.

Jakob I developed a passion for science and mathe-
matics after meeting Robert Boyle during a trip to En-
gland in 1676. He largely taught himself in these subjects
and went on to lecture in experimental physics at the
University of Basle. He also secretly introduced his
younger brother to mathematics, against the wishes of his
parents who wanted the younger brother to go into com-
merce. The cooperation between the two brothers soon
degenerated, however, into vitriolic argument. Irked by
Johann’s bragging, Jakob publicly claimed that his
younger brother had copied his own results. Later, having
been appointed to the chair of mathematics at Basle,
Jakob succeeded in blocking his brother’s appointment
to the same department, forcing Johann to take a teach-
ing job at the University of Groningen instead. Johann
proposed the so-called brachistrochrone problem and,
along with Newton, Leibniz, l’Hospital, and Jakob, man-
aged to solve it—but only after he first came up with a
faulty proof and then tried to substitute one of Jakob’s in
its place! Eventually, Johann was offered a post at Basle
as, of all things, the department head of Ancient Greek.
But, en route to Basle, Johann learned that Jakob had
died of tuberculosis. Upon his arrival he set about lobby-
ing for the vacant position and, in less than two months,
got his way. Jakob’s most important work, his Ars Con-
jectandi (The art of conjecture), was published posthu-
mously and formed the basis of probability theory.

Sadly, Johann I repeated his father’s mistake and tried
to force the most mathematically talented of his three
sons, Daniel, into an unwanted career as a merchant.
When the attempt failed, Johann let Daniel study medi-
cine, in order to prevent his son from becoming a com-
petitor. But all three sons followed their father’s path,
and Daniel, while studying medicine, was tutored in
math by his older brother Nikolaus II. In 1720, Daniel
went to Venice to work as a physician but won such a big
reputation for his work in physics and mathematics that
Peter the Great of Russia offered him a chair at the Acad-
emy of Science in St. Petersburg. Daniel went, along
with Nikolaus II, who was also offered a position at the
Academy. However, after just eight months, Nikolaus
came down with a fever and died. Upset, Daniel wanted
to return to Basle, but Johann I didn’t want his son—a
potential rival—back home. Instead he sent one of his
pupils, none other than the great Leonhard Euler, to 
St. Petersburg to keep Daniel company. The two Swiss

Benham’s disk
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mathematicians became good friends, and the six years
they spent together in St. Petersburg were the most pro-
ductive of Daniel’s life.

When Daniel finally returned to Basle, quarrels
within the family flared up again after he won the prize
of the Parisian Academy of Science with a paper, co-
authored with his father, on astronomy. Jealous of
Daniel’s success, Johann threw him out of the family
house. And worse was to come. In 1738 Daniel pub-
lished his magnum opus, Hydrodynamica. Johann I 
read the book, hastily wrote one of his own called
Hydraulica, back-dated it to 1732, and claimed to be the
inventor of fluid dynamics! The plagiarism was soon
uncovered, and Johann was ridiculed by his colleagues,
but his son never recovered from the blow. See also 
St. Petersburg paradox.

Bernoulli number
A number of the type defined by Jakob Bernoulli in
connection with evaluating sums of the form #ik. The se-
quence B0, B1, B2, . . . can be generated using the formula

x/(e x
− 1) = #( Bn x n)/n!

though various different notations are used for them. The
first few Bernoulli numbers are: B0 = 1, B1 = −1⁄2, B2 = 1⁄6,
B4 = −1⁄30, B6 = 1⁄42, . . . . They crop up in many diverse
areas of mathematics including the series expansions of
tan(x) and Fermat’s last theorem.

Berry’s paradox
A paradox, devised by G. G. Berry of the Bodleian
Library at Oxford University in 1906, that involves state-
ments of the form: “The smallest number not nameable
in under ten words.” At first sight, there doesn’t seem
anything particularly mysterious about this sentence.
After all, there are only so many sentences that have less
than ten words, and only a set S of these specify unique
numbers; so there is clearly some number N that is the
smallest integer not in S. The trouble is, the Berry sen-
tence itself is a specification for that number in only nine
words! Berry’s paradox shows that the concept of name-
ability is inherently ambiguous and a dangerous concept
to be used without qualification. A similar air of the
paradoxical swirls around the notion of interesting
numbers.[60]

Bertrand’s box paradox
A problem, similar to the Monty Hall problem, that was
published by the French mathematician Joseph Bertrand
(1822–1900) in his 1889 text Calcul des Probabitités. Sup-
pose there are three desks, each with two drawers. One
desk contains a gold medal in each drawer, one contains a
silver medal in each drawer, and one contains one of each,

but you don’t know which desk is which. If you open a
drawer and find a gold medal, what are the chances that
the other drawer in that desk also contains gold? This
comes down, then, to figuring out the probability that
you’ve picked the gold-gold desk instead of the gold-silver
desk. Many people quickly jump to the conclusion that
there are two possibilities, and since the selection was ran-
dom, it must be 50-50. But this is wrong. Think of the ini-
tial selection as picking from among six drawers:

Before After
S S G G G
S G G G
1 2 3 1 2 3

So, we have it narrowed down to three drawers, with an
equal probability of each one being the one that was
picked. One of the drawers is in desk 2, so there’s a one-
third chance that desk 2 was picked. Two of the drawers
are in desk 3, so there are two one-third chances (i.e., a
two-third chance) that desk 3 was picked.

Bertrand’s postulate
Also known as Betrand’s conjecture, if n is an integer greater
than 3, then there is at least one prime number between
n and 2n − 2. This postulate (which should now be called
a theorem) is named after the French mathematician
Joseph Bertrand (1822–1900) who, in 1845, showed it
was true for values of n up to 3 million. The Russian
Pafnuty Chebyshev (1821–1894) gave the first complete
proof in 1850, so that it is sometimes called Chebyshev’s
theorem (although another theorem also goes by this
name). In 1932, Paul Erdös gave a more elegant proof,
using the binomial coefficients, which is the one that
appears in most modern textbooks. Bertrand’s postulate
implies that the nth prime pn is at most 2n.

Bessel, Friedrich Wilhelm (1784–1846)
A German astronomer and mathematician who became
director of the observatory at Königsberg (see bridges of
Königsberg). Much of Bessel’s work dealt with perturba-
tions (wobbles) in the motion of planets and stars caused
by the gravitational influence of other bodies. To help
analyze these perturbations he developed certain mathe-
matical functions that are now known as Bessel functions
and are used widely in physics.

beta function
The function

B(m, n) = $1

0
x m − 1 (1 − x)n − 1 dx.

It can be defined in terms of the gamma function by
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B(m, n) = .

Many integrals can be reduced to the evaluation of beta
functions.

Betti number
An important topological property of a surface, named
after the Italian mathematician Enrico Betti (1823–1892).
The Betti number is the maximum number of cuts that
can be made without dividing the surface into two sepa-
rate pieces. If the surface has edges, each cut must be a
“crosscut,” one that goes from a point on an edge to
another point on an edge. If the surface is closed, like a
sphere, so that it has no edges, each cut must be a “loop
cut,” a cut in the form of a simple closed curve. The Betti
number of a square is 0 because it is impossible to cross-
cut without leaving two pieces. However, if the square is
folded into a tube, its topology changes—it now has two
disconnected edges—and its Betti number changes to 1. A
torus, or donut shape, has a Betti number of 2. See also
chromatic number.

bicorn
Also known as the cocked-hat, any of a collection of quar-
tic curves studied by James Sylvester in 1864 and by
Arthur Cayley in 1867. The bicorn has the Cartesian
equation

y 2(a 2
− x 2) = (x 2

+ 2ay − a)2.

Γ(m)Γ(n)
!!

Γ(m + n)
bicuspid curve
The quartic curve given by the equation

(x 2
− a 2)(x − a)2

+ (y 2
− a 2)2

= 0.

Bieberbach conjecture
A celebrated conjecture made by the German mathemati-
cian Ludwig Bieberbach (1886–1982) in 1916, that was
finally proved, after many partial results by others, by
Louis de Branges of Purdue University in 1984.[54] Bierber-
bach is infamous in the history of mathematics because of
his outspoken anti-Semitism during the Nazi era. Follow-
ing the dismissal of Edmund Landau (1877–1938) from
the University of Göttingen, Bierberbach wrote: “This
should be seen as a prime example of the fact that repre-
sentatives of overly different races do not mix as students
and teachers. . . . The instincts of the Göttingen students
felt that Landau was a type who handled things in an un-
German manner.”

Bieberbach’s conjecture (BC) stemmed from the Rie-
mann mapping theorem (RMT), which makes a claim
about any region of a plane that is simply connected (in
other words, any region, however complicated, that
doesn’t have any holes). The RMT says there must be
some function, or mapping, such that every point in the
arbitrary region is associated with one and only one point
inside a circle with unit radius. Complex functions are
best suited to plane-to-plane mappings and are often eas-
ier to work with if they can be represented as a power
series. For example, given the complex number z, the
function e z can be expressed as the infinite series 1 + z +

z 2/2! + z 3/3! + . . . . Bieberbach guessed that there is a link
between the conditions imposed on a function by RMT
and the numerical coefficients of the terms in a power
series that represents the function. The BC says that if a
function gives a one-to-one association between points in
the unit circle and points in a simply connected region of
the plane, the coefficients of the power series that repre-
sents the function are never larger than the correspond-
ing power. In other words, given that f ( z) = a0 + a1z +

a2 z 2
+ a3 z 3

+ . . . , then |an|≤ n|a1| for each n.

bifurcation
The value of a smoothly varying control parameter, or
the point in parameter space, at which the behavior of a
dynamical system undergoes a qualitative change. For
example, a simple equilibrium, or a fixed-point attrac-
tor, might give way to a periodic oscillation as the stress
on a system increases. Similarly, a periodic attractor
might become unstable and be replaced by a chaotic
attractor. To give a real-world example, drops fall indi-
vidually at equal intervals, from a dripping faucet at 
low pressure. As the pressure is increased, however, the

bicorn The bicorn curve © Jan Wassenaar, www.2dcurves.com
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pattern of dripping abruptly changes so that two drops
fall close together, with a longer interval before the next
pair fall. In this case, a simple periodic process has given
way to a periodic process with twice the period, a process
described as “period doubling.” If the flow rate of water
through the faucet is increased still further, beyond the
bifurcation point, often an irregular dripping is found
and the behavior can become chaotic. See also chaos.

bilateral
Having two sides, or relating to the right and left sides of an
object. Bilateral symmetry is a symmetrical arrangement, as
of an organism or a body part, along a central axis, so that
the body is divided into equivalent right and left halves by
only one plane. See also mirror reversal problem.

bilateral diagram
A device invented by Lewis Carroll to represent the dif-
ferent logical states that two objects with two properties
can take. Each cell in a four-square array represents one
of the four possible object/property states and is covered
by a red counter if the state is present and by a gray
counter if it is absent.

billion
See large numbers.

bimagic square
A magic square that becomes a new magic square when
each integer is squared. If, in addition to being bimagic,
the integers in the square can be cubed and the resulting
square is still magic, the square is said to be trimagic. To
date the smallest bimagic square seems to be of order 8,
while the smallest trimagic square is of order 32.

binary

There are 10 kinds of people in the world, those who
understand binary math, and those who don’t.

—Anonymous

The simplest positional number system and the natural
one to use when dealing with computers; it employs just
two symbols, 0 and 1, which correspond to the possible
states of an off-on switch. Each place to the left in a binary
number represents the next highest power of two. The
binary number 101102, for example, means 1 × 24

+ 0 ×

23
+ 1 × 22

+ 1 × 21
+ 0 × 20, or 2210 in the familiar decimal

notation. Nonintegers can be represented by using negative
powers, which are set off from the other digits by means of
a radix point (called a decimal point in base 10). The binary
number 11.012 thus means 1 × 21

+ 1 × 20
+ 0 × 2−1

+ 1 ×

2−2 which equals 3.2510. A number that terminates in a dec-
imal doesn’t necessarily do so in binary (e.g., 0.310 =

0.0100110011001 . . . 2), and vice versa. An irrational num-
ber, however, is nonperiodic in both systems (e.g., pi, =

3.1415926 . . . 10 = 11.001001000011111 . . . 2). Binary arith-
metic was first investigated by Gottfried Leibniz in 1672,
though he didn’t publish anything about it until 1701.

binary operation
An operation that involves two operands. For example,
addition and subtraction are binary operations.

binomial
An expression containing two terms, joined by + or −.
The binomial theorem gives the result of raising a bino-
mial expression to a power; the expansion and the series
it leads to are called the binomial expansion and the bino-
mial series. A binomial distribution is described by a for-
mula related to the binomial expansion. A binomial
equation is a particular kind of equation that contains
two terms.

binomial coefficient
A coefficient of x in the expansion of (x + y)n. The
binomial coefficient nCm or (n

m) gives the number of
ways of picking m unordered outcomes from n possi-
bilities, and is also known as a combination. It has the
value n!/(n − m)!m! The binomial coefficients form the
rows of Pascal’s triangle.

binomial theorem
The result that allows the expansion of a binomial
expression:

(x + y)n
= x n

+ an − 1x
n − 1y + an − 2x n − 2y 2

+ . . . + yn

where the coefficients ai are called binomial coefficients.

Birkhoff, George David (1884–1944)
The foremost American mathematician of the early twen-
tieth century and the first prominent dynamicist in the
New World. He is known for his work on linear differen-
tial equations and difference equations, and was also
deeply interested in and made contributions to the analy-
sis of dynamical systems, celestial mechanics, the four-
color map problem, and function spaces. Although a
geometer at heart, he discovered new symbolic solution
methods. He saw beyond the theory of oscillations, cre-
ated a rigorous theory of ergodic behavior, and foresaw
dynamical models for chaos. In addition he wrote on the
foundations of relativity and quantum mechanics and, in
Aesthetic Measure (1933), on art and music.

birthday paradox
The fact—not really a paradox—that you need a group of
only 23 people for there to be a better than 50/50
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chance that two of these people will have the same
birthday. This seems surprising because we are used to
comparing our particular birthday with others and only
rarely finding a perfect match. The probability of any
two individuals having the same birthday is just 1⁄365.
Even if you were to ask 20 people, the probability of
finding someone with your birthday is still less than 1⁄20.
But the odds improve dramatically when a group of peo-
ple ask each other about their birthdays because then there
are many more opportunities for a matchup. One way to
calculate the probability of a birthday match is to count
the pairs of people involved. In a room of 23 people,
there are (23 × 22)/2, or 253, possible pairs. Each pair has
a probability of success of 1⁄365 = 0.00274 (0.274%), and
thus a probability of failure of (1 − 0.00274) = 0.99726
(99.726%). The probability of no match among any of
the pairs of people is 0.99726 to the 253rd power, which
is 0.499 (49.9%). So the probability of a successful match
is (1 − 0.499), or slightly better than even (50/50). With
42 people, the probability of a birthday match climbs 
to 90%.

birthday surprise
Here is a way to learn someone’s birthday by doing a lit-
tle simple math. Ask a person to take the month number
( January = 1, February = 2, and so forth) of their birth-
day, multiply by 5, add 6, multiply the total by 4, add 9,
and multiply the new total by 5 again. Finally, have her
add the number of the day on which she was born and
give you the total. In your head, subtract 165 and you
will have the month and day of her birth. How does this
work? If M is the month number and D the day number,
then after the seven steps the expression for their calcula-
tion is: 5(4(5M + 6) + 9) + D = 100M + D + 165. Thus, if
you subtract the 165, what will remain will be the month
in hundreds plus the day.

bisect
To cut in half.

bisecting an angle
Splitting an angle exactly in two. The ancient Greeks
knew how to easily do it using only a pair of compasses
and a straightedge. Here’s how: Put the point of the com-
pass at a point O and draw a circle so that it cuts the two
lines coming out from the angle. Call these intersection
points A and B. Now put the point of the compass at A
and draw an arc that follows within the opening of the
angle. Without changing the radius at which the compass
is set, move its point to B and draw another arc. Join the
point where the two arcs cross, P, to O using the straight
edge: angle POB is half of angle AOB. See also trisecting
an angle.

bishops problem
To find the maximum number of bishops (chess pieces
capable of moving any number of spaces along diagonals
of their own color) that can be placed on an n × n chess-
board in such a way that no two are attacking each other.
The answer is 2n − 2, which gives the solution 14 for a
standard (8 × 8) chessboard. The numbers of distinct
maximal arrangements for n = 1, 2, . . . bishops are 1, 4,
26, 260, 3,368, . . . .

bistromathics
The revolutionary new (and totally fictitious) field of
mathematics in restaurants, as described by Douglas
Adams in his book Life, the Universe and Everything:[4]

Numbers written on restaurant bills within the con-
fines of restaurants do not follow the same mathe-
matical laws as numbers written on any other pieces
of paper in any other parts of the Universe. This sin-
gle statement took the scientific world by storm. . . .
So many mathematical conferences got held in such
good restaurants that many of the finest minds of a
generation died of obesity and heart failure and the
science of math was put back by years.

Adams explains that just as Einstein found that space and
time are not an absolute but depend on the observer’s
movement, so numbers are not absolute, but depend on
the observer’s movement in restaurants:

The first non-absolute number is the number of
people for whom the table is reserved. This will vary
during the course of the first three telephone calls to
the restaurant, and then bear no apparent relation 
to the number of people who actually turn up, or to
the number of people who subsequently join them
after the show/match/party/gig, or to the number of
people who leave when they see who else has turned
up. The second non-absolute number is the given
time of arrival, which is now known to be one of the
most bizarre of mathematical concepts, a recipriver-
sexcluson, a number whose existence can only be
defined as being anything other than itself. In other
words, the given time of arrival is the one moment
of time at which it is impossible that any member of
the party will arrive. . . . The third and most mysteri-
ous piece of nonabsoluteness of all lies in the rela-
tionship between the number of items on the bill,
the cost of each item, the number of people at the
table and what they are each prepared to pay for.

See also large numbers.

bit
A binary digit, either 0 or 1. See also byte.
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blackjack
Also known as twenty-one, the most popular casino game
in the world and the only such game with a fluctuating
probability: the odds of winning change with the makeup
of the deck. The cards two to nine have a numerical value
equal to the number printed on the card. Tens and all face
cards (jack [ J], queen [Q ], and king [K]) have the value
of 10. Aces may be counted as either 11 or one. A dealer
plays against one to seven players. Every player and the
dealer initially receive two cards each, dealt by the dealer.
Each player’s hand is played against the dealer’s hand
only. If a player’s hand has a value closer to 21 (without
going over) than the dealer’s hand, the player wins. The
best possible hand is known as a blackjack (21 in the first
two cards) and consists of an ace and a ten-valued card
(10, J, Q, K). The payout for a blackjack is 3-to-2: the
player is paid three chips for every two chips bet. When
both the player and the dealer have blackjacks, it is a nor-
mal tie (push) situation and the player retains the initial
bet. The player has several choices after receiving the first
two cards: (1) Hit or draw: take one or more cards to add-
up to a better hand. (2) Stand: stop taking more cards. (3)
Double down: double the initial amount (in cases consid-
ered more favorable). (4) Split pairs: if the two cards are
equal in value they may be played in two separate hands.
The dealer must draw until his hand adds up to 17 or
more. Both the player and the dealer can go over 21, a sit-
uation known as bust; the player loses the bet immedi-
ately. The dealer plays his hand last, after all the players at
the table. This rule creates the so-called house edge. John
Scarne[282] was the first to calculate the house advantage at
blackjack as 5.9%. However, the house edge can be cut to
around 1% if the player follows certain rules. The set of
rules known as basic strategy make blackjack one of the
fairest games of any kind, almost as fair as coin tossing.

In 1962 Edward O. Thorp, an IBM computer scientist,
published Beat the Dealer,[333] which introduced a winning
method called card counting. This method considered the
10-valued cards and the aces as positive, and the cards 2
to 6 as negative. If the net value of the remaining deck
was positive, the player must increase the bet accord-
ingly. The method had visible results when only one deck
was used and very few cards remained in the deck. Casi-
nos responded by changing the rules dramatically. The
penetration was introduced: not all the cards in the deck
are played. Shuffling is done unexpectedly. Also, most
casinos introduced multiple-deck blackjack.

Blanche’s dissection
The simplest dissection of a square into rectangles of the
same areas but different shapes. It is composed of seven
pieces; the square is 210 units on a side, and each rectan-
gle has area of 2102/7 = 6,300.

Bólyai, János (1802–1860)
A Hungarian mathematician who was one of the
founders of non-Euclidean geometry, independently
coming to almost the same conclusions as Nikolai Loba-
chevsky. He was initially taught by his father, Farkas,
also a mathematician, then he studied at the Royal
Engineering College in Vienna from 1818 to 1822.
Between 1820 and 1823 he prepared his treatise on a
complete system of non-Euclidean geometry, com-
menting, “Out of nothing I have created a strange new
universe.” It was published in 1832 as an appendix to an
essay by his father. Carl Gauss, on reading the appen-
dix, wrote to a friend saying, “I regard this young
geometer Bólyai as a genius of the first order.” It was not
until 1848 that Bólyai learned that Lobachevsky had
produced a similar piece of work in 1829. Although he
never published more than the 24 pages of the appen-
dix, Bólyai left more than 20,000 pages of manuscript of
mathematical work when he died. He was an accom-
plished linguist, speaking nine foreign languages includ-
ing Chinese and Tibetan.

book-stacking problem
How much of an overhang can be achieved by stacking
books on a table before the books overbalance and fall
off? Assume each book is one unit long. To balance one
book on a table, the center of gravity of the book must
be somewhere over the table; to achieve the maximum
overhang, the center of gravity should be just over the
table’s edge. The maximum overhang with one book is

book-stacking problem The solution to the book-stacking
problem.



Borromean rings 41

obviously 1⁄2 unit. For two books, the center of gravity of
the first should be directly over the edge of the second,
and the center of gravity of the stack of two books
should be directly above the edge of the table. The cen-
ter of gravity of the stack of two books is at the midpoint
of the books’ overlap, or (1 + 1⁄2)/2, which is 3⁄4 unit from
the far end of the top book. It turns out that the over-
hangs are related to the harmonic numbers Hn, (see har-
monic sequence), which are defined as 1 + 1⁄2 + 1⁄3
+ . . . + 1/n: the maximum overhang possible for n books
is Hn /2. With four books, the overhang (1 + 1⁄2 + 1⁄3 +
1⁄4)/2 exceeds 1, so that no part of the top book is
directly over the table. With 31 books, the overhang is
2.0136 book lengths.

Boole (Stott), Alicia (1860–1940)
The third daughter of George Boole and an important
mathematician in her own right. At the age of 18, she was
introduced to a set of wooden cubes devised by her
brother-in-law Charles Hinton as an aid to visualization
of the fourth dimension. Despite having had no formal
education, she surprised everyone by becoming adept
with the cubes and developing an amazing feel for four-
dimensional geometry. She introduced the word polytope
to describe a four-dimensional convex solid, and went on
to explore the properties of the six regular polytopes 
and to make 12 beautiful card models of their three-
dimensional central cross sections. She sent photographs
of these models to the Dutch mathematician Pieter
Schoute (1846–1923), who had done similar work and
with whom she subsequently published two papers. The
models themselves are now housed in the Department of
Pure Mathematics and Mathematical Statistics at Cam-
bridge University.

Boole, George (1815–1864)
An English mathematician and philosopher who is
regarded as one of the founders of computer science.
His great contribution was to approach logic in a new
way, reducing it to a simple algebra and thus incorpo-
rating logic into mathematics. He pointed out the anal-
ogy between algebraic symbols and those that represent
logical forms; his algebra of logic became known as
Boolean algebra and is now used in designing comput-
ers and analyzing logic circuits. Although he never stud-
ied for a degree, Boole was appointed to the chair of
mathematics at Queens College, Cork, Ireland, in 1849.
One day in 1864 he walked the two miles in pouring
rain from his home to the college and then lectured in
wet clothes. A fever followed but whether this alone
would have caused his demise is unknown. Certainly
his condition wasn’t helped by his wife, Mary (a niece
of Sir George Everest, after whom the mountain is

named), who, following the principle that remedy
should resemble cause, put Boole to bed and threw
buckets of water over him. He expired shortly after. See
also Boole (Stott), Alicia.

Boolean
Taking only 0/1, true/false, yes/no values.

Boolean algebra
An algebra in which the binary operations are chosen to
model the union and intersection operations in set the-
ory. For any set A, the subsets of A form a Boolean alge-
bra under the operations of union, intersection, and
complement.

Borel, Emile (1871–1956)
A French mathematician who worked on divergent series,
the theory of functions, probability, and game theory,
and was the first to define games of strategy. He also
founded measure theory, which applies the theory of
sets to the theory of functions, and thus became an orig-
inator, with Henri Lebesgue and René Louis Baire
(1874–1932), of the modern theory of functions of a real
variable.

Borges, Jorge Luis (1899–1986)
An Argentinian author, essayist, and poet, many of
whose short stories explore paradoxes and other strange
avenues of mathematics, logic, philosophy, and time. For
example, the possibility of branches in time is dealt with
in “The Garden of Forking Paths,” while the strange
notion of the Universal Library is the subject of “The
Library of Babel.” Borges was profoundly influenced by
European culture, English literature, and such thinkers as
George Berkeley.

Borromean rings
Three rings linked in such a way that although they can’t
be separated, no two rings are linked; remove any one
ring, however, and the other two fall apart. Named after
the Italian family of Borromeo whose family crest has
borne the rings since the fifteenth century, the design has
been used in many places and times as a symbol of
strength in unity. A form of the Borromean link known
as Odin’s triangle or the walknot (“knot of the slain”) was
used by the Norse folk of Scandinavia in two variants: a
set of Borromean triangles and a unicursal curve that
makes a trefoil knot. A motif of three interlaced crescent
moons, similar to the Borromean rings, can be seen at the
Palace of Fontainebleau. Designed by the architect
Philibert de l’Orme, it is based on the moon emblem
used by Diane de Poitiers (1499–1566), mistress of King
Henry II of France. A similar pattern, but with three
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interlaced snakes in place of the crescent moons, occurs
at various sites in Wales, including Bangor Cathedral.
The Borromean rings are commonly used to symbolize
the Christianity Trinity. An early source for this was a
thirteenth-century French manuscript, now lost, in which
the word unitas appears in the center, inside all the cir-
cles, and the three syllables of “tri-ni-tas” are distributed
in the outer sectors. Borromean rings can also be found
on Japanese family emblems, at a Japanese Shinto shrine
north of Sakurai in the province of Nara, and in the
sculptures of the Australian artist John Robinson. In
North America, the design is known as the Ballantine
rings after the New Jersey brewing company P. Ballantine
and Sons who use it as a trademark with the rings labeled
Purity, Body, and Flavor.

The rings first appeared in mathematics in the earliest
work on knots by Peter Tait in 1876. The pattern of cir-
cles can be interlaced by replacing each of the six vertices

by a crossing that shows how the circles pass over and
under one another. Since there are two choices for each
crossing, there are 26

= 64 possible interlaced patterns.
However, after taking symmetry into account, these 64
reduce to only 10 geometrically distinct patterns. Two
patterns are considered to be the same if one can be
obtained from the other by applying one or more of the
following operations: rotation by 120°, reflection, and
reflection in the plane of the pattern. The last symmetry
operation means that the sense of all the crossings is
switched. The rings can also be analyzed from the view-
point of topology, which means that the designs are
thought of as links made from a flexible and elastic
material. If two links can be manipulated and deformed
to look like one another (without breaking and joining
the rings) then they are topologically equivalent. The 10
geometrically distinct patterns boil down to only five
distinct topological types.

Borromean rings A flowerpot on Isola Bella, an island on Lake Maggiore, near Arona in northern Italy, that bears the Borromeo fam-
ily crest. Peter Cromwell
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Borsuk-Ulam theorem
One of the most important and profound statements
in topology: if there are n regions in n-dimensional
space, then there is some hyperplane that cuts each
region exactly in half, measured by volume. All kinds
of interesting results follow from this. For example, at
any given moment on Earth’s surface, there must exist
two antipodal points—points on exactly opposite sides
of Earth—with the same temperature and barometric
pressure! One way to see that this must be true is to
think of two opposite points A and B on the equator.
Suppose A starts out warmer than B. Now move A
and B together around the equator until A moves
into B’s original position, and simultaneously B into
A’s original position. A is now cooler than B, so
somewhere in between they must have been the same
temperature. The Borsuk-Ulam theorem implies the
Brouwer fixed-point theorem and also the ham sand-
wich theorem.

bottle sizes
Wine and champagne come in various standard bottle
sizes, as shown in the table “Wine Bottle Sizes.” These fol-
low a geometric sequence, doubling in size with each
step, up to the double-magnum, but thereafter increase in
a more complicated way. There are also regional varia-
tions (for example, a Nebuchadnezzar may hold from 12
to 15 liters) and differences depending on the type of
drink held.

Borromean rings Three alternating rings carved in a panel in
a walnut door of the church of San Sigismondo in Cremona,
Italy. The emblem is one of several belonging to the Sforza
family. Peter Cromwell

Wine Bottle Sizes

Name of Size Region Capacity (liters) Standard Bottle Equivalents

Baby/split All 0.1875 0.25

Half-bottle All 0.375 0.5

Bottle All 0.75 1

Magnum All 1.5 2

Double-magnum All 3 4

Jeroboam Burgundy, Champagne 5 6.67

Jeroboam Bordeaux, Cabernet S. 4.5 6

Rehoboam Burgundy, Champagne 4.5 6

Imperial Bordeaux, Cabernet S. 6 8

Methuselah Burgundy, Champagne 6 8

Salmanazar Burgundy, Champagne 9 12

Balthazar Burgundy, Champagne 12 16

Nebuchadnezzar Burgundy, Champagne 15 20
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boundary condition
The value of a function at the edge of the range of some
of its variables. Recognizing the boundary conditions of
an unknown function helps in its identification since
other unknowns, such as variables in integrations, can
then be eliminated.

boundary value problem
An ordinary differential equation or a partial differen-
tial equation given together with boundary conditions
to ensure a unique solution.

Bourbaki, Nicholas
Not an individual but a collective mathematician. In the
1930s, the Bourbaki group, made up of some of the bright-
est mathematicians in France, began as a club, holding
secret meetings in Strasbourg to update university lectures
and texts in the wake of World War I, which had essentially
wiped out a generation of young talent. In time, Bourbaki
authored encyclopedic accounts of all areas of mathemat-
ics, and its influence became widespread.

Its origins can be traced to 1934 and to André Weil and
Henri Cartan who were maîtres de conférences (the equiv-
alent of assistant professors) at the University of Stras-
bourg. One of their duties was to teach differential and
integral calculus but they found the standard text on this
subject, Traité d’Analyse by E. Goursat, wanting. Following a
suggestion by Weil to write a new “Treatise on Analysis,” a
group of about 10 mathematicians began to meet regularly
to plan the new work. Quickly, it was decided that the work
should be collective, without any acknowledgment of indi-
vidual contributions, and this became a feature of Bour-
baki’s output. In the summer of 1935, the pen name
Nicholas Bourbaki was chosen, and the initial membership
consisted of Weil, Cartan, Claude Chevalley, Jean Delsarte,
and Jean Dieudonné—all former students at the École Nor-
male Supérieure in Paris. Over the years, the membership
varied; some people in the first group dropped out quickly,
others were added, and later there was a regular process of
addition and retirement (mandatory by the age of 50).

Bourbaki adopted rules and procedures that to outsiders
often seemed eccentric and even bizarre. For example, dur-
ing meetings to review and revise drafts for the various
books the group developed, anyone could express his
opinion as loudly as he wanted at any time, so it was not
uncommon for several distinguished mathematicians to be
on their feet at the same time shouting monologues at the
top of their voices. Somehow out of this mayhem emerged
work of extreme precision, to the point of pedantry and
dryness. Bourbaki would have nothing to do with geome-
try or any attempt at visualization, and believed that math-
ematics should distance itself from the sciences. However,
despite its tendency to be boring and long-winded, Bour-

baki did achieve its goal: to set down in writing what was
no longer in doubt in modern mathematics.

brachistochrone problem
A problem with which Johann Bernoulli (see Bernoulli
Family) challenged his contemporaries in Acta Erudito-
rum in June 1696:

Following the example set by Pascal, Fermat, etc., I
hope to gain the gratitude of the whole scientific com-
munity by placing before the finest mathematicians of
our time a problem which will test their methods and
the strength of their intellect. If someone communi-
cates to me the solution of the proposed problem, I
shall publicly declare him worthy of praise. . . . Given
two points A and B in a vertical plane, what is the
curve traced out by a point acted on only by gravity,
which starts at A and reaches B in the shortest time?

Isaac Newton reportedly solved the problem between
four in the evening and four in the morning after a hard
day at the Royal Mint, later commenting: “I do not love
to be dunned [pestered] and teased by foreigners about
mathematical things. . . .” Other correct solutions came
from Gottfried Leibniz, the Frenchman Guillaume de
L’Hôpital, and Johann’s brother Jakob. They, like
Johann, realized that the solution to the brachistochrone
problem, as it was also to the tautochrone problem, was
a curve known as the cycloid.

Brahmagupta (A.D. 598–after 665)
A Hindu astronomer and mathematician who became
the head of the observatory at Ujjain—the foremost math-
ematical center of ancient India. His main work, Brah-
masphutasiddhanta (The opening of the universe), written
in 628, contains some remarkably advanced ideas,
including a good understanding of the mathematical role
of zero, rules for manipulating both positive and nega-
tive numbers, a method for computing square roots,
methods of solving linear and some quadratic equations,
and rules for summing series. His contributions to
astronomy were equally ahead of their time. Brah-
magupta’s theorem states that in a cyclic quadrilateral (a
four-sided shape whose corners lie on a circle) having per-
pendicular diagonals, the perpendicular to a side from
the point of intersection of the diagonals always bisects
the opposite side. Brahmagupta’s formula for the area of
a cyclic quadrilateral with sides of length a, b, c, and d is
!(S − a)"(S − b)"(S − c)"(S − d )", where S = (a + b + c + d )/2. As
d goes to zero, this reduces to Heron’s formula.

braid
A collection of lines or strings that are plaited together
and whose ends are attached to two parallel straight lines.
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Braid theory was pioneered by the Austrian mathemati-
cian Emil Artin (1898–1962) and is related to knot the-
ory. It also has other applications: for instance, if we
consider the way the roots of a polynomial move as one
of the polynomial’s coefficients changes, this motion can
be thought of as a braid.

Brianchon’s theorem
Given a conic section, if we circumscribe a hexagon
about it, then the major diagonals of the hexagon are
concurrent.

bridges of Königsberg
A famous routing problem that was analyzed and solved
by Leonhard Euler in 1736, and that helped spur the
development of graph theory. The old city of Königs-
berg, once the capital of East Prussia, is now called Kalin-
ingrad. It falls within a tiny part of Russia known as the
Western Russian Enclave, between Poland and Lithuania,
which (to the surprise even of many modern Russians) is
not connected with the rest of the country! Königsberg
lay some four miles from the Baltic Sea on rising ground
on both sides of the river Pregel (now the Pregolya),
which flowed through the town in two branches before
uniting below the Grune Brocke (Green Bridge). Seven
bridges (numbered in the diagram) crossed the Pregel and
connected various parts of the city (letters A to D),
including Kneiphof Island (B), the site of Königsberg
University and the grave of its most famous son, the great
philosopher Emmanuel Kant (1724–1804).

A question arose among the town’s curious citizens:
Was it possible to make a journey across all seven bridges
without having to cross any bridge more than once? No one
had been able to do it, but was there a solution? Euler,
who was in St. Petersburg, Russia, at the time, heard

about this puzzle and looked into it. In 1736, he pub-
lished a paper called Solutio problematis ad geometriam situs
pertinentis (The solution of a problem relating to the
geometry of position) in which he gave his answer. Euler
reasoned that, for such a journey to be possible, each
land mass would need to have an even number of bridges
connected to it, or, if the journey began at one land mass
and ended at another then those two land masses alone
could have an odd number of connecting bridges while
all the other land masses would have to have an even
number of connecting bridges. Since the Königsberg
bridges violated this layout, a grand tour that involved
only one crossing per bridge was impossible. Euler’s
paper was important because it solved not just the
Königsberg conundrum but the much more general case
of any network of points, or vertices, that are connected
by lines, or arcs. What is more, the words geometry of posi-
tion in the title show that Euler realized that he was deal-
ing with a different type of geometry where distance is
irrelevant. So this work can be seen as a prelude to the
subject of topology. See also Euler path.

Briggs, Henry (1561–1630)
An English mathematician who introduced common
logarithms (to base 10) and was largely responsible for
getting scientists to use them. Although a well-regarded
mathematician in his own right, holding the Savilian
chair of geometry at Oxford, Briggs was most important
as a contact and as a public relations man for his field.

Brocard problem
The problem of finding the integer solutions of the
equation

n! + 1 = m 2.

These solutions are called Brown numbers, and only three
of them are known: (5, 4), (11, 5), and (71, 7). Paul Erdös
conjectured that there are no others.

broken chessboard
See polyomino.

bridges of Königsberg An old map of the city showing the
seven bridges.

bridges of Königsberg The essential layout of the bridges. B
represents Kneiphof Island.
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Bronowski, Jacob (1908–1974)
A Polish mathematician who worked first on operation
theory and its application to military strategy, but later on
the ethics of science. He is remembered for writing and
narrating the television series The Ascent of Man in 1973.

Brouwer, Luitzen Egbertus Jan (1881–1966)
A Dutch mathematician who opposed the logicist school
of Bertrand Russell and established the intuitionist
school of mathematical thought. He was also one of the
founders of topology, doing most of his work in this
field between 1909 and 1913.

Brouwer fixed-point theorem
An amazing result in topology and one of the most useful
theorems in mathematics. Suppose there are two sheets of
paper, one lying directly on top of the other. Take the top
sheet, crumple it up, and put it back on top of the other
sheet. Brouwer’s theorem says that there must be at least
one point on the top sheet that is in exactly the same posi-
tion relative to the bottom sheet as it was originally. The
same idea works in three dimensions. Take a cup of coffee
and stir it as much as you like. Brouwer’s theorem insists
that there must be some point in the coffee that is in
exactly the same spot as it was before you started stirring
(though it might have moved around in between). More-
over, if you stir again to move that point out of its original
position, you can’t help but move another point back into
its original position! Not surprisingly, the formal defini-
tion of Brouwer’s theorem makes no mention of sheets of
paper or cups of coffee. It states that a continuous function
from an n-ball into an n-ball (that is, any way of mapping
points in one object that is topologically the same as the
filling of an n-dimensional sphere to another such object)
must have a fixed point. Continuity of the function is
essential: for example, if you rip the paper in the previous
example then there may not be a fixed point.

Brownian motion
The most common type of continuous random motion
of a particle, one in which the particle’s vibrations have
more energy at short length and time scales. It models
the motion of a particle in a fluid, fluctuation of stock
prices, and many other processes. Brownian motion is
named after the Scottish botanist Robert Brown
(1773–1858) who first studied it.

Brun’s constant
See twin primes.

bubbles
Whether alone or in groups joined together, bubbles get
their shape by following one simple rule: soap film

always tries to form a minimal surface. The mathemati-
cal study of bubbles and films began in earnest in the
1830s with the experiments of Joseph Plateau. A single
bubble will always try to form a sphere because this
shape, as proposed by Archimedes and proved by Her-
mann Amandus Schwarz (1843–1921) in 1884, is the
minimal surface enclosing a single volume. For a long
time, mathematicians believed that the minimal surface
for enclosing two separate volumes of air is a double bub-
ble separated by a third surface, which meets the other
two along a circle at 120° and is flat if the bubbles enclose
the same volume and, otherwise, is a spherical surface
that bulges a little into the larger of the two. The double
bubble conjecture was finally confirmed by a team of four
mathematicians in 2000.

Another great bubble mystery that has recently been
solved is why the bubbles in a glass of Guinness appear
to sink rather than rise. Bubbles that rise, like those in a
saucepan or those breathed out by a diver, are a familiar
sight and easy to explain: gas bubbles are lighter than
liquid and experience a buoyancy force that drives them
up toward the liquid surface. But many of the bubbles
in a glass of Guinness can be seen heading downward.
Researchers have found that large bubbles in the center
of the glass move upward relatively quickly and drag
liquid with them. Since the amount of liquid in the glass
stays the same (unless someone drinks it!) the liquid
moving upward near the center must eventually move
back down near the walls of the glass. This downward-

bubbles A honeycomb-like arrangement of tightly packed
bubbles.
Australian National University
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moving liquid has a dragging effect on the bubbles.
Larger bubbles are more buoyant than smaller bubbles,
and continue to move upward. Smaller bubbles (less
than 0.05 mm in diameter) aren’t buoyant enough to
resist this drag force, and move downward with the liq-
uid near the sides of the glass. Since Guinness is quite
opaque, and these downward-moving small bubbles are
close to the side of the glass, it often looks as if almost
all the bubbles are moving down. See also Plateau
problem.

buckyball
Also known as a fullerene, a large molecule made of carbon
atoms arranged in the form of a convex polyhedral cage.
Buckyballs are named after the architect Richard Buckmin-
ster Fuller because they look like the geodesic domes that
he invented. The first buckyball to be discovered (by acci-
dent) was C60, in which 60 carbon atoms are arranged at
each of the vertices of a truncated icosahedron. This shape,
which looks like a soccer ball, has 32 faces, of which 20 are
regular hexagons and 12 are regular pentagons. Many

buckyball A molecule of Buckminster fullerene—a buckyball. Nick Wilson



48 Buffon’s needle

different types of buckyballs are known. Common ones
have 70, 76, and 84 carbon atoms, but all are built up exclu-
sively fromhexagonal andpentagonal faces inarrangements
that followEuler’s formula.This formulaensures thatwhile
the number of hexagons can vary from one type of fullerene
toanother, every fullerenehas exactly12pentagons. (In fact,
buckyballs with heptagonal faces have been seen, but these
faces are concave and are regarded as defects.)

Buffon’s needle
An early problem in geometrical probability (see proba-
bility theory) that was investigated experimentally in
1777 by the French naturalist and mathematician Comte
Georges Louis de Buffon (1707–1788). It involves drop-
ping a needle repeatedly onto a lined sheet of paper and
finding the probability of the needle crossing one of the
lines on the page. The result, surprisingly, is directly
related to the value of pi.

Consider a simple case in which the lines are 1 cm apart
and the needle is 1 cm in length. After many drops the
probability of the needle lying across a line is found to be
very close to 2/π. Why? There are two variables: the dis-
tance from the center of the needle to the closest line, d,

which can vary between 0 and 0.5 cm, and the angle, θ, at
which the needle falls with respect to the lines, which can
vary between 0 and 180°. The needle will hit a line if d ≤
1⁄2 sinθ. In a plot of d against 1⁄2 sinθ, the values on or below
the curve represent a hit; thus, the probability of a success
is the ratio of the area below the curve to the area of entire
rectangle. The area below the curve is given by the integral
of 1⁄2 sinθ from 0 to π, which is 1. The area of the rectangle
is π/2. So, the probability of a hit is 1/(π/2) or 2/π (about
0.637). Dropping a needle many times onto lined paper
gives an interesting (but slow) way to find π. This kind of
probabilistic means of performing calculations is the basis
of a technique known as the Monte Carlo method.

bundle
A map between two topological spaces A and B, where
the sets f 1 (b) for elements b of B (known as fibers), are all
homeomorphic to a single space. The simplest example
is the Möbius band, for which A is the Möbius band, B
is a circle, and the fibers are homeomorphic to an inter-
val on the real number line.

Burali-Forti paradox
An argument that shows that the collection of ordinal
numbers (numbers that give the position of objects) do not,
unlike the natural numbers, form a set. Each ordinal num-
ber can be defined as the set of all its predecessors. Thus:

0 is defined as {}, the empty set

1 is defined as {0} which can be written as {{}}

2 is defined as {0, 1} which can be written as {{}, {{}}}

3 is defined as {0, 1, 2} which can be written as {{}, {{}},
{{}, {{}}}} . . .

in general, n is defined as {0, 1, 2, . . . n − 1}

If the ordinal numbers formed a set, this set would then be
an ordinal number greater than any number in the set.
This contradicts the assertion that the set contains all ordi-
nal numbers. Although the ordinal numbers don’t form a
set, they can be regarded as a collection called a class.

Buridan’s ass
A paradox of medieval logic concerning the behavior of an
ass that is placed equidistantly from two piles of food of
equal size and quality. Assuming that the behavior of the
ass is entirely rational, it has no reason to prefer one pile to
the other. Thus lacking a basis to decide which pile to eat
first, it remains in its original position and starves. With
one pile it would have lived; having two identical piles it
dies. How can this make sense? The paradox is named after
the French philosopher Jean Buridan (c. 1295–1356).

Buffon’s needle Needles are dropped randomly onto a lined
surface.
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burr puzzle
An interlocking wooden puzzle that, when put together,
typically looks like three rectangular blocks crossing one
another at right-angles. Little is known about its early his-
tory, but it was certainly produced both in Asia and
Europe in the eighteenth century. It acquired the name
Chinese puzzle, probably because so many were produced
in the Orient from the early 1900s. In 1928, Edwin Wyatt
published Puzzles in Wood,[355] the first book devoted to
the subject, and introduced the term burr puzzle because
of the likeness of the assembled toy to a seed burr.

Burr puzzles consist of three (the smallest number), six
(the most common number), twelve, or other numbers
of pieces that are notched in various ways so as to pose a
challenge to the would-be assembler. The earliest known
reference to the popular six-piece burr appears in a Berlin
catalog of 1790, but not until 1917 was a patent taken out
on a particular design. In 1977, William Cutler proved
that 25 possible notchable pieces can be used to make
solid six-piece burrs and that they can be put together in
314 ways. (Pieces are considered notchable if they can be
made by a sequence of notches that are produced by chis-
eling out the space between two saw cuts.) Cutler also
proved there are 369 general pieces from which solid
burrs can be made and that these can be assembled in
119,979 ways. One particular form of burr has six identi-
cal pieces, all of which move outward or inward together.
Another form, with flat notched pieces, has one piece
with an extra notch or an extended notch that allows it to
fit in last, either by sliding or twisting, although this isn’t
initially obvious. This form is sometimes made with
equal pieces so that it can only be assembled by force,
perhaps after steaming.

butterfly effect
One of the more sensational and loudly touted claims of
chaos theory: a butterfly beating its wings could, by an
intricate chain of causes and effects, give rise to a hurri-
cane. The gist of the argument is that minuscule distur-
bances can be amplified unpredictably into major
phenomena. However, the overwhelming likelihood is
that any effect as small as the beating of a butterfly’s wing
would be quickly dampened out and play no significant
part in future events. See also causality.

butterfly theorem
Let M be the midpoint of a chord PQ of a circle, through
which two other chords AB and CD are drawn. If AD
intersects PQ at X and CB intersects PQ at Y, then M is
also the midpoint of XY. The theorem gets its name from
the shape of the resulting figure.

Byron, (Augusta) Ada (1815–1852)
Also known as Lady Lovelace, the daughter of Lord
Byron and one of the most picturesque characters in
computer prehistory. Her parents separated five weeks
after her birth and she was raised by her mother (neé
Annabella Milbanke), whom Lord Byron had called his
“Princess of Parallelograms” because of her interest in
mathematics. She was determined that Ada would be-
come a mathematician and scientist, not a poet like her
father. Ada, however, managed to combine both worlds,
blending her science with poetical vision and her mathe-
matics with metaphor.

At the age of 17 she was introduced to Mary Somerville,
a remarkable woman who translated Laplace’s works into
English, and whose texts were used at Cambridge (where a

burr puzzle A difficult six-piece burr with 19 false assemblies and a final piece that requires 10 directional moves. Mr. Puzzle Aus-

tralia/William Cutler
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women’s college is now named after her). It was at one of
Mary Somerville’s dinner parties, in November 1834,
that Ada first heard of Charles Babbage’s ideas for a new
calculating machine, the Analytical Engine, and was
immediately intrigued. In 1843, Ada, married and the
mother of three children, translated a French article
about the Engine and showed it to Babbage. He sug-
gested that she add her own notes, which turned out to be
three times the length of the original piece and included
prescient comments about how such a machine might be
used to compose complex music, produce graphics, and

solve scientific problems. A regular correspondence
ensued between Ada and Babbage, during which Ada sug-
gested to Babbage a plan for how the engine might calcu-
late Bernoulli numbers—a plan now regarded as the first
computer program. In recognition of this, a software lan-
guage developed by the U.S. Department of Defense was
named “Ada” in 1979. Like her father, she died at the age
of 36, following a series of illnesses.[335]

byte
A string of 8 bits, used to represent a character.



caduceus
In mathematics, a pair of curves in space, each of which is
a helix and which twist in opposite directions around one
another. In mythology, the caduceus is the wing-topped
staff, wound about by two snakes, carried by Hermes, 
the Greek messenger of the gods. The snakes became
entwined after Hermes threw his staff at them to stop their
fighting. A caduceus was carried by Greek officials and
became a Roman symbol for truce and neutrality. Since
the sixteenth century it has also served as a symbol of
medicine. Before modern medicine, people infected by
parasitic worms were treated by physicians using a stick
and a knife. A slit would be cut in the patient’s skin in
front of the worm, and as the parasite crawled out of the
incision, the worm would be wound around a stick until
it was totally removed. The medical treatment of parasitic
worm infection by knife and stick is believed to be the
inspiration for the original caduceus. It was used as a pro-
motional sign for physicians of that period.

Cage, John (1912–1992)
The American avant-garde composer perhaps best known
for the quietest piece of music ever written. His piano
composition 4 ′33″ calls for the player to sit in silence for
273 seconds—this being the number of degrees below

zero on the centigrade scale of absolute zero at which
molecular motion stops. 4 ′33″ was inspired by Cage’s
visit to Harvard University’s anechoic chamber about
which he wrote:

There is no such thing as empty space or empty
time. There is always something to hear or some-
thing to see. In fact, try as we might to make a
silence, we cannot. For certain engineering pur-
poses, it is desirable to have as silent a situation as
possible. Such a room is called an anechoic cham-
ber, its walls made of special materials, a room with-
out echoes. I entered one at Harvard University . . .
and heard two sounds, one a high and one a low.
When I described them to the engineer in charge, he
informed me that the high one was my nervous sys-
tem and the low one was my blood circulation.

Cage’s 4 ′33″ breaks traditional boundaries by shifting
attention from the stage to the audience and even beyond
the concert hall. The listener becomes aware of all sorts of
sound, from the mundane to the profound, from the
expected to the surprising, from the intimate to the cosmic:
shifting in seats, riffling programs, breathing, a creaking
door, passing traffic, a recaptured memory. Is sitting quietly
alone for 273 seconds equivalent to a private performance
(and audience) of the piece? Or, in the final analysis, is it all
pretentious nonsense? In his essay on “Nothing” Martin
Gardner wrote: “I have not heard 4 ′33″ performed, but
friends who have tell me it is Cage’s finest composition.”

Caesar cipher
The simplest and oldest known type of substitution
cipher, attributed to Julius Caesar, who used it to send
government messages. In it, each letter in the alphabet is
replaced by another letter using a predefined rule that
shifts the alphabet a uniform amount to the right or left.
For example, a shift of three units to the right, would turn
the “This is secret” into “Wklv lv vhfuhw.”

cake-cutting
How can a group of people cut up a cake so that each gets
what they consider to be a fair share? In its modern math-
ematical form, this classic problem of fair division dates
from World War II, when Hugo Steinhaus tackled it using
a game theory approach.[315] Any number of “players” are
allowed. They agree on rules for dividing the cake, and
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then everyone follows those rules. In the end, each player
must get what he or she perceives to be a fair share. In the
simplest case, involving just two people, there is an easy,
well-known strategy: one cuts, the other chooses. Can this
method be extended to three people? Can it be extended
so that each person, according to his own judgment,
receives the biggest piece? Steinhaus was able to prove that
a so-called envy-free division, where everyone believes they
got the best deal exists in every case, for any number of
players. However, it was left for others to find actual algo-
rithms that worked for three or more players.

A three-person envy-free method was first devised by
John Selfridge and John Conway. Suppose the players are
called Alice, Bob, and Carol. The method goes like this:
(1) Alice cuts the cake into what she thinks are thirds. (2)
Bob trims one piece to create a two-way tie for largest, and
sets the trimmings aside. (3) Carol picks a piece, then Bob,
then Alice. Bob has to take a trimmed piece if Carol does
not. Call the person who took the trimmed piece T, and
the other (of Bob and Carol) NT. (4) To deal with the
trimmings, NT cuts them into what she thinks are thirds.
(5) The players pick pieces in this order: T, Alice, NT. The
key to the success of the Selfridge-Conway strategy is that
for the trimmings, Alice has an “irrevocable advantage”
with respect to T, since Alice will never envy T even if T
gets all the trimmings. Thus Alice can pick after T and
allow the method to end in a finite number of steps.

For four or more cake-cutters, envy-free solutions are
very complex and can take arbitrarily long to resolve. How-
ever, a general solution of the problem of fair, envy-free
division was eventually found in 1992 by the Americans
Steven Brams, a political scientist at New York University,
and Alan Taylor, a mathematician at Union College in
Schenectady, New York.[51, 52] With two players, the first
player cuts the cake in half. With three players, the first
player cuts the cake into thirds. With four players, Brams
and Taylor showed, the first player, say Bob, cuts the cake
into five equal-looking pieces. He passes them to Carol,
who trims two at most to create a three-way tie for largest in
her eyes. She sets the trimmings aside and gives the five
pieces to Don, who trims one at most to create a two-way tie
for largest in his eyes. Alice, the fourth player, now selects
the piece she likes best. Choosing proceeds in the reverse
order from cutting, with the proviso that anyone who
trimmed one or more pieces must take one of them if any
are still available when it’s his or her turn to choose. The
extra piece to begin with assures that no player gets second-
best. If someone takes a piece she likes before it’s her turn to
choose, an equivalent piece or better always remains on the
table. According to a formula Brams and Taylor developed,
Bob must cut the cake into at least 2(n − 2) + 1 pieces at the start.
This amounts to nine pieces for five players, 17 pieces for
six, and so on. Bob has to cut all these extra pieces to make

sure that, when he finally gets to choose at the end, there
will be a piece left that hasn’t been either trimmed or cho-
sen by one of the many other players. With 22 players, Bob
has to divide the cake into over a million pieces—small
crumbs of comfort in the quest for a fairer world.[268]

Calabi-Yau space
A type of mathematical space that enters into string the-
ory, where the geometry of the universe is held to consist
of at least 10 dimensions—the four familiar dimensions of
space-time and six compact dimensions of Calabi-Yau
space. These extra dimensions are so tightly curled up
that they aren’t noticed. Although the main application
of Calabi-Yau spaces is in theoretical physics, they are
also interesting from a purely mathematical standpoint.

calculus

The calculus is the greatest aid we have to the applica-
tion of physical truth in the broadest sense of the word.

—William Fogg Osgood (1864–1943)

The branch of mathematics that deals with (1) the rate of
change of quantities (which can be interpreted as the
slopes of curves), known as differential calculus, and (2) the
length, area, and volume of objects, known as integral 
calculus. Calculus was one of the most important de-
velopments in mathematics and also in physics, much 
of which involves studying how quickly one quantity
changes with respect to another. It is no coincidence that
one of the founders of calculus was the brilliant English
physicist Isaac Newton; another was Gottfried Leibniz.
Although students nowadays learn differential calculus
first, integral calculus has older roots.

calculus of variations
Calculus problems, especially differentiation and maxi-
mization, that involve functions on a set of functions of
a real variable. An example is to find the shape of a cable
suspended from both ends.

calendar curiosities
The earliest event in human history for which a definite
date is known is a battle between the Lydians (allies of the
Greek Spartans) and the Medes (ruled by the Persian king
Cyrus) who had been locked in a war for five years. As the
two sides faced each other for a crucial daytime con-
frontation, a solar eclipse occurred. This was taken as a
sign of the gods’ disapproval and the Lydians and Medes
agreed to end the fighting then and there. The dates of
solar eclipses can be figured out with great accuracy, and
this one is known to have taken place on May 28, 586 B.C.

Much less certain is the birth date of Christ. It was not
until A.D. 440 that Christmas was celebrated on Decem-
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ber 25. This date was chosen because it coincided with
the birth date of Mithras, the Persian sun-god, and was
close to the pagan festival of Yule. In A.D. 534, Dionysius
Exiguus (also known as Dennis the Little) created the sys-
tem, still used today, of counting the years from the birth
of Christ. Unfortunately, he slipped up in his calcula-
tions. No one knows exactly when Jesus was born, but it
was probably around 6 B.C. and certainly before the
death of Herod the Great in 4 B.C.

As for the future, there’s no shortage of predictions
about the end of the world. According to the Mayan
“long count” linear calendar, it will happen on June 5,
2012. Other calendric curiosities: February 1865 is the
only month in recorded history not to have a full moon,
and months that begin on a Sunday will always have a
Friday the 13th.

Caliban
A pseudonym of Hubert Phillips.

Caliban puzzle
A logic puzzle in which one is asked to infer one or more
facts from a set of given facts.

cannonball problem
The mathematical analysis of stacks of cannonballs (or of
spheres in general) that has its roots in a question posed
by Sir Walter Raleigh, explorer, introducer of the potato
and tobacco to Britain, and part-time pirate on the high
seas. Raleigh asked his mathematical assistant, Thomas
Harriot, how he could quickly figure out the number of
cannonballs in a square pyramidal stack without having
to count them individually. Harriot solved this problem
without difficulty. If k is the number of cannonballs
along the side of the bottom layer, the number of can-
nonballs in the pyramid n is equal to 1⁄6 k(1 + k)(1 + 2k).
For example, if k = 7, n = 420. A more specific form of the
cannonball problem asks what is the smallest number of
balls that can first be laid out on the ground as an n × n

cannonball problem Cannonballs stacked in Narbonne, France. Australia National University
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square, then piled into a square pyramid k balls high? In
other words, what is the smallest square number that is
also a square pyramidal number? This answer is the
smallest solution to the Diophantine equation

1⁄6 k(1 + k)(1 + 2k) = n 2

and turns out to be k = 24, n = 70, corresponding to 4,900
cannonballs. The ultimate form of the cannonball prob-
lem is to ask if there are any other, larger solutions. In
1875 Edouard Lucas conjectured that there weren’t, and
in 1918 G. N. Watson proved that Lucas was right.[345]

Returning to Elizabethan times, Thomas Harriot’s in-
terest in spheres extended far beyond piles of cannon-
balls. Harriot was an atomist, in the classical Greek sense,
and believed that understanding how spheres pack
together was crucial to understanding how the basic con-
stituents of nature are arranged. Harriot also carried out
numerous experiments in optics and was far ahead of his
time in this field. So when, in 1909, Johannes Kepler
wanted some advice on how to give his own theories on
optics a stronger scientific underpinning who better to
turn to than the Englishman? Harriot supplied Kepler
with important data on the behavior of light rays passing
through glass, but he also stimulated the German’s inter-
est in the sphere-packing problem. In response, Kepler
published a little booklet titled The Six-Cornered Snowflake
(1611) that would influence the science of crystallogra-
phy for the next two centuries and that contained what
has come to be known as Kepler’s conjecture about the
most efficient way to pack spheres.

canonical form
A form of any given polyhedron distorted so that every
edge is tangent to the unit sphere and the center of grav-
ity of the tangent points is the origin.

Cantor, Georg Ferdinand Ludwig 
Philipp (1845–1918)
A Russian-born German mathematician who founded set
theory and introduced the concept of transfinite num-
bers. His shocking and counterintuitive ideas about
infinity drew widespread criticism before being accepted
as a cornerstone of modern mathematical theory.

Cantor was 11 when his family moved from St. Peters-
burg to Germany. Despite attempts to push him into the
more lucrative field of engineering, he eventually won his
father’s approval to study math at the Polytechnic of
Zurich. The following year, 1863, his father died and Can-
tor switched to the University of Berlin where he studied
under some of the greats of the day, including Karl Weier-
strass and Leopold Kronecker. After receiving his doc-
torate in 1867, he had trouble finding a good job and was
forced to accept a position as an unpaid lecturer and later

as an assistant professor at the backwater University of
Halle. In 1872, he achieved his first breakthrough—and a
promotion—by proving that if a function is continuous
(in other words, its graph is smooth) throughout an inter-
val, it can be represented by a unique trigonometric series.
This work, suggested to him by his colleague Heinrich
Heine, was crucial because it led Cantor to think about
the relations between points, represented by real num-
bers, that make up an unbroken line—the so-called contin-
uum. Cantor realized that irrational numbers can be
represented as infinite sequences of rational numbers, so
that they can be understood as geometric points on the
real-number line, just as rational numbers can. He was
now in uncharted territory and at odds with mathematical
orthodoxy, which frowned on the idea of actual infinity;
however, he found like-minded friends in Richard
Dedekind and, later, Gösta Mittag-Leffler.

In 1873 to 1874 Cantor proved that the rational num-
bers could be paired off, one by one, with the natural
numbers and were therefore countable, but that there was
no such one-to-one correspondence with the real num-
bers. He then went on to show, incredibly, that there are
exactly the same number of points on a short line as there
are on an indefinitely long line, or on a plane, or in any
mathematical space of higher dimensions. On this, he
wrote to Dedekind: “I see it, but I don’t believe it!”

By 1883, Cantor had abandoned his earlier reticence
about dealing with irrationals only as sequences of ratio-
nals and started to think in terms of a new type of 
number—the transfinite numbers. The sets of natural
numbers and of real numbers were, he reasoned, just two
elements of a series of different kinds of infinity. This dra-
matic extension of the number system to allow for legiti-
mate mathematics of the infinite was violently opposed.
Henri Poincaré said that Cantor’s theory of infinite sets
would be regarded by future generations as “a disease
from which one has recovered.” Kronecker went further
and did all he could to ridicule Cantor’s ideas, suppress
publication of his results, and block Cantor’s ambition of
gaining a position at the prestigious University of Berlin.
In the spring of 1884 Cantor suffered the first of several
attacks of depression, exacerbated if not induced by the
negative reaction of his contemporaries. In between these
attacks, he published further results but was increasingly
troubled by his failure to prove the continuum hypoth-
esis—his belief that the order of infinity of the real num-
bers came next after that of the natural numbers.
Although his later years were spent in and out of a sana-
toria, he lived long enough to see his ideas on set theory
vindicated and be described by David Hilbert as “the
finest product of mathematical genius and one of the
supreme achievements of purely intellectual human
activity.”
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Cantor dust
Also known as the Cantor set, possibly the first pure frac-
tal ever found. It was detected by Georg Cantor around
1872. To produce Cantor dust, start with a line segment,
divide it in three equal smaller segments, take out the
middle one, and repeat this process indefinitely. Al-
though Cantor dust is riddled with infinitely many gaps,
it still contains uncountably many points. It has a fractal
dimension of log 2/log 3, or approximately 0.631. See
also Sierpinski carpet.

cap
The symbol ! used to denote the union between two sets.

Cardano, Girolamo (1501–1570)
A celebrated Renaissance mathematician, physician, as-
trologer, and gambler, whose writings on the use of neg-
ative numbers are the earliest known in Europe. As a
physician, he gave one of the first clinical descriptions of
typhoid fever. The illegitimate child of a mathematically
gifted lawyer who was a friend of Leonardo da Vinci, he
entered the University of Pavia in 1520 and later studied
medicine at Padua. His eccentric and confrontational
style earned him few friends, and he had trouble finding
work. Eventually, he won a reputation as a physician and
his services were highly valued at the courts.

Today, Cardano is remembered mostly for his achieve-
ments in algebra. He published the solutions to the quartic
and cubic equations in his book Ars magna (1545). The
solution to the cubic was communicated to him by Nic-
coló Tartaglia (who later claimed that Cardano had sworn
not to reveal it, and became embroiled with Cardano in a
decade-long fight), and the quartic was solved by Cardano’s
student Lodovico Ferrari. Both were acknowledged in the
foreword of the book. Cardano was notoriously short of
money and kept himself afloat by being an accomplished
gambler and chess player. A book by him about games of
chance, Liber de Ludo Aleae (Book on games of chance),
written in the 1560s but published posthumously in 1663,

contains the first systematic treatment of probability the-
ory, as well as a section on effective cheating methods.
Cardano invented several mechanical devices including the
combination lock, the Cardano suspension (consisting of
three concentric circles that allow a supported compass to
rotate freely), and the Cardan shaft, which allows the trans-
mission of rotary motion at various angles and is used in
vehicles to this day. He made several contributions to
hydrodynamics and claimed that perpetual motion is
impossible, except in celestial bodies. He published two
encyclopedias of natural science that contain a wide variety
of inventions, facts, and occult superstitions.

Cardano led a beleaguered life. His elder and favorite
son was executed in 1560 after he confessed to having poi-
soned his mercenary, cuckolding wife. Cardano’s daughter
was allegedly a prostitute who died from syphilis, prompt-
ing him to write a treatise about the disease. His younger
son was a gambler who stole money from him. And Car-
dano himself was accused of heresy in 1570 because he
computed the horoscope of Jesus Christ. Apparently, his
own son contributed to the prosecution. Cardano was
arrested and had to spend several months in prison, then
was forced to abjure and had to give up his professorship.
He moved to Rome, received a lifetime annuity from Pope
Gregory XIII, and finished his not-uneventful autobiogra-
phy. He died on the day he had (supposedly) astrologically
predicted. See also Chinese rings.

Cardan’s rings
See Chinese rings.

cardinal number
A number, often called simply a cardinal, that is used to
count the objects or ideas in a set or collection: 0, 1,
2, . . . , 83, and so on. The cardinality of a set is just the
number of elements the set contains. For finite sets this is
always a natural number. To compare the sizes of two sets,
X and Y, all that’s necessary is to pair off the elements of X
with those of Y and see if there are any left over. This con-
cept is obvious in the case of finite sets but leads to some
strange conclusions when dealing with infinite sets (see
infinity). For example, it is possible to pair off all the nat-
ural numbers with all the even numbers, with none left
over; thus the set of natural numbers and the set of even
numbers have the same cardinality. In fact, an infinite set
can be defined as any set that has a proper subset of the
same cardinality. Every countable set that is infinite has a
cardinality of aleph-null; the set of real numbers has car-
dinality aleph-one. See also ordinal number.

cardioid
A heart-shaped curve first studied in 1674 by the Dan-
ish astronomer Ole Römer who was trying to find the

Cantor dust.
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best shape for gear teeth; the curve appears to have
been named by Giovanni Salvemini de Castillon
(1708–1791). When a circle rolls around another circle
of the same size, any point on the moving circle traces
out a cardioid. The Greeks used this fact when attempt-
ing to describe the motions of the planets. The car-
dioid is also the envelope of all circles with centers
on a fixed circle, passing through one point on the
fixed circle. In polar coordinates, it has the equation
r = 2a(1 − cosθ). It can also be described as an epi-
cycloid with one cusp.

cards
The standard deck of 52 cards can be ordered in 52! (see
factorial), or 8.065817517094 × 1067 ways. There are var-
ious ways to shuffle cards in order to randomize them
or to perform tricks with them. Each of the four kings in
a deck represents a great leader from history: Charle-
magne (hearts), Alexander the Great (clubs), Julius Cae-
sar (diamonds), King David (spades). The king of hearts
is the only one without a moustache. See also black-
jack.

Carmichael number
Also known as an absolute pseudoprime, a number n that
is a Fermat pseudoprime to any base, that is, it divides
(an − a) for any a. Another way of saying this is that a
Carmichael number is actually a composite number
even though Fermat’s little theorem suggests it is
probably a prime number. (Fermat’s little theorem says

that if P is a prime number, then for any number a,
(aP − a) must be divisible by P. Carmichael numbers sat-
isfy this condition to any base despite being compos-
ite.) There are only seven Carmichael numbers under
10,000 (they are 561, 1,105, 1,729, 2,465, 2,821, 6,601,
and 8,911), and less than a quarter of a million of them
under 1016. Nevertheless, in 1994 it was proved that
there are infinitely many of them. All Carmichael num-
bers are the product of at least three distinct primes, for
example, 561 = 3 × 11 × 17.

Carroll, Lewis (1832–1898)
The pen name of Charles Lutwidge Dodgson (obtained
by anglicizing the Latin translation, “Carolus Lodovi-
cus,” of his first two names), an English mathematician,
logician, and writer. Carroll was born at the Old Parson-
age, Newton-by-Daresbury, Cheshire, his father being
the vicar of All Saints Church, Daresbury. There is a
commemorative window in the church, and a “Wonder-
land” weathervane, showing the Mad Hatter, the White
Rabbit, and Alice, on the local primary school. Carroll
was educated at Rugby School (the student mathematics
society there is still called the Dodgson Society in his
honor) and then at Christ Church, Oxford, at which col-
lege he was to spend the rest of his life, employed mainly
as a lecturer.

Carroll’s most famous book, Alice’s Adventures in
Wonderland (1865), grew out of a story he told on the

cardioid A cardioid curve spun by thread on a computer
loom. Jos Leys www.josleys.com

Carroll, Lewis Lewis Carroll’s Chess Wordgame, a game
based on notation in Carroll’s diaries with rules devised by
Martin Gardner. Kadon Enterprises, Inc., www.gamepuzzles.com
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hot summer afternoon of July 4, 1862, when out rowing
with the three young daughters of the Greek scholar 
H. G. Liddell, dean of Christ Church. Alice, named
after Alice Liddell (later Hargreaves, 1852–1934), con-
tinued her adventures in Through the Looking-Glass
(1871). Carroll wrote other books for children, includ-
ing a long poem, “The Hunting of the Snark” (1876)
and published several mathematical works, but was not
distinguished academically. He stammered badly, never
married, and seemed to find greatest pleasure in the
company of little girls, with whom he lost his shyness.
He was also an amateur pioneer in photography and an
inventor of puzzles, games, ciphers, and mnemon-
ics.[57–59] Carroll was a master of fantasy and his stories
have their own logic. Carroll used puns and coined
neologisms, including what he called “portmanteau
words” like chortle (combining chuckle and snort). He
played games with idioms, using such expressions as
“beating time” (to music) in a literal sense. He reshaped
such animals of fable or rhetoric as the Gryphon, the
March Hare (said to have been inspired by a carved hare
carrying a satchel located at St. Mary’s Church, Beverly,
Humberside, where Carroll visited), and the Cheshire
Cat, and invented new ones, including the Bander-
snatch and the Boojum.

CARROLLIAN QUOTES

From Alice’s Adventures in Wonderland:

• “The different branches of Arithmetic—Ambition,

Distraction, Uglification, and Derision.”

• “Then you should say what you mean,” the March

Hare went on.

“I do,” Alice hastily replied; “at least I mean

what I say, that’s the same thing, you know.”

“Not the same thing a bit!” said the Hatter.

“Why, you might just as well say that ‘I see what I

eat’ is the same thing as ‘I eat what I see!’ ”

• “Take some more tea,” the March Hare said to

Alice, very earnestly.

“I’ve had nothing yet,” Alice replied in an

offended tone, “so I can’t take more.”

“You mean you can’t take less,” said the Hatter.

“It’s very easy to take more than nothing.”

From The Hunting of the Snark:

• “What I tell you three times is true.”

From Alice through the Looking Glass

• “Can you do addition?” the White Queen asked. 

“What’s one and one and one and one and one

and one and one and one and one and one?”

“I don’t know,” said Alice. “I lost count.”

• “It’s very good jam,” said the Queen.

“Well, I don’t want any to-day, at any rate.”

“You couldn’t have it if you did want it,” the

Queen said. “The rule is jam tomorrow and jam

yesterday but never jam to-day.”

“It must come sometimes to “jam to-day,” Alice

objected.

“No it can’t,” said the Queen. “It’s jam every

other day; to-day isn’t any other day, you know.”

“I don’t understand you,” said Alice. “It’s dread-

fully confusing.”

• “When I use a word,” Humpty Dumpty said, in a

rather scornful tone, “it means just what I choose it

to mean—neither more nor less.”

“The question is,” said Alice, “whether you can

make words mean so many different things.”

“The question is,” said Humpty Dumpty, “which

is to be master—that’s all.”

Cartesian geometry
See analytical geometry.

Cartesian coordinates
An ordered set of real numbers that defines the position
of a point in terms of its projection onto mutually per-
pendicular number lines. In the plane, each point is
defined by two such projections, one onto the x-axis and

PUZZLES

Here are a few examples of puzzles invented by 

Carroll:

1. You are given two glasses. One contains 50

tablespoons of milk, the other 50 tablespoons 

of water. Take one tablespoon of milk and mix it

with the water. Now take one tablespoon of the

water/milk mixture and mix it with the pure milk

to obtain a milk/water mixture. Is there more

water in the milk/water mixture or more milk in

the water/milk mixture?

2. If you paint the faces of a cube with six different

colors, how many ways are there to do this if

each face is painted a different color and two col-

orings of the cube are considered equivalent if

you can rotate one to get the other? What if we

drop the restriction that the faces be painted dif-

ferent colors?

3. Make a word-ladder from FOUR to FIVE. (Every

step in a word ladder differs from the previous

step in exactly one letter and each step in the lad-

der is an English word.)

4. Why is a raven like a writing desk?

Solutions begin on page 369.
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one onto the y-axis, and is written as an ordered pair of
real numbers (x, y). The same system works equally in
spaces of three or more dimensions.

Cartesian oval
A curve that actually consists of two ovals, one inside the
other. It is the locus of a point whose distances s and t from
two fixed points S and T satisfy the equation s + mt = a.
When c is the distance between S and T then the curve can
be expressed in the form:

((1 − m 2)(x 2 + y 2) + 2m 2cx + a2 − m 2c 2)2 = 4a 2(x 2 + y 2)

The curves were first studied by René Descartes in 1637
and are sometimes called the ovals of Descartes; they were
also investigated by Isaac Newton in his classification of
cubic curves. If m = !1, then the Cartesian oval is a cen-
tral conic. If m = a/c, then it becomes a limaçon of Pas-
cal, in which case the inside oval touches the outside one.
Cartesian ovals are anallagmatic curves.

Cassinian ovals
Also known as Cassini’s ovals, a family of curves, each
member of which is defined as follows: given two points
A and B and a constant c 2, the locus of points P with
PA × PB = c 2. The locus has the equation (x 2 + y 2)2 −
2a 2(x 2 − y 2)2 − a 4 + c 4 = 0, where a = AB. Equivalently,
Cassinian ovals can be thought of as the set of curves
produced when a circular torus is sliced at every possi-
ble point parallel to its axis. If c = a, then the curve is
a special case known as the lemniscate of Bernoulli
(a figure-eight type curve). The ovals are named after
the Italian-born astronomer Giovanni Cassini (1625–
1712) who first investigated them in 1680 while study-
ing the relative motions of Earth and the Sun. Cassini

thought that the Sun traveled round Earth on one of
these curves (rather than the ellipse, as correctly pro-
posed in Kepler’s heliocentric scheme), with Earth at
one focus.

casting out nines
A method for checking arithmetic that uses the idea of
the digital root of a number. Let the digital root of a
number n be r(n); for example, r(7,586) = 8. For any two
numbers a and b: r(a + b) = r(r(a) + r(b)) and r(a × b) =
r(r(a) × r(b)). These rules allow checks on addition and
multiplication as the following examples show. Does
7,586 + 9,492 = 16,978? r(r(7,586) + r(9,492)) = r(8 + 6) =
5; r(16,978) = 4; so the sum given is incorrect. Does
7,586 × 9,492 = 72,006,312. r(r(7,586) × r(9,492)) =
r(8 × 6) = r(48) = 3; r(72,006,312) = r(21) = 3; which sug-
gests that the product given is likely to be correct. The
name “casting out nines” comes from the fact that nines
need not be included in the calculation of the digital
roots, since they have no effect on the final result. This a
direct outcome of the fact that we use a decimal number
system. If we calculated instead in octal (base eight), say,
then the process would be one of “casting out sevens.”
This kind of checking will pick up most errors, but not
all. For example, an interchange of two digits will not be
detected, nor will replacing a nine by a zero or vice versa.
The method appears in the work of ninth-century Arab
mathematicians but may have originated earlier with the
Greeks and, possibly, the Hindus.

Catalan number
Any number, un, from the Catalan sequence defined by

un = (2n)! / (n + 1)!n!.

It begins: 1, 2, 5, 14, 42, 132, 429, 1,430, 4,862, 16,796,
58,786, 208,012, 742,900, . . . . The values of un represent
the number of ways a polygon with n + 2 sides can be cut
into n triangles using straight lines joining vertices (see
vertex). Catalan numbers are named after the Belgian
mathematician Eugène Catalan (1814–1894). They also
arise in other counting problems, for example in deter-
mining how many ways 2n beans can be divided into two
containers if one container can never have less than the
second.

Catalan solid
A polyhedron that is a dual of an Archimedean solid.
(A dual of a polyhedron is obtained by replacing each
face with a vertex, and each vertex with a face.) Catalan
solids are named after the Belgian mathematician Eugène
Catalan (1814–1894) who first described them in 1865.
See also Platonic solid and Johnson solid. (See table,
“Catalan solids.”)

Cassinian ovals The many different ways to slice a dough-
nut. Xah Lee, www.xahlee.org
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Catalan Solids

Corresponding

Name Archimedean Solid

Triakis tetrahedron Truncated tetrahedron

Rhombic dodecahedron Cuboctahedron

Triakis octahedron Truncated cube

Tetrakis hexahedron Truncated octahedron

Deltoidal icositetrahedron Small rhombicubocta-
hedron

Disdyakis dodecahedron Great rhombicubocta-
hedron

Pentagonal icositetrahedron Snub cube

Rhombic triacontahedron Icosidodecahedron

Triakis icosahedron Truncated dodecahedron

Pentakis dodecahedron Truncated icosahedron

Deltoidal hexecontahedron Rhombicosidodeca-
hedron

Disdyakis triacontahedron Great rhombicosidodeca-
hedron

Pentagonal Snub dodecahedron
hexecontahedron

Catalan’s conjecture
The hypothesis, put forward by the Belgian mathemati-
cian Eugène Catalan (1814–1894) in 1844, that 8 (= 23)
and 9 (= 32) are the only pair of consecutive powers. In
other words, the Catalan equation for prime numbers p
and q and positive integers x and y

x p − y q = 1

has only the one solution

32 − 23 = 1.

In 1976 R. Tijdeman took the first major step toward
showing this is true by proving that for any solution, y q is
less than e to the power e to the power e to the power e to
the power 730 (a huge number!). Since then, this bound
has been reduced many times, and it is now know that the
larger of p and q is at most 7.78 × 1016 and the smaller is at
least 107. On April 18, 2002, the Romanian number theo-
rist Preda Mihailescu sent a manuscript to several mathe-
maticians with a proof of the entire conjecture together
with an analysis by Yuri Bilu. It is expected that as soon as
this work is completely reviewed by other mathematicians
that Catalan’s conjecture will have been proved.[266]

Solutions to Catalan’s conjecture and Fermat’s last
theorem are special cases of the Fermat-Catalan equation:

Catalan solid Two of the Catalan solids: the rhombic tricontahedron (right) and the disdyakistriacontahedron (left). Robert Webb,

www.software3d.com; created using Webb’s Stella program
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x p + y q = z r,

where x, y, and z are positive, coprime integers and the
exponents are all primes with

1/p + 1/q + 1/r ≤ 1.

The Fermat-Catalan conjecture is that there are only finitely
many solutions to this system. These solutions include:

1p + 23 = 32 ( p ≥ 2); 25 + 72 = 34

132 + 73 = 29;

338 + 1,549,0342 = 15,6133

and 438 + 96,2223 = 30,042,9072.

Catalan’s constant
A constant that crops up regularly in combinatorial prob-
lems, especially in the evaluation of certain infinite series
and integrals. For example, it is equal to

∫1
0 arctan(x) / x dx, and

1 − 1⁄32 + 1⁄52 − 1⁄72 + 1⁄92 − . . .

It is also the solution to the following problem as n
becomes arbitrarily large: If you have a 2n × 2n checker-
board and a supply of 2n 2 dominoes that are just large
enough to cover two squares of the checkerboard, how
many ways are there to cover the whole board with the
dominoes? Catalan’s constant has the value 0.915965 . . . ;
it is not known if it’s an irrational number.

catastrophe theory
A theory, developed by the French mathematician René
Thom (1923–2003), that attempts to explain the behav-
ior of complex dynamical systems by relating it to topol-
ogy. The evolution of such systems consists of steady
continuous change interspersed with sudden major
jumps, or “catastrophes,” when the topology of the set
changes. Catastrophe theory has been applied, with vary-
ing degrees of success, to phenomena as diverse as earth-
quakes, stock market crashes, prison riots, and human
conflicts, at the personal, group, and societal level. The
theory was first developed by Thom in a paper published
in 1968 but became well known through his book Struc-
tural Stability and Morphogenesis (1972).[331] Many mathe-
maticians took up the study of catastrophe theory and 
it was in tremendous vogue for a while, yet it never
achieved the success that its younger cousin chaos theory
has because it failed to live up to its promise of useful
predictions. Late in his career, the surrealist Salvador Dali
painted Topological Abduction of Europe: Homage to René
Thom (1983), an aerial view of a seismically fractured
landscape juxtaposed with the equation that strives to
explain it.

catch-22
A situation in which a person is frustrated by a paradoxical
rule or set of circumstances that preclude any attempt to
escape from them. The name comes from the title of a
novel by Joseph Heller (1923–1999), based on his personal
experiences, about an American airman’s attempts to sur-
vive the madness of World War II. Heller wrote:

There was only one catch and that was Catch-22,
which specified that concern for one’s own safety in
the face of dangers that were real and immediate was
the process of a rational mind. Orr was crazy and
could be grounded. All he had to do was ask; and as
soon as he did, he would no longer be crazy and
would have to fly more missions. Orr would be
crazy to fly more missions and sane if he didn’t, but
if he was sane he had to fly them. If he flew them he
was crazy and didn’t have to; but if he didn’t want
to he was sane and had to.

category theory
The study of abstracted collections of mathematical
objects, such as the category of sets or the category of
vector spaces, together with abstracted operations send-
ing one object to another, such as the collection of func-
tions from one set to another or linear transformations
from one vector space to another.

catenary
The shape that a rope or telephone cable makes, under the
influence of gravity, when suspended between two points.
The word comes from the Latin catena, meaning “chain,”
and was first used by Christiaan Huygens while studying
the form of suspended chains. Galileo thought the shape
would be a parabola. In fact, near the vertex, a parabola
and a catenary do look very similar. When x is slightly
greater than three, however, the catenary begins to rapidly
outgrow the value of the parabola. The two shapes are
related in another way. If a parabola is rolled along a
straight line, the focus of the parabola moves along a cate-
nary curve. Surprisingly, too, if a bicycle with square (or
any polygon-shaped) wheels is ridden along a road made
of upturned catenaries the wheels will roll smoothly and
the rider will stay at the same height! The St. Louis Arch,
which is 192 meters wide at the base and 192 meters tall,
follows the form of a catenary, the exact formula for which
is displayed inside the arch: y = 68.8 cosh (0.01x − 1),
where cosh is the hyperbolic cosine function.

The general equation of a catenary can be written

y = k cosh(x/k),

where k is a constant, or, in terms of the exponential
function,
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y = k(e x/k + e−x/k)/2.

In the special case where k = 1, these reduce to

y = cosh(x) = (e x + e−x)/2.

In terms of a polynomial series

y = 0.5 (1 + x + x 2/2! + x 3/3! + x 4/4! + . . . + 1 − x + x 2/2!
− x 3/3! + x 4/4! − . . . )

= 1 + x 2/2! + x 4/4! + x 6/6! + . . . .

For small values of x the terms beyond x 2/2! are very
small, so that the equation closely approximates that of a
parabola, as we have already seen.

catenoid
The surface of revolution produced when a catenary
rotates about its central axis. The catenoid was first
described by Leonhard Euler in 1740 and is the oldest
known minimal surface (a shape of least area when
bounded by a given closed space). It is the minimal sur-
face connecting two parallel circles of unequal diameter
on the same axis; soap film between two circular rings
takes this form (see also bubbles). The catenoid is the

only known minimal surface that is also a surface of rev-
olution, and is one of only four minimal surfaces that
have the topological properties of being unbounded,
embedded, and non-periodic; the others are the simple
plane, the helicoid, and Costa’s surface.

cathetus
A line that is perpendicular to another line. Usually, it
refers to one of the lines in a right triangle that is not the
hypotenuse.

Cauchy, Augustin Louis, Baron (1789–1857)
A French mathematician who founded complex analysis
by discovering the Cauchy-Riemann equations and wrote
789 papers—an output surpassed only by Leonhard
Euler, George Cayley, and Paul Erdös. He coined the
name for the determinant and systematized its study and
gave nearly modern definitions of limit, continuity, and
convergence.

causality
The relationship between causes and effects. An event or
state of affairs A is the cause of an event B if A is the
reason that brings about the effect B. For instance, one
might say, “my pushing the gas pedal caused the car to
go faster.” An important question in philosophy and
other fields is how (and if) causes can bring about
effects. In a strict reading, if A causes B, then A must
always be followed by B. In this sense, for example,
smoking doesn’t cause cancer. In everyday usage, we
therefore often take “A causes B” to mean “A causes an
increase in the probability of B.” The establishment of
cause and effect, even with this relaxed reading, is noto-
riously difficult. The Scottish philosopher David Hume
held that causes and effects are not real, but instead are
imagined by our minds to make sense of the observation
that A often occurs together with or slightly before B.
All we can actually observe are correlations, not causa-
tions. This is also expressed in the logical fallacy, “corre-
lation implies causation.” For instance, the observation
that smokers have a dramatically increased lung cancer
rate doesn’t establish that smoking must be the cause of
that increased cancer rate: maybe there exists a certain
genetic defect which both causes cancer and a yearning
for nicotine.[194]

caustic
The envelope of rays of light reflected (or refracted) by a
given curve from a given point source of light; a catacaus-
tic results from reflection, a diacaustic from refraction.
Among the caustic curves of a circle are a lima, if the light
source is nearby, a nephroid, if the source is at infinity,
and a cardioid, if the source is on the circle.

catenary The catenary curve. © Jan Wassenaar, www.2dcurves.com
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Cavalieri’s principle
If two solids have the same height and the same cross-
sectional area at every level, then they have the same 
volume. This principle is named after the Italian mathe-
matician Bonaventura Cavalieri (1598–1647).

Cayley, Arthur (1821–1895)
A British mathematician who made important contribu-
tions to non-Euclidean geometry and the algebra of
matrices (see matrix). The former eventually found its way
into the study of the space-time continuum, the latter into
a formulation of quantum mechanics by the German
physicist Werner Heisenberg. Cayley was also far ahead of
his time in pioneering the idea of abstract groups.

Cayley number
See octonion.

Cayley’s mousetrap
A permutation problem invented by Arthur Cayley.
Write the numbers 1, 2, . . . , n on a set of cards and shuf-
fle the deck. Start counting using the top card. If the card
chosen does not equal the count, move it to the bottom
of the deck and continue counting forward. If the card
chosen does equal the count, discard the chosen card and
begin counting again at 1. The game is won if all cards are
discarded, and lost if the count reaches n + 1. The num-
ber of ways the cards can be arranged such that at least
one card is in the proper place for n = 1, 2, . . . , are 1, 1,
4, 15, 76, 455, . . . .

Cayley’s sextic
A sinusoidal spiral curve described by the Cartesian
equation

4(x 2 + y 2 − ax)3 = 27a 2(x 2 + y 2)2.

It was discovered by Colin Maclaurin but was first stud-
ied in detail by Arthur Cayley and named after him by 
R. C. Archibald in 1900.

ceiling
The largest value that something can take. The ceiling
function of a number x is the smallest integer that is not
smaller than x.

cell
(1) A three-dimensional object that is part of a higher-
dimensional object, such as a polychoron. A cell is
related to higher-dimensional objects in the way that a
face, or (two-dimensional) polygon, is related to higher-
dimensional objects. For example, a cell is to a Four-
dimensional polytope, or polychoron, what a face is to a
three-dimensional polytope, or polyhedron. Often poly-

topes are classified simply by how many cells they have.
For example, the tesseract has eight cells, each one of
which is a cube. (2) The fundamental spatial unit oper-
ated on by the rules of a cellular automaton during one
generation.

cellular automaton
An array of cells that evolves according to a set of rules
based on the states of surrounding cells; for example, a
cell might be “on” if its four neighbor cells (east, west,
north, and south) are also on. The entire array can self-
organize into global patterns that may move around the
screen. These patterns can be quite complex even though
they emerge from just a few very simple rules governing
the connections among the cells. Cellular automata are
the simplest models of spatially distributed processes.
They were first investigated by John von Neumann in
about 1952. Von Neumann incorporated a cellular model
into his “universal constructor” and also proved that an
automaton consisting of cells with four orthogonal
neighbors and 29 possible states would be capable of
simulating a Turing machine for some configuration of
about 200,000 cells. The best-known cellular automaton
is Life (see Life, Conway’s game of ). Another example is
Langton’s ant. The study of cellular automata and their
patterns has led to insights into the way structure is built
up in biological and other complex systems, and for this
reason forms part of the subject of artificial life.

celt
Also known as a rattleback, a simple ancient toy that
behaves in a very counterintuitive way. When spun one
way about its vertical axis, the celt spins for a long time.
When spun the other way, however, a wobble quickly sets
in that halts the rotation and then, incredibly, reverses it.
In his 1986 paper on the subject, the British physicist
Hermann Bondi wrote: “Many people, even trained sci-
entists, find it hard to understand that the behaviour of
the toy doesn’t violate the principle of conservation of
angular momentum.”[47] The celt’s remarkable antics stem
from three factors: a curved base that has two different
radii—one long radius for the lengthwise curve and one
shorter radius for the tighter curve across the width; axes
of symmetry that are skewed slightly from the principal
axes of inertia; and a different distribution of mass about
each of the two horizontal axes of inertia. To understand
how the celt can switch direction halfway through its per-
formance, think of the frictional force that acts at the
point of contact between the celt and the surface. One
component of the friction creates a torque (twisting
force) that tends to rotate the celt about its vertical axis.
The point of contact is moving all the time and the
torque changes. If the inertial and symmetrical axes coin-
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cided, the average torque over a single oscillation would
be zero. But for the celt, there’s a net torque in one direc-
tion, which reverses the angular momentum. See also
Tippee Top.

center of perspective
The point where the lines joining corresponding points
of two figures that are in perspective meet.

centillion
See large number.

central angle
The angle subtended at the center of a circle by an arc or
a chord; in other words, the angle between two radii.

centroid
For a triangle, the point of intersection of the medians.
For any other shape, the point where coordinates are the
average of the coordinates of the shape’s vertices (see ver-
tex). The centroid is the center of mass of a figure.

century
A period of 100 years. The original Latin centuria means
simply “one hundred” and was used to describe any col-
lection of 100 items. In the Roman army, a century was a
group of 100 men, each known as a centurion. One of the
few modern examples of “century” being used other than
to denote a period of time is in the game of cricket where
a batsman who scores 100 runs in an inning is said to
have “made a century.”

Ceva, Giovanni (1647–1734)
A Jesuit-trained Italian mathematician who specialized in
geometry. His greatest discovery, now known as Ceva’s
theorem, can be stated as follows. Given a triangle with
vertices (corners), A, B, and C and points D, E, and F on
the opposite sides, the lines AD, BE, and CF will inter-
sect at a single point if BD × CE × AF = DC × EA × FB.
The term cevian line was coined by French geometers
around the end of the eighteenth century to honor Ceva.
It is defined as any line joining a vertex of a triangle to a
point on the opposite side. The median, altitude, and
angle bisector are all examples of cevians. The perpen-
dicular bisector, however, in most cases, is not a cevian
because it doesn’t usually pass through a vertex.

chained arrow notation
See Conway’s chained arrow notation.

Chaitin, Gregory (1947–)
An American mathematician and computer scientist at
IBM’s T. J. Watson Research Center who is the chief

architect of a new subject known as algorithmic information
theory, which has profound consequences for our ideas
about randomness. In particular, because of the limita-
tions of computers and the programs they run, Chaitin
has shown that there is an inherent uncertainty or
unknowability in mathematics that is similar to the
uncertainty principle in physics. Although there are an
infinite number of mathematical facts, they are, for the
most part, unrelated to each other and impossible to tie
together with unifying theorems. His powerful message is
that most of mathematics is true for no particular reason;
math is true by accident. See Chaitin’s constant.

Chaitin’s constant
A real number, represented by capital omega (Ω) and also
known as the Halting probability, whose digits are distrib-
uted so randomly that no rule can be found to predict
them. Discovered by Gregory Chaitin, Ω is definable but
not computable. It has no pattern or structure to it what-
soever, but consists instead of an infinitely long string of
zeros and ones in which each digit is as unrelated to its pre-
decessor as one coin toss is to the next. Although called a
constant, it is not a constant in the sense that, for example,
pi is, since its definition depends on the arbitrary choice of
computation model and programming language. For each
such model or language, Ω is the probability that a ran-
domly produced string will represent a program that, when
run, will eventually halt. To derive it, Chaitin considered
all the possible programs that a hypothetical computer
known as a Turing machine could run, and then looked
for the probability that a program, chosen at random from
among all the possible programs, will halt. He eventually
showed that this halting probability turns Turing’s ques-
tion of whether a program ever stops into a real number,
somewhere between zero and one. He further showed that,
just as there are no computable instructions for deciding in
advance whether a computer will halt, there are also no
instructions for determining the digits of Ω. Omega is
uncomputable and unknowable: we don’t know its value
for any programming language and we never will. This is
extraordinary enough in itself, but Chaitin has found that
Ω permeates the whole of mathematics, placing funda-
mental limits on what we can know.

And Ω is just the beginning. There are more disturbing
numbers called Super-Omegas, whose degree of random-
ness is vastly greater even than that of Ω. If there were an
omnipotent computer that could solve the halting prob-
lem and evaluate Ω, this mega-brain would have its own
unknowable halting probability called Ω′. And if there
were a still more godlike machine that could find Ω′, its
halting probability would be Ω″. These higher Omegas, it
has been recently discovered, are not meaningless
abstractions. Ω′, for instance, gives the probability that
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an infinite computation produces only a finite amount of
output. Ω″ is equivalent to the probability that, during
an infinite computation, a computer will fail to produce
an output—for example, get no result from a computa-
tion and move on to the next one—and that it will do this
only a finite number of times. Omega and the Omega
hierarchy are revealing to mathematicians an unsettling
truth: the problems that we can hope ever to solve form
a tiny archipelago in a vast ocean of undecidability.[130]

Champernowne’s number
The first known normal number. It was discovered in
1933 by the English mathematician David G. Champer-
nowne and consists of a decimal fraction in which the
decimal integers are written down in increasing order:
0.12345678910111213 . . . . Champernowne’s number has
been proven to be a normal number in base 10 and also
to be an irrational number. However, although its digits
appear with equal frequency, the sequence of its digits are
not unpredictable. An example of a number whose se-
quence of digits is unpredictable is Chaitin’s constant.

chance
See probability theory.

change ringing

The art of change ringing is peculiar to the English,
and, like most English peculiarities, unintelligible
to the rest of the world. To the musical Belgian, for
example, it appears that the proper thing to do with
a carefully tuned ring of bells is to play a tune upon
it. By the English campanologist . . . the proper use
of the bells is to work out mathematical permuta-
tions and combinations.

—Dorothy L. Sayers, The Nine Tailors

The ringing of a set of bells in a precise relationship to
one another to produce a pleasing sound. Bells are num-
bered 1, 2, 3, 4, 5 . . . from lightest (highest-pitched) to
heaviest. After each sequence, or round, the order of the
bells is changed slightly in a predetermined way. With 5
bells, there are 5 × 4 × 3 × 2 × 1, or 120, possible changes,
which take about 4 minutes to ring. With 6, 7, or 8 bells,
the number of unique changes is 720, 5,040, and 40,320,
respectively. To produce pleasing variations in the sound,
bells are made to change places with adjacent bells in the
row, for example:

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7

These rows are the musical notation of change ringing.
No bell moves more than one place in the row at a time,
although more than one pair may change in the same

row. In order to ring a different row with each pull of the
rope, ringers have devised methods for changing pairs in
orderly ways. In ringing a method, the bells begin in
rounds, ring changes according to the method, and
return to rounds without repeating any row along the
way. These place changes produce musical patterns, with
the sounds of the bells weaving in and out. For example,
a “Plain Hunt Minimus” with four bells is rung as shown
in the diagram.

change ringing The “Plain Hunt Minimus” for four bells. The
sequences for bells 1 and 3 are shown by lines.
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Experienced ringers test and extend their abilities by
ringing peals: 5,000 or more changes without breaks or
repeating a row. Peals customarily last about three hours.
The first peal was rung in England in 1715. Chiming bells
(swinging them through a short arc using a rope and a
lever) goes well back into the Middle Ages, but it wasn’t
until the seventeenth century that ringers developed the
full wheel, which allowed enough control for orderly
ringing. In 1668 Fabian Stedman published Tintinnalogia
(The art of change ringing), containing all the available
information on systematic ringing. The theory of change
ringing set forth by Stedman has been refined in later
years but remains essentially unchanged today. Bells for
change ringing are hung in stout frames that allow the
bells to swing through 360°. Each bell is attached to a
wooden wheel with a handmade rope running around it
and takes about 2 seconds to rotate. The bells are
arranged in the frame so their ropes hang in a circle in the
ringing chamber below. Into each rope is woven a tuft of
brightly colored wool (a sally), which marks where the
ringer must catch the rope while ringing. Bells are rung
from the “mouth up” position. With a pull of the rope,
the bell swings through a full circle to the up position
again. With the next pull it swings back in the other
direction. The plot of Dorothy Sayers’s The Nine Tailors
(1934), considered one of her best works, revolves
around the art of change ringing.

chaos

We adore chaos because we love to produce order.
—M. C. Escher

A phenomenon shown by some dynamical systems,
which consists of a curious, infinitely complex pattern of
behavior that lies just beyond the edge of total order. A
system is chaotic if it is predictable in principle and yet is
unpredictable in practice over long periods because its
behavior depends very sensitively on initial conditions.
Despite this unpredictability, however, there are certain
constants, such as Feigenbaum’s constant, and certain
structures, such as chaotic attractors, that are fixed and
susceptible to analysis. The weather, the movements of a
metal pendulum moving over fixed magnets, and the
orbits of closely spaced moons are all examples of chaotic
systems. Although the ideas behind modern chaos theory
were actively studied at some level throughout most of
the twentieth century, the word as a mathematical term
dates only from an article in American Mathematical
Monthly in 1975 called “Period Three Implies Chaos.”

In everyday language, chaos has come to mean the
exact opposite of order. But the Greek root khaox means
“empty space” and this meaning still persists in archaic
usage where it refers to a canyon or abyss. The evolution

of the word to mean disorder seems to come from refer-
ence to the time before God created the universe. Empty
space was formless and the creation filled the emptiness
and established order. Mathematical chaos represents an
unexpected third state: a deterministic system subject to
simple rules that nevertheless displays infinitely complex
behavior.[135]

chaos tiles
See Penrose tiling.

chaotic attractor
Also known as a strange attractor, a type of attractor (i.e.,
an attracting set of states) in a complex dynamical sys-
tem’s phase space that shows sensitivity to initial condi-
tions. Because of this property, once the system is on the
attractor, nearby states diverge from each other exponen-
tially fast. Consequently, small amounts of noise are
amplified. Once sufficiently amplified the noise deter-
mines the system’s large-scale behavior and the system is
then unpredictable. Chaotic attractors themselves are
markedly patterned, often having elegant, fixed geometric
structures, despite the fact that the trajectories moving
within them appear unpredictable. The chaotic attractor’s
geometric shape is the order underlying the apparent
chaos. It functions in much the same way as someone
kneading dough. The local separation of trajectories cor-
responds to stretching the dough and the global attraction
property corresponds to folding the stretched dough back
onto itself. One result of the stretch-and-fold aspect of
chaotic attractors is that they are fractals; that is, some
cross section of them reveals similar structure on all scales.

character theory
The study of the traces (sums of the diagonal elements)
of the matrix representations of a group. The informa-
tion gained is listed in character tables, the properties of
which give insight into the group’s properties.

chess
A game of strategy for two players that probably origi-
nated in India, though the earliest documentary refer-
ences are in Chinese and Persian texts in about A.D. 600.
Each player has 16 pieces, either black or white, consist-
ing of eight pawns, two rooks (also known as castles), two
knights, two bishops, a queen, and a king. The object is
to lay siege to the opposing king in such a way that it can-
not escape attack—a position known as checkmate (from
the Persian phrase Shah Mat, meaning “the king is dead”).
There are 400 first-move combinations—20 for white × 20
for black (though only 64 of these are regarded as strong),
318,979,564,000 ways of playing the first four moves, and
169,518,829,100,544,000 trillion ways of playing the first
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10 moves. The total number of possible board configura-
tions is estimated at 10120; for comparison, that of Go is
generally put at about 10174.

A standard chessboard is a square plane divided into
64 smaller squares by straight lines at right angles. Origi-
nally, it wasn’t checkered (that is, made with its rows and
columns alternately of dark and light colors), and this
feature was introduced merely to help the eye in actual
play. In many puzzles based on chess the utility of check-
ering is questionable, and the board may be generalized
to any n × n size.

One of the first puzzles to use a chessboard was the
wheat and chessboard problem, posed in 1256 by the
Arabic mathematician Ibn Kallikan. Among the earliest
problems to involve chess pieces, proposed by Guarini di
Forli in 1512, asks how two white and two black knights
can be interchanged, using normal knight’s moves, if they
are placed at the corners of a 3 × 3 board. The unusual 
L-shaped movement of the knight is what makes one of
the best known chess puzzles, the knight’s tour, such a
challenge. Other standard puzzles, often called simply the
kings problem, the queens puzzle, the rooks problem,

the bishops problem, and the knights problem, ask for
the greatest number of each of these pieces that can be
placed on an 8 × 8 board or on a generalized n × n board
without attacking each other, and/or the smallest number
of each of these pieces that are needed to occupy or attack
every square. Fairy chess is any variant on the standard
game, which may involve a change in the form of the
board, the rules of play, or the pieces used. For example,
the normal rules of chess can be used but with a cylindri-
cal or Möbius band connection of the edges.

Chinese cross
See burr puzzle.

Chinese remainder theorem
If there are n numbers, a1 to an, that have no factors in
common (i.e., are pairwise relatively prime), then any
integer greater than or equal to 0 and less than the prod-
uct of all the numbers n can be uniquely represented by
a series consisting of the remainders of division by the
numbers n. For example, if a1 = 3 and a2 = 5, the Chinese
remainder theorem (CRT) says that every integer from 0

chess An illumination from the Cantigas de Santa Maria (a thirteenth-century collection of songs) showing a chess game in
progress.
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to 14 will have a unique set of remainders when divided
separately by (modulo) 3 and 5. Listing out all the possi-
bilities shows that this is true:

0 has a remainder of 0 modulo 3 and a remainder of 0
modulo 5.

1 has a remainder of 1 modulo 3 and a remainder of 1
modulo 5.

2 has a remainder of 2 modulo 3 and a remainder of 2
modulo 5.

3 has a remainder of 0 modulo 3 and a remainder of 3
modulo 5.

4 has a remainder of 1 modulo 3 and a remainder of 4
modulo 5.

5 has a remainder of 2 modulo 3 and a remainder of 0
modulo 5.

6 has a remainder of 0 modulo 3 and a remainder of 1
modulo 5.

7 has a remainder of 1 modulo 3 and a remainder of 2
modulo 5.

8 has a remainder of 2 modulo 3 and a remainder of 3
modulo 5.

9 has a remainder of 0 modulo 3 and a remainder of 4
modulo 5.

10 has a remainder of 1 modulo 3 and a remainder of
0 modulo 5.

11 has a remainder of 2 modulo 3 and a remainder of
1 modulo 5.

12 has a remainder of 0 modulo 3 and a remainder of
2 modulo 5.

13 has a remainder of 1 modulo 3 and a remainder of
3 modulo 5.

14 has a remainder of 2 modulo 3 and a remainder of
4 modulo 5.

CRT enables problems such as the following to be solved:
Find the two smallest counting numbers that will each
have the remainders 2, 3, and 2 when divided by 3, 5, and

7, respectively. It is said that the ancient Chinese used a
variant of this theorem to count their soldiers by having
them line up in rectangles of 7 by 7, 11 by 11, and so forth.
After counting only the remainders, they solved the associ-
ated system of equations for the smallest positive solution.

Chinese rings
One of the oldest known mechanical puzzles, the object
of which is to remove all n rings from a horizontal loop
of stiff wire, and/or put them back on the loop. On the
first move it is possible to take up to two rings off the left
end of the wire. One or both of those can then be slipped
through the wire loop (from top to bottom). If both are
removed then the fourth ring can be slipped over the
end. If just one of the first two is removed, then the next
step is to slip the third ring over the end. Subsequently,
rings must be put back on to the wire loop in order to
remove other rings, and this procedure is repeated over
and over again. In general, the minimum number of
moves needed is (2n + 1 − 2)/3 if n is even and (2n + 1 − 1)/3
if n is odd. For example, with seven rings the solution
takes 85 moves. Most of the solution is easy, as each
move normally involves going forward or back to the pre-
vious state. The key to a correct solution is the first step:
if n is even, you must remove two rings; if n is odd, you
must remove only one. The solution is similar to that of
the Tower of Hanoi. In fact, Edouard Lucas, who in-
vented the Tower of Hanoi, gave an elegant solution to
the Chinese rings that uses binary arithmetic.

Stewart Cullin, the noted nineteenth-century ethnolo-
gist, relates that the puzzle was invented by the famous
Chinese general Chu-ko Liang (A.D. 181–234), in the sec-
ond century, as a present to his wife so that, in trying to
solve it, she would have something to do while he was
away at the wars. However, this is anecdotal and its ori-
gins remain obscure. The earliest reference to it in Europe
may be in about 1500 in the form of Problem 107 of the
manuscript De Viribus Quantitatis by Luca Pacioli in
which the description appears: “Do Cavare et Mettere una
Strenghetta Salda in al Quanti Anelli Saldi, Difficil Caso”
(Remove and put a little bar joined in some joined rings,

Chinese rings An unusual
example of Chinese rings in
ivory, dating from the mid-
nineteenth century. Sue & Brian

Young/Mr. Puzzle Australia,

www.mrpuzzle.com.au
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difficult case). It was also mentioned by Girolamo Car-
dan in the 1550 edition of his book De Subtililate from
which comes the name Cardan’s rings, and was treated at
length in mathematical terms by John Wallis in about
1685. By the end of the seventeenth century, it had
become popular in many European countries. French
peasants used it to lock chests and called it baguenaudier,
or “time-waster.”

Chinese room
An argument first put forward by the American philoso-
pher John Searle (1932–) in 1980 in an attempt to show
that the human mind is not a computer and that the
Turing test is not adequate to prove that a machine can
have strong artificial intelligence (strong AI)—in other
words, can think in a humanlike way.[292] In the Chinese
room scenario, a person who understands no Chinese
sits in a room into which written Chinese characters are
passed. The person uses a complex set of rules, estab-
lished ahead of time, to manipulate these characters, and
pass other characters out of the room. The idea is that a
Chinese-speaking interviewer would pass questions writ-
ten in Chinese into the room, and the corresponding
answers would come out of the room in Chinese. Searle
maintains that if such a system could indeed pass a Tur-
ing test, the person who manipulated the symbols would
obviously not understand Chinese any better than he
did before entering the room.

Searle proceeds systematically to refute the claims of
strong AI by positioning himself as the one who manip-
ulates the Chinese symbols. The first claim is that a sys-
tem able to pass the Turing test understands the input
and output. Searle replies that as the “computer” in the
Chinese room, he gains no understanding of Chinese by
simply manipulating the symbols according to the for-
mal program (the complex translation rules). The opera-
tor in the room need not have any understanding of what
the interviewer is asking, or of the replies that he is pro-
ducing. He may not even know that there is a question-
and-answer session going on outside the room.

The second claim of strong AI to which Searle objects
is the claim that the system explains human understand-
ing. Searle asserts that since the system is functioning—in
this case passing the Turing Test—and yet there is no
understanding on the part of the operator, then the sys-
tem does not understand and therefore could not explain
human understanding.

chiral
Having different left-hand and right-hand forms; not
mirror symmetric. For example, the snub cube (one of the
Archimedean solids) is chiral, where as the ordinary
cube is not.

Chladni, Ernst Florens Friedrich (1756–1827)
A German lawyer, musician (he was born in Leipzig in
the same year as Mozart and died in the same year as
Beethoven), and amateur scientist who founded the sci-
ence of acoustics. While investigating musical tones, he
had the inspired idea of making the sounds visible in a
solid material. He spread fine sand over a glass or metal
plate and set it into vibration with the bow of a violin by
scraping the bow along one edge of the plate. The bow
alternately stuck and slipped in rapid succession on the
edge of the plate creating waves that moved across the
plate and were reflected from the edges. These reflected
waves became superimposed on the new waves coming
from the bow edge, resulting in symmetrical patterns of
nodal lines where the plate wasn’t moving. The type of
pattern produced on a Chladni plate depends on a vari-
ety of factors, including the point or points of support
and their location; the point where the bow touches the
plate; the frequency of the vibration, which is influenced
by the speed the bow; and the shape and other properties
of the plate itself.

chord
A straight line that joins two points on a curve. Most
commonly, chord is used to mean a straight line segment
joining, and included between, two points on a circle. In
this more restricted sense it first appears in English in
1551 in Robert Recorde’s The Pathwaie to Knowledge:
“Defin., If the line goe crosse the circle, and passe beside
the centre, then is it called a corde, or a stryngline.”

Some surprising results emerge from moving chords.
For example, take a chord in a circle C, and slide the
chord around the circle so that the midpoint of the chord
traces out a smaller concentric circle. Call the area
between the two circles A(C ). Now do the same thing
with a larger circle C ′ but with the same length chord. Is
A(C ′) larger or smaller than A(C )? Surprisingly, they are
the same. In other words A(C ) doesn’t depend on what
circle you start with, only the length of the chord. An
even more amazing fact is that if you slide a chord of
fixed length around any convex shape C so that the chord’s
midpoint traces out another figure D, the area between C
and D doesn’t depend on what shape you started with.

chromatic number
(1) In graph theory, the minimum number of colors
needed to color (the vertices of) a connected graph so
that no two adjacent vertices are colored the same. In the
case of simple graphs, this so-called coloring problem can
be solved by inspection. In general, however, finding the
chromatic number of a large graph (and, similarly, an
optimal coloring) is an NP-hard problem. (2) In topol-
ogy, the maximum number of regions that can be drawn
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on a surface in such a way that each region has a border
in common with every other region. If each region is
given a different color, each color will border on every
other color. The chromatic number of a square, tube, or
sphere, for example, is 4; in other words, it is impossible
to place more than four differently colored regions on
one of these figures so that any pair has a common
boundary. “Chromatic number” also indicates the least
number of colors needed to color any finite map on a
given surface. Again, this is 4 in the case of the plane,
tube, and sphere, as was proved quite recently in the solu-
tion to the four-color map problem. The chromatic
number, in both senses just described, is 7 for the torus,
6 for the Möbius band, and 2 for the Klein bottle. See
also Betti number.

chronogram
A phrase or sentence in which certain letters represent,
cryptically, a date, epoch, or, in rare cases, a non-date
number. For example, the chronogram “My Day Is
Closed In Immortality” commemorates the death of
Queen Elizabeth the First of England: the capital letters
can be rearranged to give MDCIII, or 1603, the year in
which she died.

Church, Alonzo (1903–1995)
An American logician and professor at Princeton Univer-
sity who was an early pioneer of theoretical computer sci-
ence. He is best known for his development, in 1934, of
the so-called lambda calculus, a model of computation,
and his discovery, in 1936, of an “undecidable problem”
within it. This result preceded Alan Turing’s famous
work on the halting problem, which also pointed out the
existence of a problem unsolvable by mechanical means.
Church and Turing then showed that the lambda calculus
and the Turing machine, which is used in the halting
problem, are equivalent in capability. They also demon-
strated a variety of alternative “mechanical processes for
computation” with equivalent computational abilities.
See also Church-Turing thesis.

Church-Turing thesis
A logical/mathematical postulate, independently arrived
at by Alan Turing and Alonzo Church, which asserts that
as long as a procedure is sufficiently clear-cut and
mechanical, there is some algorithmic way of solving it
(such as via computation on a Turing machine). Thus,
there are some processes or problems that are com-
putable according to some set of algorithms, and other
processes or problems that are not. A strong form of the
Church-Turing thesis claims that all neural and psycho-
logical processes can be simulated as computational
processes on a computer.

cipher
(1) A cryptographic system (see cryptography) in which
units of plain text of regular length, usually letters, are
arbitrarily transposed (see transposition cipher) or sub-
stituted (see substitution cipher) according to a prede-
termined code, or a message written or transmitted in
such a system. See also Caesar cipher and Beal cipher.
(2) The mathematical symbol (0) for zero.

circle
The set of all points in a plane at a given distance, called
the radius, from a fixed point, called the center. A circle is
a simple closed curve that divides the plane into an inte-
rior and exterior. It has a perimeter, called a circumference,
of length 2πr and encloses an area of πr 2. In coordinate
geometry a circle with center (x0, y0) and radius r is the set
of all points (x, y) such that:

(x − x0)2 + (y − y0)2 = r 2

“Circle” comes from the Latin circus, which refers to a
large round or rounded oblong enclosure in which the
famous Roman chariot races were held.

A line cutting a circle in two places is called a secant. The
segment of a secant bound by the circle is called a chord, and
the longest chord is that which passes through the center
and is known as a diameter. The ratio of the circumference to
the diameter of a circle is pi. The length of a circle between
two radii is called an arc; the ratio between the length of an
arc and the radius defines the angle between two radii in
radians. The area bounded by two radii and an arc is known
as a sector. A line touching a circle in one place is called a tan-
gent. Tangent lines are perpendicular to radii. In affine
geometry all circles and ellipses become congruent, and in
projective geometry the other conic sections join them. A
circle is a conic section with eccentricity zero. In topology
all simple closed curves are homeomorphic to circles, and
the word circle is often applied to them as a result. The three-
dimensional analog of the circle is the sphere, and the four-
dimensional analog is the hypersphere.

circle involute
The simplest kind of spiral to draw and understand. It is
the path that a goat, tethered to a post, would follow if it
walked around and around in the same direction, keep-
ing its tether taught until it wound its way to the center.
The radial distance between adjacent loops of the spiral is
equal to the circumference of the central circle. Except
for the innermost loop, the circle involute is hard to dis-
tinguish from the Archimedean spiral, though the two
curves are never identical.

circular cone
A cone whose base is a circle.
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circular helix
See helix.

circular prime
A prime number that remains prime on any cyclic rota-
tion of its digits. An example (in the decimal system) is
1,193 because 1,931, 9,311, and 3,119 are also prime.
Any one-digit prime is circular by default. In base ten,
any circular prime with two or more digits can only con-
tain the digits 1, 3, 7, and 9; otherwise when 0, 2, 4, 5, 6,
or 8 is rotated into the units place, the result can be
divided by 2 or 5. The only circular primes known, listing
just the smallest representative from each cycle, are: 2, 3,
5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1,193, 3,779,
11,939, 19,937, 193,939, 199,933, R19, R23, R317, R1031 and
possibly R49081. These last five are the known rep-unit
primes and probable primes. It’s generally believed that
there are infinitely many rep-unit primes, so there should
be infinitely many circular primes. But it’s very likely that
all circular primes not on the list above are rep-units.

circumcenter
The center of a circle that passes through the vertices (see
vertex) of a given polygon, usually a triangle. For a trian-
gle, it is the same as the point of intersection of the per-
pendicular bisectors of the three sides.

circumcircle
The circle that passes through all three vertices (see
vertex) of a given triangle. It is said to circumscribe the
triangle.

circumference
The distance around the outside of a circle. The word
comes the Latin circus (“circle”) and ferre (“to carry”), thus
means “to carry around.”

cissoid
Given a fixed point A and two curves C and D, the cis-
soid of the two curves with respect to A is constructed as
follows: pick a point P on C, and draw a line l through P
and A. This cuts D at Q. Let R be the point on l such that
AP = QR. The locus of R as P moves on C is the cissoid.
The name cissoid, meaning “ivy-shaped,” first appears in
the work of Geminus in the first century B.C.

A special case of this curve, now known as the cissoid of
Diocles, was first explored by Diocles in his attempt to
solve the classical problem of duplicating the cube.
Later investigators of the same curve include Pierre de
Fermat, Christiaan Huygens, John Wallis, and Isaac
Newton. The cissoid of Diocles is traced out by the ver-
tex of a parabola as it rolls, without slipping, on a second
parabola of the same size. It has the Cartesian equation

y 2 = x 3/(2a − x).

Interestingly, Diocles investigated the properties of the
focal point of a parabola in On Burning Mirrors (a similar
title appears in the works of Archimedes). The problem,
then as now, is to find a mirror surface such that when it
is placed facing the Sun, it focuses the maximum amount
of heat.

classification
The goal in a branch of mathematics of providing an
exhaustive list of some type of mathematical object 
with no repetitions. For example, the classification of 
3-manifolds is one of the outstanding problems in topol-
ogy. With the advent of computers, one weak but precise
way to state a classification problem is to ask whether
there is an algorithm to determine whether two given
objects are equivalent.

clelia
Also known as a clelie curve, the locus of a point P that
moves on the surface of a sphere in such a way that φ/θ
is constant, where φ and θ are the longitude and colati-
tude (the angular distance from a pole).

cissoid The cissoid of Diocles. © Jan Wassenaar,

www.2dcurves.com
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Clifford, William Kingdon (1845–1879)
An English mathematician who studied non-Euclidean
geometry and topology. In 1870, he wrote On the Space
Theory of Matter in which he argued that energy and mat-
ter are simply different types of curvature of space—a
remarkably advanced idea that would come to fruition in
Einstein’s general relativity theory. Although small of
build Clifford was remarkably strong and able to do one-
armed chin-ups. His death at an early age was the result
of overwork and exhaustion.

clock puzzles
The earliest known clock problem was posed in 1694 
by Jacques Ozanam in his Récréations mathématiques et
physiques.

PUZZLES

Here are two clock puzzles invented by Lewis Carroll:

1. A clock has hour and minute hands of the same

length and no numerals on its face. At what time

between 6 and 7 o’clock will the time on the

clock appear to be the same as the time read on

the reflection of the clock in a mirror?

2. Which has a better chance of giving the right time:

a clock that has stopped or one that loses a

minute every day?

And here is another from Henry Dudeney’s Amuse-

ments in Mathematics called “The Club Clock”:

3. One of the big clocks in the Cogitators’ Club was

found the other night to have stopped just when

the second hand was exactly midway between

the other two hands. One of the members pro-

posed to some of his friends that they should tell

him the exact time when (if the clock had not

stopped) the second hand would next again have

been midway between the minute hand and the

hour hand. Can you find the correct time that it

would happen?

Solutions begin on page 369.

closed
A closed curve is one that has no endpoints so that it com-
pletely encloses a certain area. A closed interval, which cor-
responds to a closed set, is an interval that includes its
endpoints.

cochleoid
A spiral curve that was first studied by J. Peck in 1700 and
Bernoulli in 1726. Its name, meaning “snail-form”
(kochlias is Greek for “snail”), was coined by Benthan and
Falkenburg in 1884. It can be constructed starting from a
point O on the y-axis. For all circles through O (tangent

to the y-axis), pace a constant distance on the circle. The
collection of those points is the cochleoid. In Cartesian
coordinates, it is given by the formula

(x 2 + y 2) tan−1(y/x) = ay

and in polar coordinates by

r = a sinθ / θ.

The points of contact of parallel tangents to the cochleoid
lie on a strophoid.

code
See cipher.

codimension
In general, if a mathematical object sits inside or is asso-
ciated with another object of dimension n, then it is said
to have codimension k if it has dimension n − k.

coding theory
The branch of mathematics concerned with sending data
across noisy channels and recovering the message. Whereas
cryptography is about making messages hard to read, cod-
ing theory focuses on making messages easy to read. The
basic problem is that messages, in the form of binary digits
or bits (strings of 0 or 1) have to be sent along a channel
(such as a phone line) in which errors occur randomly, but
at a predictable overall rate. To compensate for the errors,
more bits have to be sent than are contained in the original
message. The easiest way to detect errors in binary data is

cochleoid A cochleoid inside the circle used to construct it.
© Jan Wassenaar, www.2dcurves.com
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the parity code, which inserts an extra parity bit after every
7 bits from the source message. To correct as well as detect
errors, the data has to be retransmitted. A simple way to do
this is to repeat each bit a set number of times. The recipi-
ent sees which value, 0 or 1, occurs more often and
assumes that to be the intended bit. This method can cope
with error rates up to 1 error in every 2 bits transmitted but
it means that an awful lot of extra bits have to be sent.

In 1948, Claude Shannon at Bell Labs began the sub-
ject of coding theory by proving the minimum number
of extra bits that had to be transmitted to encode mes-
sages but without showing ways to find these optimal
codes. Two years later, Richard Hamming, also at Bell
Labs, gave details of error-correcting codes with informa-
tion transmission rates more efficient than simple repeti-
tion. His first code, in which four data bits were followed
by three check bits, allowed not only the detection but
the correction of a single error.

While Shannon and Hamming were involved with
information transmission in the United States, John
Leech devised similar codes while working on group the-
ory at Cambridge University. This research also took in
the sphere packing problem and culminated in the amaz-
ing, 24-dimensional Leech lattice, the study of which
proved crucial to understanding and classifying finite
symmetry groups. The value of error-correcting codes for
information transmission, both on Earth and from space,
was immediately grasped, and a variety of codes were
constructed that boosted both economy of transmission
and error-correction capacity. Between 1969 and 1973 the
NASA Mariner probes used a powerful Reed-Muller code
capable of correcting 7 errors out of 32 bits transmitted.
A less obvious application of error-correcting codes came
with the development of the compact disk on which the
signal is encoded digitally. To guard against scratches and
other damage, two interleaved codes that can correct up
to 4,000 consecutive errors are used. By the late 1990s the
goal of finding explicit codes that reach the limits pre-
dicted by Shannon’s original work had been achieved.

codomain
For a given function or mapping, a set within which the
values of the function lie. This is different from the set of
values, known as the range, that the function actually takes.

coefficient
A number or other factor that multiplies a variable. For
example, in the equation 3x − 4ky = 8, the 3 and 4k are
coefficients of the variables x and y. The word combines
three elements, the Latin facere (“to do”), and the prefixes
ex (“out”) and co (“with”), to give the overall meaning of
joining two things together to bring about a result. The
sixteenth-century mathematician Francois Vieta may

have coined the word, but it was not commonly used
until around the beginning of the eighteenth century.

Coffin, Stewart T.
A leading designer of mechanical puzzles. He is also
the author of The Puzzling World of Polyhedral Dissec-
tions,[64] one of the most significant works produced on
this subject.

cohomology
A subject that involves calculating algebraic invariants of
topological spaces that are formally dual to homology.
The invariants obtained are in general more powerful than
those given by homology and usually have more algebraic
structure. Generalized cohomology theories, both for topologi-
cal spaces and for purely algebraic structures, have been
developed that have some of the formal properties of
cohomology but which don’t have the same geometric
background.

coin paradox
Consider two round coins of equal size. Imagine holding
one still and then rolling the other coin around it, mak-
ing sure that it doesn’t slip and that the rims are touching
at all times. How many times will the moving coin have
rotated after it has completed one revolution of the sta-
tionary coin? Most people believe that the answer will be
once and are therefore surprised to discover that the
truth is in fact twice.

coincidence
What an amazing coincidence! Well, not really. Coinci-
dences are bound to happen. In a world where there are
a great many potential coincidences each with a small
probability of happening, someone, somewhere is going
to see one—and be amazed by it. The fact that there are
countless numbers of noncoincidences and many people
who don’t see a significant coincidence in the same
period of time is overlooked. Also, we tend to underesti-
mate the probabilities of coincidences in certain situa-
tions and are therefore more surprised than we should be
when coincidences happen. A classic example of this is
the birthday paradox.

Obviously some things are extraordinarily unlikely.
What are the chances, for example, of a meteorite hitting
your car? Next to nothing, but not quite nothing. There
are a lot of cars and there are dozens of meteorites that
strike Earth every day. Sooner or later, it’s bound to hap-
pen. In fact, it did happen to Michelle Knapp’s Chevy
Malibu parked outside her home in Peekskill, New York,
on the evening of October 9, 1992. A 12-kilogram space
rock smashed through the car’s trunk and ended up on
the driveway below.
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Does coincidence completely explain away all events
that might otherwise be put down to precognition? On
April 15, 1912, the SS Titanic sunk on her maiden voyage,
having been holed by an iceberg, and over 1,500 people
died. Fourteen years earlier a novel had been published by
Morgan Robertson that seemed to foretell the disaster.
The book described a ship the same size as Titanic that
struck an iceberg on its maiden voyage on a misty April
night. The name of Robertson’s fictional ship was the
Titan. Mere happenstance or evidence of something
deeper? Numerologists often spot matchups that would
go unnoticed by the rest of us. Is it so strange that there are
almost exactly 500 million inches in the pole-to-pole
diameter of Earth? Not if you work in centimeters. And
should we make such a fuss over the fact that the speed of
light is within 0.1% of 300,000 kilometers per second
when we give no attention to the miles-per-second value
of 186,282? Yet, surely, there can be no doubt that Shake-
speare wrote the Bible. The King James Version was pub-
lished in 1611, when Shakespeare was 46 years old. Look
up Psalm 46. Count 46 words from the beginning of the
Psalm. You will find the word “Shake.” Count 46 words
from the end of the Psalm. You will find the word “Spear.”
To some, an obvious coded message. See also thirteen.

Collatz problem
A problem first posed by the German mathematician
Lothar Collatz (1910–1990) in 1937, that is also known var-
iously as the 3n + 1 problem, Kakutani’s problem, the Syracuse
problem, Thwaites’ conjecture, and Ulam’s conjecture. It runs as
follows. Let n be any integer. (1) If n is odd, put n equal to
3n + 1; otherwise, put n equal to n/2. (2) If n = 1, stop; oth-
erwise go back to step 1. Does this process always terminate
(i.e., end in 1) for any value of n? To date, this question
remains unanswered, though the process has been found to
stop for all n up to 5.6 × 1013. British mathematician Bryan
Thwaites (1996) has offered a £1,000 reward for a resolu-
tion of the problem. However, John Conway has shown
that Collatz-type problems can be formally undecidable,
so it not known if a solution is even possible. The members
of sequences produced by the Collatz problem are some-
times known as hailstone sequences.[144]

combination
A set of objects selected without reference to the order in
which they are arranged. Compare with permutation.
See also binomial coefficient.

combinatorics
The study of the ways of choosing and arranging objects
from given collections and the study of other kinds of
problems relating to counting the number of ways to do
something.

commensurable
Two lines or distances are commensurable if the ratio of
their lengths is a rational number. If the ratio is an irra-
tional number, they are called incommensurable.

common fraction
A fraction that consists of the quotient of two integers.

communication theory
See information theory.

commutative
Two numbers, x and z, are said to be commutative under
addition if

x + y = y + x

and to be commutative under multiplication if

x × y = y × y.

In general, two elements a and b of a set S are commuta-
tive under the binary operation (an operation that works
on two elements at a time) ∗ if

a ∗ b = b ∗ b.

Compare with associative and distributive.

complement
That which is needed to complete something. For in-
stance, the complement of a number is what needs to be
added to it to make a specified value; the complement of
an angle is the angle required to turn it into a right angle.
The complement of a set is composed of all the elements
that are not members of that set.

complete
Describes a formal system in which all statements can be
proved as being true or false. Most interesting formal sys-
tems are not complete, as demonstrated by Gödel’s in-
completeness theorem.

complete graph
A connected graph in which exactly one edge connects
each pair of vertices (see vertex). A complete graph with
n vertices, denoted Kn, has n(n − 1)/2 edges (i.e., the nth
triangular number), (n − 1)! Hamilton circuits, and a
chromatic number of n. Every vertex in Kn has degree
n − 1; therefore Kn has an Euler circuit if and only if
n is odd. In a weighted complete graph, each edge has a
number called a weight attached to it. Each path then
has a total weight, which is the sum of the weights of
the edges in the path. See also traveling salesman
problem.
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complex adaptive system (CAS)
A nonlinear, interactive, complex system with the ability
to adapt to a changing environment. CASs evolve by ran-
dom mutation, self-organization, the transformation of
their internal models of the environment, and natural
selection. Examples include living organisms, the nervous
system, the immune system, the economy, corporations,
and societies. In a CAS, semiautonomous agents interact
according to certain rules of interaction, evolving to maxi-
mize some measure like fitness. The agents are diverse in
form and capability and they adapt by changing their rules
and, hence, behavior, as they gain experience. CASs evolve
historically—their experience determines their future tra-
jectory. Their adaptability can either be increased or de-
creased by the rules shaping their interaction. Moreover,
unanticipated, emergent structures can play a determining
role in the evolution of such systems, which is why they are
highly unpredictable. On the other hand, CASs have the
potential of a great deal of creativity that was not pro-
grammed into them from the beginning.

complex analysis
The study of functions of a complex variable. Often, the
most natural proofs for statements in real analysis or
even number theory use techniques from complex anal-
ysis. Unlike real functions, which are commonly repre-
sented as two-dimensional graphs, complex functions
have four-dimensional graphs and may usefully be illus-
trated by color-coding a three-dimensional graph to sug-
gest four dimensions.

complex number
A real number plus a real number times the square root
of −1; in other words, a number of the form z = a + ib,
where a and b are real and i = !−1". The term ib is known
as an imaginary number or the imaginary part of the com-
plex number a + ib; a is called the real part. The names
“complex,” “real,” and “imaginary,” which came about
historically, are totally misleading because complex num-
bers are not particularly complex and imaginary numbers
are no less real than real numbers! Another way to repre-
sent a complex number is as an ordered pair of real num-
bers (a, b) together with the operations: (a, b) + (c, d ) =
(a + c, b + d ) and (a, b) × (c, d ) = (ac − bd, bc + ad ). Alter-
natively, complex numbers can be shown as points on an
Argand diagram (a representation of the complex plane) in
which the horizontal axis is the real number line and the
vertical axis represents all possible purely imaginary num-
bers. Any point that appears on the complex plane off-
axis has both real and imaginary parts. On an Argand
diagram a complex number can also be shown as a vector,
or directed line segment (a line of a certain length with an
arrow), extending from the origin (0 + 0i) to the number

(a + bi ). The absolute value or magnitude of a complex num-
ber z, thought of as a point on a plane, is its Euclidean dis-
tance from the origin, and is denoted |z|; this is always a
nonnegative real number. Algebraically, if z = a + ib, we
can define |z| = !(a 2 + b"2)". If the complex number z is
written in polar coordinates z = r e iϕ, then |z| = r.

Complex numbers are a natural extension of real num-
bers and form what is called an algebraically closed field.
Because of this, mathematicians sometimes consider the
complex numbers to be more “natural” than the real
numbers: all polynomial equations have solutions
among the complex numbers, which is not true for the
real numbers. Complex numbers are used in electrical
engineering and other branches of physics as a conve-
nient description for periodically varying signals. In an
expression z = re iϕ one may think of r as the amplitude
and φ as the phase of a sine wave of given frequency. In
special and general relativity theory, some formulas for
the metric on space-time become simpler if the time
variable is taken to be imaginary.

complex plane
See Argand diagram.

complex system
A collection of many simple nonlinear units that operate
in parallel and interact locally with each other so as to
produce emergent (see emergence) behavior.

complexity
A phenomenon that has two distinct and almost opposite
meanings. The first, and probably the oldest mathemati-
cally, goes back to Andrei Kolmogorov’s attempt to give
an algorithmic foundation to notions of randomness and
probability and to Claude Shannon’s study of communica-
tion channels via his notion of information. In both cases,
complexity is synonymous with disorder and a lack of struc-
ture. The more random a process, the greater its complexity.
An ideal gas, for example, with its numerous molecules
bouncing around in complete disarray, is complex as far as
Kolmogorov and Shannon are concerned. Thus, in this
sense, complexity equates to the degree of complication.

The second, and more recent notion of complexity
refers instead to how structured, intricate, hierarchical,
and sophisticated a natural process is. In particular, it’s a
property associated with dynamical systems in which
new, unpredictable behavior arises on scales above the
level of the constituent components. The distinction
between these two meanings can be revealed by answer-
ing a simple question about a system: Is it complex or is
it merely complicated? Measures of complexity include
algorithmic complexity, fractal dimensionality; Lya-
punov fractals, and logical depth.
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complexity theory
A part of the theory of computation that has to do with
the resources needed to solve a given problem. The most
common resources are time (how many steps it takes to
solve a problem) and space (how much memory it takes to
solve a problem). Complexity theory differs from com-
putability theory, which deals with whether a problem
can be solved at all, regardless of the resources required.

composite number
A positive integer that can be factored into smaller posi-
tive integers, neither of which is one. If a positive integer
is not composite (4, 6, 8, 9, 10, 12, . . .) or one, then it is
a prime number (2, 3, 5, 7, 11, 13, 17, . . .). As Karl Gauss
put it in his Disquisitiones Arithmeticae (1801): “The prob-
lem of distinguishing prime numbers from composite
numbers and of resolving the latter into their prime fac-
tors is known to be one of the most important and useful
in arithmetic.” One reason for its importance today is
that many secret codes and much of the security of the

Internet depends in part on the relative difficulty of fac-
toring large numbers. But more basic to a mathematician
is that this problem has always been central to number
theory. Numbers that, for their size, have a lot of factors
are sometimes referred to as highly composite numbers.
Examples include 12, 24, 36, 48, 60, and 120.

compound polyhedron
An assemblage of two or more polyhedra, usually inter-
penetrating and having a common center. There are two
types: a combination of a solid with its dual and an inter-
penetrating set of several copies of the same polyhedron.
The simplest example of a compound polyhedron is the
compound of two tetrahedra, known as the stella octan-
gula and first described by Johannes Kepler. This shape is
unique in that it falls under both of the above classes,
because the tetrahedron is the only self-dual uniform
polyhedron; the edges of the two tetrahedra form the
diagonals of the faces of a cube in which the stella octan-
gula can be inscribed.

compound polyhedron A compound of duals: the cube and the octahedron. Robert Webb, www.software3d.com; created using Webb’s Stella

program
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Another example of a compound follows from an
important Platonic relationship: a cube can be inscribed
within a dodecahedron. There are five different posi-
tions for a cube within a dodecahedron; superimposing
all five gives the compound known as the rhombic triacon-
tahedron.

compressible
Having a description that is smaller than itself; not ran-
dom; possessing regularity.

computability theory
The part of the theory of computation that deals with
problems that are solvable by algorithms or—what
amounts to the same thing—by Turing machines. Com-
putability theory is concerned with four main questions:
What problems can Turing machines solve? What other
systems are equivalent to Turing machines? What prob-
lems require more powerful machines? What problems can

be solved by less powerful machines? Not all problems can
be solved computationally. An undecidable problem is one
that can’t be solved by any algorithm, no matter how much
time, processing speed, or memory is available. Many
examples are known, one of the most famous of which is
the Halting problem. See also cellular automaton.

computable number
A real number for which there is an algorithm that,
given n, calculates the nth digit. Alan Turing was the first
to define a computable number and the first to prove
that almost all numbers are uncomputable. An example
of a number that, even though well-defined, is uncom-
putable is Chaitin’s constant.

concave
Curved inward, like the inner surface of a sphere; the word
comes from the Latin concavus for “hollow.” A figure, such
as a polygon or polyhedron, is said to be concave if a line

compound polyhedron A compound polyhedron of three cubes (left), such as that used in Escher’s picture “Waterfall.” The
compound of four cubes (right) is also known as Bakos’s compound. Robert Webb, www.software3d.com; created using Webb’s Stella program
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segment joining any points inside the figure goes outside
the figure. Similarly, a set is concave if it doesn’t contain
all the line segments connecting any pair of its points.

conchoid
A shell-shaped curve. Given a point A and a curve C, if we
pick a point Q on C and draw a line L through A and Q
and mark points P and P ′ on L at some fixed distance in
either direction from Q, then the locus of P and P ′ as Q
moves on C is a conchoid. The conchoid of Nichomedes is a
conchoid in which the given line is a straight line; that is,
given a line C and a point A we pick a point Q on C, draw
a line L through A and Q, and mark P and P ′ on L at
some fixed distance from Q. The conchoid of Nicomedes
is the locus of P and P ′ as Q moves along C. It has the
polar equation R = a secθ + k. The conchoid of de Sluze is the
curve with the Cartesian equation a(x − a)(x 2 + y 2) = k 2x 2.

cone
A shape (its name comes from the Greek konos for
pinecone) that has a circular or elliptical base and a ver-
tex, also known as an apex, lying outside the plane of the
base and that is formed from all the line segments joining
points on the edge of the base to the vertex. If the base is
a circle, the shape is a circular cone; if the line, or axis, from
the center of the base to the vertex is perpendicular to the
base, then it is a right cone (an ice-cream cone is a right cir-
cular cone); otherwise it’s an oblique cone. The curved lat-
eral surface of the cone is called a nappe. If the cone is
extended in both directions from the vertex, the result is a
double cone or bicone. A section through a double cone that
has been extended indefinitely in both directions to form
a conic surface is known as a conic section. Another way to
think of a cone is as a surface of revolution generated by
a line that rotates around a fixed point, at a fixed angle
from another line (the axis), both lines passing through
that fixed point. The volume of a cone, of perpendicular
height h and circular base of radius r, is 1⁄3 πr 2h.

Take a solid cylinder of radius r and height 2r. Remove
the right double cone that passes through the center of
the cylinder and extends to meet the circular disks on the
cylinder’s top and bottom. Interestingly, the volume of
the remaining object and the volume of a sphere of
radius r are the same.

conformal mapping
A map from the plane to itself that preserves angles. Con-
formal mapping results in the angle between any two
curves being the same as the angle between their images.
The Mercator map is a conformal map of Earth’s surface.

congruent
In the case of geometric figures, having exactly the same
shape and size.

congruum problem
Find a square number x 2 such that, when a given number
h is added or subtracted, new square numbers are
obtained, so that x 2 + h = a2 and x 2 − h = b 2. This problem
was posed by the mathematicians Théodore and Jean de
Palerma in a mathematical tournament organized by
Frederick II in Pisa in 1225. The solution is x = m2 + n 2

and h = 4mn(m 2 − n 2), where m and n are integers.

conic section
An important, familiar, and ubiquitous family of curves
obtained by slicing a right circular double cone, extended
indefinitely in both directions, with a plane. Depending
on the angle of the slice to the axis of the cone, the result-
ing curve may be a circle, an ellipse, a parabola, or a
hyperbola. The circle is a limiting case of the ellipse,
when the slice is made at right angles to the axis, while the
parabola is the limiting case of both the ellipse and the
hyperbola, when the slice is made parallel to the side of
the cone. The name conic sections comes from the eight-
volume work Conics (Kωνικα) by Apollonius, who also
gave us the names ellipse, parabola, and hyperbola.

Another geometric way to define the conics is as the
locus of all points in the plane whose distances, r, from a
fixed point called the focus, and a, from a given straight
line called the directrix, have a constant ratio. This ratio,
r/a, is known as the eccentricity, e. The circle has an eccen-
tricity of zero. As the eccentricity increases from near
zero, corresponding to a nearly circular ellipse, the ellipse
stretches until the right-hand side of it disappears to
infinity, e becomes 1, and the ellipse turns into a
parabola, with just one open branch. Like the circle, the
parabola has only one shape, though it may look differ-
ent depending on how much it is enlarged or diminished.
As the eccentricity increases beyond 1, the “lost” right-
hand end of the ellipse reappears from the other side of
infinity, so to speak, and turns into the left-hand branch
of a hyperbola.

Because a hyperbola is effectively an ellipse split in two
by infinity, it comes as no surprise that these curves 
are related in an inverse way. An ellipse consists of all
points whose distances from two foci have a constant
sum, while a hyperbola is made from all points whose

PUZZLE

The Cone Puzzle (no. 202) from Henry Dudeney’s

Amusements in Mathematics[88] runs as follows: “I have

a wooden cone. How am I to cut out of it the greatest

possible cylinder?”

Solutions begin on page 369.
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distances from two foci have a constant difference. These
definitions also apply to the circle and the parabola, if
the two foci are considered to coincide in the case of the
circle and to be separated by an infinite distance in the
case of the parabola.

In terms of algebra, the family of conics represents all
the possible real number solutions to the general qua-
dratic equation ax2 + bxy + cy2 + dx + ey + f = 0. In other
words, the graph of any quadratic with real solutions is
always a conic section. The key quantity is the difference
b 2 − 4ac. If this is less than zero, the graph is an ellipse, a
circle, a point, or no curve. If b 2 − 4ac = 0, the graph is a
parabola, two parallel lines, one line, or no curve; if it is
greater than zero, the graph is a hyperbola or two inter-
secting lines.

conical helix
See helix.

conjecture
A mathematical statement that has been put forward as a
true statement, but that no one has yet been able to
prove or disprove; in mathematics, a conjecture and a
hypothesis are essentially the same thing. When a con-
jecture has been proven to be true, it becomes known as
a theorem. Famous conjectures include the Riemann
hypothesis, the Poincaré conjecture, the Goldbach
conjecture, and the twin primes conjecture. Just to show
how terminology can be used inconsistently, however,
the most famous of all conjectures, for centuries before
its proof in 1995, was always known as Fermat’s last the-
orem!

conjugate
(1) Conjugate angles add up to 360°. (2) The complex conju-
gate of a complex number a + bi is a − bi. (3) Conjugate
lines of a conic section have the property that each con-
tains the pole point of the other, while conjugate points of
a conic have the property that each lies on the polar line
of the other. In general, conjugate indicates that there is
a symmetrical relationship between two objects A and B;
in other words, there is an operation that will turn A into
B and B into A.

connected
A space S is said to be connected if any two points in S
can be connected by a curve lying wholly within S. Two
spaces can be added by what is called a connected sum.
Roughly speaking, this involves pulling out a disk from
each surface, creating holes, and then sewing the two sur-
faces together along the boundaries of the holes. In this
way, a one-holed torus can be added to a two-holed torus
to give a three-holed torus; alternatively, a projective

conic section The circle, ellipse, parabola, and hyperbola,
obtained by slicing a right double cone in various ways.
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plane can be added to a projective plane to give a Klein
bottle. The operation is commutative and associative
and there is even an identity element: for example,
adding a sphere to any surface simply returns the same
surface. See also simply connected.

connected graph
A graph in which a path exists between all pairs of ver-
tices (see vertex). If the graph is also a directed graph,
and there exists a path from each vertex to every other
vertex, then it is a strongly connected graph. If a connected
graph is such that exactly one edge connects each pair of
vertices, then it is said to be a complete graph. See also
Euler path and Hamilton path.

connectionism
A computational approach to modeling the brain that
relies on the interconnection of many simple units to
produce complex behavior.

connectivity
The amount of interaction in a system, the structure of
the weights in a neural network, or the relative number
of edges in a graph.

consistency
An axiomatic theory is said to be consistent if it’s
impossible (within the confines of the theory) to prove
simultaneously a statement and its negation. Godel’s
incompleteness theorem states that any (sufficiently
powerful) consistent axiomatic theory is incomplete.

constructible
In classical geometry, a figure or length that can be drawn
using only an unmarked straightedge and a compass. The
Greeks were adept at constructing polygons, but the
question of proving which regular polygons are con-
structible and which are not had to wait for the genius of
Carl Gauss. At the age of only 19, Gauss found that a
regular polygon with n sides is constructible if and only if
n is a prime Fermat number. The only known such
primes are 3, 5, 17, 257, 65,537. It is also possible to con-
struct certain numbers, known as constructible numbers,
that correspond to line segments, including rational
numbers and some irrational numbers, but no tran-
scendental numbers. It turns out that all constructions
possible with a compass and straightedge can be done
with a compass alone, as long as a line is considered con-
structed when its two endpoints are located. The reverse
is also true, since Jakob Steiner showed that all construc-
tions possible with straightedge and compass can be
done using only a straightedge, as long as a fixed circle
and its center (or two intersecting circles without their

centers, or three nonintersecting circles) have been drawn
beforehand. Such a construction is known as a Steiner con-
struction. The Greeks were unable to achieve certain con-
structions, such as squaring the circle, duplicating the
cube, and trisecting an angle, despite numerous at-
tempts, but it wasn’t until hundreds of years later that the
problems were proved to be actually impossible under
the limitations imposed.

continued fraction
A representation of a real number in the form

1
x = a0 + —————————————

1
a1 + —————————

1
a2 + ———

a3 + . . .

which, mercifully for typesetters, can be written in com-
pact notation as

x = [a0; a1, a2, a3, . . .],

where the integers ai are called partial quotients. Although
rarely encountered in school and even college math
courses, continued fractions (CFs) provide one of the
most powerful and revealing forms of numerical expres-
sion. Numbers whose decimal expansions look unre-
markable turn out, when unfolded as CFs, to have
extraordinary symmetries and patterns. CFs also offer a
way of constructing rational approximations to irrational
numbers and of discovering the most irrational num-
bers.

CFs first appeared in the sixth century in the works of
the Indian mathematician Aryabhata, who used them to
solve linear equations. They surfaced in Europe in the fif-
teenth and sixteenth centuries and Fibonacci attempted
to define them in a general way. The term “continued
fraction” first appeared in 1653 in an edition of Arith-
metica Infinitorum by John Wallis. Their properties were
also studied by one of Wallis’s English contemporaries,
William Brouncker, who, along with Wallis, was one of
the founders of the Royal Society. At about the same
time, in Holland, Christiaan Huygens made practical use
of CFs in his designs of scientific instruments. Later, in
the eighteenth and early nineteenth centuries, Carl
Gauss and Leonhard Euler delved into many of their
deeper properties.

CFs can be finite or infinite in length. Finite CFs can
be evaluated level by level (starting at the bottom) and
will always reduce to a rational fraction; for example, the
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CF [1; 3, 2, 4] = 40/31. By contrast, infinitely long CFs
produce representations of irrational numbers. Here are
the leading terms from a few notable examples of infinite
CFs:

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .]

!2" = [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, . . .]

!2" = [1; 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, . . .]

π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2,
2, 2, 1, 84, 2, . . .]

Each of these expansions has a simple pattern except
that for π (see pi), which has no obvious pattern at all.
There’s also a preference for the quotients to be small
numbers.

If an infinite CF is truncated after a finite number of
steps, the result is a rational approximation to the original
irrational. In the case of π, chopping the CF at [3; 7] gives
the familiar approximation for π of 22/7 = 3.1428571 . . . .
Keeping two more terms leads to [3; 7, 15, 1] = 353/113 =
3.1415929 . . . , which is an even better approximation to
the true value of π (3.14159265 . . .). The more terms
retained in the CF, the better the rational approximation
becomes. In fact, the CF gives yields the best possible
rational approximations to a general irrational number.
Notice also that if a large number occurs in the expansion
of quotients, then truncating the CF after that will produce
an especially good rational approximation. Most CF quo-
tients are small numbers (1 or 2), so the appearance in the
CF of π of a number as large as 292 so early in the expan-
sion is unusual. It also leads to an extremely good rational
approximation to π = [3; 7, 15, 1, 292] = 103,993/33,102.

continuity
A mathematical property that has to do with how
smooth or “well-behaved” a function or curve is. If two
adjacent points on a graph, for example, are not con-
nected or are separated by a jump, this marks a break-
down of continuity. At such a discontinuity it is
impossible to obtain a derivative, or slope, of the curve.
Usually if a curve does misbehave like this, it is only at
one or two isolated places; elsewhere the curve is likely to
be both continuous and differentiable. However, it is
possible to construct a continuous function that has
“problem points” everywhere and, therefore, is nowhere
differentiable! The first example was found by Karl
Weierstrass in 1872 and came as a total surprise. It is
defined as an infinite series

f(x) = #
∞

n = 0

Bn cos (Anπx),

where A and B can be any numbers such that B is
between 0 and 1, and A × B is bigger than 1 + (3π/2).

continuum
Any set that can be brought into one-to-one correspon-
dence with the set of real numbers. Examples include a
finite line segment, a square, a circle, and a disk.

continuum hypothesis
In 1874 Georg Cantor discovered that there is more than
one level of infinity. The lowest level is called countable
infinity; higher levels are known as uncountable infinities.
The natural numbers are an example of a countably infi-
nite set and the real numbers are an example of an
uncountably infinite set. The continuum hypothesis, put
forward by Cantor in 1877, says that the number of real
numbers is the next level of infinity above countable infin-
ity. It is called the continuum hypothesis (CH) because
the real numbers are used to represent a linear continuum.
Let c be the cardinality of (i.e., number of points in) a con-
tinuum, aleph-null (χ0) be the cardinality of any count-
ably infinite set, and χ1 be the next level of infinity above
χ0. CH is equivalent to saying that there is no cardinal
number between χ0 and c, and that c = χ1. CH has been,
and continues to be, one of the most hotly pursued prob-
lems in mathematics.

convergence
A property of some sequences. A sequence ui is said to
be convergent if there exists a value u with the property
that by choosing a large enough value of i, we can make
ui as close as we wish to u.

convex
Curved outward, like the exterior surface of a sphere; the
word comes from the Latin convexus for “vaulted.” A figure,
such as a polygon or a polyhedron, is said to be convex if
every line segment that joins two interior points remains
inside the figure. Similarly, a set is convex if it contains all
the line segments connecting any pair of its points.

Conway, John Horton (1937–)
A British-born (Liverpool) mathematician, who studied
and taught at Cambridge University and is now a professor
at Princeton University. Conway has been an extraordinar-
ily fertile source of new ideas in mathematics and of math-
ematical games. His most significant contribution was the
discovery of surreal numbers, to which he was led after
watching the British Go champion play at Cambridge. In
1967, he found a cluster of three new sporadic groups, now
sometimes called Conway’s constellation, building on an ear-
lier discovery by John Leech of an extremely dense packing
of unit spheres in a space of 24 dimensions. He has also
been active in the field of knots and in coding theory.
Among amateur mathematicians, Conway is best known as
the inventor of the games of Life, Sprouts, and Phutball,



covariance 81

as well as for his detailed analyses of many other games and
puzzles, such as the Soma Cube.

Conway’s chained-arrow notation
One of various methods that have been devised recently for
representing extremely large numbers. Developed by John
Conway, it is based on Knuth’s up-arrow notation but is
even more powerful. The two systems are related thus:

a → b → 1 = a ↑ b

a → b → 2 = a ↑↑ b

a → b → 3 = a ↑↑↑ b

a → b → c = a ↑↑ . . . ↑↑ b (c up arrows)

Longer chains are evaluated by the following general rules:

a → . . . → b → c → 1 = a → . . . → b → c

a → . . . → b → 1 → d + 1 = a → . . . → b

and a → . . . → b → c + 1 → d + 1

= a → . . . → b → (a → . . . → b → c → d) → d

It’s important to recognize that the Conway arrow isn’t an
ordinary dyadic operator. Where three or more numbers
are joined by arrows, the arrows don’t act separately but
rather the whole chain has to be considered as a unit. The
chain might be thought of as a function with a variable
number of arguments, or as a function whose single argu-
ment is an ordered list or vector. The Ackermann func-
tion is equivalent to a three-element chain: A(m, n) =
(2 → (n + 3) → (m − 2)) − 3. It can also be shown that
Graham’s number is bigger than 3 → 3 → 64 → 2 and
smaller than 3 → 3 → 65 → 2.

coordinate
One of a set of variables that specifies the location of a
point in space. If the coordinates are distances measured
along perpendicular axes, they are known as Cartesian
coordinates. See also polar coordinates.

coordinate geometry
See analytical geometry.

coprime
Two or more numbers are coprime if they have no fac-
tors in common other than 1.

cosine
See trigonometric function.

countable set
A set that is either finite or countably infinite. A countably
infinite set is one that can be put in one-to-one corre-
spondence with the natural numbers and thus has a car-
dinal number (“size”) of aleph-null (‡0). Examples of
countable sets include the set of all people on Earth and
the set of all fractions. See also infinity.

counterfeit coin problem
Among n coins, identical in size, shape, and appearance,
one is a counterfeit and has a slightly different weight
than the others. Using only a two-pan balance, what is
the smallest number of weighings that would guarantee
finding the fake coin? The problem of the counterfeit
coin (or some other object), especially involving 8, 10,
12, or 13 coins, has cropped up in many guises over the
years. Typically, the problem also involves finding
whether the counterfeit coin is lighter or heavier than the
rest. The answer depends on the specific problem and
can involve quite a number of steps.

covariance
The tendency of two random variables to move in tandem.
This is important in applications such as survey-taking and
sociology, as well as in many branches of science, because if

Conway, John Horton Princeton University
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two things tend to vary together, there is a good chance they
may be causally linked. See also causality.

Coxeter, Harold Scott MacDonald (1907–2003)
A British-born, Cambridge-educated mathematician who
spent most of his career (from 1936 on) at the University
of Toronto and was regarded as the greatest classical
geometer of his generation. Always known as “Donald,”
he is best known for his work on hyperdimensional
geometries and regular polytopes.

In 1926, at the age of 19, Coxeter discovered a new
regular polyhedron, having six hexagonal faces at each 
vertex. He went on to study the mathematics of kaleido-
scopes and, by 1933, had enumerated the n-dimensional
kaleidoscopes. His algebraic equations expressing how
many images of an object may be seen in a kaleidoscope
are now known as Coxeter groups. His research on icosa-
hedral symmetries played an important role in the dis-
covery by scientists at Rice University, Texas, of the
carbon-60 molecule (see buckyball), for which they won
the 1996 Nobel Prize in Chemistry.

Coxeter was a close friend of the artist M. C. Escher,
whom he met in 1954, and also of Buckminster Fuller,
who used Coxeter’s ideas in his architecture. Indeed Cox-
eter’s work was motivated by a strong artistic tempera-
ment and a sense of what is beautiful. He had originally
intended to be a composer but fascination for symmetry
took him toward mathematics and a career about which
he said “I am extremely fortunate for being paid for what
I would have done anyway.”

Several of Coxeter’s books are considered classics,
including The Real Projective Plane (1955), Introduction to
Geometry (1961),[74] Regular Polytopes (1963),[75] Non-

Euclidean Geometry (1965)[72] and, written jointly with S. L.
Greitzer, Geometry Revisited (1967). In 1938, he revised
and updated Rouse Ball’s Mathematical Recreations and
Essays.[24]

cross
A shape that consists in its most basic form of an upright
section and a transverse section. The Latin cross has the
shape of an irregular dodecahedron with a single (vertical)
line of symmetry, and can be folded up to make a cube.
The Greek cross has the shape of a plus sign, has four lines
of symmetry, and is used as the emblem of the Red Cross
organization. A version of the Greek cross that has flared
ends is also known as the crux immissa or cross patée. A cross
of Saint Andrew is an ordinary Greek cross rotated through
45°, and is also called the crux decussata; it served as the
basis for the multiplication sign. A cross of Saint Anthony
takes the form of a capital T. The Maltese cross is an irregu-
lar dodecahedron whose cross pieces flange out from the
center.

crunode
A point where a curve intersects itself so that two
branches of the curve have distinct tangent lines.

cryptarithm
A number puzzle in which a group of arithmetical oper-
ations has some or all of its digits replaced by letters or
symbols, and where the original digits must be found. In
such a puzzle, each letter or symbol represents a unique
digit. The first example appeared in American Agriculturist
in 1864. Specific types of cryptarithm include the
alphametic, the digimetic, and the skeletal division.

cross From left to right: a Latin cross; a crux immissa (a Greek cross with flared ends), also sometimes called a Latin cross; and a
Maltese cross.
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cryptography
The science and mathematics of encoding and decoding
information. See also cipher and cryptarithm.

Császár polyhedron
A polyhedron, first described in 1949 by the Hungarian
mathematician Ákos Császár,[79] that is a solution to an
interesting problem, namely: How many polyhedra exist
such that every pair of vertices is joined by an edge? The
first clear example is the well known tetrahedron (trian-
gular pyramid). Some simple combinatorics specify how
many vertices, edges, faces, and holes such polyhedra
must have. It turns out that, other than the tetrahedron,
any such polyhedron must have at least one hole. The

first possible polyhedron beyond the tetrahedron has
exactly one hole; this is the Császár polyhedron, which is
thus topologically equivalent to a torus (donut). The
Császár polyhedron has 7 vertices, 14 faces, and 21 edges,
and is the dual of the Szilassi polyhedron. It isn’t
known if there are any other polyhedra in which every
pair of vertices is joined by an edge. The next possible fig-
ure would have 12 faces, 66 edges, 44 vertices, and 6
holes, but this seems an unlikely configuration—as,
indeed, to an even greater extent, does any more complex
member of this curious family.

cube
(1) The Platonic solid that has a square for every one of its
6 faces; it also has 12 edges and 8 vertices (corners). The
60′ × 30′ × 30′ Double Cube Room of Wilton House (the
seat of the Earl of Pembroke), near Salisbury, is considered,
together with the Single Cube Room of the same domicile,
among the finest surviving rooms in England from the
mid-seventeenth century. A favorite with filmmakers, it has
provided locations for Barry Lyndon by Stanley Kubrick,
The Madness of King George, and Sense and Sensibility. See also
Atomium, the. (2) To cube something is to raise it to the
power of three. The result of cubing is a cube number: 13 = 1,
23 = 8, 33 = 27, and so on. To take the cube root is the reverse
process; thus, 4 cubed (43) is 64 and the cube root of 64
(3!64") is 4. For cube dissection problems, see Hadwiger
problem, Slothouber-Graatsma puzzle and Soma cube.
See also tesseract and Prince Rupert’s problem.

cubic curve
An algebraic curve described by a polynomial equation
of the general form

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx + iy + j = 0,

where a, b, c, d, e, f, g, h, i, and j are constants, such that at
least one of a, b, c, and d is nonzero, and x and y are vari-
ables. One of Isaac Newton’s many accomplishments
was the classification of the cubic curves. Newton found
72 different species of curve; later investigators found six
more, and it is now known that there are precisely 78 dif-
ferent types of cubic curves. Interesting examples include
the folium of Decartes and the Witch of Agnesi.

cubic equation
A polynomial equation of the third degree, the general
form of which is

ax3 + bx2 + cx + d = 0,

where a, b, c, and d are constants. There was a great con-
troversy in sixteenth-century Italy between Girolamo
Cardano and Niccoló Tartaglia about who should get
credit for solving the cubic. At this time symbolic algebra

Császár polyhedron
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hadn’t been developed, so all the equations were written
in words instead of symbols. Early studies of cubics
helped legitimize negative numbers, give a deeper in-
sight into equations in general, and stimulate work that
eventually led to the discovery and acceptance of com-
plex numbers. Cardano, in his Ars Magna, found nega-
tive solutions to equations, but called them “fictitious.”
He also noted an important fact connecting solutions of
a cubic equation to its coefficients, namely, that the sum
of the solutions is the negation of b, the coefficient of the
x 2 term. At one other point, he mentions that the prob-
lem of dividing 10 into two parts so that their product is
40 would have to be 5 + v(−15) and 5 − v(−15). Cardano
didn’t go further than this observation of what later came
to be called complex numbers, but a few years later
Rafael Bombelli (1526–1672) gave several examples that
involved these strange new mathematical beasts.

cubit
A measure of length used in the ancient world. It is
approximately equal to the length of a person’s forearm,
that is, the part of the arm from the elbow to the fingers.
The Romans used a cubit equal to 17.4 modern inches;
the Egyptians used one of 20.64 inches.

cuboctahedron
A polygon obtained by cutting the corners off a cube or
an octahedron. It has eight faces that are equilateral tri-
angles and six faces that are squares.

cuboid
Also called a rectangular prism, a hexahedron of which all
of the faces are rectangles and all of the opposite faces are
identical. It is not known whether a perfect cuboid, whose
sides, face diagonals, and space diagonals are all integers,
exists. The general suspicion is that it doesn’t, although
several near misses have been found, including one in
which a = 240, b = 117, c = 44, dab = 267, dac = 244, and
dbc = 125. If there is a perfect cuboid, it has been shown
that the smallest side must be at least 232 = 4,294,967,296.

Cullen number
A number of the form (n × 2n) + 1, denoted Cn, and
named after the Reverend James Cullen (1867–1933), an
Irish Jesuit priest and schoolmaster. Cullen noticed that
the first, C1 = 3, was a prime number, but with the pos-
sible exception of the fifty-third, the next 99 were all
composite. Soon afterward, Cunningham discovered
that 5,591 divides C53, and noted that all the Cullen num-
bers are composite numbers for n in the range 2 ≤ n ≤
200, with the possible exception of 141. Five decades
later Robinson showed that C141 is a prime. Currently, the
only known Cullen primes are those with n = 1, 141,

4,713, 5,795, 6,611, 18,496, 32,292, 32,469, 59,656,
90,825, 262,419, 361,275, and 481,899. Although the vast
majority of Cullen numbers are composite, it has been
conjectured that there are infinitely many Cullen primes.
Whether n and Cn can simultaneously be prime isn’t
known. Sometimes, the name “Cullen number” is ex-
tended to include the Woodall numbers, Wn = (n × 2n) − 1.
Finally, a few authors have defined a number of the form
(n × b n) + 1, with n + 2 > b, to be a generalized Cullen 
number.

Cunningham chain
A sequence of prime numbers in which each member is
twice the previous one plus one. For example, {2, 5, 11,
23, 47} is the first Cunningham chain of length 5 and {89,
179, 359, 719, 1,439, 2,879} is the first of length 6. In gen-
eral, a Cunningham chain of length k of the first kind is a
sequence of k prime numbers, each of which is twice the
preceding one plus one. A Cunningham chain of length k of
the second kind is a sequence of k primes, each of which is
twice the preceding one minus one. For example, {2, 3, 5}
is a Cunningham chain of length 3 of the second kind
and {1,531, 3,061, 6,121, 12,241, 24,481} is a Cunning-
ham chain of length 5 of the second kind. Prime chains
of both these forms are said to be complete if they can’t
be extended by adding either the next larger or the next
smaller terms. See also Sophie Germain prime.

cup
The symbol ", which is used to denote the union of two
sets.

curvature
A measure of the amount by which a curve, a surface, or
any other manifold deviates from a straight line, a plane,
or a hyperplane (the multidimensional equivalent of a
plane). For a plane curve, the curvature at a given point has
a magnitude equal to one over the radius of an osculating
circle (a circle that “kisses,” or just touches, the curve at the
given point) and is a vector pointing in the direction of
that circle’s center. The smaller the radius r of the osculat-
ing circle, the greater the magnitude of the curvature (1/r)
will be. A straight line has zero curvature everywhere; a cir-
cle of radius r has a curvature of magnitude 1/r everywhere.

For a two-dimensional surface, there are two kinds of
curvature: a Gaussian (or scalar) curvature and a mean cur-
vature. To compute these at a given point, consider the
intersection of the surface with a plane containing a fixed
normal vector (an arrow sticking out perpendicularly) at
the point. This intersection is a plane and has a curva-
ture; if the plane is varied, this curvature also changes,
and there are two extreme values—the maximal and the
minimal curvature—which are known as the main curva-
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tures, 1/R1 and 1/R2. (By convention, a curvature is taken
to be positive if its vector points in the same direction as
the surface’s chosen normal, otherwise it is negative.) The
Gaussian curvature is equal to the product 1/R1R2. It is
everywhere positive for a sphere, everywhere negative for
a hyperboloid and pseudosphere, and everywhere zero
for a plane. It determines whether a surface has elliptic
(when it is positive) or hyperbolic (when it is negative)
geometry at a point. The integral of the Gaussian curva-
ture over the whole surface is closely related to the sur-
face’s Euler characteristic. The mean curvature is equal
to the sum of the main curvatures, 1/R1 + 1/R2.

A minimal surface, like that of a soap film, has a mean
curvature of zero. In the case of higher-dimensional man-
ifolds, curvature is defined in terms of a curvature tensor,
which describes what happens to a vector that is trans-
ported around a small loop of the manifold.

curve
A continuous mapping from a one-dimensional space to
an n-dimensional space. The most familiar mathematical
curves are two- and three-dimensional graphs. A curve,
such as a circle, that lies entirely in a plane is called a
plane curve; by contrast, a curve that may pass through
any region of three-dimensional space is called a space
curve. See also space-filling curve.

curve of constant width
A curve that, when rotated in a square, makes continuous
contact with all four sides. It may seem, at first sight, as if
there is only one such curve—a circle. But, in fact, there
are infinitely many different curves of constant width.
The circle is the one with the largest area. The simplest
noncircular one, and the one with the smallest area, is the
Reuleaux triangle. Others can be constructed starting
with equilateral (but not necessarily equiangular) stars.
Every curve of constant width is convex. Moreover, Bar-
bier’s theorem states that every curve of constant width w
has the same perimeter, πw. (The width of a convex figure
is defined as the distance between parallel lines—known as
supporting lines—that bound it.) A curve of constant width
can be used in a special drill chuck to cut square holes. A
generalization gives solids of constant width. These do
not have the same surface area for a given width, but their
shadows are curves of constant width with the same width.

cusp
In mathematics, a point on a curve where two branches,
coming from different directions, meet and have a com-
mon tangent. If the two branches of the curve approach
the tangent from opposite sides the cusp is called a keratoid
(from the Greek kera for “horn”) or first-order cusp. This is
the case, for example, with the curve given by the equation

y 2 = x 2y + x5. If the two branches of the curve approach the
tangent from the same side the result is a ramphoid or
second-order cusp. “Cusp” derives from the Latin cuspis for
“sharp.” Outside of mathematics, the points of a crescent
moon are called cusps and the sharp pointed premolar
teeth of children are known as bicuspids.

cute number
A number n such that a square can be cut into n squares
of, at most, two different sizes. For example, 4 and 10 are
cute numbers.

Cutler, William (Bill)
An Australian puzzle maker and solver who, in 1977,
became the first to completely analyze, using a com-
puter, six-piece burrs used to make solid six-piece burr
puzzles. Martin Gardner devoted his January 1978
“Mathematical Games” column in Scientific American to
this and other of Cutler’s discoveries. In 2003, Cutler
used a computer to enumerate all solutions of the Locu-
lus of Archimedes.

cybernetics
The theoretical study of communication and control
processes in biological, mechanical, and electronic systems,
especially the comparison of these processes in biological
and artificial systems. It was pioneered by Norbert Wiener.

cyclic number
A number with n digits, which, when multiplied by 1, 2,
3, . . . , n produces the same digits in a different order. For
example, 142,857 is a cyclic number: 142,857 × 2 =
285,714; 142,857 × 3 = 428,571; 142,857 × 4 = 571,428;
142,857 × 5 = 714,285; 142,857 × 6 = 857,142, and so on.
It has been conjectured, but not yet proven, that an infi-
nite number of cyclic numbers exist.

cyclic polygon
A polygon with vertices (see vertex) that all lie on the
same circle. All triangles are cyclic (but not all of any other
kind of polygon) because any set of three points, not lying
on a single line, can have a circle drawn through it.

cycloid
The shape defined by a fixed point on a wheel as it rolls;
more precisely, it is the locus of a point on the rim of a
circle rolling along a perfectly straight line. The cy-
cloid was named by Galileo in 1599. It is the solution to
both the tautochrone problem and the brachistochrone
problem. In 1634, the French mathematician Gilles de
Roberval (1610–1675) showed that the area under a
cycloid is three times the area of its generating circle. In
1658, the English architect Christopher Wren showed
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that the length of a cycloid is four times the diameter of
its generating circle. But there was a lot of bickering and
a lack of public sharing of information around this time
that led to much duplication of effort, particularly over
questions related to the cycloid. In fact, the confusion

was so bad that the curve was nicknamed the Helen of
Geometers, and Jean Montucla referred to it as “la pomme
de discorde” (the apple of discord).

As well as the ordinary cycloid there is the curtate
cycloid, which is the path traced out by a point on the
inside of a rolling circle, and the prolate cycloid, which is
followed by a point on the outside of the circle. A prolate
cycloid is traced out, for example, by points on the flange
of the wheels of a locomotive, which extends below the
top of the tracks. This leads to the surprising conclusion
that even as the locomotive is moving forward there are
always parts of its wheels that are going backward for
a moment before moving forward again. See also epi-
cycloid and hypocycloid.

cylinder
A three-dimensional surface described by the Cartesian
equation (x/a)2 + (y/b)2 = 1. If a = b then the surface is a
circular cylinder, otherwise it is an elliptic cylinder. The cylin-
der is a degenerate quadric because at least one of the coor-
dinates (in this case z) doesn’t appear in the equation,
though by some definitions the cylinder isn’t considered
to be a quadric at all. In common usage, a cylinder is taken
to mean a finite section of a right circular cylinder with
its ends closed to form two circular surfaces. If the cylin-
der has a radius r and a length h, then its volume is 
V = πr 2h and its surface area is A = 2πr 2 + 2πrh. For a
given volume, the cylinder with the smallest surface area
has h = 2r. For a given surface area, the cylinder with the
largest volume has h = 2r. More unusual types of cylinder
include the imaginary elliptic cylinder: (x/a)2 + (y/b)2 = −1,
the hyperbolic cylinder: (x/a)2 − (y/b)2 = 1, and the parabolic
cylinder: x2 + 2y = 0.

cycloid An ordinary cycloid is traced out by a point on a
wheel as it rolls along a flat surface (a). A curtate cycloid is
traveled by a point on the wheel that is inside the circumfer-
ence (b). If the point lies outside the circumference of the
wheel, the result is a prolate cycloid (c).

(a)

(b)

(c)



d’Alembert, Jean Le Rond (1717–1783)
A French mathematician named for the church of St.
Jean Baptiste de Rond upon whose steps he was aban-
doned as a baby, the illegitimate son of a Parisian society
hostess. He clarified the concept of a limit in calculus,
discovered the Cauchy-Riemann equations decades before
Augustin Cauchy or Bernhard Riemann, was the first to
find and solve the wave equation, and recast Newton’s
third law in a new and powerful form through what has
become known as d’Alembert’s principle.

Dandelin spheres
If a cone is sliced through by a plane, the two spheres
that just fit inside the cone, one on each side of the plane
and both tangent to it and touching the cone, are known
as Dandelin spheres. They are named after the Belgian
mathematician and military engineer Germinal Pierre
Dandelin (1794–1847) who gave an elegant proof that
the two spheres touch the conic section at its foci. In
1826, Dandelin showed that the same result applies to
the plane sections of a hyperboloid of revolution.

dart
Also known as an arrowhead, a special kind of quadrilat-
eral that has one reflex angle. See also Penrose tiling.

de L’Hôpital, Guillaume François Antoine,
Marquis de (1661–1704)
A French mathematician who wrote the first textbook
on differential calculus, Analyse des infiniment petits pour
l’intelligence des lignes courbes (1696). This contains the
rule, now known as L’Hôpital’s rule, for finding the limit
of a rational function whose numerator and denomina-
tor tend to zero at a point. Along with Isaac Newton,
Gottfried Leibniz, and Jacob Bernoulli (see Bernoulli
family), de L’Hôpital was among the first to solve the
brachistochrone problem.

de L’Hôpital’s cubic
See Tschirnhaus’s cubic.

de Malves’s theorem
Given a tetrahedron in which the edges meeting at one
vertex, X, form three right angles (i.e., the tetrahedron is
the result of chopping off the corner of a cuboid), the

square of the face opposite X is equal to the sum of the
squares of the other three faces.

de Méré’s problem
A question posed in the mid-seventeenth century to
Blaise Pascal by a French nobleman and inveterate gam-
bler, the Chevalier de Méré, which marked the birth of
probability theory. One of de Méré’s favorite bets was
that at least one six would appear during a total of 
four rolls of a die. From past experience, he knew that
this gamble paid off more often than not. Then, for a
change, he started betting that he would get a double-six
on 24 rolls of two dice. However, he soon realized that
his old approach to the game was more profitable. He
asked his friend Pascal why. Pascal showed that the prob-
ability of getting at least one six in four rolls of a die is 
1 − (5⁄6)4 ≈ 0.5177, which is slightly higher than the prob-
ability of at least one double-six in 24 throws of two
dice, 1 − (35⁄36)24 ≈ 0.4914. This problem and others
posed by de Méré are thought to have been the original
inspiration for a fruitful exchange of letters on probabil-
ity between Pascal and Pierre de Fermat. To tackle these
problems, Fermat used combinatorial analysis (find-
ing the number of possible outcomes in ideal games of
chance by computing permutation and combination
numbers), while Pascal reasoned by recursion (an itera-
tive process that determines the result of the next case by
the present case). Their combined work laid the founda-
tions for probability theory as we know it today.

de Moivre, Abraham (1667–1754)
A French-British mathematician who founded analytical
trigonometry and stated what has become known as de
Moivre’s theorem. He also worked on probability theory
and the normal distribution, and was a good friend of
Isaac Newton. In 1698 he wrote that the theorem had
been known to Newton as early as 1676.

de Moivre’s theorem
A theorem, named after Abraham de Moivre, that links
complex numbers and trigonometry. It states that for
any real number x and any integer n,

(cosx + isinx)n = cos(nx) + isin(nx).

By expanding the left-hand side and then comparing 
real and imaginary parts, it is possible to derive useful

D
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expressions for cos(nx) and sin(nx) in terms of sin(x) and
cos(x). Furthermore, the formula can be used to find
explicit expressions for the nth root of unity: complex
numbers z such that z n = 1. It can be derived from (but
historically preceded) Euler’s formula e ix = cos x + i sin x
and the exponential law (e ix )n = e inx.

de Morgan, Augustus (1806–1871)
A British mathematician, born in India, who was an
important innovator in the field of mathematical logic.
The system he devised to express such notions as the con-
tradictory, the converse, and the transitivity of a relation,
as well as the union of two relations, laid some of the
groundwork for his friend George Boole. De Morgan lost
the sight of his right eye shortly after birth, entered Trin-
ity College, Cambridge, at the age of 16, and received his
B.A. However, he objected to a theological test required
for the M.A. and returned to London to study for the bar.
In 1827, he applied for the chair of mathematics in the
newly founded University College, London and, despite
having no mathematical publications, he was appointed.
In 1831, he resigned on principle (after another professor
was fired without explanation) but regained his job five
years later when his replacement died in an accident. He
resigned again in 1861.

His most important published work, Formal Logic,
included the concept of the quantification of the predicate,
an idea that solved problems that were impossible under
the classic Aristotelian logic. De Morgan coined the
phrase “universe of discourse,” was the first person to
define and name mathematical induction, and devel-
oped a set of rules to determine the convergence of a
mathematical series. In addition, he devised a decimal
coinage system, an almanac of all full moons from 2000
B.C. to A.D. 2000, and a theory on the probability of life
events that is still used by insurance companies. De Mor-
gan was also deeply interested in the history of mathe-
matics. In Arithmetical Books (1847) he describes the work
of over fifteen hundred mathematicians and discusses
subjects such as the history of the length of a foot, while
in A Budget of Paradoxes he gives a marvelous compen-
dium of eccentric mathematics including the poem

Great fleas have little fleas upon their backs to bite
’em,

And little fleas have lesser fleas, and so ad infini-
tum,

And the great fleas themselves, in turn, have greater
fleas to go on,

While these again have greater still, and greater
still, and so on.

The first lines of this poem paraphrase a similar rhyme by
Jonathan Swift.

88 de Morgan, Augustus

PUZZLE

On one occasion, when asked his age, de Morgan

replied: “I was x years old in the year x2.” How old must

he have been at the time?

Solutions begin on page 369.

decagon
A polygon with 10 sides.

decimal
The commonly used number system, also known as
denary, in which each place has a value 10 times the value
of the place at its right. For example, 4,327 in the decimal
(base 10) system is shorthand for (4 × 103) + (3 × 102) +

(2 × 101) + (7 × 100), where 100 = 1. “Decimal” comes
from the Latin decimus for “tenth.” The verb decimare, lit-
erally “to take a tenth of,” was used to describe a form of
punishment applied to mutinous units in the Roman
army. The men were lined up and every tenth soldier was
killed as a lesson to the rest. From this custom comes our
word decimate, which we use more loosely—in fact, incor-
rectly—to indicate near-total destruction. The Latin deci-
mare was also used in a less ferocious sense to mean “to
tax to the amount of one tenth.” However, the usual
word describing a one-tenth tax in English is tithe, which
comes from the Old English teogotha, a form of tenth.

decimal fraction
A number consisting of an integer part, which may be
zero, and a decimal part less than unity that follows the
decimal marker (which may be a point or a comma). A
finite or terminating decimal fraction has a sequence of deci-
mals with a definite break-off point after which all the
places are zeros. Other fractions produce endless sequences
of decimals that are periodic nonterminating.

Dedekind, (Julius Wilhelm) Richard (1831–1916)
A German mathematician whose most important contri-
bution was the discovery of what became known as the
Dedekind cut. He realized that every real number r divides
the rational numbers into two subsets: those greater
than r and those less than r. Dedekind’s brilliant idea was
to represent the real numbers by such divisions of the
rationals. He also provided important support for Georg
Cantor’s set theory, which was highly controversial at the
time.

Dee, John (1527–1609)
A notable English alchemist, mathematician, and astron-
omer, sometimes referred to as the “last magician” be-
cause of his astrological services to Queen Elizabeth I;
Dee may also have influenced the writings of Shake-
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speare. He enrolled at St. Johns College, Cambridge, at
age 15, but found the atmosphere there stifling and later
went to the Continent to study and lecture. Upon his
return to England, Dee cast the horoscope for Queen
Mary and later visited Mary’s half-sister Elizabeth in jail
to determine when Mary would die. Accused of black
magic, he was jailed and then released in 1555, three
years before Mary’s death. When Elizabeth came to the
throne she consulted Dee on many matters, including
the geography of newly discovered lands, and paid him
well. Some of his income he spent on extensive traveling,
which may have involved some spying on behalf of his
sponsor.

Dee had a large library of books on witchcraft, the
occult, and magic, and he wrote 79 manuscripts, only a
few of which were published. He married three times and
fathered eight children. He also struck up an uneasy part-
nership with Edward Kelly, a bad-tempered Irishman
who claimed to have discovered the alchemical secret of
transmuting base metal into gold but had lost his ears for
forgery. In 1585 Dee and Kelly went on a four-year trek
across the Continent conducting astrological readings for
nobility and royalty. But Dee and Kelly had many argu-
ments and eventually parted company. Back in England
Dee found his house ransacked and many of his posses-
sions stolen or destroyed. Elizabeth helped pay for the
damage and made him warden of Christ’s College in
Manchester in 1595. However, Elizabeth died in 1603
and her successor James I opposed magic. Dee was forced
to retire, his life ending in poverty.

deficient number
See abundant number.

degree
(1) The unit of measurement for angles; one degree is 1⁄360

of a circle. (2) The exponent of a variable. For example,
the degree of 7x 5 is 5. See also degree of freedom.

degree of freedom
A positive integer that gives the number of pieces of data
that are independent.

deletable prime
See truncatable prime.

delta curve
A curve that can be turned inside an equilateral triangle
while continuously making contact with all three sides.
There are an infinite number of delta curves, but the sim-
plest are the circle and lens-shaped delta-biangle. All the
delta curves of height h have the same perimeter 2πh/3.
See also Reuleaux triangle and rotor.

deltahedron
A polyhedron whose faces consist of equilateral triangles
that are all the same size. Although there are an infinite
number of different deltahedra, only eight of them are
convex, as O. Rausenberger first showed in 1915. Among
this group of eight, faces made of coplanar equilateral tri-
angles sharing an edge (such as the rhombic dodecahe-
dron) aren’t allowed. The eight convex deltahedra have 
4, 6, 8, 10, 12, 14, 16, and 20 faces.

deltoid
A hypocycloid with three cusps, also known as a tricus-
poid or Steiner’s hypocycloid after the Swiss mathematician
Jakob Steiner who investigated the curve in 1856. The
deltoid, so-named because it looks like an uppercase
Greek delta, ∆, is formed by a point on the circumference
of a circle rolling inside another circle with a radius three
times as large. While working on a problem in optics in
1745, Leonhard Euler was among the first to study its
properties. The parametric equations of the cycloid with
inner circle of radius r are:

x(t) = 2rcost + rcos2t
y(t) = 2rsint − rsin2t

The length of the path of the deltoid is 16r/3, and the
area inside the deltoid is 2πr 2. If a tangent is drawn to the
deltoid at some point, P, and the points where the tan-
gent crosses the deltoids other two branches are called
points A and B, then the length of AB equals 4r. If the
deltoid’s tangents are drawn at points A and B, they will

deltoid The deltoid curve. © Jan Wassenaar, www.2dcurves.com
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be perpendicular, and they will intersect at a point inside
the deltoid that is the 180° rotation of point P about the
center of the fixed circle.

denominator
In a rational number, the number below the fraction
bar; it indicates into how many parts the whole is
divided.

derivative
The result of differentiating a function; that is, the infin-
itesimal change in a function caused by an infinitesimal
change in the variable(s) upon which it depends. The
derivative gives the rate of change of a function (the
slope of its curve) at a particular point. Second and third
derivatives give the rate at which the rate of change is
changing and the rate at which the rate of rate of change
is changing, respectively. In an article in 1996, Hugo
Rossi wrote: “In the fall of 1972 President Nixon an-
nounced that the rate of increase of inflation was decreas-
ing. This was the first time a sitting president used the
third derivative to advance his case for reelection.”[269]

Here is a fallacious “proof ” that x = 2x based on deriv-
atives. Consider the function f (x) = x 2, the derivative of
which is 2x. What is wrong with the following?

x 2 = x + x + . . . + x (repeated x times)

Taking the derivative of both sides gives

(x 2)′ = 1 + 1 + . . . + 1 = x.

But we have already said that the derivative of x 2 is 2x.
Therefore, x = 2x. The error stems from taking the deriv-
ative of x different x’s. Each of the terms depends not
only on x, which was accounted for in taking the deriva-
tive, but also on the number of terms (which could be
fractional) which depends on x, too, and this was not
accounted for. Put another way, the derivative measures
the rate of change of x 2 as x changes, but as x changes, the
number of terms on the right, as well as the terms them-
selves, increases. For positive x, the correct answer must
be larger than x—as indeed it is.

Desargues, Girard (1591–1661)
A French mathematician who is regarded as the chief
founder of perspective geometry. His 12-page treatise La
perspective (1636) consists of a single worked example in
which Desargues sets out a method for constructing a per-
spective image without using any point lying outside the
picture field. He considers the representation in the pic-
ture of a plane of lines that meet at a point and also of
lines that are parallel to each another. In the last paragraph
of the work he considers the problem of finding the per-
spective image of a conic section. Three years later, he

wrote his treatise on projective geometry Brouillon project
d’une atteinte aux evenemens des rencontres du cone avec un plan
(Rough draft for an essay on the results of taking plane
sections of a cone). The first part of this deals with the
properties of sets of straight lines meeting at a point and
of ranges of points lying on a straight line. In the second
part, the properties of conics are investigated in terms of
properties of ranges of points on straight lines and the
modern term “point at infinity” appears for the first time.
Desargues shows that he has completely grasped the con-
nection between conics and perspective; in fact he treats
the fact that any conic can be projected into any other
conic as obvious. Given such innovative work it may
seem surprising that the subject didn’t develop rapidly in
the following years. That may be partly due to mathe-
maticians failing to recognize the power of what had been
put forward. On the other hand, the algebraic approach 
to geometry put forward by René Descartes at almost
exactly the same time (1637) may have diverted attention
from Desargues’s projective methods.

Descartes, René (1596–1650)

If you would be a real seeker after truth, it is neces-
sary that at least once in your life you doubt, as far
as possible, all things.

A hugely influential philosopher and mathematician,
born in La Haye (now named Descartes after its most
famous son), Indre-et-Loire, France, who is often referred
to as the father of modern philosophy and one of the
founders of modern mathematics. He studied law at the
University of Poitiers but never practiced it, served in 
the military for a while, and then lived in Holland for 20
years where he did the bulk of his great work. In his Med-
itations on First Philosophy, he tried to establish what can
be known as true beyond doubt. His tool was method-
ological skepticism: the assumption that any idea that
can be doubted is false. He gives the example of dream-
ing: in a dream, one senses things that seem to be real,
but that don’t actually exist. Thus, the data of the senses
can’t be fully trusted. Then again, he mused, perhaps
there is an “evil genius”—a supremely powerful and devi-
ous being who sets out to prevent anyone from knowing
the true nature of reality. Given these possibilities, what
is it that one can know for certain? Descartes argues that
if “I” am being deceived, then surely “I” must exist—the
statement famously referred to as cogito ergo sum (“I think,
therefore I am”), though these words don’t actually
appear anywhere in the Meditations. Descartes concludes
that he can be certain that he exists. But in what form? If
the senses are unreliable, Descartes reasons, all he can say
for sure is that he is a thinking thing. He then proceeds to
build a system of knowledge, discarding perception as
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unreliable and instead admitting only deduction as a
method. Halfway through the Meditations he also claims
to prove the existence of a benevolent God who has pro-
vided him with a working mind and sensory system, and
who cannot desire to deceive him, and thus, finally, he
establishes the possibility of acquiring knowledge about
the world based on deduction and perception.

In mathematics, Descartes is important for his discovery
of analytical geometry. Up to Descartes’s time, geometry,
dealing with lines and shapes, and algebra, dealing with
numbers, were regarded as completely independent aspects
of mathematics. Descartes showed how almost all prob-
lems in geometry can be translated into problems in alge-
bra, by regarding them as questions asking for the length of
a line segment, and using a coordinate system to describe
the problem. Descartes’s theory provided the basis for cal-
culus, developed by Isaac Newton and Gottfried Leibniz,
and thus for much of modern mathematics. This is partic-
ularly amazing when you consider that Descartes intended
it merely as an example to support his Discours de la méthode
pour bien conduire sa raison, et chercher la verité dans les sciences
(Discourse on the method to rightly conduct the reason
and search for the truth in sciences), better known under
the shortened title Discours de la méthode.

Descartes died of pneumonia in Stockholm, where he
had been invited to serve as tutor to the energetic 19-year-
old Queen Christina of Sweden. Accustomed to working
in a warm bed till noon, he was shocked into a rapid
decline by having to teach philosophy at 5 A.M. in a freez-
ing library. Seventeen years after his death, the Roman
Catholic Church placed his works on the Index of Pro-
hibited Books.

Descartes’s circle theorem
See Soddy’s formula.

determinant
A quantity obtained from a square (n × n) array of num-
bers that can be useful, among other things, in solv-
ing systems of linear equations (equations in which the
unknowns are raised to at most the first power). More
generally, a determinant transforms a square matrix into
a scalar—an operation that has many important proper-
ties. Two-by-two determinants were considered by Giro-
lamo Cardano at the end of the sixteenth century and
ones of arbitrary size by Gottfried Leibniz about a cen-
tury later. Determinants are so named because, when
applied to systems of linear equations, they “determine”
if the systems are singular—that is, have multiple solu-
tions. They also have important geometric applications,
because they describe the area of a parallelogram and,
more generally, the volume of a parallelepiped. A three-
rowed determinant is defined by:

! ! =

.

deterministic system
A system in which the later states of the system follow
from, or are determined by, the earlier ones. Such a sys-
tem contrasts with a stochastic or random system in which
future states are not determined from previous ones. An
example of a stochastic system would be the sequence of
heads or tails of an unbiased coin, or radioactive decay.

If a system is deterministic, this doesn’t necessarily
imply that later states of the system are predictable from
a knowledge of the earlier ones. In this way, chaos is sim-
ilar to a random system. Chaos has been termed “deter-
ministic chaos” since, although it is determined by
simple rules, its property of sensitive dependence on ini-
tial conditions makes a chaotic system, in practice,
largely unpredictable.

devil’s curve
Also known as the devil on two sticks, a curve with the
Cartesian equation

y 4 − a 2y 2 = x 4 − b 2x 2

and the polar equation

r 2 (sin2Θ − cos2Θ) = a 2sin2Θ − b 2cos2Θ).

Early studies of it were carried out in 1750 by the Swiss
mathematician Gabriel Cramer (1704–1752), who is

a11 × a22 × a33 + a12 × a23 × a31

+ a13 × a21 × a32 − a13 × a22 × a31

− a12 × a21 × a33 − a11 × a23 × a32

a13

a23

a33

a12

a22

a32

a11

a21

a31

devil’s curve © Jan Wassenaar, www.2dcurves.com
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most famous for his work on determinants, and in 
1810 by Lacroix. For a = 25⁄24, the curve is called the elec-
tric motor curve.

Dewdney, Alexander Keewatin (1941–)
A Canadian computer scientist and mathematician at the
University of Western Ontario, Canada, best known for his
popular books and articles, most notably The Planiverse:
Computer Contact with a Two-dimensional World, first pub-
lished in 1984.[81] For several years, Dewdney wrote the
“Mathematical Recreations” column for Scientific American.

diagonal
A line that joins any two vertices of a polygon, if the ver-
tices are not next to each other; or a line that joins two
vertices of a polyhedron that are not on the same face.

diagonal matrix
A matrix that has zero entries along all nondiagonal
entries, that is, only the main diagonal may have nonzero
values.

diameter
The distance across a circle through the center.

dice
Small polyhedra (see polyhedron), usually cubes, whose
faces are numbered from one to six by patterns of dots,
with opposite sides totaling seven. They are thrown,
singly or in groups, from the hand or from a cup, onto a
flat surface, to provide random numbers for gambling
and other games. The face of each die that is uppermost
when it comes to rest provides the value of the throw.
Typical of their use today is the game of craps, in which
two dice are thrown together, and bets placed on the total
face-up value. Dice probably evolved from knuckle-
bones, which are approximately tetrahedral. Even today,
dice are sometimes colloquially referred to as “bones.”
Ivory, bone, wood, metal, and stone materials have been
commonly used to make dice, though the use of plastics
is now nearly universal.

Dice found in ancient tombs in the Orient point to an
Asiatic origin and dicing is mentioned as an Indian game
in the Rig-veda. In its primitive form, knucklebones was
essentially a game of skill, played by women and chil-
dren; gradually, a derivative form evolved for gambling
in which four sides of the bones received different values
and were counted like dice. Gambling with three, some-
times two, dice was a popular form of amusement in
Greece, especially with the upper classes, and was an
almost invariable accompaniment to the symposium, or
drinking banquet. The Romans were passionate gam-
blers, and dicing was a favorite form, though it was for-

bidden except during the festival of Saturnalia (Decem-
ber 17). Throwing dice for money led to many special
laws in Rome, one of which decreed that no suit could be
brought by a person who allowed gambling in his house,
even if he’d been cheated or assaulted! Professional gam-
blers were common, and some of their loaded dice are
preserved in museums.

The Roman historian Tacitus states that the Germans
also were passionately fond of dicing—so much so, that,
having lost everything, they would even stake their per-
sonal liberty. Centuries later, in medieval times, dicing
became the favorite pastime of knights, and both dicing
schools and guilds of dicers flourished.

Dice are frequently used to randomize allowable
moves in board games such as backgammon. Loaded
dice can be made in many ways to cheat at such games.
Weights can be added, or some edges made round while
others are sharp, or some faces made slightly off-square,
to make some outcomes more likely than would be pre-
dicted by pure chance. Dice with non-cubical shapes
were once almost exclusively used by fortune-tellers and
in other occult practices, but they have become popular
lately among players of role-playing and war-games.

difference equation
An equation that describes how something changes in
discrete time steps. Numerical solutions to integrals are
usually realized as difference equations.

differential
A term such as dx used in an expression such as ydx − xdy
to denote first-order small changes in the variable. Differ-
entiation is the method by which a differential is found.

differential equation
A description of how something continuously changes
over time (see continuity). Some differential equations
have an exact analytical solution such that all future states
can be known without simulating the time evolution of
the system. However, most have a numerical solution with
only limited accuracy. A differential equation involves
the first or higher derivatives of the function to be solved
for. If the equation only involves first derivatives, it is
known as an equation of order one, and so on. If only nth
powers of the derivatives are involved, the equation is
said to have degree n. Equations of degree one are called
linear. Equations in only one variable are called ordinary
differential equations to distinguish them from partial
differential equations, which have two or more.

differential geometry
The study of geometry using calculus; it has many appli-
cations in physics, especially in relativity theory. The
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objects studied by differential geometry are known as Rie-
mannian manifolds. These are geometrical objects, such 
as surfaces, that locally look like Euclidean space and
therefore allow the definition of analytical concepts such
as tangent vectors and tangent space, differentiability
(see differential), and vector and tensor fields. Rieman-
nian manifolds have a metric, which opens the door to
measurement because it allows distances and angles to be
evaluated locally and concepts such as geodesics, curva-
ture, and torsion to be defined.

differential topology
A branch of topology concerned with those properties of
differential geometry that are preserved by continuous
transformation.

differentiation
The method by which the derivative of a function is
found.

digimetic
A cryptarithm in which digits are used to represent other
digits.

digit
A symbol or numeral that is used to represent an integer
in a positional number system. Examples of digits include
the decimal characters 0 through 9, the binary characters
0 or 1, and the hexadecimal digits 0 . . . 9, A . . . F. The
word comes from the Latin digitus for “finger” or “toe,”
and retains this meaning, reminding us of the origins of
our base 10 number system. The earlier Indo-European
root deik is related to many other words that hark back to
the use of the hands and fingers to “point” out objects,
including index, indicate, token, and teach.

digital root
Take a number, n, add its digits, then add the digits of
numbers derived from it, and so on, until the remaining
number has only one digit. This single digit result is
called the digital root of n. For example, in the case of
5381: 5 + 3 + 8 + 1 = 19; 1 + 9 = 10; 1 + 0 = 1; thus, the
digital root of 5381 is 1. See also casting out nines.

digraph
A graph in which each edge has a direction associated
with it.

dihedral angle
The angle defined by two given faces meeting at an edge;
for example, all the dihedral angles of a cube are 90°. An
almost-spherical polyhedron (with many faces) has small
dihedral angles.

dimension
An extension in some unique direction or sense; the word
comes from the Latin dimetiri for “measured out.” The
most common way to think of a dimension is as one of
the three spatial dimensions (up-down, left-right, back-
forth) in which we live. Mathematicians and science fic-
tion writers alike have long imagined what it would be like
in a world with a different number of spatial dimensions.
Speculation has particularly focused on two-dimensional
worlds and, to an even greater extent, on the fourth
dimension. Time is also thought of as a dimension; in-
deed, in relativity theory and as a component of space-
time, it is treated almost exactly the same as a dimension
of space. The universe may have additional spatial dimen-
sions—a total of 10, 11, or 26 are especially favored—
according to some theories of the subatomic world (see
string theory and Kaluza-Klein theory), though the
additional ones are “curled up” incredibly small and only
become important at scales far smaller than those that can
be experimentally probed today.

In mathematics, the term dimension is used in many dif-
ferent ways. Some of these correspond to the everyday
idea of an extension in physical space or to some of the
more esoteric meanings in physics. Others are purely
abstract and exist only in certain types of theoretical,
mathematical space. There are, for example, Hamel dimen-
sions, Lebesgue covering dimensions, and Hilbert spaces. So-
called Hausdorff dimensions are used to characterize
fractals—mathematical objects that have fractional dimen-
sions—by giving a precise meaning to the idea of how well
something, such as an extremely “wriggly” curve or sur-
face, fills up the space in which it is embedded.

dinner party problem
See Ramsey theory.

Diocles (c. 240–c. 180 B.C.)
A Greek mathematician and contemporary of Apollo-
nius who studied the cissoid as part of an attempt to
duplicate the cube and also was the first to prove the
focal property of a parabolic mirror.

Diophantine approximation
The approximation of a real number by a rational
number.

Diophantine equation
An equation that has integer coefficients and for which
integer solutions are required. Such equations are named
after Diophantus. The best known examples are those
from Pythagoras’s theorem, a 2 = b 2 + c 2, when a, b, and
c are all required to be whole numbers—a Pythagorean
triplet. Despite their simple appearance Diophantine
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equations can be fantastically difficult to solve. A no-
torious example comes from Fermat’s last theorem
(recently solved), an = b n + c n for n > 2. To give a specific
example, suppose we want to find integer values for x and
y such that

x 2 = 1620y 2 + 1.

A trial-and-error approach using a computer would
quickly find the solution: y = 4, x = 161. However, just a
slight change to the equation to make it

x 2 = 1621y 2 + 1

would leave the trial-and-error method floundering, even
with the resources of the most powerful computers on
Earth. The smallest integer solution to this innocent look-
ing formula involves a y-value that is on the order of a
thousand trillion trillion trillion trillion trillion trillion!
One of the challenges (the tenth one) that David Hilbert
threw down to twentieth-century mathematicians in his
famous list was to find a general method for solving equa-
tions of this type. In 1970, however, the Russian mathe-
matician Yu Matijasevic showed that there is no general
algorithm for determining whether a particular Diophan-
tine equation is soluble: the problem is undecidable.[217, 218]

Diophantus of Alexandria (A.D. c. 200–c. 284)
A Greek mathematician who developed his own alge-
braic notation and is sometimes called “the father of
algebra.” His works were preserved by the Arabs and
translated into Latin in the sixteenth century, when they
served to inspire momentous new advances. Diophan-
tine equations are named in his honor. It was in the 
margin of a French translation of Diophantus’s work
Aritmetike from c. 250 that Pierre de Fermat scribbled his
famous comment that became known as Fermat’s last
theorem.

Diophantus’s riddle
One of the oldest known age problems (see age puzzles
and tricks). It comes from the Greek Anthology, a collec-
tion of puzzles compiled by Metrodorus in about A.D.
500, and purports to tell how long Diophantus lived in
the form of a riddle engraved on his tombstone:

God vouchsafed that he should be a boy for the sixth
part of his life; when a twelfth was added, his cheeks
acquired a beard; He kindled for him the light of
marriage after a seventh, and in the fifth year after his
marriage He granted him a son. Alas! late-begotten
and miserable child, when he had reached the mea-
sure of half his father’s life, the chill grave took him.
After consoling his grief by this science of numbers
for four years, he reached the end of his life.

If d and s are the ages of Diophantus and his son when
they died, then the epitaph boils down to these two equa-
tions,

d = (1⁄6 + 1⁄12 + 1⁄7)d + 5 + s + 4
s = 1⁄2 d,

which can be solved simultaneously to give s = 42 years
and d = 84 years.

Dirac, Paul Adrien Maurice (1902–1984)
A British theoretical physicist who played a major role
in the development of quantum mechanics and pre-
dicted the existence of antiparticles. He made his first
great breakthrough at Cambridge University in 1928,
when he found a wave equation for the electron. This
explained aspects of the electron that had previously
been observed but not understood, and, incidentally, is
the only equation to appear in Westminster Abbey,
where it is engraved on Dirac’s commemorative plaque.
Dirac’s electron equation also made the remarkable pre-
diction that there exists a previously unseen type of
matter—a particle like the electron, but with the oppo-
site charge. This was startling at the time because only
two subatomic particles, the electron and the proton,
were known, and there was no suspicion that 
others might be waiting in the wings. The prediction
was fulfilled four years later when the positron, as it is 
now called, was first seen. A central theme of Dirac’s
work was his belief that beauty and mathematics go
hand in hand. When a journalist once asked him to
explain the concept of mathematical beauty, Dirac
asked the journalist “Do you know mathematics?” and
when the journalist replied “No,” Dirac said, “Then you
can’t understand the concept of mathematical beauty.” 
A shy, retiring person, Dirac is not as famous as his
achievements warrant.

Dirac string trick
Take a cardboard square and tie the four corners to
another larger square by loose string. Rotate the small
square by 360° about a vertical axis, that is, in a horizon-
tal plane. The strings will become somewhat tangled, and
it is not possible to untangle them without rotating the
square. Turn the square through another 360°, for a total
of 720°. Contrary to all expectations, it is now possible to
untangle the string, without further rotation of the
square, simply by allowing enough space for the strings
to be looped over the top of the square!

Another version of the Dirac string trick has been
called the Philippine wineglass trick. A glass of water held
in the hand can be rotated continuously through 720°

without spilling any water. Surprisingly, these geometri-
cal demonstrations are related to the physical fact that an



disk 95

electron has spin 1⁄2. A particle with spin 1⁄2 is something
like a ball attached to its surroundings with string. Its
amplitude changes under a 360° (2π) rotation and is
restored on rotation to 720° (4π).

direct proportion
The relationship two quantities have if the graph of one
against the other is a straight line through the origin; so
if one doubles then the other doubles, and so forth.

directed graph
Also known as a digraph, a graph in which each edge is
replaced by a directed edge, indicated by an arrow. A
directed graph having no multiple edges or loops is
called a simple directed graph. A complete graph in which
each edge is bidirected is called a complete directed
graph. A directed graph having no symmetric pair of
directed edges (i.e., no bidirected edges) is known as
an oriented graph. A complete oriented graph (i.e., a
directed graph in which each pair of vertices is joined by
a single edge having a unique direction) is called a tour-
nament.

directrix
The line that, together with a point called the focus,
serves to define a conic section as the locus of points

whose distance from the focus is proportional to the hor-
izontal distance from the directrix. If the ratio r = 1, the
conic is a parabola, if r < 1, it is an ellipse, and if r > 1, it
is a hyperbola.

Dirichlet, Peter Gustav Lejeune (1805–1859)
A German mathematician who made significant contri-
butions to number theory, analysis, and mechanics, and
who is credited with the modern formal definition of a
function. He taught at the universities of Breslau (1827)
and Berlin (1828–1855) and in 1855 succeeded Carl
Gauss at the University of Göttingen but died of a heart
attack only three years later. Dirichlet continued Gauss’s
great work on number theory, publishing on Diophan-
tine equations of the form x 5 + y 5 = kz5. His book Lectures
on Number Theory (published posthumously in 1863) is
similar in stature to Gauss’s earlier Disquisitiones and
founded modern algebraic number theory. In 1829 he
gave the conditions sufficient for a Fourier series to con-
verge (though the conditions necessary for it to converge
are still undiscovered).

Dirichlet’s theorem
For any two positive coprime integers, a and b, there are
infinitely many prime numbers of the form an + b, where
n > 0. This theorem was first conjectured by Karl Gauss
and proved by Peter Dirichlet in 1835.

discontinuity
Also called a jump, a point at which a function is not
continuous.

discrete
Taking only noncontinuous values, for example, Boolean
or natural numbers.

discriminant
A quantity that gives valuable information about the
solutions of an equation. In the case of the quadratic
equation ax2 + bx + c = 0, the discriminant is given by 
d = b2 − 4ac. If d > 0, the roots of the equation are two dif-
ferent real numbers; if d = 0, the roots are real and equal;
if d < 0, the roots are complex numbers. The concept of
discriminant can also be applied in the case of polyno-
mials, elliptic curves, and metrics.

disk
Roughly speaking, the “filling” of a circle. A flat (two-
dimensional) disk of radius r consists of all the points
that are at a distance ≤ r (closed disk) or < r (open disk)
from a fixed point in the plane. More generally, an n
dimensional disk of radius r is the set of all points at a
distance ≤ r (closed) or < r (open) from a fixed point in

Dirac string trick The equipment needed to simulate an
electron’s spin property.
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Euclidean n-space. A disk is the two-dimensional analog
of a ball.

disme
An old word for “tenth.” A notation for decimal frac-
tions was introduced for the first time in 1585 in a pam-
phlet called La Disme by Simon Stevin of Holland.

dissection
Cutting apart one or more figures and rearranging the
pieces to make another figure. Dissection puzzles have
been around for thousands of years. The problem of dis-
secting two equal squares to form one larger square using
four pieces dates back to at least the time of Plato
(427–347 B.C.). In the tenth century, Arabian mathe-
maticians described several dissections in their com-
mentaries on Euclid’s Elements. The eighteenth-century
Chinese scholar Tai Chen presented an elegant dissec-
tion for approximating the value of pi. Others worked
out dissection proofs of the Pythagoras’s theorem. In
the nineteenth century, dissection puzzles by Sam Loyd,
Henry Dudeney, and others became tremendously pop-
ular in magazine and newspaper columns. A classic
example is the Haberdasher’s puzzle. Dissections can
get quite elaborate: an eight-piece octahedron becomes a
hexagon, a nine-piece five-pointed star becomes a penta-
gon, and so on. See also tangrams and Loculus of
Archimedes.[201, 202]

dissipative system
A dynamical system that contains internal friction
that deforms the structure of its attractor. Dissipative
systems often have internal structure despite being
far from equilibrium, like a whirlpool that preserves
its basic form despite being in the midst of constant
change.

distortion illusion
An illusion that distorts an image’s shape and/or size.
Famous examples include Poggendorff illusion, Zöllner
illusion, Titchener illusion, irradiation illusion, Fraser
spiral, Müller-Lyer illusion, Orbison’s illusion, verti-
cal-horizontal illusion, and Ames room.

distributive
Three numbers x, y, and z are said to be distributive over
the operation + if they obey the identity

x( y + z) = xy + xz.

Compare with associative and commutative.

diverge
If a sequence doesn’t converge it is said to diverge (see
convergence). This can be if it goes to infinity, or if it
simply cycles between two or more values without ever
staying on one of them. For example, the sequences: 1, 2,
4, 8, 16, 32, . . . and 1, 0, 1, 0, 1, 0, . . . are both divergent.

division
A counterpart to multiplication defined so that if

a × b = c

where b is nonzero, then

a = c/b.

In this equation, a is the quotient, b is the divisor, and c is
the dividend. A skeletal division is a long division in
which most or all of the digits are replaced by a symbol
(usually asterisks) to form a cryptarithm.

dodecagon
A polygon with 12 sides.

dodecahedron
A polyhedron with 12 faces. A regular dodecahedron is
made from faces that are identical regular pentagons and
is one of the Platonic solids.

dodecahedron A mechanical puzzle in the form of a dodeca-
hedron. Mr. Puzzle Australia, www.mrpuzzle.com.au
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Dodgson, Charles Lutwidge
See Carroll, Lewis.

dollar
The elaborate designs on the various denominations of
American dollar bills can be used for some amusing
games of the “Can you find . . . ?” variety. On a $1 bill,
there is an owl in the upper left-hand corner of the “1”
encased in the shield, and a spider hidden in the front
upper right-hand corner. There are also at least nine
occurrences of thirteen things: 13 steps on the pyramid,
13 letters in the Latin above the pyramid, 13 letters in “E
Pluribus Unum,” 13 stars above the eagle, 13 plumes of
feathers on each span of the eagle’s wing, 13 bars on the
shield, 13 leaves on the olive branch, 13 fruits, and 13
arrows. On the back of a $5 bill the number 172 can be
found in the bushes at the base of the Lincoln Memorial,
while on the back of the old $10 bill are four cars and
eleven light posts. On the new $100 dollar bill the time
on the clock tower of Independence Hall reads 4:10.

domain
The set of numbers x for which the function f (x) is
defined. See also codomain and range.

domino
A small rectangular tile, marked with spots, that is used
to play games. There are many varieties of dominoes
and games based on them. Most domino tiles, however,
have roughly 2-to-1 proportions and each half of each
domino has spots arranged as on a six-sided die; the set
generally contains tiles with all possible combinations
of two numbers. A tile is identified by the number of
spots on each half: for example, “1-6” or “3-3.” Eng-
lish/American dominoes include blank sides; Chinese
dominoes don’t but do duplicate some whole tiles. Eng-
lish/American dominoes can also be bought in larger
sets with numbers of spots up to nine or twelve per side.
Other than games of strategy, there are many mathe-
matical puzzles that involve dominoes. Some of these
puzzles involve tiling variations on the standard 8 × 8
chessboard.

PUZZLE

A standard chessboard can easily be tiled by using four

dominos in each row. But what if two squares are

removed, one each from diagonally opposite corners of

the chessboard? Can this reduced board be completely

tiled by nonoverlapping dominoes?

Solutions begin on page 369.

Another common pastime using domino tiles is to
stand them on edge in long lines, then topple the first
tile, which falls on and topples the second, and so forth,
resulting in all of the tiles falling. Arrangements of thou-
sands of tiles have been made that take several minutes to
fall. By analogy, phenomena of chains of small events
each causing similar events leading to eventual catastro-
phe are called domino effects. The word domino was first
used to refer to the hooded black cape worn by priests,
and later to black masks (of the Lone Ranger type) worn
at masquerade balls. The domino is the simplest form of
polyomino.

domino problem
Is there an algorithm (a set of instructions) that, when
given a particular shape as an input, decides if the shape
can be used to tile the entire plane? The solution to this
unresolved problem is tied up with Heesch numbers.
The domino problem in turn has a deep connection with
the Einstein problem.

dozen
See twelve.

dragon curve
A classic example of a recursively generated fractal shape.
Benoit Mandelbrot called it the “Harter-Heighway”
dragon curve and it formed the subject of one of Martin

dragon curve Jos Leys, www.josleys.com



98 dual

Gardner’s Mathematical Games columns in Scientific Amer-
ican in 1967.[116] The dragon curve fills out an “island” of
positive area with a fractal boundary.

dual
(1) The dual of a solid is formed by joining the centers of
adjacent faces with straight lines. In the resulting dual
solid, each vertex of the dual corresponds to a face on
the original, each face on the dual to an original vertex,
while the edges match, one for one. (2) The dual of a tes-
sellation is obtained by replacing each tile with a point at
its center, and each edge between tiles with an edge join-
ing vertices. The dual of a regular tessellation is a regular
tessellation; the dual of a semi-regular tessellation is not
semi-regular.

Dudeney, Henry Ernest (1857–1930)
An English writer and puzzle-maker who became one of
the greatest exponents of recreational mathematics of
his time. Chess and chess problems captivated him
from an early age and he was only 9 when he started
contributing puzzles to a local newspaper. His educa-
tion was limited and he started work as a clerk in the
civil service at the age of 13. However, he kept up his
interest in math and chess, wrote articles for magazines
under the pseudonym “Sphinx,” and joined a literary
circle that included Arthur Conan Doyle. In 1893 he
struck up a correspondence with the American puzzle-
maker Sam Loyd, the other leading mathematical recre-
ationist of the day, and the two shared many ideas.
However, a rift developed after Dudeney accused Loyd
of publishing many of Dudeney’s puzzles under his
own name. One of Dudeney’s daughters “recalled her
father raging and seething with anger to such an extent
that she was very frightened and, thereafter, equated
Sam Loyd with the devil.” Dudeney was a columnist for
the Strand Magazine for over 30 years and wrote six
books. The first of these, The Canterbury Puzzles,[87] pub-
lished in 1907, purports to include a collection of prob-
lems posed by the characters in Chaucer’s The Canterbury
Tales. The answer to the so-called Haberdasher’s puzzle
is Dudeney’s best known geometrical discovery. His
other books include Amusements in Mathematics
(1917)[88] and The World’s Best Word Puzzles (1929). See
also spider-and-fly problem and polyomino.[233]

Dunsany, Lord Edward Plunkett (1878–1957)
An Irish writer who was one of the founders of the fan-
tasy genre of literature. Edward John Moreton Drax Plun-
kett was born in London to a family whose roots in
Ireland predate the Norman invasion. He inherited his
father’s title in 1899, fought in the Boer War, and

returned to the ancestral home, Dunsany Castle, in 1901.
Lord Dunsany was a keen marksman and hunter, a fine
player of cricket (Dunsany had its own cricket ground
near the village), tennis (there is a court beside the Cas-
tle), and chess (he was an amateur champion and once
drew with Grand Master Capablanca. He also wrote chess
puzzles for the Times over many years and invented his
own variant of the game. His first of many books, The
Gods of Pegana, was published in 1905. In writings that
spanned fantasy, drama, poetry, and science fiction, he
was an early explorer of such ideas as chess-playing com-
puters (in “The Three Sailors’ Gambit” from The Last
Book of Wonder and, again, in his 1951 novel The Last Rev-
olution) and paradoxes in time travel (e.g., in “Lost” from
The Fourth Book of Jorkens and “The King That Was Not”
from Time and the Gods).

Dupin cyclide
The envelope of all spheres touching three given fixed
spheres. (Each of the fixed spheres is to be touched in an
assigned manner, either externally or internally.) Equiva-
lently, the envelope of all spheres whose centers lie on a

Dunsany, Lord Edward Plunkett The Dunsany Estate
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given conic section and which touch a given sphere.
Also equivalently, the inverse of a torus.

duplicating the cube
A classical mathematical challenge of antiquity: using
only a straightedge and compass, construct a cube whose
volume is exactly twice that of a given cube. It is often
called the “Delian” problem because of a legend that sur-
rounds its origin. The citizens of Athens were being dev-
astated by a plague so that, in 430 B.C., they sought
advice from the oracle at Delos on how to rid their com-
munity of this pestilence. The oracle replied that the altar
of Apollo, which was in the form of a cube, had to be
doubled in size. Thoughtless builders merely doubled the
edges of the cube, failing to appreciate that this increased
the volume of the altar eightfold. The oracle said the
gods had been angered; the plague grew worse. Other del-
egations consulted Plato. When informed of the oracle’s
admonition, Plato told the citizens “the god has given
this oracle, not because he wanted an altar of double the
size, but because he wished in setting this task before
them, to reproach the Greeks for their neglect of mathe-
matics and their contempt of geometry.” Many Greek
mathematicians attacked the problem. All failed, because
the so-called Delian constant, "

3

2# (the required ratio of
sides of the original cube and that to be constructed),
needed for the duplication can’t be constructed as pre-
scribed. Cube duplication is possible, however, using a
Neusis construction. See also cissoid of Diocles.

Dürer, Albrecht (1471–1528)

Sane judgment abhors nothing so much as a picture
perpetrated with no technical knowledge, although
with plenty of care and diligence. Now the sole rea-
son why painters of this sort are not aware of their
own error is that they have not learnt Geometry,
without which no one can either be or become an
absolute artist.

—from The Art of Measurement, 1525

A German printmaker who, through applying mathemat-
ics to art, brought important ideas to mathematics itself
especially in the area of perspective geometry. Dürer was
born in Nüremberg, one of 18 children, and showed an
early talent for art. After a four-year apprenticeship in
painting and woodcutting, he began traveling Europe,
especially Italy, in search of new styles and ideas. Back in
Nüremberg, he began a serious study of mathematics,
absorbing Elements by Euclid and De architectura by the
great Roman architect Vitrivius, and studying the work of
Leone Alberti (1404–1472) and Luca Pacioli on mathe-
matics and art, in particular their work on proportion. His
mastery of perspective is clear in woodcuts Life of a Virgin

(1502–1505). In about 1508, Dürer began to collect mate-
rial for a major work on mathematics and its applications
to the arts. This work was never finished but Dürer did use
parts of the material in later published work. One of his
most famous engravings Melancholia, produced in 1514,
contains the first magic square to be seen in Europe,
cleverly including the date 1514 as two entries in the mid-
dle of the bottom row. Also of mathematical interest in
Melancholia is the polyhedron in the picture, the faces of
which appear to consist of two equilateral triangles and six
somewhat irregular pentagons. In 1825 Dürer published a
four-volume treatise, Underweysung der Messung (available
in English translation as Painter’s Manual ), which dealt
with, among other things, the construction of various
curves, polygons, and other solid bodies. One of the first
books to teach the methods of perspective, it was highly
regarded throughout the sixteenth century and presents
the earliest known examples of polyhedral nets, that is,
polyhedra unfolded to lie flat for printing.

Dürer traveled to Italy to learn about perspective and
was keen to publish the methods so they weren’t kept
secret among a few artists. Who he learned from is not
known, but Luca Pacioli is a likely possibility. Some of

Dürer, Albrecht The famous woodcut Melancholia, by Albrecht
Dürer, features a magic square and an unusual polyhedron.
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the techniques and illustrations also follow closely the
work of Piero della Francesca.

Dürer’s final work, his Treatise on Proportion, was pub-
lished posthumously and laid the groundwork for descrip-
tive geometry and its rigorous mathematical treatment by
Gaspard Monge.

Dürer’s shell curve
Given a parabola and a line that is tangent to the
parabola, the glissette of a point on a line sliding
between the parabola and the tangent. It has the equa-
tion (x 2 + xy + ax − b 2) = (b 2 − x 2)(x − y + a)2.

dynamical system
A nonlinear, interactive system that evolves over time,
showing transformations of behavior and an increase in
complexity. Key to this evolution is the presence and
emergence of attractors, most notably chaotic attractors.

The changes in the system’s organization and behavior are
known as bifurcations. Dynamical systems are determin-
istic systems, although they can be influenced by random
events. Times series data of dynamical systems can be
graphed as phase portraits in phase space in order to indi-
cate the qualitative or topological properties of the system
and its attractors. For example, various physiological sys-
tems, such as the heart, can be conceptualized as dynami-
cal systems. Seeing physiological systems as dynamical
systems opens up the possibility of studying various
attractor regimes. Moreover, certain diseases can be
understood now as “dynamical diseases,” meaning that
their temporal phasing can be a key to understanding
pathological conditions.

dynamics
Pertaining to the change in behavior of a system over
time.
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Pi goes on and on and on . . .
And e is just as cursed.
I wonder: Which is larger
When their digits are reversed?

—Martin Gardner

Possibly the most important number in mathematics.
Although pi is more familiar to the layperson, e is far
more significant and ubiquitous in the higher reaches of
the subject. One way to think of e is as the number of
dollars you would have in the bank at the end of a year
if you invested $1 at the start of the year and the bank
paid an annual interest rate of 100% compounded con-
tinuously. Compound interest doesn’t behave in quite
the way intuition suggests. Because more frequent com-
pounding causes the principal to grow faster, it might
seem that continuous compounding would make the
investor very rich in short order. But the effect tails off.
At the end of one year, the $1 would have grown to a
mere $2.72, rounded to the nearest cent. To a better
approximation, e is 2.718281828459045 . . . , its decimal
expansion stretching out forever, never repeating in any
permanent pattern, because e is a transcendental num-
ber. It is the base of natural logarithms, which is equiv-
alent to the fact that the area under the curve (the
integral of ) y = 1/x between x = 1 and x = e is exactly
equal to one unit. It also features in the exponential
function y = e x, which is unique in that its value ( y) is
exactly equal to its growth rate (dy/dx in calculus no-
tation) at every point. As well as showing up in prob-
lems involving growth or decay (including compound
interest) or in calculus, whenever logarithmic or expo-
nential functions are involved, e is at the heart of the
statistical bell curve; the shape of a hanging cable,
known as a catenary; the study of the distribution of
prime numbers; and Stirling’s formula for approximat-
ing factorials.

Like π, e pops up as the limit of many continued frac-
tions and infinite series. Leonhard Euler, who was the
first to study and to use the symbol e (in 1727), found it
could be expressed as the curious fraction:

1 + 1
—————

0 + 1
—————

1 + 1
—————

1 + 1
—————

2 + 1
—————

1 + 1
—————

1 + 1
—————

4 + 1
—————

1 + 1
—————

1 + 1
—————

6 + . . .

No less remarkable is this infinite series of which e is the
sum:

1 + 1/1! + 1/2! + 1/3! + 1/4! + . . .

But of all the places that e appears in mathematics none
is more extraordinary than Euler’s formula from which
comes the most profound relationship in mathematics:
eiπ + 1 = 0, linking e and π with complex numbers.[215]

Earthshapes
A series of 12 hypothetical Earths as conceived by Amer-
ican airman Joseph Portney in 1968 during a flight to the
North Pole onboard a U.S. Air Force KC-135. As the
North Pole was reached, Portney looked on the icy ter-
rain below and asked himself, “What if the Earth
were . . . ?” The hypothetical Earths, cylindrical, conic,
donut-shaped, and so forth, were sketched and cap-
tioned by Portney and given to the Litton Guidance &
Control Systems graphic arts group to create models.
These models were then photographed and became 
the theme of a Litton publication entitled Pilots and 

E

101



102 eccentricity

Navigators Calendar for 1969. Each month was intro-
duced with a different one of the 12 hypothetical Earths.
The result was an international sensation, attracting
awards and heavy fan mail.

eccentricity
See conic section.

economical number
A number that has no more digits than there are digits in
its prime factorization (including powers). If a number
has fewer digits than are in its prime factorization it is
known as a frugal number. The smallest frugal is 125,
which has three digits, but can be written as 53, which
has only two. The next few frugals are 128 (27), 243 (35),
256 (28), 343 (73), 512 (29), 625 (54), and 729 (36). An
equidigital number is an economical number that has the
same number of digits as make up its prime factoriza-
tion. The smallest equidigitals are 1, 2, 3, 5, 7, and 10 
(= 2 × 5). All prime numbers are equidigital. An extrav-
agant number is one that has fewer digits than are in its
prime factorization. The smallest extravagant number is
4 (= 22), followed by 6, 8, and 9. There are infinitely
many of each of these kinds of numbers. Are there also
arbitrarily long sequences of consecutive ones? Seven-
member strings of consecutive economical numbers
start at each of 157; 108,749; 109,997; 121,981; and
143,421. On the other hand, the longest string of con-
secutive frugal numbers up to 1 million is just two (for
example, 4374 and 4375). Even so, it has been proved
that if a certain conjecture about prime numbers known
as Dickson’s conjecture is true, then there are arbitrarily
long strings of frugals.

Eddington number
“I believe there are 15,747,724,136,275,002,577,605,653,
961,181,555,468,044,717,914,527,116,709,366,231,425,
076,185,631,031,296 protons in the universe and the
same number of electrons.” So wrote the English astro-
physicist Sir Arthur Eddington (1882–1944) in his book
Mathematical Theory of Relativity (1923). Eddington ar-
rived at this outrageous conclusion after a series of 
convoluted (and wrong!) calculations in which he first
“proved” that the value of the so-called fine-structure
constant was exactly 1⁄136. This value appears as a factor in
his prescription for the number of particles (protons +
electrons; neutrons were not discovered until 1930) in
the universe: 2 × 136 × 2256 = 17 × 2260 ! 3.149544 . . . ×
1079 (double the number written out in full in the quote
above). This is the Eddington number, notable for being
the largest specific integer (as opposed to an estimate or

approximation) ever thought to have a unique and tan-
gible relationship to the physical world. Unfortunately,
experimental data gave a slightly lower value for the fine-
structure constant, closer to 1⁄137. Unfazed, Eddington
simply amended his “proof” to show that the value had
to be exactly 1⁄137, prompting the satirical magazine
Punch to dub him “Sir Arthur Adding-One.” See also
large number.

edge
A line segment where two faces meet. A cube, for exam-
ple, has 12 edges.

edge coloring theorem
See Tait’s conjecture.

edge of chaos
The hypothesis that many natural systems tend toward
dynamical behavior that borders static patterns and the
chaotic regime. See also chaos.

egg
Specifically, a chicken’s egg and its mathematical equiva-
lent. Eggs are often described as being oval in shape,
which is effectively tautological since “oval” comes from
the Latin ovus for “egg.” Strictly speaking, an oval is a flat
two-dimensional curve, so it is more accurate to say that
an egg is shaped like the surface of revolution of an oval.
In real life, eggs, like ovals, come in a variety of forms all
of which can be loosely described as “like an ellipsoid
but with one end more pointed than the other.” Because
eggs vary in shape, so too do their mathematical descrip-
tions. Having said this, there are a variety of ways to
approximate the shape of a hen’s egg by modifying the
equation of an ellipsoid, x 2/a 2 + y 2/b 2 + z 2/c 2 = 1, so as to

egg A good egg shape is obtained by drawing four circle arcs
of different radii. © Jan Wassenaar, www.2dcurves.com
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introduce an asymmetry about the long (say, z-) axis.
These involve multiplying z 2/c 2 by a suitable term, so
that y becomes larger on the right side of the y-axis and
smaller on the left side. For example, x 2/a 2 + y 2/b 2 + z 2/c 2

(1 − kx) = 1 gives a good egg. Other useful egg approxi-
mations come from surfaces of revolution of Cartesian
ovals, Cassinian ovals, and sections through cones and
cylinders. In France, where tennis first became popular, a
zero on the scoreboard looked like an egg and was called
l’oeuf, which is French for “egg.” When tennis was intro-
duced in the United States, Americans pronounced it
“love.”

Why is a hen’s, or other bird’s, egg shaped as it is?
Because it gives strength even though the eggshell is thin
enough to allow the young bird to peck its way out when
ready. To demonstrate this strength, try balancing a pile
of books on four half egg shells. It is even possible for a
person’s weight to be supported in this way.

Another trick with eggs is to distinguish between a
raw egg and a hardboiled one without cracking them
open to see which is which. Lay both eggs on their sides
on a table, and spin them as you would a spinning top.
With a bit of practice, the cooked egg will be made to
rise up for a few seconds, while the raw one will remain
on its side. The physics of this odd behavior was finally
cracked by two mathematicians, Keith Moffat of Cam-
bridge University and Yutaka Shimomura of Keio Uni-
versity, who reported their findings in 2002. They
concluded that friction between the egg and the surface
produces a gyroscopic effect, which causes some of the
kinetic energy of the object to be translated into poten-
tial energy, raising its center of gravity (see also Tippee
Top). As the hardboiled egg spins, its curved surface
causes it to touch the tabletop at only one point. The
contact point changes and traces out a little circle. If the
texture of the tabletop is just right (neither too slippery
nor too sticky) the egg will slide a bit as it spins. This
sliding slows the spin a bit and causes a wobble. This in
turn tilts the egg, lifting one end off the table more than
the other, at which point the gyroscopic effect kicks in
and swaps some of the kinetic energy of the spinning
egg into potential energy and raises its center of gravity
in a seemingly paradoxical way. This effect is height-
ened by the fact that as the end of the egg rises, the egg
draws in closer to the axis of spin, causing it to spin
more quickly—just as figure-skaters can make themselves
pirouette faster by raising their arms above their heads.
Why doesn’t the effect occur with a raw egg? Because
the inside of the egg is runny and it lags behind the
shell. This lag serves as a drag, which reduces the spin
rate and dissipates the egg’s kinetic energy. This in turn
reduces the friction between the egg and tabletop, and

means that not enough energy is available to be turned
into potential energy to raise the egg’s center of gravity.
As well as solving the mystery of the balancing egg,
Moffat also found time to write a limerick to commem-
orate the event:

Place a hard-boiled egg on a table,
And spin it as fast as you’re able;
It will stand on one end
With vectorial blend
Of precession and spin that’s quite stable.

See also superegg.

Egyptian fraction
A unit fraction; in other words, a fraction in which the
numerator (the number on top) is one. This type of frac-
tion was the only kind used by the ancient Egyptians and
appears extensively in the Rhind papyrus. Other fractions
can be obtained by adding Egyptian fractions together; for
example, 5⁄7 = 1⁄2 + 1⁄6 + 1⁄21. In 1201 Fibonacci proved that
every rational number can be written as a sum of Egypt-
ian fractions.

eigenvalue
A complex number, λ, that satisfies the equation Ax = λx,
where A is an n × n matrix and x is some vector. In this
case, x is called an eigenvector.

eight
The second smallest cube number (after 13): 8 = 23 = 2 ×
2 × 2. A queen or king in chess can move in eight differ-
ent directions, in the same way that a compass has eight
principal points: north, northeast, east, southeast, south,
southwest, west, and northwest. In three dimensions,
there are eight diagonal ways to move, corresponding to
the eight octants into which three-dimensional space is
divided by three mutually perpendicular planes. Add a
fourth dimension and movement becomes possible
back and forth along four directions at right angles to
each other: up and down, left and right, forward and
back, and to one other! The Spanish dollar was a gold
coin with a value of eight reales, and was sometimes ac-
tually cut into eight wedge-shaped pieces—“pieces of
eight”—to make change.

eight curve
A curve, also known as the lemniscate of Gerono, that has
the Cartesian equation

x 4 = a 2(x 2 − y 2)

and the appearance of a figure eight lying on its side.
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Einstein problem
(1) Is there a single shape that will tile a plane aperiodi-
cally (see aperiodic tiling)? An answer of “no” would
imply the existence of a decision method for the domino
problem. This problem, which is named because of the
German translation (ein = “one,” stein = “stone”) and 
was not an invention of the famous scientist, remains
unsolved. (2) A logic problem, invented by Albert Ein-
stein, who claimed that 98% of the people in the world
couldn’t solve it.

PUZZLES

1. There are 5 houses (along a street) in 5 different

colors: blue, green, red, white, and yellow.

2. In each house lives a person of a different nation-

ality: Briton, Dane, German, Norwegian, and

Swede.

3. These 5 owners drink a certain beverage: beer,

coffee, milk, tea, or water; smoke a certain brand

of cigar: Blue Master, Dunhill, Pall Mall, Prince, or

blend; and keep a certain type of pet: cat, bird,

dog, fish, or horse.

4. No owners have the same pet, smoke the same

brand of cigar, or drink the same beverage.

5. The Briton lives in a red house. The Swede keeps

dogs as pets. The Dane drinks tea. The green

house is on the left of the white house (next to

it). The green house owner drinks coffee. The per-

son who smokes Pall Mall rears birds. The owner

of the yellow house smokes Dunhill. The man liv-

ing in the house right in the center drinks milk.

The Norwegian lives in the first house. The man

who smokes blend lives next to the one who

keeps cats. The man who keeps horses lives next

to the man who smokes Dunhill. The owner who

smokes Blue Master drinks beer. The German

smokes Prince. The Norwegian lives next to the

blue house. The man who smokes blend has a

neighbor who drinks water.

The question is: Who keeps the fish? 

Solutions begin on page 369.

elementary function
Any real-value algebraic function or transcendental func-
tion (trigonometric, hyperbolic, exponential, logarithmic).

eleven
A palindromic number, the smallest integer that is not a
Harshad number, a prime number that is a member of
a twin prime (11 and 13), and the largest integer that is
not the sum of two or more distinct primes. There are 11

players on a soccer team and on a cricket team. Strange
but true: the youngest pope was 11 years old.

ellipse
A shape that looks like a squashed circle. It is one of the
conic sections and can be defined as the locus of all
points in a plane that have the same sum of distances
from two given fixed points known as foci. If the two foci
coincide then the ellipse is a circle. The line segment
connecting the foci is called the major axis of the ellipse;
half this is the semimajor axis, a. The line passing through
the center of the ellipse (the midpoint of the foci) at right
angles to the major axis is called the minor axis, half of
which is the semiminor axis, b. An ellipse centered at the
origin of an x-y coordinate system with its major axis
along the x-axis is defined by the equation

x 2/a 2 + y 2/b 2 = 1.

The shape of an ellipse is expressed by a number called
the eccentricity, e, which is related to a and b by the for-
mula b 2 = a 2(1 − e 2). The eccentricity is a positive number
less than 1, or 0 in the case of a circle. The greater the
eccentricity, the larger the ratio of a to b, and therefore
the more elongated the ellipse. The distance between the
foci is 2ae. The area enclosed by an ellipse is πab. The cir-
cumference of an ellipse is 4aE(e), where the function E
is the complete elliptical integral of the second kind.

ellipse Nails mark the foci, F1 and F2, of an ellipse that is
drawn by pencil whose moving tip, P, keeps the string
threaded around the nails taut.
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ellipsoid
A quadratic surface that is the three-dimensional analog
of an ellipse. The general equation of an ellipsoid in
Cartesian coordinates is

x 2/a 2 + y 2/b 2 + z 2/c 2 = 1,

where a, b, and c are positive real numbers determining
the shape. If two of these numbers are equal, the ellipsoid
is a spheroid; if all three are equal, it is a sphere. The
intersection of an ellipsoid with a plane is a single point
or an ellipse. Ellipsoids can also be defined in higher
dimensions.

elliptic curve
The set of solutions to a type of cubic equation whose
solutions lie on a torus (a donut-shaped surface). The
particular type of cubic equation whose solutions lead to
elliptic curves takes the form

y 2 + axy + by = x3 + cx2 + dx + e.

Elliptic curves, which are said to have a genus of 1, have
an unusually rich theory and structure, and their study is
linked to many other important areas of mathematics
and their applications. For example, it was work done on
elliptic curves by Andrew Wiles that finally led to a proof
of Fermat’s last theorem.

elliptic function
In complex analysis, a function defined on the com-
plex plane that is periodic in two directions. The elliptic
functions can be thought of as analogs of the trigono-
metric functions (which have only a single period).
Leading eighteenth-century mathematicians, including
Leonhard Euler and Joseph Lagrange, had studied ellip-
tic integrals, such as the integral that gives the arc length
of an ellipse; however, these cannot be expressed in
terms of the elementary functions (polynomials, expo-
nentials, and trigonometric functions). It was the insight
of Karl Jacobi, and also of Karl Gauss and Niels Abel,
that the inverse functions of elliptic integrals are much
easier to study. They turn out to be doubly periodic
functions of a complex variable. While a singly periodic
function like sine has a number a (specifically a = 2π) so
that sin(x + a) = sin(x), a doubly periodic function f has
the property that there are two numbers a, b, not rational
multiples of each other, so that f(x + a) = f(x + b) = f(x).
As Jacobi proved in 1834, the ratio a/b is necessarily an
imaginary number.

elliptical geometry
One of the two most important types of non-Euclidean
geometry: the other is hyperbolic geometry. In ellipti-

cal geometry, Euclid’s parallel postulate is broken
because no line is parallel to any other line. The original
form of elliptical geometry, known as spherical geometry
or Riemannian geometry, was pioneered by Bernhard Rie-
mann and Ludwig Schläfli and treats lines as great 
circles on the surface of a sphere. The most familiar
example of such circles, which are geodesics (shortest
routes) on a spherical surface, are the lines of longitude
on Earth. In spherical geometry any two great circles
always intersect at exactly two points. Two lines of lon-
gitude, for example, meet at the North and South Poles.
Working in spherical geometry produces some surpris-
ing, nonintuitive results. For instance, it turns out that
the shortest flying distance from Florida to the Philip-
pine Islands is a path across Alaska—even though the
Philippines are at a more southerly latitude than Florida!
The reason is that Florida, Alaska, and the Philippines lie
on the same great circle and so are collinear in spherical
geometry. Another odd property of spherical geometry
is that the sum of the angles of a triangle is greater than
180°. This is always the case on a surface that bulges out
or, in mathematical parlance, has positive curvature. It
was Felix Klein who first saw clearly how to rid spherical
geometry of its one blemish: the fact that two lines have
not one but two common points. He redefined the
notion of a point as a set of antipodal points. With this
definition, any two points determine a unique line so
that the traditional form of Euclid’s first postulate is
restored. Thus modified, spherical geometry became
what Klein called elliptical geometry.

embedding
Putting one mathematical object inside another, such as a
subgroup within a group or one topological space inside
another, while preserving all topological properties.

emergence
The arising of new, unexpected structures, patterns, 
or processes in a self-organizing system (see self-
organization). These emergents have their own rules, laws,
and possibilities, and can be understood as existing on a
higher level than that of the components from which
they came. The term was first used by the nineteenth-
century philosopher G. H. Lewes and came into greater
currency in the scientific and philosophical movement
known as emergent evolutionism in the 1920s and 1930s.

emirp
A prime number that becomes a different prime number
when its digits are reversed (“emirp” is “prime” spelled
backward). The first twenty emirps are 13, 17, 31, 37, 71,
73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347,
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359, and 389. Compare with a palindromic prime (see
palindromic number), which gives the same prime when
reversed.

empty set
The set, denoted by ∅ or {}, that has no members; also
known as the null set. This is not the same as zero, which
is the number of members of ∅. Nor is ∅ the same as
nothing because a set with nothing in it is still a set, and
a set is something. The empty set, for example, is the set
of all triangles with four sides, the set of all numbers
that are bigger than nine but smaller than eight, and the
set of all opening moves in chess that involve a king.
Applying the concept of the empty set helps distinguish
between the different ways that “nothing” is used in
everyday language. In his book What Is the Name of This
Book? (1978), Raymond Smullyan wrote:[304] “Which is
better, eternal happiness or a ham sandwich? It would
appear that eternal happiness is better, but this is really
not so! After all, nothing is better than eternal happi-
ness, and a ham sandwich is certainly better than noth-
ing. Therefore a ham sandwich is better than eternal
happiness.”

What is wrong with this declaration? The first state-
ment is equivalent to “The set of things that are better
than eternal happiness is ∅.” The second statement is
equivalent to “The set {ham sandwich} is better than the
set ∅.” The confusion arises because the first is compar-
ing individual things, while the second is comparing sets
of things, and ∅ plays a different role in each.

enantiomorph
The mirror image of a given chiral polyhedron or other
figure.

enormous theorem
The largest theorem in mathematics; it concerns the clas-
sification of finite simple groups and encapsulates the
work of hundreds of mathematicians over many years.

entropy
A measure of a system’s degree of randomness or disorder.

envelope
A curve or a surface that touches every member of a fam-
ily of lines, curves, planes, or surfaces.

epicycloid
The path traced out by a point on the circumference of a
circle of radius b rolling on the outside of a circle of
radius a. It is described by the parametric equations:

x = (a + b) cos(t) − b cos((a/b + 1)t)
y = (a + b) sin(t) − b sin((a/b + 1)t).

An epicycloid is like a cycloid on the circumference of a
circle and is closely related to the epitrochoid, hypocy-
cloid, and hypotrochoid. An epicycloid with one cusp is
called a cardioid, one with two cusps is called a nephroid,
and one with five cusps is called a ranunculoid (after the
buttercup genus Ranunculus).

Epimenides paradox
See liar paradox.

epitrochoid
A curve traced out by a point that is a distance c from the
center of a circle of radius b, where c < b, that is rolling
around the outside of another circle of radius a. It is
described by the parametric equations

x = (a + b) cos(t) − c cos((a/b − 1)t)
y = (a + b) sin(t) − c sin((a/b + 1)t).

Closely related to the epitrochoid are the epicycloid,
hypocycloid, and the hypotrochoid. An example of an
epitrochoid appears in Albrecht Dürer’s work Instruction
in Measurement with Compasses and Straightedge (1525).

EPORN
An equal product of reversible numbers; defined by the
Indian recreational mathematician Shyam Sunder Gupta
as a number that can be expressed as the product of two
reversible numbers (numbers whose digits are reversed)
in two different ways. For example: 4,030 = 130 × 031 =
310 × 013 and 144,648 = 861 × 168 = 492 × 294. The
smallest EPORN, 2,520 = 120 × 021 = 210 × 012, is also
the least common multiple of all single digit natural
numbers in decimal system. The digital root, i.e. the ulti-
mate sum of digits, of all EPORNs is always 1, 4, 7, or 9.
For example, 2,520 = 2 + 5 + 2 + 0 = 9; 4,030 = 4 + 0 +
3 + 0 = 7; 9,949,716 = 9 + 9 + 4 + 9 + 7 + 1 + 6 = 36 and
3 + 6 = 9.

equichordal point
A point inside a closed convex curve in the plane, all the
chords through which have the same length.

equilateral
Having sides of equal length, as in the case of an equilat-
eral polygon. The equilateral triangle, with its three
equal angles of 60°, is widely found in historic buildings
and structures across Europe. See Triangular Lodge.
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equilibrium
A term indicating a rest state of a system, for example,
when a dynamical system is under the sway of a fixed-
point attractor or periodic attractor. The concept origi-
nated in ancient Greece when Archimedes experimented
with levers in balance, literally “equilibrium.” The idea
was elaborated through the Middle Ages, the Renaissance,
and the birth of modern mathematics and physics in the
seventeenth and eighteenth centuries. “Equilibrium” has
come to mean pretty much the same thing as stability, that
is, a system that is largely unaffected by internal or exter-
nal changes since it easily returns to its original condition
after being perturbed.

equivalent numbers
Numbers such that the sums of their aliquot parts
(proper divisors) are the same. For example, 159, 559,
and 703 are equivalent numbers because their aliquot
parts all sum to 57.

Eratosthenes of Cyrene (c. 276–194 B.C.)
A Greek mathematician, astronomer, and geographer
who was born in Cyrene, a Greek colony to the west of
Egypt. He studied at Plato’s school in Athens and even-
tually became the chief librarian of the great Library at
Alexandria. He wrote works on geography, philosophy,
history, astronomy, mathematics, and literary criticism.
One of Eratosthenes’ contributions to mathematics
was his measurement of Earth’s circumference, which
he calculated to be about 252,000 stadii, or 24,700
miles (about one-tenth the actual value, but still a big
improvement on earlier estimates). Eratosthenes is also
known in number theory for his sieve of Eratos-
thenes, which finds all prime numbers less than a
given integer n.

Eratosthenes’s sieve
See sieve of Eratosthenes.

Erdös, Paul (1913–1996)
A Hungarian mathematician (his name is pronounced
“AIR-dosh”), one of the greatest mathematicians of the
twentieth century and, in terms of the number of papers
published (more than 1,500), the most prolific in his-
tory—beating out even Leonhard Euler and inspiring
the term “Erdös number.” A mathematician has an
Erdös number of 1 if he or she has published a paper
with Erdös, of 2 if he or she has published with some-
one who published a paper with Erdös, and so on.
Erdös worked almost nonstop, 19 hours a day, 7 days a
week. “A mathematician,” he quipped, “is a machine for
turning coffee into theorems.” At age 20, Erdös discov-

ered an elegant proof of a famous theorem in number
theory, known as Chebyshev’s theorem, which says that for
each number greater than one, there is always at least
one prime number between it and its double. Number
theory remained one of his chief interests, though his
work spread across many fields, and he became re-
nowned for posing and solving problems that were
often simple to state but notoriously difficult to solve.
He did groundbreaking work in a branch of mathemat-
ics known as Ramsey theory long before it became
fashionable in the late 1950s. Bent and slight, often
wearing sandals, Erdös had no time for the material side
of life. “Property is nuisance,” he said. Focused totally
on mathematics, Erdös traveled from meeting to meet-
ing, carrying a half-empty suitcase and staying with
mathematicians wherever he went. His colleagues took
care of him, lent him money, fed him, bought him
clothes, and even did his taxes. In return, he showered
them with ideas and challenges—with problems to be
solved and brilliant ways of attacking them. Ernst
Straus, who worked with both Albert Einstein and
Erdös, wrote a tribute to Erdös shortly before his own
death in 1983. He said of Erdös: “In our century, in
which mathematics is so strongly dominated by ‘theory
doctors,’ he has remained the prince of problem solvers
and the absolute monarch of problem posers.”[170]

ergodic
The property of a dynamical system such that all regions
of a phase space are visited with similar frequency and
that all regions will be revisited (within a small proxim-
ity) if given enough time.

Escher, Maurits Cornelius (1898–1972)

My work is a game, a very serious game.

A Dutch artist whose graphic explorations of tiling, figure-
ground ambiguities, impossible figures, and regression
has attracted the interest of mathematicians and scien-
tists. His experiences of Moorish art (see Alhambra) and
his contact with mathematicians, most notably Harold
Coxeter, led him to explore the way repetitive shapes can
be used to tile the plane, and from this to ideas about
duality and transformation. Escher’s preoccupation with
dualities is a constant presence in his work in the form of
foreground/background, light and dark, flatness and
dimensionality, representation and decoration, frame
and scene, large and small, viewpoint and vanishing
point, form and negative space, positive and negative,
observer and observed, as well as the metaphysical
aspects of good and evil. Self-referential images (see
self-referential sentence) resonate throughout Escher’s
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works—reflections of the artist, hands that draw them-
selves, the visitor in a picture gallery who looks at a print
that contains him. It was for this reason that Douglas
Hofstadter wove Escher, along with Kurt Gödel and
Bach, into the “eternal golden braid” at the heart of his
Pulitzer Prize–winning book.[172] Having seen some of
Escher’s art, Roger Penrose was inspired to devise impos-
sible figures, including the Penrose triangle, which
Escher then incorporated into several of his later works.
After the artist’s death Penrose regretted that Escher had
not lived long enough to take advantage of the discovery
of Penrose tiling.

escribed circle
A circle that is tangent to one side of a triangle and to the
extensions of the other sides.

Eternity Puzzle
An enormously difficult jigsaw consisting of 209 pieces,
each one different and each made from a unique con-
figuration of equilateral triangles and half-triangles with
the same total area as six triangles. The puzzle was to 
fit them together into an almost-regular 12-sided fig-
ure aligned to a triangular grid. The puzzle’s inventor,
Christopher Monckton, announced a prize of $1 mil-
lion when the puzzle was released commercially in June

1999, for the first correct solution submitted, assuming
there was one, when all the solutions were opened in
September 2000. Monckton had run computer searches
on much smaller versions of the puzzle, which had con-
vinced him that the sheer size of Eternity would make it
intractable. However, the prize was won by two British
mathematicians, Alex Selby and Oliver Riordan, with
the help of a couple of computers, who sent in a correct
tiling on May 15, six weeks ahead of the only other puz-
zler known to have found a correct solution. Early on,
Selby and Riordan made a surprising discovery. As the
number of pieces in an Eternity-like puzzle increased,
so did the difficulty—but only up to a point. The critical
size is about 70 pieces, which would be almost impossi-
ble to solve. For larger puzzles, however, the number of
possible correct solutions increases. In the case of Eter-
nity itself, with its 209 pieces, there are thought to be at
least 1095 solutions—far more than the number of sub-
atomic particles in the universe but far, far less than the
number of nonsolutions. The puzzle itself is much too
large to solve by an exhaustive search but not, as it turns
out, by more savvy methods that take into account
what shaped regions are easiest to tile and what shaped
pieces are easiest to fit. By steadily refining their search
algorithm, Selby and Riordan were able to prune out
the vast majority of nonsolutions and, with a bit of

Eternity Puzzle The solution to the Eternity
Puzzle that was awarded a $1 million prize. Eter-

nity pieces are copyright © 1999 by Christopher Monckton
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good fortune, to hit upon a correct solution and claim
the prize.

Euclid of Alexandria (c. 330–270 B.C.)
A Greek mathematician who compiled and systemati-
cally arranged the geometry and number theory of his
day into the famous text Elements. This text, used in
schools for about 2,000 years, earned him the name 
“the father of geometry.” Even today, the geometries 
that don’t satisfy the fifth of Euclid’s “common no-
tions” (now called axioms or postulates) are called non-
Euclidean geometries. When, according to the Greek
philosopher Proclus, the Egyptian ruler Ptolemy asked if
there was a shorter way to the study of geometry than the
Elements, Euclid told the pharaoh that “there is no royal
road to geometry.” Little is known of Euclid’s life. Pro-
clus wrote (c. A.D. 350) that Euclid lived during the reign
of Ptolemy and founded the first school of mathematics
in Alexandria—the site of the most impressive library of
ancient times with perhaps as many as 700,000 volumes.
He wrote books on other subjects such as optics and
conic sections, but most of them are now lost. See also
Euclidean geometry.

Euclidean geometry
Geometry of the type described originally by Euclid in
his book Elements and based on five axioms (see Euclid’s
postulates), one of which is the controversial parallel
postulate. Various forms of non-Euclidean geometry
began to emerge in the nineteenth century, with enor-
mous implications for science and philosophy. See also
Euclidean space.

Euclidean space
Any n-dimensional mathematical space that is a general-
ization of the familiar two- and three-dimensional spaces
described by the axioms of Euclidean geometry. The
term “n-dimensional Euclidean space” (where n is any
positive whole number) is usually abbreviated to
“Euclidean n-space”, or even just “n-space”. Formally,
Euclidean n-space is the set Rn (where R is the set of real
numbers) together with the distance function, which is
obtained by defining the distance between two points
(x1, . . . , xn) and ( y1, . . . , yn) to be the square root of 
Σ(xi − yi)

2, where the sum is over i = 1, . . . , n. This dis-
tance function is based on Pythagoras’s theorem and is
called the Euclidean metric.

Euclid’s postulates
The five postulates, which together with 23 definitions
and five “common notions,” form the basis of Euclid’s
great work on geometry, Elements. The postulates are:

1. A straight line may be drawn from any one point to
any other point.

2. A finite straight line may be produced to any length
in a straight line.

3. A circle may be described with any center at any dis-
tance from that center.

4. All right angles are equal.

5. If a straight line meets two other lines, so as to make
the two interior angles on one side of it together less
than two right angles, the other straight lines will
meet if produced on that side on which the angles
are less than two right angles.

The last postulate is not as obvious as the other four, and
Euclid himself was reluctant to use it. Later mathemati-
cians, finding the fifth postulate to be complicated,
thought it might be possible to derive it from the other
four. However, they only succeeded in replacing it with
equivalent statements. The most common of these is the
parallel postulate.

Eudoxus of Cnidus (c. 408–c. 355 B.C.)
A Greek astronomer, mathematician, and physician whose
work on ratios formed the basis for Book V of Euclid’s
Elements and anticipated some aspects of algebra, such as
cross multiplying, which is otherwise absent from ancient
Greek mathematics. Eudoxus constructed many geometric
proofs, found formulas for measuring pyramids, cones,
and cylinders, and developed the method of exhaustion,
a forerunner of integration, later extended by Archimedes.
He also studied the kampyle curve, often known as the
kampyle of Eudoxus, in connection with the classical
problem of duplicating the cube.

Euler, Leonhard (1707–1783)
A great Swiss mathematician; the second most prolific
mathematician in history, after Paul Erdös. His greatest
contributions were to number theory, but Euler also did
important work in calculus, geometry, algebra, probabil-
ity, acoustics, optics, mechanics, astronomy, artillery, nav-
igation, and finance. He had a knack for coming up with
important results by intuition, he cast calculus and
trigonometry in their modern forms, and he showed the
importance of the number e. Even the amusing puzzles
he invented and, in some cases, solved have opened up
new mathematical fields. The bridges of Königsberg
problem, for example, heralded the beginning of graph
theory and topology, while his thirty-six officers prob-
lem stimulated important work in combinatorics. Euler
also worked on magic squares and the problem of the
knight’s tour. Having learned some math from his father,
a Calvinist preacher, Euler studied at the University of
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Basle where he became close friends with members of the
Bernoulli family. In 1727, he moved to St. Petersburg, to
the court of Catherine the Great, becoming professor of
physics (1730) and of mathematics (1733). While in Rus-
sia, Euler, a devout Christian, met the encyclopedist and
philosopher René Diderot, a notorious atheist. When
Diderot heard that Euler had a mathematical proof of the
existence of God, he asked for it and was quoted the equa-
tion now often referred to as Euler’s formula.

Upon losing the use of his right eye, Euler said “Now I
will have less distraction.” Indeed, the quantity of his
output seemed to be inversely proportional to the quality
of his sight, because his rate of publication increased after
he became almost totally blind in 1766. Euler died
moments after calculating the orbit of Uranus on Sep-
tember 18, 1783.

Euler characteristic
An important kind of number, known as a topological
invariant, that describes a closed surface. In the case of
polyhedra, the Euler characteristic is the number of ver-
tices and faces minus the number of edges (see Euler’s
formula for polyhedra).

Euler circuit
A connected graph such that starting at a vertex a, one
can traverse every edge of the graph once to each of the
other vertices and return to vertex a. In other words a
Euler circuit is a Euler path that is a circuit. Thus, using
the properties of odd and even degree vertices given in
the definition of a Euler path, a Euler circuit exists if and
only if every vertex of the graph has an even degree. See
also mazes.

Euler line
A line that connects the centroid and the circumcenter
of a triangle.

Euler path
A path along a connected graph that connects all the
vertices (see vertex) and that traverses every edge of the
graph only once. Note that a vertex with an odd degree
allows one to travel through it and return by another
path at least once, while a vertex with an even degree
only allows a number of traversals through, but one can-
not end a Euler path at a vertex with even degree. Thus, a
connected graph has a Euler path which is a circuit (a
Euler circuit) if all of its vertices have even degree. A
connected graph has a Euler path which is non-circuitous
if it has exactly two vertices with odd degree. See also
Hamilton path.

Euler square
A square array made by combining n objects of two types
such that the first and second elements form a Latin
square. Euler squares are also known as Graeco-Latin
squares, Graeco-Roman squares, or Latin-Graeco squares. For
many years, Euler squares were known to exist for n =
3, 4, and for every odd n except n = 3k. Euler’s Graeco-
Roman squares conjecture maintained that there are no
Euler squares of order n = 4k + 2 for k = 1, 2, . . . . How-
ever, such squares were found to exist in 1959 by Bose
and Shrikande, refuting the conjecture.

Euler-Mascheroni constant (g)
Also known as Euler’s constant or Mascheroni’s constant, the
limit (as n goes to infinity) of

1 + 1⁄2 + 1⁄3 + 1⁄4 + 1⁄5 + . . . + 1/n − log n

It is often denoted by a lowercase gamma, γ, and is ap-
proximately 0.5772156649 . . . . Even though over one
million digits of this number have been calculated, it
isn’t yet known if it is a rational number (the ratio of two
integers a/b). If it is rational, the denominator (b) must
have more than 244,663 digits. The constant γ crops up
in many places in number theory. For example, in 1898,
the French mathematician Charles de la Vallée Poussin
(who proved the prime number theorem) proved the
following: Take any positive integer n and divide it by
each positive integer m less than n. Calculate the average
(mean) fraction by which the quotient n/m falls short of
the next integer. The larger n gets, the closer the average
gets to gamma.

Euler’s conjecture
It always takes n terms to sum to an nth power: two
squares, three cubes, four fourth powers, and so on. This
hypothesis is now known to be wrong. In 1966, L. J. Lan-
der and T. R. Parkin found the first counterexample: four
fifth powers that sum to a fifth power. They showed that
275 + 845 + 1105 + 1335 = 1445. In 1988, Noam Elkies of
Harvard University found a counterexample for fourth
powers: 2,682,4404 + 15,365,6394 + 187,9604 = 20,615,6734.
Subsequently, Roger Frye of Thinking Machines Corpora-
tion did a computer search to find the smallest example:
95,8004 + 217,5194 + 414,5604 = 422,4814.

Euler’s constant
See Euler-Mascheroni constant.

Euler’s formula
For any real number x, Euler’s formula is

e ix = cos x + i sin x
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where e is a fundamental constant (the base of natural
logarithms) and i = "−1#. If we now put x = π, we get

e iπ = cos π + i sin π,

and since cos(π) = −1 and sin(π) = 0, this reduces to

e iπ = −1

so that

e iπ + 1 = 0.

This most extraordinary equation first emerged in
Leonhard Euler’s Introductio, published in 1748. It is
remarkable because it links the most important math-
ematical constants, e and p, the imaginary unit i, and
the basic numbers used in counting, 0 and 1. In
describing the equation to students, the Harvard math-
ematician Benjamin Peirce said: “Gentlemen, that is
surely true, it is absolutely paradoxical; we cannot
understand it, and we don’t know what it means, but
we have proved it, and therefore, we know it must be
the truth.”

Euler’s formula for polyhedra
The earliest known equation in topology. If F is the
number of faces of a polygon, E the number of edges,
and V the number of vertices, Euler’s formula can be
written as

F − E + V = 2

where F − E + V is known as the Euler characteristic.
For example, the surface of a cube has six (square)
faces, twelve edges, and eight vertices and, sure enough,
6 − 12 + 8 = 2.

even function
A function f(x) such that f(x) = f(−x) for all x.

evolute
The locus of the centers of curvature (the envelope) of a
plane curve’s normals. The original curve is then said to
be the involute of its evolute. For example, the evolute of
an ellipse is a Lamé curve and the evolute of a tractrix is
a catenary.

excluded middle law
A law in (two-valued) logic which states that there is no
third alternative to truth or falsehood. In other words, for
any statement A, either A or not-A must be true and the
other must be false. This law no longer holds in three-

valued logic, in which “undecided” is a valid state, nor
does it hold in fuzzy logic.

existence
A term that has several different meanings within
mathematics. In the broadest sense there is the ques-
tion of what it means for certain concepts, such as pi,
to exist. Was π, for example, invented or discovered? In
other words, does π exist only as an intellectual con-
struct or was it somehow already “out there” waiting
for people to find it. If it does exist independently of
the human mind, when did its existence start? Does π
predate the physical universe? Such ontological ques-
tions become even more difficult when applied to
more complex or abstract mathematical concepts such
as the Mandelbrot set, surreal numbers, or infinity. A
narrower and more technical type of “existence” in
math is implied by an existence theorem. Such a theorem
is used to prove that a number or other object with par-
ticular properties definitely exists, but does not neces-
sarily give a specific example. Finally, there is existence
in the sense of particular solutions to problems. If at
least one solution can be determined for a given prob-
lem, a solution to that problem is said to exist. Some-
thing of the flavor of all three types of mathematical
existence mentioned here are captured in the following
anecdote:

An engineer, a chemist, and a mathematician are
staying in three adjoining cabins at an old motel.
First the engineer’s coffee-maker catches fire. He
smells the smoke, wakes up, unplugs the coffee
maker, throws it out the window, and goes back to
sleep. Later that night the chemist smells smoke,
too. He wakes up and sees that a cigarette butt has
set the trash can on fire. He thinks to himself, “How
does one put out a fire? One can reduce the temper-
ature of the fuel below the flash point, isolate the
burning material from oxygen, or both. This could
be accomplished by applying water.” So he picks up
the trash can, puts it in the shower stall, turns on the
water, and, when the fire is out, goes back to sleep.
The mathematician has been watching all this out
the window. So later, when he finds that his pipe
ashes have set the bed sheet on fire, he’s not in the
least taken aback. “Aha!” he says, “A solution exists!”
and goes back to sleep.

exponent
A number that gives the power to which a base is
raised. For example, in 32 the base is 3 and the exponent
is 2.
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exponential

Who has not been amazed to learn that the function
y = ex, like a phoenix rising again from its own
ashes, is its own derivative?

—Francois le Lionnais

Anything that grows at a rate proportional to its size is
said to grow exponentially. The simplest form of the
exponential function is just y = e x, where e is about

2.712 . . . The exponential function to base a can be writ-
ten as f(x) = ax.

extrapolate
See interpolate.

extravagant number
See economical number.



face
A polygon bounding a polyhedron. A cube, for exam-
ple, has six square faces. The plane angle formed by adja-
cent edges of a polygonal angle in space is called a face
angle.

factor
Also known as a divisor, a number or variable that divides
evenly into another number or algebraic expression. For
example, the factors of 28 are 1, 2, 4, 7, 14, and 28.
Although it is true that 28 is also divisible by the negative
of each of these, “factors” is usually taken to mean only the
positive divisors. Factorization, or factoring, is the decompo-
sition of an object into a product of factors. For example,
the number 15 factorizes into prime numbers as 3 × 5;
and the polynomial x 2 − 4 factorizes as (x − 2)(x + 2). The
aim of factoring is usually to reduce something to basic
building blocks, such as numbers to prime numbers, or
polynomials to linear expressions. Factoring integers is
covered by the fundamental theorem of arithmetic and
factoring polynomials by the fundamental theorem of
algebra. Integer factorization for large integers appears to be
a difficult problem; there are no known methods for solv-
ing it quickly, and, for this reason, it has formed the basis
of some public key cryptography algorithms.

factorial
The function, denoted n!, that is the product of the posi-
tive integers less than or equal to n. For example, 1! = 1;
5! = 5 × 4 × 3 × 2 × 1 = 120; 10! = 10 × 9 × 8 × 7 × 6 ×
5 × 4 × 3 × 2 × 1 = 3,628,800. 0! is defined to be 1, by
working the relationship n! = n × (n − 1)! backward. An
interesting equality is 1! 10! 22! 1! = 11! 0! 2! 21! in which
the same digits are broken up two different ways into fac-
torials. This may be the smallest such example. Factorials
are important in combinatorics because there are n! dif-
ferent ways (permutations) of arranging n distinct objects
in a sequence. They also turn up in formulas in calculus,
for instance in Taylor’s theorem, because the nth derivative
of the function xn is n!.

factorion
A natural number that equals of the sums of the facto-
rials of its digits in a given base. The only known deci-
mal factorions are 1 = 1!, 2 = 2!, 145 = 1! + 4! + 5!, and
40,585 = 4! + 0! + 5! + 8! + 5!.

Fadiman, Clifton (1904–1999)
An American essayist, literary critic, and noted intellec-
tual who, among many other works, edited Fantasia
Mathematica[96] and The Mathematical Magpie.[97] He
became well known for the encyclopedic knowledge he
displayed on the Information Please radio programs in the
1930s and ’40s.

Fagnano’s problem
In a given acute triangle ABC, find the inscribed triangle
whose perimeter is as small as possible. The answer is the
orthic triangle of ABC, that is, the triangle whose vertices
are endpoints of the altitudes from each of the vertices of
ABC. The problem was proposed and solved using cal-
culus by Giovanni Fagnano (1715–1797) in 1775. Once
the answer became known, several purely geometric solu-
tions were also discovered.

fair division
See cake-cutting.

Farey sequence
A sequence of numbers named after the English geologist
John Farey (1766–1826) who wrote about such sequences
in an article called “On a curious property of vulgar frac-
tions” in the Philosophical Magazine in 1816. Farey says
that he noted the “curious property” while examining the
tables of Complete decimal quotients produced by Henry
Goodwin. To obtain the Farey sequence for a fixed num-
ber n, consider all rational numbers between 0 and 1
which, when expressed in their lowest terms, have a
denominator (the number on the bottom of a fraction)
not exceeding n. Write the sequence in ascending order
of magnitude beginning with the smallest. The “curious
property” is that each member of the sequence is equal to
the rational number whose numerator (the number on
top of a fraction) is the sum of the numerators of the frac-
tions on either side, and whose denominator is the sum
of the denominators of the fractions on either side. For
example, the Farey sequence for n = 5 is (0⁄1, 1⁄5, 1⁄4, 1⁄3, 2⁄5,
1⁄2, 3⁄5, 2⁄3, 3⁄4, 4⁄5, 1⁄1), from which it can be seen that 2⁄5 =
(1 + 1)/(3 + 2), 1⁄3 = (1 + 2)/(4 + 5), 1⁄2 = (2 + 3)/(5 + 5),
2⁄3 = (3 + 3)/(5 + 4), and so forth. Farey wrote: “I am 
not acquainted whether this curious property of vulgar
fractions has been before pointed out?; or whether it may
admit of some easy or general demonstration?; which are
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points on which I should be glad to learn the sentiments
of some of your mathematical readers.”

One “mathematical reader” was Augustin Cauchy,
who gave the necessary proof in his Exercises de mathé-
matique, published in the same year as Farey’s article.
Farey was not the first to notice the property. C. Haros,
in 1802, wrote a paper on the approximation of decimal
fractions by common fractions. He explains how to
construct what is in fact the Farey sequence for n = 99
and Farey’s “curious property” is built into his con-
struction.

Fechner, Gustav Theodor (1801–1887)
A German physicist and psychologist who studied aes-
thetic aspects of the golden ratio and published his find-
ings in Vorschule der Aesthetik (Introduction to aesthetics)
(1876), arguing that this ratio turns up commonly in
human-made rectangular objects and is judged by people
to be the most pleasing to the eye (though some later
researchers have called his results into question).

Federov, E. S. (1853–1919)
A Russian geologist and crystallographer who helped lay
the theoretical foundations for modern crystallography.
In his famous two-part paper “Symmetry of Regular Sys-
tems of Figures” published in 1891, he proved that there
are exactly 17 distinct symmetries in the wallpaper
group.

feedback
The mutually reciprocal effect of one system or subsys-
tem on another. Negative feedback is when two subsystems
act to dampen the output of the other. For example, the
relation of predators and prey can be described by a neg-
ative feedback loop since more predators lead to a
decline in the population of prey, but when prey decrease
too much so does the population of predators since they
don’t have enough food. Positive feedback means that two
subsystems are amplifying each other’s outputs, e.g., the
screech heard in a public address system when the mike is
too close to the speaker. The microphone amplifies the
sound from the speaker which in turn amplifies the signal
from the microphone, and so on. Feedback is a way of
talking about the nonlinear interaction among the ele-
ments or components in a system and can be modeled by
nonlinear differential or difference equations as well as
by the activity of cells in a cellular automaton array.

Feigenbaum’s constant
A universal constant, denoted δ, that governs the behav-
ior of systems that are approaching chaos; it was discov-
ered by the American mathematical physicist Mitchell
Feigenbaum (1944–) in 1975 and has the value δ =

4.6692 . . . . All one-dimensional chaotic systems have a
behavior, as they approach instability, known as period
doubling. The Feigenbaum constant gives the rate at
which the period of the system doubles.

Fermat, Pierre de (1601–1665)
A French lawyer, magistrate, and gentleman scholar,
often called the “Prince of Amateurs,” who is best known
for the conjecture, now proved, known as Fermat’s last
theorem. Although employed as a senior government
official, Fermat somehow managed to find time to do an
astonishing amount of math, for which he sought little
acclaim or acknowledgment. In fact, he published only
one important manuscript in his entire lifetime and even
then used fake initials. When his fellow French mathe-
matician Gilles Roberval offered to edit and publish
some of his works, Fermat replied, “Whatever of my
works is judged worthy of publication, I do not want my
name to appear there.” Most of his results are known
through letters to friends, notes in book margins, and
challenges to other mathematicians to find proofs for
theorems he had devised.

Fermat was one of the founders, with René Decartes,
of analytical geometry and, with Blaise Pascal, of prob-
ability theory. His work on the maxima and minima of
curves and tangents to them was seen, by Isaac Newton,
as a starting point for calculus. Yet his greatest love was
for number theory. In 1640, while studying perfect
numbers, Fermat wrote to Mersenne that if p is prime,
then 2p divides 2p − 2. Shortly after he expanded this into
what is now called Fermat’s little theorem. As usual, Fer-
mat stated “I would send you a proof, if I did not fear its
being too long.” His most famous statement of this form
accompanied his hasty notes on the “last theorem.” See
also Fermat number.

Fermat number
A number defined by the formula Fn = 22n

+ 1 and
named after Pierre Fermat who conjectured, wrongly,
that all such numbers would be prime. The first five Fer-
mat numbers, F0 = 3, F1 = 5, F2 = 17, F3 = 257, and F4 =
65,537, are prime. However, in 1732, Leonhard Euler
discovered that 641 divides F5. It takes only two trial
divisions to find this factor because Euler showed that
every factor of a Fermat number Fn with n greater than 2
has the form k × 2n + 2 + 1. In the case of F5 this is 128k +
1, so we would try 257 and 641 (129, 385, and 513 are
not prime). It is likely that there are only finitely many
Fermat primes. Gauss proved that a regular polygon of
n sides can be inscribed in a circle with Euclidean meth-
ods (e.g., by straightedge and compass) if and only if n is
a power of two times a product of distinct Fermat
primes.
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Fermat’s last theorem

A challenge for many long ages
Had baffled the savants and sages.
Yet at last came the light:
Seems old Fermat was right—
To the margin add 200 pages.

—Paul Chernoff

A conjecture put forward by Pierre de Fermat in 1637 in
the form of a note scribbled in the margin of his copy of
the ancient Greek text Arithmetica by Diophantus. The
note was found after his death, and the original is now
lost. However, a copy was included in the appendix to a
book published by Fermat’s son. Fermat’s note read: “It
is impossible to write a cube as a sum of two cubes, a

fourth power as a sum of fourth powers, and, in general,
any power beyond the second as a sum of two similar
powers. For this, I have found a truly wonderful proof,
but the margin is too small to contain it.”

Fermat claimed that the Diophantine equation x n +
yn = z n has no integer solutions for n > 2. It turns out he
was right. But the proof had to wait 350 years and
involved such advanced techniques, virtually none of
which existed in the seventeenth century, that is seems
very unlikely that Fermat really had found an elementary
proof. Fermat’s last theorem—now truly a theorem—was
finally proved correct by Andrew Wiles in 1994.[353] In
order to reach that dizzy height, however, Wiles had to
draw on and extend several ideas at the core of modern
mathematics. In particular, he tackled the Shimura-
Taniyama-Weil conjecture, which provides links between
the branches of mathematics known as algebraic geome-
try and complex analysis. This conjecture dates back to
1955, when it was published in Japanese as a research
problem by the late Yutaka Taniyama. Goro Shimura of
Princeton and Andre Weil of the Institute for Advanced
Study provided key insights in formulating the conjec-
ture, which proposes a special kind of equivalence
between the mathematics of objects called elliptic curves
and the mathematics of certain motions in space. Inter-
estingly, the Wiles proof of Fermat’s last theorem was a
byproduct of his deep inroads into proving the Shimura-
Taniyama-Weil conjecture. Now, the Wiles effort could
help point the way to a general theory of three variable
Diophantine equations. Historically, mathematicians
have always had to state and solve such problems on a
case-by-case basis. An overarching theory would repre-
sent a tremendous advance. See also ABC conjecture.

Fermat’s little theorem
If P is a prime number then for any number a, (a P − a)
must be divisible by P. This theorem is useful for testing
if a number is not prime, though it can’t tell if a number
is prime. As usual, Pierre de Fermat didn’t provide a
proof (this time saying “I would send you the demon-
stration, if I did not fear its being too long”). Leonhard
Euler first published a proof in 1736, but Gottfried Leib-
niz left virtually the same proof in an unpublished man-
uscript from sometime before 1683.

Fermat’s spiral
A parabolic spiral.

Fibonacci (c. 1175–1250)
The pen name of Leonardo of Pisa, one of the greatest
mathematicians of the Middle Ages. The son of a Pisan
merchant who also served as a customs officer in North
Africa, he traveled widely in Barbary (Algeria) and was

Fermat, Pierre de
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later sent on business trips to Egypt, Syria, Greece, Sicily,
and Provence. In 1200 he returned to Pisa and used the
knowledge gained on his travels to write Liber Abaci (The
book of the abacus), published in 1202, which intro-
duced to western Europe the Hindu-Arabic numerals and
decimal number system that remain in use today. The
first chapter of Part 1 begins: “These are the nine figures
of the Indians: 9 8 7 6 5 4 3 2 1. With these nine figures,
and with this sign 0 which in Arabic is called zephirum,
any number can be written, as will be demonstrated.”

Fibonacci also showed he was capable of some amaz-
ing feats of calculation. For example, he found the posi-
tive solution of the cubic equation x 3 + 2x 2 + 10x = 20
using the Babylonian number system with base 60 (a
strange choice, in view of his public advocacy of the dec-
imal system!). He gave the result as 1, 22, 7, 42, 33, 4, 40
which is equivalent to

1 + + + + + + .

How on Earth he obtained this, nobody knows; it was
300 years before anyone else could obtain such accurate
results. As well as serious mathematics, Liber Abaci con-
tains many playful passages and it is for one of these,
concerning a problem about counting the offspring of a
pair of rabbits, that Fibonacci became best known after
Edouard Lucas called the sequence of numbers discussed
by the rabbit problem the Fibonacci sequence.

Fibonacci sequence
The sequence that arises in answer to this problem posed
in Fibonacci’s great work Liber Abaci: “A certain man put
a pair of rabbits in a place surrounded on all sides by a
wall. How many pairs of rabbits can be produced from
that pair in a year if it is supposed that every month each
pair begins a new pair which from the second month on
becomes productive?”

The number of pairs of rabbits in the nth month
begins 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . , where each
term is the sum of the two terms preceding it. This
sequence can be defined recursively as follows: F(1) =
F(2) = 1, F(n + 1) = F(n) + F(n − 1) for n > 2, where F(n)
is the nth Fibonacci number. Johannes Kepler was the
first to point out that the growth rate of the Fibonacci
numbers, that is, F(n + 1) / F(n), converges to the golden
ratio, φ (phi).

In the nineteenth century Fibonacci numbers were dis-
covered in many natural forms. For example, many types
of flower have a Fibonacci number of petals: certain types
of daisies tend to have 34 or 55 petals, while sunflowers
have 89 or, in some cases, 144. The seeds of sunflowers
spiral outward both to the left and the right in a Fibonacci
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number of spirals. Similarly, the whorls on a pinecone,
the numbers of rings on the trunks of palm trees, the pat-
terns of snail shells, and the genealogy of the male bee all
follow a sequence of Fibonacci numbers. The arrange-
ment of plant leaves, or phyllotaxis, unfolds to the same
pattern because this results in an optimal solution in
terms of the spacing of the leaves or the amount of light
that can reach them. A familiar spiral form, known as the
logarithmic spiral, emerges when seeds on a plant grow
and space themselves according the Fibonacci sequence.
The logarithmic spiral is approximated by the rule: start at
the origin of the Cartesian coordinate system, move F(1)
units to the right, move F(2) units up, move F(3) units to
the left, move F(4) units down, move F(5) units to the
right, and so on. By growing in this way, on structures
such as sunflowers, pinecones, and pineapples, seeds are
able to pack themselves together most efficiently.

Fibonacci numbers have so many interesting mathe-
matical properties that an entire journal, The Fibonacci
Quarterly, is devoted to them. The sequence of final digits
in Fibonacci numbers repeats in cycles of 60. The last two
digits repeat in 300, the last three in 1,500, the last four in
15,000, etc. The product of any four consecutive Fibonacci
numbers is the area of a Pythagorean triangle. The shal-
low (least steep) diagonals of Pascal’s triangle sum to
Fibonacci numbers. Let m and n be positive integers, then

F(n) divides F(mn)

gcd(F(n), F(m)) = F(gcd(m, n)), where “gcd” stands for
“greatest common divisor.”

(F(n))2 − F(n + 1)F(n − 1) = (−1)n − 1.

F(1) + F(3) + F(5) + . . . + F(2n − 1) = F(2n).

For every n, there are n consecutive composite Fibo-
nacci numbers. 

An interesting use of the Fibonacci sequence is for
converting miles to kilometers. For instance, if you want
to know about how many kilometers 5 miles is, take the
Fibonacci number (5) and look at the next one (8) (5
miles is about 8 kilometers). This works because it hap-
pens that the conversion factor between miles and kilo-
meters is roughly equal to the Golden Ratio.

The first few Fibonacci numbers that are also prime
numbers are 3; 5; 13; 89; 233; 1,597; 28,657; 514,229; . . . .
It seems likely that there are infinitely many Fibonacci
primes, but this has yet to be proven. However, it is rela-
tively easy to show that for n ≥ 4, un + 1 is never prime. The
Fibonacci sequence is a special case of the Lucas
sequence.

The tribonacci series is made by adding the last two 
digits: 1, 1, 2, 4, 7, 13, 24, 44, 81, . . . and from this the
quadbonacci series, the pentbonacci series, and the
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hexbonacci series, all the way up to the n-bonacci series.
Each ratio of successive terms forms a special constant,
analogous to φ.

field
A number system in which addition, subtraction, multi-
plication, and division (except by zero) are always
defined, and the associative and distributive laws are
valid. For example, the set of rational numbers is a field,
whereas the set of integers is not a field, because the
result of dividing one integer by another is not necessar-
ily an integer. The real numbers also constitute a field, as
do the complex numbers. Compare with ring.

Fields Medal
By convention, the most prestigious award for research in
mathematics. It is awarded every four years to between
two and four mathematicians under the age of 40.

Fifteen Puzzle
A sliding-tile puzzle invented by Sam Loyd in the 1870s
that became a worldwide obsession, much as Rubik’s
cube did a century later. Fifteen little tiles, numbered 1 to
15, were placed in a four by four frame in serial order
except for tiles 14 and 15, which were swapped around;
the lower right-hand square was left empty. The object of
the puzzle was to get all the tiles in the correct order; the
only allowed moves were sliding counters into the empty
square. Everyone it seemed was caught up with the
craze—playing the game in horse-drawn trams, during
their lunch breaks, or when they were supposed to be
working. The game even made its way into the solemn
halls of the German parliament. “I can still visualize
quite clearly the gray-haired people in the Reichstag
intent on a square small box in their hands,” recalled the
geographer and mathematician Sigmund Gunter who
was a deputy during the puzzle epidemic. “In Paris the

Fibonacci sequence The number of spirals of seeds on a sunflower is always a Fibonacci number—an arrangement that keeps
the seeds uniformly packed no matter how large the seed head. Thomas Stromberg
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puzzle flourished in the open air, in the boulevards, and
proliferated speedily from the capital all over the
provinces,” wrote a contemporary French author. “There
was hardly one country cottage where this spider hadn’t
made its nest lying in wait for a victim to flounder in its
web.” Loyd offered a $1,000 reward for the first correct
solution. But, although many claimed it, none were able
to reproduce a winning series of moves under close
scrutiny. There is a simple reason for this, which is also
the reason that Loyd was unable to obtain a U.S. patent
for his invention. According to regulations, Loyd had to
submit a working model so that a prototype batch could
be manufactured from it. Having shown the game to a
patent official, he was asked if it were solvable. “No,” he
replied. “It’s mathematically impossible.” Upon which
the official reasoned there could be no working model
and thus no patent!

The puzzle’s theory reveals that the more than 20 bil-

lion possible starting arrangements of the tiles fall into
just two groups: one in which all the tiles can be maneu-
vered into ascending numerical order (call this group I),
and one in which tiles 14 and 15 will be inverted (group
II). It’s impossible to combine arrangements from these
two groups and impossible to turn a group I arrangement
into a group II, or vice versa, using the normal rules of
the game. Given a random arrangement of tiles, can we
know in advance if we have the unsolvable kind? Very
easily. Simply count how many instances there are of a
tile numbered n appearing after the tile numbered n + 1.
If there are an even number of such inversions, the puz-
zle is solvable, otherwise you are wasting your time!

figurate number
A number sequence found by creating consecutive geo-
metrical figures from arrangements of equally spaced
points. Here is an example:

Fifteen Puzzle A version of the Fifteen Puzzle produced in England by Fairylite. Sue & Brian Young/Mr. Puzzle Australia,

www.mrpuzzle.com.au
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1 3 5 7
* * * *

** * *
*** *

****

The points can be arranged in one, two, three, or more
dimensions. There are many different kinds of figurate
numbers, such as polygonal numbers and tetrahedral
numbers.

films and plays involving mathematics
Mathematicians and mathematics rarely make an
entrance on the silver screen or the stage, unless as paro-
dies in the form of mad professors and meaningless
scrawled equations. A notable exception is A Beautiful
Mind (2001), directed by Ron Howard and starring Rus-
sell Crowe as the brilliant but mentally troubled mathe-
matician John Nash. Although a fine love story and a
well-crafted film, which won four Oscars, A Beautiful
Mind is weak on math and inaccurate in many of its
details of Nash’s life and his battle with schizophrenia.
Rain Man (1988), also based on a true story, costars
Dustin Hoffman as an autistic savant with a photo-
graphic memory and a genius for mental arithmetic.

Good Will Hunting (1997), written by and starring Matt
Damon and Ben Affleck, and also starring Robin
Williams, is about a young man who has led a troubled
life but has an amazing talent for mathematics. His abili-
ties are discovered when he comes into conflict with the
law, and he soon has to decide if he should pursue his
mathematical future and leave his family and friends
behind. In Darren Aronofsky’s disturbing independent
film Pi (1998), the main character is a mathematician
obsessed with his search for patterns within pi’s infinite
decimal places. He believes they can be used to predict
chaotic behaviors, including that of the stock market.
Throughout the film he is pursued by ruthless stock mar-
ket players and by rabbis trying to find a mathematical
way to communicate with God. In the science fiction film
Cube (1997), six people awake to find themselves trapped
in a deadly maze, and one of the characters uses mathe-
matical skills to solve the puzzle and find a way to escape.

Lesser known films with strong mathematical themes
include Mario Martone’s Death of a Neapolitan Mathe-
matician; Peter Greenaway’s Drowning by Numbers;
George Csicsery’s N Is a Number; and Moebius, made by
students and faculty at the Universidad del Cine of
Buenos Aires. Mathematics has also found its way onto
the stage. The musical Fermat’s Last Tango (2000), a fic-
tionalized account of Andrew Wiles’s struggle to prove
Fermat’s last theorem, was performed in New York by
the York Theatre company. It followed the Pulitzer

prize–winning play Proof by David Aubern, about the
death of a brilliant mathematician and the repercussions
for his daughters and his student.

finite
Limited in extent or scope. In mathematics, a finite set is
such that the number of elements it contains can be
described by a natural number. For instance, the set of
integers between −18 and 5 is finite, because it has a nat-
ural number (17) of elements. The set of all prime num-
bers, on the other hand, is not finite. In physics, “finite”
is used to mean both “not infinite” and “nonzero.”

finite-state automaton (FSA)
The simplest computing device. Although it is not nearly
powerful enough to perform universal computation, it
can recognize regular expressions. FSAs are defined by a
state transition table that specifies how the FSA moves
from one state to another when presented with a particu-
lar input. FSAs can be drawn as graphs.

Fisher, Adrian
A British professional designer and constructor of mazes;
his company, Adrian Fisher Maze Design, has built a
huge variety of mazes in Britain, continental Europe, the
United States, and elsewhere. These include the formal
hedge maze at Leeds Castle and the largest brick pave-
ment maze in the world at Kentwell Hall in Long
Melford. The latter is based on a Tudor rose and has 15
sepals used as locations for a board game in which live
players take part in Tudor costume.[101]

Fitchneal
An Irish version of the Viking game Hnefa-Tafl; played
on a 7 × 7 board (as was the Scottish equivalent, known
as Ard-Ri, “High King”), it is mentioned in the Mabino-
gion and Cormac’s Glossary of the ninth century.

five
The length of the hypotenuse of the smallest
Pythagorean triangle (a right triangle having integral
sides). Five is the only prime number that is a member of
two pairs of twin primes. Every integer is the sum of five
positive or negative cubes in an infinite number of ways.
Five is the smallest degree of a polynomial equation for
which there is no general formula for the solutions (see
quintic).

fixed-point attractor
An attractor that is represented by a particular point in
phase space, sometimes called an equilibrium point. As a
point it corresponds to a very limited range of possible
behaviors of the system. For example, in the case of a
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pendulum, the fixed-point attractor represents the pen-
dulum when the bob is at rest. This state of rest attracts
the system because of gravity and friction.

Flatland: A Romance of Many Dimensions
A satirical novel by Edwin A. Abbott,[1] first published in
1884, that portrays a two-dimensional world, like the
surface of a map, over which its inhabitants move. Flat-
landers have no concept of up and down, and appear to
each other as mere points or lines. From our three-
dimensional perspective we can look down on Flatland
and see that its people are “really” a variety of shapes,
including straight lines (females), narrow isosceles trian-
gles (soldiers and workmen), equilateral triangles (lower
middle-class men), squares and pentagons (professional
men, including the pseudonymous author of the tale, A.
Square), hexagons and other regular polygons with still
more sides (the nobility), and circles (priests). Abbott
uses these geometrical distinctions, especially the appear-
ance of Flatland females and the working class, as a com-
mentary on the discrimination against women, the rigid
class stratification, and the lack of tolerance for “irregu-
larity” that was prevalent in Victorian Britain.

In a dream, A. Square visits the one-dimensional world
of Lineland where he tries, unsuccessfully, to persuade
the king that there is such a thing as a second dimension.
In turn, the narrator is told of three-dimensional space by
a sphere who moves slowly through the plane of Flat-
land, growing and shrinking as his cross-section changes
in size. (If a hypersphere were to move through our
three-dimensional world, we would see a sphere appear,
grow to a maximum size, and then shrink again before
disappearing.) Abbott is aware that he cheats a little in his
description of what the inhabitants of Flatland actually
see. In his preface to the second edition, he gives a
lengthy but not-too-convincing reply to the objection,
raised by some readers, that a Flatlander, “seeing a Line,
sees something that must be thick to the eye as well as long
to the eye (otherwise it would not be visible . . .).” The
curious and often-neglected fact is that we are just as
unable to imagine what it would truly be like to see in
two dimensions as we are to conceive of four dimen-
sions! No matter how hard we try we cannot imagine
being able to see a line of zero thickness.

flexagon
A flat model constructed from a folded strip of paper,
which, when flexed, can be made to reveal a number of
hidden faces. Flexagons are amusing toys but they have
also caught the interest of mathematicians. They are usu-
ally square or rectangular (tetraflexagons) or hexagonal
(hexaflexagons). A prefix can be added to the name to
indicate the number of faces that the model can display,

including the two faces (back and front) that are visible
before flexing. For example, a hexaflexagon with a total
of six faces is called a hexahexaflexagon. The discovery of
the first flexagon, a trihexaflexagon, is credited to the
British student Arthur H. Stone who was studying at

flexagon Two nets for folding into hexaflexagons: the 
4-flexagon (top) and the 6-flexagon (bottom). To use the nets,
photocopy and enlarge them, and label each side with these
numbers:

4-flexagon (2231 2231 2231)3144 3144 3144

6-flexagon (662554 662554 662554)231431 231431 231431 

Start at A using the top row of numbers. Number the other
side of the net with the bottom row of numbers so that the
top and bottom numbers appear on either side of the first tri-
angle, and so on. Jill Russell

,

.
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Princeton University in 1939. Stone’s colleagues Bryant
Tuckermann, Richard P. Feynman, and John W. Tukey
became interested in the idea. Tuckerman worked out a
topological method, called the Tuckerman traverse, for
revealing all the faces of a flexagon. Tukey and Feynman
developed a complete mathematical theory that has not
been published. Flexagons were introduced to the gen-
eral public by Martin Gardner writing in Scientific Ameri-
can.[110]

floor function
The greatest integer in x, that is, the largest integer less
than or equal to x.

Flower of Life
One of the beautiful arrangements of circles found at the
Temple of Osiris at Abydos, Egypt. The pattern also
appears in Phoenician art from the ninth century B.C.
The circles are placed with six-fold symmetry, forming a
mesmerizing pattern of circles and lenses. A related
design from the same temple, which recurs in Italian art
from the thirteen century, is called the Seed of Life.

fly between trains problem
Two trains are approaching each another and a fly is
buzzing back and forth between the two trains. Given the
(constant) speed of the trains and their initial separation
distance, and the (constant) speed of the fly, calculate
how far the fly will travel before the trains collide. This
problem appears to have been first posed by Charles
Ange Laisant (1840–1921) in his Initiation Mathématique.
There is a long-winded method of getting the answer and
a much shorter way. Suppose the trains start out 200
miles apart and are each traveling at 50 miles per hour,
and the fly—a speedster of its kind—is moving at 75 miles
per hour. The long method involves considering the
length of the back-and-forth path that the fly takes and
evaluating this as the sum of an infinite series. The quick
solution is to notice that the trains will collide in 2 hours
and that in this time the fly will travel 2 × 75 = 150 miles!
When this problem was put to John von Neumann, he
immediately gave the correct answer. The poser, assum-
ing he had spotted the shortcut, said: “It is very strange,
but nearly everyone tries to sum the infinite series.” Von
Neumann replied: “What do you mean, strange? That’s
how I did it!”

focal chord
A chord of a conic section that passes through a focus.

focal radius
A line segment from the focus of an ellipse to a point on
the perimeter of the ellipse.

focus
A defining point in the construction of a conic section.
The word comes from the Latin for hearth or fireplace
and appears to have been first used in mathematics, in
describing an ellipse, by Johannes Kepler.

foliation
A decoration of a manifold in which the manifold is par-
titioned into sheets of some lower dimension, and the
sheets are locally parallel. More technically, the foliated
manifold is locally homeomorphic to a vector space
decorated by cosets of a subspace.

folium
A curve, first described by Johannes Kepler in 1609, that
corresponds to the general equation

(x 2 + y 2)( y 2 + x(x + b)) = 4axy2, in Cartesian form, or
r = −b cosθ + 4a cosθ sin2θ, in polar coordinates.

The Latin folium means “leaf-shaped.” Three types,
known as the simple folium, the bifolium (or double
folium), and the trifolium, correspond to the cases when
b = 4a, b = 0, and b = a, respectively. The folium of Descartes
is given by the Cartesian equation x 3 + y 3 = 3axy and was
first discussed by René Descartes in 1638. Although he
found the correct shape of the curve in the positive quad-
rant, he wrongly thought that this leaf shape was repeated
in each quadrant like the four petals of a flower. The
problem to determine the tangent to the curve was pro-
posed to Gilles de Roberval who, having made the same
incorrect assumption, called the curve fleur de jasmin after
the four-petal jasmine bloom, a name that was later
dropped. The folium of Descartes has an asymptote x +
y + a = 0.

formal system
A mathematical formalism in which statements can be
constructed and manipulated with logical rules. Some
formal systems, such as Euclidean geometry, are built
around a few basic axioms and can be expanded with
theorems that can be deduced through proofs.

formalism
A mathematical school of thought that was headed by
the German mathematician David Hilbert. Formalists
argue that mathematics must be developed through
axiomatic systems. Formalists agree with Platonism on
the principles of mathematical proof, but Hilbert’s fol-
lowers don’t recognize an external world of mathematics.
Formalists argue that mathematical objects don’t exist
until we define them. Humans create the real number
system, for example, by establishing axioms to describe
it. All that mathematics needs are inference rules to
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progress from one step to the next. Formalists tried to
prove that within the framework of established axioms,
theorems, and definitions, a mathematical system is con-
sistent and, in the mid-twentieth century, formalism
became the predominant philosophical attitude in math
textbooks. However, it was undermined by Gödel’s
incompleteness theorem and also the general recogni-
tion that results can be usefully applied without having
to be proved or derived axiomatically.

Fortune’s conjecture
A conjecture about prime numbers made by the New
Zealander social anthropologist Reo Fortune (1903–1979),
who had a reputation for unstable behavior bordering on
the psychotic. He once attempted to settle an academic
dispute with a colleague, Thomas McIlwraith, at the Uni-
versity of Ontario, by challenging him to a duel with any
weapon of his choice from the collections of the Royal
Ontario Museum. Fortune proposed that if q is the small-
est prime greater than P + 1, where P is the product of the
first n primes, then q − P is prime. For example, if n is 3,
then P is 2 × 3 × 5 = 30, q = 37, and q − P is the prime 7.
These numbers, q − P, are now known as Fortunate numbers.
The conjecture remains unproven but is generally thought
to be true. The sequence of Fortunate numbers begins

3, 5, 7, 13, 23, 17, 19, 23, 37, 61, 67, . . .

four
The smallest composite number, the second smallest
square number, the first non-Fibonacci number (see
Fibonacci sequence), the smallest Smith number, and
the smallest number that can be written as the sum of
two prime numbers. Four is the number of dimensions
that make up space-time (three of space and one of
time). It is the most number of colors needed to color
any map so that no two neighboring areas are the same
color (see four-color map problem). There are four car-
dinal points on the compass, four Riders of the Apoca-
lypse, and four Gospels.

four-color map problem
A long-standing problem that dates back to 1852 when
Francis Guthrie, while trying to color a map of the coun-
ties of England noticed that four colors were enough to
ensure that no adjacent counties were colored the same.
He asked his brother Frederick if it was true that any map
could be colored using four colors in such a way that
adjacent regions (i.e., those sharing a common boundary
segment, not just a point) receive different colors. Freder-
ick Guthrie then passed on the conjecture to Augustus de
Morgan. The first printed reference is due to Arthur Cay-
ley in 1878. A year later the false “proof,” by the English

barrister Alfred Kempe, appeared; its incorrectness was
pointed out by Percy Heawood 11 years later. Another
failed proof is due to Peter Tait in 1880, a gap in his argu-
ment being pointed out by Julius Petersen in 1891. Both
false proofs did have some value, though. Kempe discov-
ered what became known as Kempe chains, and Tait found
an equivalent formulation of the four-color theorem in
terms of three-edge coloring.

The next major contribution came from George Birk-
hoff whose work allowed Philip Franklin in 1922 to prove
that the four-color conjecture is true for maps with at most
25 regions. It was also used by other mathematicians to
make various forms of progress on the four-color problem.
In the 1970s, the German mathematician Heinrich Heesch
developed the two main ingredients needed for the ulti-
mate proof—reducibility and discharging. While the con-
cept of reducibility was studied by other researchers as
well, it seems that the idea of discharging, crucial for the
unavoidability part of the proof, is due to Heesch, and that
it was he who conjectured that a suitable development of
this method would solve the four-color problem. This was
confirmed by Kenneth Appel and Wolfgang Haken of the
University of Illinois in 1977, when they published their
proof of the four-color theorem.12 Their controversial
proof challenges the basic assumptions of what mathemat-
ical proof is. They used more than 1,200 hours of super-
computer time to analyze 1,478 different configurations
that in turn can produce every possible map on a plane.
Not everyone was happy with the method of the break-
through, as Appel himself pointed out:

For almost a century and a half, a Holy Grail of
graph theory has been a simple incisive proof of the
Four Color Theorem. It has troubled our profession
that a problem that can be understood by a school
child has yet to be solved in a way that better illu-
minates the reason that only four colors are needed
for planar maps. The feelings of many mathemati-
cians were summed up for me by Herb Wilf ’s
response to being told that it appeared that one
could prove the theorem by a long reducibility argu-
ment which used computers to test the reducibility
of a large number of configurations. He simply said,
“God would not allow such a beautiful theorem to
have such an ugly proof.”

Martin Gardner commented, “Whether a simple, elegant
proof not requiring a computer will ever be found, is still
an open question.” It’s interesting that such a simple,
intuitive puzzle can be so difficult to settle! The four-
color theorem is true for maps on a plane or on a sphere.
The answer is different for geographic maps on a torus:
in this case, seven colors are necessary and sufficient.[277]
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four coins problem
Given three coins of possibly different sizes, which are
arranged so that each is tangent to the other two, find the
coin that is tangent to the other three coins. The solution
is the inner Soddy circle.

four fours problem
Using arithmetic combinations of four 4’s, express all the
numbers from 1 to 100. For example, 1 = 44/44 and 2 =
(4 × 4)/(4 + 4). The problem was first presented in The
Schoolmaster’s Assistant: Being a Compendium of Arithmetic
Both Practical and Theoretical (first edition c. 1744), a pop-
ular textbook by the English schoolteacher and cleric
Thomas Dilworth (d. 1780). Operations and symbols
that are allowed include the four arithmetic operations
(+, ×, −, /), concatenation (e.g., the use of 44), decimal
points (e.g., 4.4), powers (e.g., 44), square roots, factorials
(e.g., 4!), and overbars for repeating digits (e.g., .4 with an
overbar to express 4⁄9). Ordinary use of parentheses are
allowed. One of the trickiest numbers to represent in this
way is 73, which calls for something as contorted as

!(!(!(44)) + 4 / .4′

(where .4′ is shorthand for .444 . . .). Of course, the prob-
lem can be extended to represent integers greater than
100. The highest value achievable in the four four’s puz-
zle is 108.0723047260281 × 10153 = 4444

.

four knights puzzle
On a 3 × 3 chessboard are two white knights at the top
left-hand and top right-hand squares and two black
knights at the bottom left-hand and bottom right-hand
squares. The problem is to exchange the black knights
with the white knights in the minimum possible number
of moves. One move is a normal knight’s move on any
vacant cell of the board, which renders the center square
inaccessible.

Fourier, (Jean Baptiste) Joseph, Baron
(1768–1830)
A French mathematician known chiefly for his contribu-
tion to the mathematical analysis of heat flow. Although
he trained for the priesthood, Fourier didn’t take his
vows but instead turned toward mathematics. He first
studied and later taught mathematics at the newly created
Ecole Normale. In 1798 he joined Napoleon’s army in its
invasion of Egypt as scientific advisor, to help establish
educational facilities there and to carry out archaeologi-
cal explorations. After his return to France in 1801 he was
appointed prefect of the department of Isere. Fourier
became famous for his Theorie analytique de la Chaleur
(1822), a mathematical treatment of how heat conducts
in solid bodies. He established the partial differential
equation governing heat flow and solved it by using an

four-color map problem Martin Gardner’s spoof counterexample to the four-color theorem (left) and a solution using four 
colors (right). The different colors are represented here in black, white, and gray.
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infinite series of trigonometric functions, now known as
Fourier series. Though these series had been used
before, Fourier investigated them in much greater detail
and prepared the way for later work on trigonometric
series and the theory of functions of a real variable.
Fourier’s belief that his health would be improved by
wrapping himself up in blankets proved fatal: thus
encumbered he tripped down the stairs of his house and
died.

Fourier series
Named after Joseph Fourier, the expansion of a periodic
function as an infinite sum of sines and cosines of vari-
ous frequencies and amplitudes. This is similar to the
approximation of an irrational number by a sum of a
series of rational numbers (or a decimal expansion).
Human ears effectively produce Fourier series automati-
cally from complex sounds. Tiny hairs, known as cilia,
vibrate at different specific frequencies. When a wave
enters the ear, the cilia vibrate if the wave function con-
tains any component of the corresponding frequency.
This enables the hearer to distinguish sounds of various
pitches. Fourier series are used a great deal in science and
engineering to find solutions to partial differential equa-
tions, such as those in problems involving heat flow.
They can also be used to construct some pathological
functions such as ones that are continuous but nowhere
differentiable. The study and computation of Fourier
series is known as harmonic analysis.

fourth dimension
“Do you think that there are things which you cannot
understand, and yet which are; that some people see
things that others cannot?” said Dr. Van Helsing in Bram
Stoker’s Dracula. Instead of vampires, he may just as eas-
ily have been talking about the fourth dimension—an
extension at right-angles to the three familiar directions
of up-down, forward-backward, and side-to-side. In
physics, especially relativity theory, time is often
regarded as the fourth dimension of the space-time con-
tinuum in which we live. But what meaning can be
attached to a fourth spatial dimension? The mathematics
of the fourth dimension (4-d) can be approached
through a simple extension of either the algebra or the
geometry of one, two, and three dimensions.

Algebraically, each point in a multidimensional space
can be represented by a unique sequence of real num-
bers. One-dimensional space is just the number line of
real numbers. Two-dimensional space, the plane, corre-
sponds to the set of all ordered pairs (x, y) of real num-
bers, and three-dimensional space to the set of all ordered
triplets (x, y, z). By extrapolation, four-dimensional space
corresponds to the set of all ordered quadruplets (x, y, 

z, w). Linked to this concept is that of quaternions, which
can also be viewed as points in the fourth dimension.

Geometric facts about the fourth dimension are just as
easy to state. The fourth dimension can be thought of as
a direction perpendicular to every direction in three-
dimensional space; in other words, it stretches out along
an axis, say the w-axis, that is mutually perpendicular to
the familiar x-, y-, and z-axes. Analogous to the cube is a
hypercube or tesseract, and to the sphere is a 4-d hyper-
sphere. Just as there are five regular polygons, known as
the Platonic solids, so there are six four-dimensional reg-
ular polytopes. They are: the 4-simplex (constructed
from five tetrahedra, with three tetrahedra meeting at an
edge); the tesseract (made from eight cubes, meeting
three per edge); the 16-cell (made from 16 tetrahedra,
meeting four per edge); the 24-cell (made from 24 octa-
hedra, meeting three per edge); the 120-cell (made from
120 dodecahedra, meeting three per edge); and the mon-
strous 600-cell (made from 600 tetrahedra, meeting five
per edge).

Geometers have no difficulty in analyzing, describing,
and cataloging the properties of all sorts of 4-d figures.
The problem starts when we try to visualize the fourth
dimension. This is a bit like trying to form a mental pic-
ture of a color different from any of those in the known
rainbow from red to violet, or a “lost chord,” different
from any that has ever been played. The best that most of
us can hope for is to understand by analogy. For example,
just as a sketch of a cube is a 2-d perspective of a real
cube, so a real cube can be thought of as a perspective of
a tesseract. At a movie, a 2-d picture represents a 3-d
world, whereas if you were to watch the action live, in
three-dimensions, this would be like a screen projection
in four dimensions.

Many books have been written and schemes devised 
to nudge our imaginations into thinking four-
dimensionally. One of the oldest and best is Edwin
Abbott’s Flatland [1] written more than a century ago,
around the time that mathematical discussion of higher
dimensions was becoming popular. H. G. Wells also
dabbled in the fourth dimension, most notably in The
Time Machine (1895), but also in The Invisible Man (1897),
in which the central character drinks a potion “involving
four dimensions,” and in “The Plattner Story” (1896), in
which the hero of the tale, Gottfried Plattner, is hurled
into a four-spatial dimension by a school chemistry
experiment that goes wrong and comes back with all his
internal organs switched around from right to left.[285]

The most extraordinary and protracted attack on the
problem, however, came from Charles Hinton, who
believed that, through appropriate mental practice
involving a complicated set of colored blocks, a higher
reality would reveal itself, “bring[ing] forward a complete
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system of four-dimensional thought [in] mechanics, sci-
ence, and art.”

Victorian-age spiritualists and mystics also latched on
to the idea of the fourth dimension as a home for the
spirits of the departed. This would explain, they argued,
how ghosts could pass through walls, disappear and reap-
pear at will, and see what was invisible to mere three-
dimensional mortals. Some distinguished scientists lent
their weight to these spiritualist claims, often after being
duped by clever conjuring tricks. One such unfortunate
was the astronomer Karl Friedrich Zöllner who wrote
about the four-dimensional spirit world in his Transcen-
dental Physics (1881) after attending séances by Henry
Slade, the fraudulent American medium.

Art, too, became enraptured with the fourth dimen-
sion in the early twentieth century. When the Cubist
painter and theorist Albert Gleizes said, “Beyond the
three dimensions of Euclid we have added another, the
fourth dimension, which is to say, the figuration of space,
the measure of the infinite,” he united math and art and
brought together two major characteristics of the fourth
dimension in early Modern Art theory—the geometric
orientation as a higher spatial dimension and the
metaphorical association with infinity.[159] See also Klein
bottle.[25, 156, 163, 212, 213, 231, 254, 267, 271, 273, 340]

Fox and Geese
An English board game that dates back to the Middle
Ages and is unusual in that the two sides are unequal,
thus making this an example of a Tafl game. The lone fox
attempts to capture 13 (or, in later versions, 17) geese,
while the geese try to hem the fox in so that it can’t
move. The geese start out by filling up all the points on
one side of the cross-shaped grid on the board. The fox—
the one counter of a different color—begins on any
vacant point remaining. The fox moves first. Each side, in
its turn, may move one counter. Both fox and geese can
move along a line, forwards, backwards, or sideways, to
the next contiguous point. The fox may move along a
line or jump over a goose to an empty point, capturing
the goose and removing it from the board. Two or more
geese may be captured by the fox in one turn, provided
that he is able to jump to an empty point after each one.
The fox wins if he depletes the gaggle of geese to a num-
ber that makes it impossible for them to trap him. The
geese can’t jump over the fox or capture the fox but
instead must try to mob him and trap him in a corner.
The geese win if they make it impossible for the fox to
move. A modification of this game spread with the
British to India, where during the Great Mutiny the game
became known as “Officers and Sepoys.” In this variant,
two officers in a fort attempt to hold off 24 sepoys, who
must storm the fort.

fractal
A geometric shape that can be subdivided at any scale
into parts that are, at least approximately, reduced-size
copies of the whole. The name “fractal,” from the Latin
fractus meaning a broken surface, was coined by Benoit
Mandelbrot in 1975. The key property of fractals is self-
similarity, which means that zooming in or zooming out
of a fractal produces no overall change in appearance.

One of several technical definitions of a fractal is “a set
of points whose topological dimension is less than its
Hausdorff dimension.” The topological dimension is an
object’s ordinary dimensionality—one in the case of a
curve, two in the case of a surface, and so forth—and is
always a whole number. The Hausdorff dimension, on
the other hand, measures how much space an object fills,
and can take non-integer values if the object is very com-
plex and twisty.

Some fractals show a strong regularity and rigid self-
similarity and are produced by the repeated application
of a set of rules that may be quite simple. Among the best
known of these “iterated function” systems are the Koch
snowflake, the Peano curves, the Sierpinski carpet, and
the Sierpinski gasket. Other fractals, defined by a recur-
rence relation at each point in space, are among the most
complex, beautiful, and beguiling mathematical struc-
tures known. They include the well-known Mandelbrot
set and Lyapunov fractals. Finally, there are random
fractals generated by stochastic rather than deterministic
processes, for example fractal landscapes. Random frac-
tals have the greatest practical use, and can be used to
describe many highly irregular real-world objects, includ-
ing clouds, mountains, coastlines, and trees. See also
fractal dimension.

fractal dimension
A non-integer measure of the irregularity or complexity
of a system; it is an extension of the notion of dimension
found in Euclidean geometry. Knowing the fractal
dimension helps one determine the degree of irregularity
and pinpoint the number of variables that are key to
determining the dynamics of the system.

fraction
A number that represents a part, or several equal parts, of
a whole; examples include one-half, two-thirds, and
three-fifths. The word comes from the Latin frangere,
meaning “to break.” A simple, common, or vulgar fraction is
of the form a/b, where a may be any integer and b may be
any integer greater than 0. If a < b, the fraction is said to
be proper (“bottom heavy”); otherwise it is improper (“top
heavy”). A decimal fraction has a denominator (number
on the bottom) of 10, 100, 1000, and so forth. See also
continued fraction.
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Fraser spiral
A distortion illusion in which overlapping black arc seg-
ments appear to form a spiral but are in reality a series of
overlapping concentric circles. This is easily demon-
strated by following one of the curves with your finger.
The illusion is named after the British psychologist James
Fraser (1863–1936) who first published it in 1908.[104]

Fredholm, Erik Ivar (1866–1927)
A Swedish mathematician who founded the modern the-
ory of integral equations. This became a major research
topic in the first quarter of the twentieth century and
underpinned important theoretical developments in
physics; David Hilbert, in particular, extended Fred-
holm’s work to arrive at the concept of Hilbert space.
Fredholm also devoted time to actuarial science and
made a particularly important contribution by proposing

an elegant formula to determine the surrender value of a
life insurance policy. He earned his Ph.D. from the Uni-
versity of Uppsala but then spent the rest of his academic
career at the University of Stockholm.

Freemish crate
See impossible figure.

Freeth’s nephroid
See nephroid.

Frege, Friedrich Ludwig Gottlob (1848–1925)
A German mathematician and philosopher who virtually
founded the modern discipline of mathematical logic. In
Die Grundlagen der Arithmetik (The foundations of arith-
metic, 1884), he used set theory to define the cardinal
number of a given class as the class of all classes that are

fractal A deep zoom of part of the Mandelbrot set. Christopher Rowley
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similar (i.e. can be placed in a one-to-one correspon-
dence) to the given class. In Grundgesetze der Arithmetik
(The basic laws of arithmetic, 2 vols., 1893 and 1903),
Frege began attempting to build up mathematics from
arithmetic and symbolic logic on a rigorous and contra-
diction-free basis. When the second volume was in the
process of being printed, Bernard Russell pointed out a
paradox in Frege’s work. The paradox, which became
known as Russell’s paradox, stems from the question:
“Is the class of all classes that are not members of itself a
member of itself or not?” The question leads to a contra-
diction and cannot be resolved. Frege was thus forced to
admit that the foundation of his reasoning was worthless.
As he stated at the end of his work, “A scientist can
hardly encounter anything more undesirable than to
have the foundation collapse just as the work is finished.
I was put in this position by a letter from Mr. Bertrand
Russell when the work was almost through the press.”

Frénicle de Bessy, Bernard (1602–1675)
An eminent French amateur mathematician who exten-
sively researched magic squares; his Des quassez ou tables
magiques, published posthumously in 1693, first identi-
fied all 880 magic squares of the fourth order. Frénicle
also corresponded with Descartes, Fermat, Huygens,
and Mersenne, mostly on number theory, the work for
which he is best known.

frequency
The number of times a value occurs in some time interval.

friendly number
See amicable numbers.

Frogs and Toads
A puzzle in which three counters or pegs representing
frogs are placed on three successive positions on the left
of a string of seven squares, and three different tokens
representing toads are placed on the three rightmost
squares. Frogs only move to the right, toads only to the
left. Every move is either a slide to the adjacent square or
a jump over one position, which is allowed only if the lat-
ter is occupied by a member of the other species. No two
animals are ever allowed on the same square. The goal is
to move the toads into the three leftmost positions and
the frogs into three rightmost positions in the fewest pos-
sible moves. Many different versions of this puzzle have
appeared over the centuries and it may be Arabic in ori-
gin. The number of pieces on each side may vary, as may
the number of empty starting places in the middle; other
names for the puzzle have included Sheep and Goats and
Sphinxes and Pyramids.

frugal number
See economical number.

frustum
Part of a solid cut off between two parallel planes; in par-
ticular, for a cone or a pyramid, a frustum is determined
by the plane of the base and a plane parallel to the base.
Frustum is Latin for “a piece broken off.”

function

Old mathematicians never die; they just lose some of
their functions.

—Anonymous

A way of expressing the dependence of one quantity on
another quantity or quantities. Traditionally, functions
were specified as explicit rules or formulas that converted
some input value (or values) into an output value. If f is
the name of the function and x is a name for an input
value, then f (x) denotes the output value corresponding
to x under the rule f. An input value is also called an
argument of the function, and an output value is called a
value of the function. The graph of the function f is the
collection of all pairs (x, f (x)), where x is an argument of
f. For example, the circumference C of a circle depends
on its diameter d according to the formula C = πd; there-
fore, one can say that the circumference is a function of
the diameter, and the functional relationship is given by
C(d ) = πd. Equally well, the diameter can be considered
a function of the circumference, with the relationship
given by d(C ) = d/π. In modern mathematics, the insis-
tence on specifying an explicit effective rule has been
abandoned; all that is required is that a function f associ-
ate with every element of some set X a unique element of
some set Y. This makes it possible to prove the existence
of a function without necessarily being able to calculate
its values explicitly. Also, it enables general properties of
functions to be proved independently of their form. The
set X of all admissible arguments is called the domain of
f; the set Y of all admissible values is called the codomain
of f. We write f: X → Y.

fundamental group
A group of a topological space X that is constructed by
looking at how closed paths in X can be combined to get
new paths. Under a suitable way of identifying paths
(known as homotopy) one can get a group structure on
the set which gives an algebraic invariant of the space X.

fundamental theorem of algebra
The result that any polynomial with real or complex
coefficients has a root in the complex plane.
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fundamental theorem of arithmetic
Every positive integer greater than 1 is a prime number
or can be expressed as a unique product of primes and
powers of primes.

fuzzy logic
A departure from classical two-valued logic in which
something is either true or false, to allow a continuous
range of truth values. Fuzzy logic was introduced by Lotfi
Zadeh of the University of California at Berkeley in the
1960s as a means to model the uncertainty of natural lan-
guage.



Gabriel’s horn
The surface of revolution of

y = 1/x

for x greater than 1. Surprisingly this has a finite volume
of pi cubic units but an infinitely large surface area!
Gabriel’s horn is also known as Torricelli’s trumpet because
it was investigated by the Italian Evangelista Torricelli
(1608–1647). As a young man Torricelli studied in
Galileo’s home at Arcetri, near Florence, and then, upon
Galileo’s death, succeeded his teacher as mathematician
and philosopher for their good friend and patron, the
grand duke of Tuscany. Torricelli was amazed by the
strange property of his mathematical trumpet and tried
various ways to avoid the conclusion that a finite vol-
ume could be enclosed by a vessel with an infinite sur-
face area. Unfortunately, he lived before calculus came
along to explain the apparent paradox in terms of infin-
itesimals.

Galois, Évariste (1811–1832)
A French mathematician who led a short, dramatic life
and is often credited with founding modern group the-
ory, though the Italian Paolo Ruffini (1765–1822) came
up with many of the ideas first. Galois’s work wasn’t
widely acknowledged by his contemporaries, partly be-
cause he didn’t present his material very well and partly
because he held unpopular political views. In fact, he was
a republican revolutionary who was twice imprisoned
because of his activities. During his second incarceration
he fell in love with the daughter of the prison physician,
Stephanie-Felice du Motel, and after being released, was
killed in a duel over her with Perscheux d’Herbinville.
His death started republican riots and rallies which lasted
for several days. See also Galois theory.

Galois theory
The study of certain groups, known as Galois groups, that
can be associated with polynomial equations. Whether

G
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Gabriel’s horn The horn for x values between 1 and 10.
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or not the solutions to an equation can be written down
using rational functions and square roots, cube roots, and
so forth depends on certain group-theoretic properties of
Galois groups.

game
A conflict, with formal rules and a finite number of
choices of what to do at each stage, between two or more
players. The study of games belongs to a branch of math-
ematics and logic known as game theory. If a game is sim-
ple enough, it can be solved for all possible outcomes.
This is the case, for example, with tic-tac-toe and Nim. By
harnessing the power of computers to check through vast
numbers of moves, even more complicated games are suc-
cumbing to a complete analysis. In the 1990s, nine men’s
morris was shown, by searching through billions of possi-
ble endgames, to be a certain draw if both players work to
an optimal strategy. Checkers may be the next to be fully
determined: its roughly 500 million trillion possible posi-
tions may soon be within reach of the most powerful
supercomputers. See also blackjack, chess, Frogs and
Toads, Ovid’s game, TacTix, and Wythoff ’s game.

game theory
A mathematical formalism used to study human games,
economics, military conflicts, and biology. The goal of
game theory is to find the optimal strategy for one player
to use when his opponent also plays optimally. A strategy
may incorporate randomness, in which case it is referred
to as a mixed strategy.

Early ideas of game theory can be found in writings
throughout history as diverse as the Bible and works by
René Descartes, Sun Tzu (author of the 2,400-year-old
The Art of War), and Charles Darwin. The basis of mod-
ern game theory is an outgrowth of several books that
deal with related subjects such as economics and proba-
bility. These include Augustin Cournot’s Researches into
the Mathematical Principles of the Theory of Wealth (1838),
which gives an intuitive explanation of what would
eventually be formalized by John Nash as Nash equilib-
rium; Francis Edgeworth’s Mathematical Psychics, which
explored the notion of competitive equilibria in a two-
type (or two-person) economy; and Emile Borel’s Alge-
bre et calcul des probabilites (1927), which gave the first
insight into so-called mixed strategies.[49] Game theory
finally came of age through the efforts of two European
immigrants to the United States working at the Institute
of Advanced Studies in Princeton. Around 1940, the
idea of the utility function was taken up by John von
Neumann, who had been forced to flee his native Hun-
gary when the Nazis invaded, and the economist Oskar
Morgenstern (1902–1976), who had left Austria because
he loathed the National Socialists. In Princeton the 

two immigrants worked together on what they initially
thought would be a short paper on the theory of games,
but that kept growing until it finally appeared in 1944 as
an opus of 600 pages with the title Theory of Games and
Economic Behavior.[230]

GLOSSARY OF GAME THEORY
categorical game A game in which a tie is impossi-

ble.

finite game A game in which each player has a

finite number of moves and a

finite number of choices at each

move.

futile game A game that allows a tie when

played properly by both players.

impartial game A game in which the possible

moves are the same for each

player in any position.

mixed strategy A collection of moves together

with a corresponding set of

weights which are followed proba-

bilistically in the playing of a game.

partisan game A game for which each player has

a different set of moves in any

position.

payoff matrix An m × n matrix that gives the pos-

sible outcome of a two-person

zero-sum game when player A has

m possible moves and player B

has n moves.

strategy A set of moves that a player plans

to follow while playing a game.

zero-sum game A game in which players make

payments only to each other. One

player’s loss is the other player’s

gain, so the total amount of

“money” available is constant.

gamma
See Euler-Mascheroni constant.

gamma function
A generalization of the factorial function to the real line
and to the complex plane. It is defined by:

Γ(n + 1) = !∞

0

x n e−x dx

If n is an integer, then Γ(n + 1) = n! See also beta function.

Gardner, Martin (1914–)
An American recreational mathematician best known for
his “Mathematical Games” column, which ran in Scien-
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tific American for 25 years. Through this column he intro-
duced many subjects, including flexagons, polyominos,
Piet Hein’s Soma Cube, and John Conway’s Game of
Life, to a wider audience. He is also an accomplished
amateur magician and an active member of the skeptical
movement associated with James Randi. Gardner is the
author of more than 60 books, including various collec-
tions of his Scientific American columns, The Ambidextrous
Universe, and The Annotated Alice.[108–131]

gauge theory
A force field in nature, or an analogous vector field in
mathematics with an enormous amount of symmetry that
expresses the redundancy or ambiguity of many param-
eters. The simplest example is the electromagnetic field.

Gauss, Carl Friedrich (1777–1855)
A German mathematician, often called the “Prince of
Mathematics,” whose stature and range of interests rivaled
those of Aristotle and Isaac Newton. Some inkling of
what was in store came when, as a 3-year-old, he corrected
a mistake in one of his father’s lengthy payroll calcula-
tions. In school, at age 10, when his teacher gave the class
the task of adding all the integers from 1 to 100, Gauss
immediately wrote down the correct answer, 5050, on his
slate. He had spotted that the numbers can be paired off
as (100 + 1), (99 + 2), (98 + 3), . . . , (51 + 50) so that the
problem reduces to multiplying 101 by 50. At age 19,
Gauss found a way to construct a heptadecagon (a regular
polygon with 17 sides) using only a straightedge and com-
pass—a feat that had eluded the Greeks. Then Gauss
entered the mathematical stratosphere of his time by
proving what is now called the fundamental theorem of alge-
bra, namely, that every polynomial has at last one root
that is a complex number; in fact, he gave four different
proofs, the first of which appeared in his dissertation. In
1801, he proved the fundamental theorem of arithmetic (that
every natural number can be represented as the product of
prime numbers in only one way); published a brilliant
tour de force on the properties of integers in his Disquisi-
tiones Arithmeticae, which systematized the study of num-
ber theory; and showed that every number is the sum of
at most three triangular numbers. In the same year, he
also developed the method of least squares fitting and,
though he didn’t publish it, used it to calculate the orbit
of the asteroid Ceres, that had recently been discovered
by Piazzi, from only three observations. Gauss published
his monumental treatise on celestial mechanics Theoria
Motus in 1806. He became interested in the compass
through surveying, and developed the magnetometer, an
instrument with which, together with Wilhelm Weber, he
measured the intensity of magnetic forces. With Weber,
he also built the first successful telegraph.

Unfortunately for mathematics, Gauss reworked and
improved papers incessantly, and, in keeping with his
motto “pauca sed matura” (few but ripe), he published
only a fraction of his work. Many of his results were 
subsequently repeated by and attributed to others, since 
his terse diary remained unpublished for years after his
death. Only 19 pages long, this diary later confirmed his
priority on many breakthroughs, including work on an
alternative to the parallel postulate, which really makes
him the earliest pioneer of non-Euclidean geometry
despite the fact that János Bólyai and Nikolai Loba-
chevsky are normally given this accolade. Gauss did,
however, publish his seminal treatment on differen-
tial geometry in Disquisitiones circa superticies curvas, and
Gaussian curvature is named for him. Gauss wanted a
heptadecagon placed on his gravestone, but the carver
refused, saying it would be indistinguishable from a cir-
cle. The heptadecagon appears in the shape of a pedestal
with a statue erected in his honor in his hometown of
Braunschweig.

Gaussian
Normally distributed (with a bell-shaped curve) and hav-
ing a mean at the center of the curve with tail widths pro-
portional to the standard deviation of the data about the
mean.

Gelfond’s theorem
Also known as the Gelfond-Schneider theorem: ab is a tran-
scendental number if (1) a is an algebraic number and
not equal to either 0 or 1, and (2) b is algebraic and 
also an irrational number. Gelfond’s theorem enables
the seventh of David Hilbert’s famous problems to be
solved.

general relativity
See relativity theory.

general topology
See point-set topology.

genetic algorithm
A type of evolving computer program, developed by the
computer scientist John Holland, whose strategy of ar-
riving at solutions is based on principles taken from
genetics. Basically, the genetic algorithm utilizes the
mixing of genetic information in sexual reproduction,
random mutations, and natural selection at arriving at
solutions.

genus
In topology, roughly speaking, the number of holes in a
surface. Spheres, bowling balls (the finger holes aren’t
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true holes because they don’t go all the way through),
and wine glasses have a genus of 0 and can be represented
by quadratic equations. Bagels, inner tubes, and teacups
have a genus of 1 and can be described by cubic equa-
tions. Humans are more difficult to specify. However,
you will certainly increase your genus by one if you have
your ear pierced! Different definitions of genus apply to
other types of mathematical objects such as a curve, a
knot, or a set.

geoboard
A device commonly used in elementary schools to aid in
the teaching of basic geometric concepts. A simple geo-
board can be made from a square piece of wood and 25
nails arranged in an evenly spaced grid of 5 vertical lines
and 5 horizontal lines. These nails represent the lattice
points in the plane. Figures are made on the geoboard by
stretching rubber bands from one nail to another until the
desired shape is formed.

geodesic
A path on a given surface that is as straight as possible; in
other words, a path that doesn’t deviate either to the left
or to the right, and only bends when forced to do so by
the curvature (if any) of the surface. If the surface is an
ordinary plane, the geodesics are straight lines; on a
sphere the geodesics are great circles.

geometric magic square
A square array of n × n cells each occupied by a distinct
geometrical figure (or piece or tile), such that the n
pieces contained in every row, column, and diagonal
can be fitted together to produce (i.e., tile or pack) a
constant shape known as the target. The figures may be
of any dimension, but are normally planar (topological
disks). In tessellating the target, which may be of any
shape, planar pieces are allowed to be flipped. Pieces of
three or more dimensions are considered distinct from
their mirror images. Geometric magic squares using
one-dimensional entries have been known for centuries;
they are the traditional magic squares in which straight
lines pave a constant length, as usually represented by
numbers adding to a constant total. The properties of
generalized geometric magic squares were first investi-
gated by Lee Sallows.

geometric mean
The geometric mean of n numbers is the nth root of the
product of the numbers.

geometric sequence
Also known as a geometric progression, a finite sequence of
at least three numbers, or an infinite sequence, whose

terms differ by a constant multiple, known as the common
ratio. For example, starting with 3 and using a common
ratio of 2 leads to the finite geometric sequence: 3, 6, 12,
24, 48, and also to the infinite sequence 3, 6, 12, 24,
48, . . . , (3 × 2n). . . . In general, the terms of a geometric
sequence have the form an = arn (n = 0, 1, 2, . . .) for fixed
numbers a and r. If the terms of a geometric sequence are
added together the result is a geometric series. If it is a 
finite series, then we add its terms to get the series sum, 
Sn = a + ar + ar2 + . . . + arn = (a − arn + 1)/(1 − r). In the case
of an infinite series, if |r| < 1, the sum is a/(1 − r). If 
|r| ≥ 1, however, the series diverges and thus has no sum.
See also arithmetic sequence.

geometry
The study of the properties of shapes and of spaces. See
also Euclidean geometry and non-Euclidean geometry.

geometry puzzles
One of the attractions of puzzles involving shapes, espe-
cially dissection problems, is that they appeal to the eye
and very often don’t call for much ability in solving equa-
tions and the like. Anyone can try to assemble the pieces
of a jigsaw, whether it be of a picture or of a geometric
shape, so a mathematical game such as tangrams or the
Soma cube is within everyone’s reach. On the other
hand, some geometric puzzles call for a basic knowledge
of more abstract fields such as algebra and calculus. They
may also exploit our sometimes faulty intuition about
how different quantities vary in one, two, and three
dimensions and about how much information is needed
to solve a problem.

As an example of faulty intuition, imagine that Earth,
taken to be a perfect sphere with a radius r of 6,378 km, is
completely covered by a thin membrane. Now suppose
that 1 square meter is added to the area of this membrane
to form a larger sphere. By how much does the radius and
the volume of this membrane increase? This can be
worked out from the formulae for the volume of a sphere
(V = (4/3)πr 3) and the area of a sphere (A = 4πr 2), respec-
tively. It turns out that if the area of the cover is increased
by 1 square meter, then the volume it contains is
increased by about 3.25 million cubic meters. This seems
like a huge amount. However, the new cover wouldn’t be
very high above the surface of the planet—only about 6
nanometers! As an example of a problem that is both
counterintuitive and seems to lack sufficient data for its
solution see hole-through-a-sphere problem.

Gergonne point
In a triangle, the point at which the lines from the ver-
tices (see vertex) to the points of contact of the opposite
sides with the inscribed circle meet.
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Germain, Sophie (1776–1831)
A French mathematician who made notable contributions
to number theory and to mathematical physics despite a
lack of formal training and the social prejudices of her day.
She taught herself, against her parents’ wishes, often at
night, during the Reign of Terror following the French Rev-
olution, with books from her father’s library. When
deprived of heat and light, she would wrap herself in quilts
and use candles. Finally her parents acquiesced to her
“incurable” passion for mathematics and let her study.
Through Joseph Lagrange, to whom she had originally
submitted work under a pseudonym, she gained access to
a circle of distinguished mathematicians, including Carl
Gauss. Among her most important work was an analysis
of Ernst Chladni’s studies of vibrating surfaces, and her
proof that if x, y, and z are integers and if x 5 + y 5 = z 5 then
at least one of x, y, or z must be divisible by 5 (a result now
known as Germain’s theorem); this was an important early
step towards proving Fermat’s last theorem.

Get Off the Earth
A famous vanishment puzzle by Sam Loyd. The picture
is made from a rectangular background topped with a cir-
cular card, representing the world, that can be rotated.
Parts of a number of Chinese men are on each piece. With
the world orientated so that the large arrow on it points to

the N.E. point on the background, 13 Chinamen can be
counted. But when the earth is turned slightly, so that the
arrow points N.W., there are only 12 characters. Where
did the thirteenth Chinaman go? The cleverness of the
puzzle is that there are many bits of Chinamen—arms,
legs, bodies, heads, and swords—and each has tiny slivers
missing. When the earth is turned, these pieces get slightly
rearranged. In particular, each of the 12 Chinamen gains a
sliver of a Chinaman from his neighbor.

Gettier problem
A thought experiment in philosophy that throws into
question the long-held supposition that to know some-
thing is equivalent to holding a belief about something
that is both true and for which there is justification. Con-
sider a case in which a lecturer has two students in her class
called Mr. Havenot and Mr. Havegot. Mr. Havenot claims
to own a Ferrari, drives one around, and has papers that
state that the car is his. But in fact he does not actually own
the car. Mr. Havegot, on the other hand, who shows no
sign of Ferrari ownership, secretly has one of these rare
cars. On the basis of the evidence, the teacher concludes
that one of her students owns a Ferrari—and is correct in
this belief. However, there is something wrong. Despite
the combination of truth, justification, and belief, it seems
that there is no real knowledge. The first examples of such
problems were published in 1963 by the American
philosopher Edmund Gettier (1927–).

Giant’s Causeway
A natural structure that occurs on the coast in County
Antrim, Ireland; it is one of the few places in the world
where volcanic basalt has cooled in a columnar forma-
tion. The columns approximately form a hexagonal tes-
sellation (see tiling) and tend to break off to produce a
pavement with this pattern. The full length of the
columns can’t be seen, but it is estimated that they may
be 20 feet (about 6 meters) high before merging into the
underlying irregular basaltic mass. About 99% of the
columns are believed to be hexagonal and only one tri-
angular column is known. Though many of the hexa-
gons are fairly regular, some have a side twice as long as
their smallest side. Side lengths vary from 8 to 18 inches
(20 to 46 cm) and the pillars break up into sections 6 to
36 inches (15 to 90 cm) long, with a concavo-convex
junction rather than a plane junction. Other examples of
such formations occur at Kirkjubaejarklaustri, in Iceland,
and the Devil’s Postpile, in California.

Gilbreath’s conjecture
A strange hypothesis concerning prime numbers that was
first suggested in 1958 by the American mathematician
and amateur magician Norman L. Gilbreath following

Get Off the Earth An unusual variant of Loyd’s Get Off the
Earth puzzle called “The Disappearing Bicyclist.” From the collec-

tion of William Waite
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some doodlings on a napkin. Gilbreath started by writing
down the first few primes:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .

Under these he put their differences:

1, 2, 2, 4, 2, 4, 2, 4, 6, 2, . . .

Under these he put the unsigned difference of the differ-
ences:

1, 0, 2, 2, 2, 2, 2, 2, 4, . . .

And he continued this process of finding iterated differ-
ences:

1, 2, 0, 0, 0, 0, 0, 2, . . .

1, 2, 0, 0, 0, 0, 2, . . .

1, 2, 0, 0, 0, 2, . . .

1, 2, 0, 0, 2, . . .

1, 2, 0, 2, . . .

1, 2, 2, . . .

1, 0, . . .

1, . . .

Gilbreath’s conjecture is that, after the initial two rows,
the numbers in the first column are all one. No exception
has been found to date, despite searches out to several
hundred billion rows, and the conjecture is generally
assumed to be true. However, it may have nothing to do
with primes as such. The English mathematician Hallard
Croft has suggested the conjecture may apply to any
sequence that begins with 2 and is followed by odd num-
bers that increase at a “reasonable” rate and with gaps of
“reasonable” size. If this is the case, Gilbreath’s conjec-
ture may not be as mysterious as it first seems, though it
may be very difficult to prove.

glissette
If there are two fixed curves, and a curve S of fixed shape
and length that slides with its ends on the fixed curves,
then the locus of a point moving with S is called a glis-
sette. An example is the locus of the midpoint of a line
segment sliding with its ends on two perpendicular lines;
this locus is a circle.

gnomon magic square
A 3 × 3 array in which the elements in each 2 × 2 corner
have the same sum. See also magic square.

Giant’s causeway Hexagonal paving on the Giant’s Causeway. Martin Melaugh, University of Ulster
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Go
A two-player board game that originated in China in
about 2000 b.c. It is often compared and contrasted with
chess. Go is played on a board marked with 19 × 19 lines.
Round, lens-shaped pieces called stones are placed, one
per move, on the intersections of this grid, of which there
are 361. As in chess, the pieces are colored black and
white, but in Go black plays first. The board starts blank
and pieces once played are not thereafter moved except
to be taken off as prisoners. Pieces are captured singly or
en masse by being surrounded so that they are not con-
nected to any adjacent open intersection. The player with
highest score at the end of the game, or following resig-
nation or time expiry, wins. Go is considered to be a
deeply strategic game, unlike chess, which is largely tacti-
cal. There are 32,940 opening moves, after symmetry is
taken into account, 992 of which are deemed strong. Esti-
mates of the number of possible board configurations
vary but are typically on the order of 10174.

God

I’m still an atheist, thank God.
—Luis Buñuel (Spanish film director, 1900–1983)

Mathematicians, logicians, and scientists have long de-
bated the nature, existence, and dice-playing ability of a
Higher Power. The pre-Renaissance French philosopher
Jean Buridan (c. 1295–1358) used a version of the liar
paradox to “prove” the existence of God. He wrote these
two sentences:

God exists.

None of the sentences in this pair is true.

The only consistent way to have these two sentences be
either true or false is for “God exists” to be true. (How-
ever, there is nothing to say that such consistency is
necessary.) Blaise Pascal gave a more persuasive argu-
ment, not for the existence of God but for why we
should believe in that existence: “If I believe in God
and life after death and you do not, and if there is 
no God, we both lose when we die. However, if there 
is a God, you still lose and I gain everything.” Pierre
Laplace, on the other hand, replying to Napoleon
Bonaparte, who had asked why his celestial mechanics
made no mention of God, said: “Sir, I have no need of
this hypothesis.” The German mathematician Leopold
Kronecker thought that “God made the Integers, all the
rest is the work of man.” In The City of God, however,
Saint Augustine seems to imply that the integers were
independent of God. He wrote: “Six is a number perfect
in itself, and not because God created the world in six
days; rather the contrary is true. God created the world

in six days because this number is perfect, and it would
remain perfect, even if the work of the six days did not
exist.” Augustine’s statement can be taken to suggest
that six would be a perfect number not only if the uni-
verse didn’t exist, but even if God didn’t exist. As to
God’s mathematical specialty, Plato said, “God ever
geometrizes” while Charles Jacobi insisted that “God
ever arithmetizes.” James Jeans thought, “The Great
Architect of the Universe now begins to appear as a pure
mathematician,” and Einstein (“God does not play
dice”) was sure He wasn’t a probabilist.

Gödel, Kurt (1906–1978)
An Austrian-American mathematician and logician who,
in 1931, proved that within a formal system questions
exist that are neither provable nor disprovable on the
basis of the axioms that define the system. This is known
as Gödel’s undecidability theorem. He also showed that
in a sufficiently rich formal system in which decidability
of all questions is required, there will be contradictory
statements. This is called Gödel’s incompleteness theo-
rem. In establishing these theorems Gödel showed that

Gödel, Kurt
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there are problems that can’t be solved by any set of rules
or procedures; instead, for these problems one must
always extend the set of axioms. This disproved a com-
mon belief at the time that the different branches of
mathematics could be integrated and placed on a single
logical foundation. Gödel was a close friend of Albert
Einstein at Princeton and contributed to his general rela-
tivity theory and cosmology. The so-called Gödel universe
is a rotating model of the universe in which it is theoreti-
cally possible to travel into the past (see time travel).

Gödel’s incompleteness theorem
In a nutshell: All consistent axiomatic systems contain
undecidable propositions. What does this mean? An
axiomatic system consists of some undefined terms, a
number of axioms that refer to those terms and partially
describe their properties, and a rule or rules for deriving
new propositions from already existing propositions.
Axiomatic systems are powerful because they reduce
large bodies of math to a simple description. Also,
because they’re very abstract, they allow all, and only,
the results that follow from things having the formal
properties specified by the axioms to be derived. An
axiomatic system is consistent if, given the axioms and the
derivation rules, it doesn’t lead to any contradictions.
One of the first modern axiomatic systems was a formal-
ization of simple arithmetic (adding and multiplying
whole numbers) by Giuseppe Peano and now known as
Peano arithmetic. Kurt Gödel showed that every syntacti-
cally correct proposition in Peano arithmetic can be rep-
resented by a unique integer, called its Gödel number. The
trick is to replace each symbol in the proposition, includ-
ing numerals, by a different string of digits. If we represent
“1” by 01, “2” by 02, “+” by 10, and “=” by 11, then the
Gödel number of “1 + 1 = 2” is 0110011102. This al-
lowed Gödel to write down, unambiguously, proposi-
tions about propositions. In particular, he was able to
write down self-referential (see self-referential sentence)
propositions—ones that include their own Gödel num-
ber. Gödel was then able to prove that, either the system
of Peano arithmetic is inconsistent, or there are true
propositions that can’t be reached from the axioms by
applying the derivation rules. The system is thus incom-
plete, and the truth of those propositions is undecidable
(within that system). Such undecidable propositions are
known as Gödel propositions or Gödel sentences. Nobody
knows what the Gödel sentences for Peano arithmetic
are, though people have their suspicions about the
Goldbach conjecture (every even number is the sum of
two prime numbers).

The results of an axiomatic system pertain to more
than just Peano arithmetic, they apply to all kinds of

things that satisfy the axioms. There are an immense
number of other axiomatic systems, which either include
Peano numbers among their basic entities or can be con-
structed from them. It follows that these systems, too,
contain undecidable propositions, and are incomplete.

A common misconception is that Gödel’s theorem
imposes some profound limitation on knowledge, sci-
ence, and mathematics. In the case of science, this ig-
nores that Gödel’s theorem applies to deduction from
axioms, which is only one source of knowledge and not
even a very common mode of reasoning in science. More
generally, Gödel’s incompleteness result doesn’t touch
directly on the most important sense of completeness
and incompleteness, namely, descriptive completeness
and incompleteness—the sense in which an axiom system
describes a given field. In particular, the result represents
no threat to the notion of truth.

Goldbach conjecture
One of the oldest and easiest-to-understand hypotheses
in mathematics that remains unproven. In its original
form, now known as the weak Goldbach conjecture, it was
put forward by the Prussian amateur mathematician and
historian Christian Goldbach (1690–1764) in a letter
dated June 7, 1742, to Leonhard Euler. In this guise it
says that every whole number greater than five is the sum
of three prime numbers. Euler restated this, in an equiv-
alent form, as what is now called the strong Goldbach con-
jecture or, simply, the Goldbach conjecture: every even
number greater than two is the sum of two primes. 
Thus, 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7, . . . , 
100 = 53 + 47, . . . . In fact René Descartes knew about
the two-prime version of Goldbach’s conjecture before
either Goldbach or Euler did. So, is it misnamed? Paul
Erdös said, “It is better that the conjecture be named
after Goldbach because, mathematically speaking, Des-
cartes was infinitely rich and Goldbach was very poor.” In
any event, there is a much more important question,
namely, is the conjecture true? The general assumption is
that it is, but no one knows for sure. The most significant
step toward a proof came in 1966 when the Chinese
mathematician Chen Jing-Run showed that every suffi-
ciently large even integer is the sum of a prime and a
number that has at most two prime factors. Using power-
ful computers, the Goldbach conjecture has been checked
out to about 400 trillion. But there is no great optimism
among mathematicians that a final breakthrough is on
the horizon. Even a reward of $1 million dollars for a
proof offered by the publishing house Faber & Faber in
2000, to help publicize the novel Uncle Petros and Gold-
bach’s Conjecture by the Greek mathematician and author
Apostolos Doxiadis, went unclaimed.[85]
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golden ratio (phi, φ)
A remarkable number that, like pi and e, pops up all over
the place in mathematics but, in some ways, has a more
“human” connection, in that it seems to be linked to aes-
thetics. Its name, which is also given as the golden mean,
the golden section, the golden number, and the divine propor-
tion, reflects this sense of a harmonious or pleasing ideal.
The golden ratio is an irrational number of the type
known as an algebraic number (in contrast with π and e,
which are transcendental) and is represented by the
Greek letter φ (phi). It can be defined in various ways. For
example, it is the only number equal to its own recipro-
cal plus 1, that is, φ = (1/φ) + 1, so that φ2 = φ + 1. From
this comes the quadratic equation φ2 − φ − 1 = 0 of which
the golden ratio is the positive solution, (1 + "5#) / 2 ≈
1.6180339887 . . . . The golden ratio is also approximated
by the ratio of successive terms in the Fibonacci se-
quence; in fact, F(n + 1) / F(n) gets closer and closer to φ
as n tends to infinity. Because 1/(1 − φ) = φ, the contin-
ued fraction representation of φ is

φ = 1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/ . . .
= [1;1,1,1,1, . . .].

Two quantities are said to be in the golden ratio, if the
ratio of the larger one, a, to the smaller one, b, is the same
as the ratio of the smaller one to their difference, that is,
a/b = b/(a − b). The so-called golden rectangle is one whose
sides a and b stand in the golden ratio. It is famously said
to have great aesthetic appeal and is closely approxi-
mated by the dimensions of the front of the Parthenon in
Rome. Leonardo da Vinci’s masterpiece the Mona Lisa is
said to have a face that is framed by a golden rectangle;
what is certain is that Leonardo was a close personal
friend of Luca Pacioli, who published a three-volume

treatise on the golden ratio, Divina Proportione, in 1509.
The Swiss-French architect and painter Le Corbusier
designed an entire proportional system called the “Mod-
ulor,” that was based on the golden ratio. The Modulor
was supposed to provide a standardized system that
would automatically confer harmonious proportions to
everything, from door handles to high-rise buildings.
Another artist who deliberately used the golden ratio is
the surrealist Salvador Dali. The ratio of the dimensions
of Dali’s Sacrament of the Last Supper is equal to the golden
ratio. Dali also incorporated in the painting a huge
dodecahedron (a twelve-faced Platonic solid in which
each side is a pentagon) engulfing the supper table. The
dodecahedron, which according to Plato is the solid
“which the god used for embroidering the constellations
on the whole heaven,” is intimately related to the golden
ratio—both the surface area and the volume of a dodeca-
hedron of unit edge length are simple functions of the
golden ratio. In fact, φ turns up frequently in figures 
that have pentagonal symmetry. For instance the ratio 
of a regular pentagon’s side and diagonal is equal to 
φ, and the vertices of a regular icosahedron are located 
on three orthogonal golden rectangles. The golden 
ratio is also related to Penrose tiling and to the plastic
number.[205]

golden ratio A golden rectangle and a logarithmic spiral
emerge from a whirling pattern of squares built up from two
small squares of equal size at the spiral’s center.

golden ratio The corners of an icosahedron meet the 
corners of three orthogonal golden rectangles.
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Golomb, Solomon W. (1932–)
A mathematician and electrical engineer at the Univer-
sity of Southern California who is best known for his
seminal studies of polyominos. His article “Checker
Boards and Polyominos,” published in the American
Mathematical Monthly in 1954 when Golomb was a 22-
year-old graduate student at Harvard, defined a poly-
omino as a simply connected set of squares (i.e., a set of
squares joined along their edges). Golomb also originated
the idea of graceful graphs.[137]

golygon
A series of straight-line segments that have lengths of
one, two, three, and so on, up to some finite number of
units, with the property that every segment connects at a
right angle to the segment that is one unit larger, except
the longest segment, which meets the shortest segment at
a right angle. The name “golygon” was invented by Lee
Sallows. Golygons have inspired some interesting puz-
zles as well as some intriguing research problems.

googol
A named coined in 1938 by Milton Sirotta, the 9-year-
old nephew of the mathematician Edward Kasner, when
the child was asked by his uncle to come up with a name
for a very large number; at the same time, googolplex was
suggested for a still larger number. Kasner defined these
numbers as follows:

1 googol = 10100 (i.e., 1 followed by 100 zeros);
1 googolplex = 10googol = 1010100

(i.e., 1 followed by a 
googol number of zeros)

A googol is very roughly the number of years thought to
be needed for all the black holes in the universe to evap-
orate by a process known as Hawking radiation. It is
much larger than the number of protons and neutrons in
the known universe (about 1080), but much smaller than
the number of protons and neutrons needed to pack
every cubic centimeter of the known universe (about
10128). The googolplex is the largest number with a proper
name of which many people have heard. It is dwarfed,
however, by such esoterica as Graham’s number.

Gordian knot
The earliest reference to a string puzzle. In Greek
mythology, a Phrygian peasant called Gordius, the father
of Minos (see maze), became king because he was first to
arrive in town after an oracle commanded the Phrygians
to select as ruler the first person to drive into the public
square in a wagon. In gratitude, Gordius dedicated his
wagon to Zeus and placed it in the temple grove, tying
the wagon pole to the yoke with a rope of bark. The knot
was so intricately entwined that no one could undo it. A

saying developed that whoever succeeded in untying the
knot would become ruler of all Asia. Many tried, but all
failed. According to legend, even Alexander the Great
was unable to untie the Gordian knot, so he drew his
sword and cut it through with a stroke. The expression
“to cut the Gordian knot” is used to refer to a situation in
which a difficult problem is solved by a quick and deci-
sive action.

graceful graph
A graph of points and connecting lines that can be num-
bered in a certain way. Say the graph has p points and e
lines (“e” for edges) connecting them. Each of the points
is assigned an integer; the lowest integer (by convention)
is taken to be 0, and no two integers may be alike. Each
of the lines is labeled with the difference between the two
integers of the points that it connects. Then, if the num-
bers corresponding with the lines run from 0 through e,
the graph is said to be graceful. Graceful graphs were orig-
inally defined and developed by Solomon Golomb.

gradient
A vector of partial derivatives of a function that oper-
ates on vectors. Intuitively, the gradient represents the
slope of a high-dimensional surface.

Graham, Ronald L. (1936–)
An American mathematician and leading combinatorialist
after whom Graham’s number is named. Graham is also
one of the country’s best jugglers and former president of
the International Juggler’s Association. In his youth, he and
two friends were professional trampolinists who performed
with a circus as the Bouncing Baers. His office ceiling is
covered with a large net that he can lower and attach to his
waist so that when he practices juggling with six or seven
balls, any that are dropped will roll back to him. Graham is
a professor in the department of computer science and
engineering at the University of California at San Diego.

Graham’s number
A stupendously large number that found its way in to the
Guinness Book of Records as the biggest number ever ob-
tained as part of a mathematical proof; it is named after 
its discoverer, Ronald Graham. Graham’s number is the
upper bound solution to a very exotic problem in Ramsey
theory, namely: What is the smallest dimension n of a
hypercube such that if the lines joining all pairs of corners
are two-colored, a planar complete graph K4 of one color
will be forced? This is exactly equivalent to a problem that
can be stated in plain language: Take any number of peo-
ple, list every possible committee that can be formed from
them, and consider every possible pair of committees.
How many people must be in the original group so that no
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matter how the assignments are made, there will be four
committees in which all the pairs fall in the same group,
and all the people belong to an even number of commit-
tees. Graham’s number is the greatest value that the answer
could take. It is so large that it can only be written using
special big-number notation, such as Knuth’s up-arrow
notation. Even then, it must be built up in stages. First,
construct the number G1 = 3↑↑ . . . ↑↑3, where there are
3↑↑↑↑3 up-arrows. This, in itself, is a number far, far
beyond anyone’s ability to even remotely comprehend.
Next, construct G2 = 3↑↑ . . . ↑↑3, where there are G1 up-
arrows; then construct G3 = 3↑↑ . . . ↑↑3, where there are
G2 up-arrows; then continue this pattern until the number
G62 has been made. Graham’s number G = 3↑↑ . . . ↑↑3,
where there are G62 up-arrows. While the unthinkably large
upper boundary to the problem described earlier is given
by Graham’s number, nobody, including Graham himself,
believes the solution is nearly so large. In fact, it is thought
that the actual answer is probably 6![115]

grandfather paradox
One of the most powerful and commonly used arguments
against time travel. It points out that if you were able to
travel into the past you could (if you were so inclined) kill
your grandfather when he was very young and thus render
your own birth impossible. A simpler version is that you
could kill a younger version of yourself so that you would
not be alive in the future to travel back in time. The grand-
father paradox shows how one form of time travel could
violate causality by eliminating the cause of a phenome-
non that has already taken place in the present.

The most bizarre adaptation of the grandfather para-
dox is found in Robert Heinlein’s classic short story “All
You Zombies.” A baby girl is mysteriously left at an
orphanage in Cleveland in 1945. “Jane” grows up lonely
and dejected, not knowing who her parents are, until one
day in 1963 she is strangely attracted to a drifter. She falls
in love with him. But just when things are finally looking
up for Jane, a series of disasters strike. First, she becomes
pregnant by the drifter, who then disappears. Second,
during the complicated delivery, doctors find that Jane
has both sets of sex organs, and to save her life, they are
forced to surgically convert “her” to a “him.” Finally, a
mysterious stranger kidnaps her baby from the delivery
room. Reeling from these disasters, rejected by society,
scorned by fate, “he” becomes a drunkard and drifter.
Not only has Jane lost her parents and her lover, but he
has lost his only child as well. Years later, in 1970, he
stumbles into a lonely bar, called Pop’s Place, and spills
out his pathetic story to an elderly bartender. The bar-
tender offers the drifter the chance to avenge the stranger
who left her pregnant and abandoned, on the condition
that he (Jane) join the “time travelers corps.” Both of

them enter a time machine, and the bartender drops 
off the drifter in 1963. The drifter is strangely attracted to
a young orphan woman, who subsequently becomes
pregnant. The bartender then goes forward nine months,
kidnaps the baby girl from the hospital, and drops off the
baby in an orphanage back in 1945. Then the bartender
drops off the thoroughly confused drifter in 1985, to
enlist in the time travelers corps. The drifter eventually
gets his life together, becomes a respected and elderly
member of the time travelers corps, and then disguises
himself as a bartender and has his most difficult mission:
a date with destiny, meeting a certain drifter at Pop’s
Place in 1970. The question is: who is Jane’s mother,
father, grandfather, grandmother, son, daughter, grand-
daughter, and grandson? The girl, the drifter, and the bar-
tender, of course, are all the same person. As an exercise
(on the road to insanity) try drawing Jane’s family tree.
You will find that not only is she her own mother and
father, she is an entire family tree unto herself!

graph

I’ll do algebra, I’ll do trig, and I’ll even do statistics,
but graphing is where I draw the line!

—Anonymous

(1) In common usage, a plot of x values (the domain)
against y values (the codomain) for a given function, y =
f(x). Such a graph is also known as a function graph or the
graph of a function. (2) In strict mathematical usage, any
set of dots, known as nodes or vertices, in which at least
some pairs are joined by lines known as edges or arcs.
What follows applies only to this second definition.

Often the lines on a graph are used to represent rela-
tionships between objects (represented by dots). Depend-
ing on the application, edges may or may not have a
direction, as indicated by an arrow (see directed graph);
edges joining a node to itself may or may not be allowed,
and nodes and/or edges may be assigned weights. A path
is a series of nodes such that each node is adjacent to
both the preceding and succeeding node. A path is con-
sidered simple if none of the nodes in the path is repeated.
The length of a path is the number of edges that the path
uses, counting multiple edges multiple times. If it’s possi-
ble to establish a path from any node to any other node
of a graph, the graph is said to be a connected graph. A
circuit or cycle is a path that begins and ends with the same
node and has a length of at least two. A tree is a connected
acyclic graph, that is, a graph without any circuits. A
complete graph is one in which every node is adjacent to
every other node. An Euler path in a graph is a path that
uses each edge precisely once. If such a path exists, the
graph is said to be traversable. An Euler circuit is a path
that traverses each edge precisely once. A Hamilton path
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in a graph is a path that visits each node once and only
once; a Hamilton circuit is a circuit that visits each node
once and only once. Well known problems whose solu-
tion involves graphs and graph theory include the four-
color problem and the traveling salesman problem.

graph theory
The study of graphs, either for their own sake, or as mod-
els of such diverse things as groups (in pure mathematics)
or computer networks.

great circle
A circle that goes all the way around a sphere and is cen-
tered at the center of the sphere. The shortest route
between two points on a sphere, such as Earth, is along
the great circle that connects these points. A great circle
is a geodesic.

Great Monad
Also known as T’ai-Chi, an important and ubiquitous
symbol in traditional Chinese philosophy and cosmol-
ogy. It represents the underlying harmony of the universe
when its opposites or dualities—male and female (yang
and yin), hard and soft, sun and moon, and so forth—are
in balance. It occurs everywhere in Chinese art: in books,
on walls, porcelain, tablets, and stitched into brocade.

greatest common divisor
The largest integer that divides each of a sequence of inte-
gers exactly. Also called the greatest common factor.

greatest lower bound
The largest real number that is smaller than each of the
numbers in a set of real numbers.

Green, George (1793–1841)
An English mathematician who published work in the
fields of hydrodynamics, electricity, and magnetism, but
is best known for his theorem (see Green’s theorem),
which is the basis of potential theory. Green took over a
bakery and adjoining windmill after the death of his
father, but studied mathematics in his spare time. In
1828, he wrote his most important paper, “An Essay on
the Application of Mathematical Analysis to the Theo-
ries of Electricity and Magnetism,” which, though gener-
ally overlooked at the time, is now regarded as the
beginning of mathematical physics in England.

Green’s theorem
A connection between path integrals over a well-connected
region in the plane and the area of the region bounded in
the plane. Green’s theorem is a form of the fundamental the-
orem of calculus, and is used today in almost all computer
codes that solve partial differential equations.

Grelling’s paradox
An equivalent, from the world of words and grammar, of
Russell’s paradox. Grelling’s paradox involves dividing
all adjectives into two sets: self-applicable and not self-
applicable. Words like “English,” “written,” and “short”
are self-applicable, while “Russian,” “spoken,” and “long”
are not self-applicable. Now, define the adjective heterolog-
ical to mean “not self-applicable.” To which set of adjec-
tives does “heterological” belong? This strange quandry
was devised by the logician and philosopher Kurt Grelling
(1886–1941/2), who was persecuted by the Nazis; it is not
certain whether he died with his wife in the Auschwitz
concentration camp in 1942, or whether he was killed in
1941 in the Pyrenees while trying to escape into Spain.

gross
A group of 144 items. The word comes from the Latin
grossus, for “thick” or “large,” via the Old French gross
douzaine or “large dozen” (12 dozen), though this group-
ing may have started out in Germany. “Grocer” has the
same origins as “gross” because a grocer is someone who
deals in large quantities of food. A great gross, or a dozen
gross, is 1728. See also twelve.

group

Wherever groups disclosed themselves, or could be
introduced, simplicity crystallized out of compara-
tive chaos.

—Eric Temple Bell

Great Monad
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An abstract and crucially important way of representing
symmetry and one of the most fundamental concepts in
modern algebra. Groups were brought into mathematics
in the early nineteenth century by the radical young
French student Evariste Galois as a tool to help solve
one of the outstanding problems of his day: to find a
formula for solving polynomial equations of order five—
quintics—and higher. Galois showed, in notes scribbled
down the night before he died in a duel, that no such
formula exists. The reason for this is that the possible
symmetries, or permutations, of the roots of fifth-degree
polynomial equations are more complex than are the
symmetries that can be represented by arithmetical for-
mulas. This fact emerged from the development of the
idea of a permutation group by Galois and, independently
at about the same time, by Niels Abel. Half a century
later, another Norwegian, Sophus Lie, showed how
important groups are to the whole of mathematics. The
theory of what became known as Lie groups links the
discrete structure of permutations with the continuous
variation of differential equations. Not surprisingly,
because group theory forms a common underpinning to
algebra and to geometric features such as rotation, reflec-
tion, and symmetry, it crops up routinely in modern
physics, from the classification of elementary particles to
crystallography.

A group is a set whose elements are defined by a single
operation. The group is called additive if the symbol for
the operation is “+” and is called multiplicative if the sym-
bol is “!” for multiplication. But any other symbol can be
substituted for these. There is always a unique element
(1, for multiplicative, and 0, for additive, groups) that
leaves elements unchanged under the defined operation,
like a + 0 = a. Also, for every element a there exists a
unique inverse b such that, for example, in the case of the
additive symbol, a + b = 0 and b + a = 0. Most often, how-
ever, the inverse is denoted as a−1. Lastly, the group oper-
ation must be associative as in a ! (b ! c) = (a ! b) ! c. A
group is commutative or Abelian if its operation is sym-
metric, as in a + b = b + a.

Groups come in two types: finite and infinite. The sym-
metry group of the roots of a polynomial equation is a

finite group, because there is only a limited number of
permutations possible among the roots of a given poly-
nomial. In contrast, the Lie groups that represent symme-
tries of solutions of differential equations are infinite
because they represent continuous transformations, and
continuity carries the potential of an infinite number of
changes. Finite groups can be built up from combinations
of smaller groups by a process analogous to multiplica-
tion. In the same way that a whole number can be written
as a product of prime numbers, a finite group can be
expressed as a combination of certain factors known as
simple groups. Most simple groups belong to one of three
families: the cyclic groups, the alternating groups, or the
groups of Lie type. Cyclic groups consist of cyclic permuta-
tions of a prime number of objects. Alternating groups
consist of even permutations—those formed by inter-
changing the positions of two objects an even number of
times. Sixteen subfamilies make up the simple groups of
Lie type, each associated with a family of infinite Lie
groups. (Confusingly, a Lie group is not a group of Lie
type, since the former is infinite and the latter is finite!)
Altogether, there are 18 specific families of finite simple
groups. There are also 26 simple groups, known as sporadic
groups, that are highly irregular and fall outside these fam-
ilies. Five sporadic groups were found in the nineteenth
century by Emile Mathieu. Then came a hiatus until the
1960s, when suddenly a rush of new sporadics came to
light. The most remarkable of these is the so-called mon-
ster group, which appears to be intimately related to the
structure of the universe at the subatomic level.

Grundy’s game
See Nim.

Guy, Richard Kenneth (1916–)
A British-born mathematician who is professor emeritus
of mathematics at the University of Calgary, Canada,
and an expert in combinatorics and in number theory.
Guy is the author of more than 250 papers and 10 books,
including (as a coauthor) the game theory classic Win-
ning Ways. He has been an editor of the “Problems” sec-
tion of the American Mathematical Monthly since 1971.



Haberdasher’s puzzle
The greatest mathematical discovery of Henry Dudeney,
it was first published in the Weekly Dispatch in 1902 and
then as problem no. 26 in his The Canterbury Puzzles
(1907).[87] One must decide how to cut an equilateral tri-
angle into four pieces that can be rearranged to make a
square. The accompanying diagram shows the solution,
which Dudeney describes as follows:

Bisect AB in D and BC in E; produce the line AE to
F making EF equal to EB; bisect AF in G and
describe arc AHF; produce EB to H, and EH is the
length of the side of the required square; from E
with distance EH, describe the arc HJ, and make JK
equal to BE; now from the points D and K drop per-
pendiculars on EJ at L and M.

A remarkable feature of the solution is that each of the
pieces can be hinged at one vertex, forming a chain that
can be folded into the square or the original triangle. Two
of the hinges bisect sides of the triangle, while the third
hinge and the corner of the large piece on the base cut

the base in the approximate ratio 0.982:2:1.018. Dude-
ney showed just such a model of the solution, made of
polished mahogany with brass hinges, at a meeting of the
Royal Society on May 17, 1905.

Hadwiger problem
In d dimensions, define L(d ) to be the largest integer n for
which a cube cannot be cut into n cubes (not necessarily
different). The Hadwiger problem is to find L(d ). Defi-
nite solutions are only known in two and three dimen-
sions: L(2) = 5 and L(3) = 47. However, it is known that
L(4) ≤ 853 and L(5) ≤ 1,890, and it is considered likely
that L(d ) is odd for all values of d. See also dissection.

hailstone sequence
A sequence of numbers produced by the rules of the Col-
latz problem; in other words, a sequence formed in the
following way: Start with any positive integer n. (1) If n is
even, divide it by 2; if n is odd, multiply it by 3 and add
1. (2) If the result is not 1, repeat step (1) with the new
number. For n = 5, this produces the sequence 5, 16, 8, 4,
2, 1, 4, 2, 1, . . . . For n = 11, the resulting sequence is 11,
34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, . . . .
The name “hailstone” comes from the fact that the num-
bers in these sequences rise and fall like hailstones in a
cloud before finally falling to Earth. It seems from exper-
iment that such a sequence will always eventually end in
the repeating cycle 4, 2, 1, 4, 2, 1, . . . , but some values
for n generate many values before the repeating cycle
begins. An unsolved mystery is whether all such
sequences eventually hit 1 (and then 4, 2, 1, 4, 2, 1, . . .)
or whether there are some sequences that never settle
down to a repeating cycle.

hairy ball theorem
If a sphere is covered with hair or fur, like a tennis ball, the
hair cannot be brushed so that it lies flat at every point. In
mathematical terms: any continuous tangent vector field
on the sphere must have a point where the vector is zero.
This theorem also means that somewhere on Earth’s sur-
face there has to be a point where the horizontal wind
speed is zero, even if it’s windy everywhere else. Does the
same apply to a torus? Is there a hairy donut theorem?
No! The number of “problem points,” where the hair
would stick up on a surface, is related to a quantity called
the Euler characteristic of that surface. Basically, every

H

142

Haberdasher’s puzzle The puzzle and its solution as 
illustrated by Henry Dudeney.
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point on a surface has an index that describes how many
times the vector field rotates in a neighborhood of the
problem point. The sum of the indices of all the vector
fields is the Euler characteristic. Since the torus has Euler
number 0, it is possible to have a covering of hair—a vec-
tor field—on it that lies flat at every point.

half-line
A ray.

half-plane
The part of a plane that lies on one side of a given line.

halting problem
Given a program and inputs for it, decide whether it will
run forever or will eventually stop. This is not the same
thing as actually running a given program and seeing
what happens. The halting problem asks whether there is
any general prescription for deciding how long to run an
arbitrary program so that its halting or non-halting will
be revealed. In a celebrated 1936 paper,[337] Alan Turing
proved that the halting problem is undecidable: there’s
no way to construct an algorithm that is always able to
determine whether another algorithm halts or not. From
this it follows that there can’t be an algorithm that de-
cides whether a given statement about natural numbers
is true or not. The undecidability of the halting problem
provides an alternative proof of Gödel’s incompleteness
theorem. This is because if there were a complete and
consistent axiomatization of all true statements about
natural numbers, then we would be able to create a set of
rules that decides whether such a statement is true or not.
Another amazing consequence of the undecidability of
the halting problem is Rice’s theorem, which states that the
truth of any nontrivial statement about the function that
is defined by an algorithm is undecidable. So, for exam-
ple, the decision problem “will this algorithm halt for the
empty string” is already undecidable. Note that this the-
orem holds for the function defined by the algorithm and not
the algorithm itself. It is, for example, quite possible to
decide if an algorithm will halt within 100 steps, but this
isn’t a statement about the function that is defined by the
algorithm. Many problems can be shown to be undecid-
able by reducing them to the halting problem. However,
Gregory Chaitin has given an undecidable problem in
algorithmic information theory that doesn’t depend on
the halting problem.

While Turing’s proof shows that there can be no gen-
eral method or algorithm to determine whether algo-
rithms halt, individual instances of that problem may very
well be susceptible to attack. Given a specific algorithm,
one can often show that it must halt, and in fact computer
scientists often do just that as part of a correctness proof.

But every such proof requires new arguments: there is no
mechanical, general way to determine whether algorithms
halt. And there’s another caveat. The undecidability of
the halting problem relies on the fact that computers are
assumed to have a memory of potentially infinite size. If
the memory and external storage of a machine is limited,
as it is for any real computer, then the halting problem for
programs running on that machine can be solved with a
general algorithm (albeit an extremely inefficient one).

ham sandwich theorem
Given a sandwich in which bread, ham, and cheese (three
finite volumes) are mixed up, in any way at all, there is
always a flat slice of a knife (a plane) that bisects each of
the ham, bread, and cheese. In other words, however
messed up the sandwich—even if it’s been in a blender—
you can always slice through it in such a way that the two
halves have exactly equal amounts, by volume, of the
three ingredients. This theorem generalizes to higher-
dimensional ham sandwiches, when it essentially becomes
the Borsuk-Ulam theorem: in n-dimensional space in
which there are n globs of positive volume, there is always
a hyperplane that cuts all the globs exactly in half.

Hamilton, William Rowan (1805–1865)
An Irish mathematician who, among other things, in-
vented quaternions and a new theory of dynamics. Hav-
ing excelled in Greek and mathematical physics at Trinity
College, Cambridge, Hamilton was appointed Astron-
omer Royal of Ireland; in this position he served from
1827 to his death and, during all that time, lived in Dun-
sink Observatory, Dunsink Lane, to the northwest of
Dublin. However, he quickly lost interest in staying up at
nights to make observations—he hired three of his sisters
to help run the place—and preferred instead to write
poetry (badly). He was friends with Samuel Coleridge,
who introduced him to the philosophy of Kant, which
had a great influence on him, and with William Words-
worth, who advised him against writing any more poems.

Hamilton did early work on caustic curves and was led
from this to his discovery of the law of least action, which
enabled many physical problems to be expressed more ele-
gantly. One of his greatest triumphs was his treatment of
complex numbers as pairs of real numbers, an approach
that finally exorcised long-standing suspicions about the
reality of imaginary numbers, and helped clear the way
for other algebras. From this he was led to consider
ordered quartets of numbers, which he called quaternions.
The idea for quaternions came to Hamilton suddenly on
October 16, 1843, while he was standing on Brougham
(“Broom”) Bridge, where Broombridge Street crosses the
Royal Canal, Dublin. A commemorative plaque under the
bridge, on the towpath, was unveiled by the Taoiseach
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(head of the Irish parliament), Eamon De Valera, on No-
vember 13, 1958. Of his invention, Hamilton wrote:

The quaternion was born, as a curious offspring of a
quaternion of parents, say of geometry, algebra,
metaphysics, and poetry. . . . I have never been able
to give a clearer statement of their nature and their
aim than I have done in two lines of a sonnet
addressed to Sir John Herschel:

“And how the One of Time, of Space the Three
Might in the Chain of Symbols girdled be.”

Hamilton’s interest in complex numbers was stimulated
by his friend and compatriot John Graves, who pointed
Hamilton in the direction of John Warren’s A Treatise on
the Geometrical Representation of the Square Root of Negative
Quantities. This book explained the concept of the com-
plex plane, which Hamilton turned from geometry into
algebra. One of Hamilton’s last inventions was a curios-
ity called the icosian calculus, which was another outcome
of his friendship with Graves. After a visit to the latter’s
house, Hamilton wrote: “Conceive me shut up and rev-
elling for a fortnight in John Graves’ Paradise of Books!
of which he has really an astonishingly extensive collec-
tion, especially in the curious and mathematical kinds.
Such new works from the Continent he has picked up!
and such rare old ones too!” Graves posed some puzzles
to Hamilton, and either Graves or his books got Hamil-
ton to thinking about regular polyhedra. When Hamil-
ton returned to Dublin he thought about the symmetry
group of the icosahedron, and used it to invent an alge-
bra he called the “icosians” and also a game called the
Icosian game. The only complete example of this game,
inscribed to Graves, is now in the keeping of the Royal
Irish Academy, of which Hamilton was the president
from 1837 to 1847. (In early 1996, a second example of
the Icosian game came to light but only included the
board.)

In some ways, Hamilton was too far ahead of his
time. The operator now referred to as the Hamiltonian
and the so-called Hamilton-Jacobi equation that relates
waves and particles only became important when quan-
tum mechanics came along, and Felix Klein introduced
Wernher Schrödinger, the father of wave mechanics, to
Hamilton’s work.

Hamilton’s personal life was not always happy. He fell
deeply in love with a woman named Catherine Disney,
who was forced by her parents to marry a wealthy man 15
years older than her. Hamilton remained hopelessly in
love with her the rest of his life, though he eventually
married someone else. He became an alcoholic, then
foreswore drink, then relapsed. Many years after their
early romance, Catherine began a secret correspondence
with Hamilton. Her husband became suspicious, and she

attempted suicide by taking laudanum. Five years later,
she became seriously ill. Hamilton visited her and gave
her a copy of his Lectures on Quaternions. They kissed at
last, and she died two weeks later. He carried her picture
with him ever afterward and talked about her to anyone
who would listen.[149]

Hamilton circuit
A Hamilton path that starts and ends at the same vertex.
See also traveling salesman problem.

Hamilton path
Named after William Hamilton, a path that traverses
every vertex of a connected graph once and only once.
The problem of the knight’s tour is equivalent to finding
a Hamilton path (or, in the case of a reentrant tour, a
Hamilton circuit) that corresponds to the legal moves of
the knight. Compare with Euler path.

Hankel matrix
A matrix in which all the elements are the same along
any diagonal that slopes from northeast to southwest.

happy number
If you iterate the process of summing the squares of the
decimal digits of a number and if this process terminates
in 1, then the original number is called a happy number.
For example 7 → (72) 49 → (42

+ 92) 97 → (92
+ 72) 130

→ (12
+ 32) 10 → 1. See also amicable number.

Hardy, Godfrey Harold (1877–1947)
One of the most prominent English mathematicians of
the twentieth century; his legendary collaboration with
John Littlewood lasted 35 years and produced nearly 100
papers. Hardy was a precocious child, whose tricks in-
cluded factorizing hymn numbers during sermons. In
1919, he became Savilian Professor of Geometry at
Oxford but returned to Cambridge in 1931 as professor
of pure mathematics. His work was mainly in analysis
and number theory.

Hardy had only one other passion in his life—the game
of cricket. His daily routine would begin with reading The
Times and studying the cricket scores over breakfast. Then
he would do mathematical research from 9 o’clock till 1
o’clock. After a light lunch, he would walk down to the
university cricket ground to watch a game. In the late
afternoon he would walk slowly back to his rooms at the
college, and take dinner followed by a glass of wine.
Hardy was known for his eccentricities. He couldn’t
stand having his photo taken and only five snapshots of
him are known to exist. He also hated mirrors and his
first action on entering any hotel room was to cover any
mirror with a towel.
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Hardy’s book A Mathematician’s Apology (1940)[151] is
one of the most vivid descriptions of how a mathemati-
cian thinks and the pleasure of mathematics. But the
book is more, as C. P. Snow writes:

A Mathematician’s Apology is . . . a book of haunting
sadness. Yes, it is witty and sharp with intellectual
high spirits: yes, the crystalline clarity and candor are
still there: yes, it is the testament of a creative artist.
But it is also, in an understated stoical fashion, a pas-
sionate lament for creative powers that used to be
and that will never come again. I know nothing like
it in the language: partly because most people with
the literary gift to express such a lament don’t come
to feel it: it is very rare for a writer to realise, with the
finality of truth, that he is absolutely finished.

See also Ramanujan.

harmonic analysis
The method of expressing periodic functions as sums of
sines and cosines.

harmonic division
The division of a line segment by two points such that it
is divided externally and internally in the same ratio.

harmonic mean
The harmonic mean of two numbers a and b is 2ab/(a + b).

harmonic sequence
The sequence: 1, 1⁄2, 1⁄3, 1⁄4, 1⁄5 . . . . Added together, these
become the terms of the harmonic series: 1 + 1⁄2 + 1⁄3 + 1⁄4 +
1⁄5 + . . . . This series diverges (has no finite sum), though
very slowly—a result first proved by the French philoso-
pher and theologian, Nichole d’ Oresme (c. 1325–1382).
In fact, it still diverges if you take away every other term,
and even if you take away nine out of every ten terms.
However, if you take the sum of reciprocals of all natural
numbers that do not contain the number nine (when
written in decimal expansion) the series converges! To
show this, group the terms based on the number of digits
in their denominator. There are eight terms in (1⁄1 + . . . +
1⁄8), each of which is no larger than 1. Consider the next
group (1⁄10 + . . . + 1⁄88). The number of terms is at most the
number of ways to choose two ordered digits out of the
digits 0 . . . 8, and each such term is clearly no larger than
1⁄10. So this group’s sum is no larger than 92/10. Similarly,
the sum of the terms in (1⁄100 + . . . + 1⁄999) is at most
93/102, etc. So the entire sum is no larger than

9 × 1 + 9 × (9⁄10) + 9 × (92/102) + . . . + 9 × (9n/10n) + . . .

This is a geometric series that converges. Thus by the
comparison test, the original sum (which is smaller term-
by-term) must converge.

Harshad number
A number that is divisible by the sum of its own digits;
also known as a Niven number. For example, 1,729 is a
Harshad number because 1 + 7 + 2 + 9 = 19 and 1,729 =
19 × 91. A Harshad amicable pair is an amicable pair (m, n)
such that both m and n are Harshad numbers (see amica-
ble numbers). For example, 2,620 and 2,924 are a Har-
shad amicable pair because 2,620 is divisible by 2 + 6 +

2 + 0 = 10 and 2,924 is divisible by 2 + 9 + 2 + 4 = 17
(2,924/17 = 172). There are 192 Harshad amicable pairs
in the first 5,000 amicable pairs.

hat problem
A team of three contestants, Alice, Bob, and Cedric,
enter a room and a hat is placed on each one’s head so
that he or she can’t see it. The color of each hat is based
on a coin toss—blue (B) for heads, red (R) for tails. After
all the contestants enter the room, they look at the colors
of one anothers’ hats and, based on this information,
they guess the color of their own hat. Each can guess red
or blue, or, if she can’t make up her mind, she can pass.
No communication is allowed during the competition,
but the players are allowed to agree on a strategy before
play begins. The team wins if at least one of them guesses
correctly, and none of them guesses incorrectly. What is
the team’s best strategy? At first sight, it may seem as if
no effective strategy is possible beyond each contestant
guessing his or her own hat color. In fact, this is the very
worst approach since, to succeed, it requires that every-
one guess correctly and the probability of this is only 
1⁄2 × 1⁄2 × 1⁄2 = 1⁄8. A far better plan is for the contestants to
agree that two of them will pass while the third takes a
stab at the color of his own hat. Then the odds improve
to one in two. Beyond this it’s hard to see any way that
the probability of success could be increased. Yet there is
an even better strategy. The key is to realize that there are
only two cases (RRR and BBB) where everyone’s hat is
the same color but six cases where two hats are the same
color and the other hat is a different color (RRB, RBR,
BRR, BBR, BRB, and RBB). This suggests the following
strategy for members of the team: if you see two hats of
opposite colors, pass. If you see two hats of one color, guess that
your hat is the other color. If everyone’s hat is the same
color, all players on the team will guess wrong and the
team will lose. But the chance of this happening is only
2⁄8 (= 1⁄4). In every other possible case, the odd person out
will guess correctly and their teammates will pass, so the
team will win. This strategy wins 6⁄8 (= 3⁄4) of the time, and
can’t be improved upon. Since half of each player’s
guesses will be wrong, it’s impossible to do better than a
strategy in which each player in turn guesses correctly
alone three times out of four, and the fourth time all
guess wrong.
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What if there are more players in the team? Say the
number of players is n. By the reasoning described previ-
ously, it’s clear that the team can’t hope to win more than
n/(n + 1) of the time. Yet it isn’t obvious that it can do
this well. Having more people, it seems, might make it
harder for them to synchronize their wrong guesses.
However, it turns out that, if the number of people in the
team is one less than a power of 2, this best-possible value
can be achieved. For example, with a team of 7, the team
can win 7⁄8 of the time, and with a team of 15, they can
win 15⁄16 of the time. The strategy involved is complicated
but is closely linked to Hamming codes (see coding the-
ory), which are a method of encoding and transmitting
information so that even if a small number of errors
occur during transmission, the original information can
be entirely recovered. For teams of other sizes, such as 9,
10, or 13, mathematicians have yet to find an optimal
strategy or establish what proportion of the time the
team can be expected to win.

Hausdorff, Felix (1868–1942)
A German mathematician who is considered to be one of
the founders of modern topology and who also did sig-
nificant work in set theory and functional analysis.
Among several concepts named after him is the Haus-
dorff dimension, which gives a way of assigning a frac-
tional dimension to a curve or shape. Hausdorff also
published philosophical and literary works under the
pseudonym “Paul Mongré.” He studied at Leipzig and
taught mathematics there until 1910, when he became
professor of mathematics at Bonn. When the Nazis came
to power, Hausdorff, a Jew, felt that as a respected uni-
versity professor he would be safe from persecution.
However, his abstract mathematics was denounced as
useless and “un-German” and he lost his position in
1935. He sent his daughter to Britain but stayed with his
wife in Germany. In 1942, when he could no longer
avoid being sent to a concentration camp, he committed
suicide together with his wife and sister-in-law.

Hausdorff dimension
A way to accurately measure the dimension of compli-
cated sets such as fractals. The Hausdorff dimension,
named after Felix Hausdorff, coincides with the more
familiar notion of dimension in the case of well-behaved
sets. For example, a straight line or an ordinary curve,
such as a circle, has a Hausdorff dimension of 1; any
countable set has a Hausdorff dimension of 0; and an 
n-dimensional Euclidean space has a Hausdorff dimen-
sion of n. But a Hausdorff dimension is not always a nat-
ural number. Think about a line that twists in such a
complicated way that it starts to fill up the plane. Its
Hausdorff dimension increases beyond 1 and takes on

values that get closer and closer to 2. The same idea of
ascribing a fractional dimension applies to a plane that
contorts more and more in the third dimension: its
Hausdorff dimension gets closer and closer to 3. As a spe-
cific example, the fractal known as the Sierpinski carpet
has a Hausdorff dimension of just over 1.89.

Heesch number
The maximum number of times that a closed plane 
figure—a tile—can be completely surrounded by copies of
itself. The Heesch number of a triangle, quadrilateral, reg-
ular hexagon, or any other single shape that can com-
pletely tile the plane (see tiling), is infinity. Heesch’s
problem is to find the largest possible finite Heesch num-
ber, or, more generally, what values other than zero and
infinity can Heesch numbers take. In considering this
problem, it’s helpful to define the Heesch number more
precisely. In a tiling, the first corona of a tile is the set of all
tiles that have a common boundary point with the tile,
including the original tile itself. The second corona is the
set of tiles that share a point with anything in the first
corona; and so on. The Heesch number is the maximum
value of coronas (k) that can surround a shape. For a long
time the record holder for the largest finite value of k
was a shape found by the American computer scientist

Heesch number A tiling in which copies of the same shape
are used out to the fourth surrounding layer, or corona. David

Eppstein
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Robert Ammann, which consists of a regular hexagon
with small bumps on two sides and matching notches on
three sides. This was thought to have a Heesch number of
three; however, in 2000, Alex Day argued that the
Ammann hexagon actually has a Heesch number of four,
though it isn’t clear whether the difference has to do with
a definition of tiling. In any event, it has since been
shown by Casey Mann, of the University of Arkansas
that there exists an infinite family of tiles (consisting of
indented and outdented pentahex) with Heesch number
five (or six by Day’s reckoning)—the largest finite value
currently known. Are there any polygons that have
higher Heesch numbers? The answer is unknown but
Mann thinks that more rounded polyominos than the
long skinny ones he’s been using may have a better
chance of giving unbounded Heesch numbers.

The Heesch number question is connected to two
other famous unsolved tiling problems: the domino
problem and the Einstein problem. Aperiodic tiling
seems to act as a barrier to the existence of tiling algo-
rithms, so it isn’t expected that both of these problems
have the same answer. On the other hand, if there’s a
maximum finite Heesch number k, then it seems that
this could be used as the basis of an algorithm to test
whether a shape tiles: simply attempt to fill out a tiling
to the (k + 1)st corona; if successful, the shape must tile
the plane, and if not, the shape will not tile. Similar
questions can be asked about Heesch numbers for tilings
in higher dimensions.

Hein, Piet (1905-1996)
An extraordinarily creative Danish mathematician, scien-
tist, inventor, and poet who often wrote under the Old
Norse pseudonym Kumbel, meaning “tombstone.” A
direct descendant of the Dutch naval hero of the six-
teenth century who had the same name, Piet Hein was
born in Copenhagen and studied at the Institute for The-
oretical Physics of the University of Copenhagen (later
the Niels Bohr Institute), the Technical University of
Denmark, and the Royal Swedish Academy of Fine Art.
He was later awarded an honorary doctorate by Yale Uni-
versity. A good friend of Albert Einstein, he is famed for
his many mathematical games, including Hex, Tang-
loids, Polytaire, TacTix, and the Soma cube. These
games were featured in numerous columns of Martin
Gardner’s “Mathematical Recreations” column in Scien-
tific American and often achieved worldwide attention in
this way. As an artist and constructor, Hein gave form, in
the 1950s and 1960s, to elegant pieces of furniture that
helped “Scandinavian design” attract international recog-
nition. These pieces, including a dining-room table cre-
ated in cooperation with the Swedish designer Bruno
Mathsson, were based on the superellipse curve—a shape

that Hein also brought to bear in applications as varied as
city planning (it’s the basis for Sergel’s Square in the cen-
ter of Stockholm) and toy making (see superegg). Hein
was a prolific and excellent writer of light verse, produc-
ing thousands of short, aphoristic poems known as
Grooks. For him there was no unbridgeable gap between
the subjectivity of fine art and the objective world of sci-
ence. “Art,” he said, “is a solution to problems which can-
not be formulated clearly before they have been solved.”
His philosophy of life was summed up by his aphorism
“co-existence or no existence.”

helicoid
The second oldest known minimal surface; it was dis-
covered by Jean-Baptiste Meusnier in 1776, thirty years
after the catenoid. It is the only minimal surface, apart
from the simple plane, that is also a ruled surface. The
helicoid is the surface swept out by a line that always
intersects a fixed axis at right angles and that rotates uni-
formly as its point of intersection moves uniformly along
the axis. This line intersects any cylinder concentric with
the axis in a helix. The helicoid has a wide variety of
shapes and is a familiar sight in everyday life, taking the
form of many things from spiraling parking ramps to
screw threads.

helix
A curve in three dimensions, the tangent to which makes
a constant angle with a fixed line. A circular helix is
formed by winding a line around a cylinder so the radius
is always the same. A conical helix is formed by winding a
line around a cone, so that, consequently, its radius con-
stantly changes. Springs often take the form of various
kinds of helices. In nature, the DNA molecule is in the
shape of a double helix.

helicoid Richard Palais
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Henon, Michele
An astronomer at the Nice Observatory in southern
France. For a number of years, particularly during the
1960s, he studied the dynamics of stars moving within
galaxies, using computers as a way to understand the 
stability of their motions. His work was very much in 
the spirit of Henri Poincaré’s approach to the classical
three-body problem: What important geometric struc-
tures govern their behavior? The main property of these
systems is that the energy of their motion is constant to a
very good approximation. Consequently, their chaotic
dynamics are not described by simple attractors, but 
by objects that are markedly more difficult to analyze
and visualize, existing on energy “surfaces” in three and
higher dimensions. During the 1970s, Henon discovered
a very simple iterated mapping that showed a chaotic
attractor, now called Henon’s attractor, that allowed him
to make a direct connection between deterministic data
and fractals. The Henon attractor is self-similar (see self-
similarity): if you zoom in on the attractor in its state
space you find more and more layers, much like filo
dough or a croissant.

Henstock integration
See integration.

heptagon
A polygon with 7 sides.

Hermann grid illusion
An illusion first described by the German physiologist
Ludimar Hermann (1838–1914) in 1870. While reading a
book on sound by the Irish physicist John Tyndall, Her-
mann saw gray spots in the intersections of spaces among
the figures that Tyndall had arranged in a matrix. Despite
the fact that the same intensity of light is reflected all the
way along the white spaces in the Hermann Grid, the
intersections appear gray. To explain this, consider two
regions of the retina. One region views an intersection of
a white horizontal and vertical band, while the other
views a white band between two intersections (the region
going away from the intersection). Although the two
regions themselves receive the same amount of light, the
situation in their neighboring regions is different. At 
the intersection, light comes in from all four sides, but
the white band that lies between the two intersections is
surrounded by two dark sides. This leads to an effect
called lateral inhibition, which causes a bright surround to
an area appear darker and, conversely, a dark surround to
an area appear lighter. A similar but more powerful illu-
sion, known as the Lingelbach illusion or the Scintillating
grid illusion, was discovered in 1994 by Elke Lingelbach,
the wife of a German mathematics professor, and has not

Hermann grid illusion The original illusion, in which the
viewer sees gray spots at the intersections.

Hermann grid illusion The more striking and recently dis-
covered “scintillating” version of the illusion.
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yet been fully explained.[286] Curiously, the effect of the
scintillation is lessened by tilting the head through 45°!

Hermite, Charles (1822–1901)
A French mathematician whose work in the theory of
functions includes the application of elliptic functions
to provide the first solution to the general equation of
the fifth degree, the quintic equation. He also showed
that e is a transcendental number, studied a class of dif-
ferential equations now known as Hermite polynomials,
which later proved to be of importance in some applica-
tions of quantum mechanics, and discovered the proper-
ties of Hermitian matrices.

Heron of Alexandria (c. A.D. 60)
Also called Hero, a Greek geometer and inventor whose
writings have helped preserve a knowledge of the mathe-
matics and engineering of Babylonia, ancient Egypt, and
the Greco-Roman world. His most important geometric
work, Metrica, was lost until a fragment was discovered in
1894, followed by a complete copy in 1896. It is a com-
pendium, in three books, of geometric rules and formu-
las, the best known of which is Proposition 1.8, now
known as Heron’s formula. He invented many devices
operated by water, steam, or compressed air, including a
fountain, a fire engine, siphons, and an engine in which
the recoil of steam revolves a ball or a wheel.

Heron’s formula
An important formula in plane geometry that allows the
area of any triangle to be calculated without knowing the
altitude (perpendicular height) of any of its sides. Let a, b,
and c be the side lengths of a triangle and A its area.
Heron’s formula states that

A2
= s(s − a)(s − b)(s − c),

where s = (a + b + c)/2. The origin of this formula is his-
torically obscure. A medieval Arab source, for example,
ascribes it to Archimedes. However, the first definite ref-
erence we have to it is by Heron of Alexandria. His
proof is extremely convoluted, and it seems clear that it
must have been determined by an entirely different
thought process, and then dressed up in the usual syn-
thetic form that the classical Greeks preferred for their
presentations. Heron’s formula contains Pythagoras’s
theorem as a degenerate case. A Heronian triangle is one
with integer sides and integer area.

Herring illusion
A distortion illusion first published in 1861 by the Ger-
man psychologist Ewald Herring (1834–1918), and now
named after him. As in the case of the Zöllner illusion
and others, it shows how geometrical relationships can

seem to be distorted by their background (a lined back-
ground can make circles, squares, and triangles seem
distorted, too). The straight horizontal lines in the illu-
sion appear to bow out in the center. This can be
explained if the brain interprets the radiating lines in
terms of depth, making the central spot in the Herring
diagram, and thus also the heavy black lines near the
center of the diagram, appear to be farther away than
the edges. Because the heavy black lines are the same
thickness at the center as at the edges but are assumed to
be farther away, the brain thinks they must be more
widely spaced at the center.

heuristic argument
An educated guess: something that helps in finding the
solution to a problem but is otherwise unjustified or inca-
pable of justification.

Hex
A board game played by two players on a hexagonal grid,
usually in the shape of an 11 × 11 rhombus. It was
invented by Piet Hein in 1942 and independently by John
Nash in 1948. Hein said that the game occurred to him
while contemplating the four-color problem and it soon
became popular in Denmark under the name Polygon.
Nash’s version was played by math students at Princeton
and a number of other American campuses. Players use
differently colored pieces—say, red and blue. They take
alternate turns placing a piece of their color inside a hexa-
gon, filling in that hexagon with their color. Red’s goal is

Herring illusion



150 hexa-

to form a red path connecting the top and bottom sides of
the parallelogram; Blue’s goal is to form a path connect-
ing the left and right sides. The game can never end in a
tie, a fact found by Nash. The only way to prevent your
opponent from forming a connecting path is to form a
path yourself. When the sides of the grid are equal, the
game favors the first player and the first player has a win-
ning strategy. There are two ways to make the game fairer.
One is to make the second player’s sides closer together,
playing on a parallelogram rather than a rhombus; how-
ever, this has been proven to result in a win for the second
player, so it theoretically doesn’t improve matters. A bet-
ter way is to allow the second player to choose his color
after the first player makes the first move or to make the
first three moves, which encourages the first player to
intentionally even out the game.

hexa-
The Greek prefix meaning “six.” A hexagon is a six-sided
polygon. A hexahedron is a six-sided polyhedron, other-
wise known as a cube if it is regular. Hexadecimal is the
number system with base 16 (i.e., six more than the dec-
imal system) and is used mostly in computing (because

four binary digits can represent 16 different numbers).
Hexagonal numbers are figurate numbers (numbers that
can be represented by a regular geometric arrangement
of equally spaced points) of the form n(2n − 1); the first
few are 1, 6, 15, 28, 45, . . . . For hexaflexagon see
flexagon. For hexomino see polyomino. See also Giant’s
Causeway.

higher dimensions
Dimensions beyond the familiar three spatial dimensions
(up-down, left-right, back-forth) of which we are aware in
every-day life. Intense speculation, both scientific and fic-
tional, has naturally been directed toward the possibility of
a fourth dimension. One way to think of points in four-
dimensional space is as ordered sets of four numbers.
Clearly, this algebraic representation can be extended to
many arbitrary dimensions: n-dimensional space is defined
as the set of the set of points (a1, a2, . . . , an) where a1 to an

can take any real number value. There has been much
conjecture that the universe in which we live contains
many more than three spatial dimensions. This specula-
tion began with the Kaluza-Klein theory but is now
firmly embedded in modern string theory.[25, 55, 81]

Hex A position in a game of Hex.
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Hilbert, David (1862–1943)

One can measure the importance of a scientific work
by the number of earlier publications rendered super-
fluous by it.

A great German mathematician who was one of the colossi
in the field in the twentieth century. His most important
discovery was of what is now called Hilbert space. He was
also a master of mathematical organization. During the
early phase of his career, Hilbert reorganized number the-
ory, crystallizing his conclusions in the classic book Der
Zahlbericht (The theory of algebraic number fields, 1897).
He then moved into geometry and performed a similar ser-
vice by setting forth the first rigorous set of geometrical
axioms in his Grundlagen der Geometrie (Foundations of
geometry, 1899). He invented a simple space-filling curve
now known as the Hilbert curve and also proved Waring’s
conjecture. At the Paris International Congress of 1900,
Hilbert proposed 23 outstanding problems in mathemat-
ics to whose solutions he believed twentieth-century math-
ematicians should devote themselves. These problems
have come to be known as Hilbert’s problems, and a number
still remain unsolved today. Hilbert’s mathematical phi-
losophy is partly re-vealed by a couple of remarks, one of
which he made after learning that a student in his class had
dropped the subject in order to become a poet. “Good,”
he said. “He did not have enough imagination to become
a mathematician.” Whether he really believed the second
is open to question: “Mathematics is a game played
according to certain simple rules with meaningless marks
on paper.”

Hilbert space
A space of infinite dimensions, named after David Hil-
bert, in which distance is preserved by making the sum of
squares of coordinates a convergent sequence; it is of cru-
cial importance in the mathematical formulation of
quantum mechanics. See also Fredholm, Erik Ivar.

Hinton, Charles Howard (1853–1907)
An English-born mathematician best known for his writ-
ings and inventions aimed at helping to visualize the
fourth dimension; he may also have coined the name
tesseract for the four-dimensional analogue of a cube. Hin-
ton matriculated at Oxford and continued to study there,
earning a B.A. (1877) and an M.A. (1886), while he also
taught, first at Cheltenham Ladies’ School and then, from
1880 to 1886, at Uppingham School. At this time, another
teacher at Uppingham was Howard Candler, who was a
friend of Edwin Abbott and thus provides a possible link
between these two explorers of other dimensions. In the
early 1880s, Hinton published a series of pamphlets start-

ing with “What Is the Fourth Dimension?” and “A Plane
World” (a contemporary of Abbott’s Flatland: A Romance
of Many Dimensions), which were reprinted in the two-
volume Scientific Romances (1884). Hinton’s descriptions
owed much to the mathematical models of William Clif-
ford, whose theories about four-dimensional spaces were
then in vogue. But Hinton went much further in his
attempts to break free of three-dimensional thought. He
devised an elaborate set of small colored cubes to represent
the various cross sections of a tesseract and then memo-
rized the cubes and their many possible orientations in
order to gain a window on the fourth dimension.

At the time he was teaching in England, Hinton mar-
ried Mary Everest Boole, the eldest daughter of George
Boole, the founder of mathematical logic. Regrettably,
he also married a Maud Wheldon and was tried at the
Old Bailey in London for bigamy. After serving a day in
prison for the offence, he fled with his (first) family to
Japan, where he taught for some years, before taking up a
post at Princeton University. There, in 1897, he designed
a species of baseball gun which, with the help of gun-
powder charges, would shoot out balls at speeds of 40 to
70 miles per hour. It was used by the Princeton team for
several seasons before being abandoned by the players in
fear of their lives.

After a brief spell at the University of Minnesota, Hin-
ton joined the Naval Observatory in Washington, D.C.
At the same time, he more rigorously developed his
ideas on the fourth dimension and presented his results
before the Washington Philosophical Society in 1902.
Hinton asked: What would prove the existence of a real
fourth spatial dimension? He offered three possibilities,
two of which involved a specific molecular structure and
a particular case of electrical induction, and have since
been explained by science in more mundane ways. How-
ever, Hinton’s other case, pertaining to right- and left-
handedness remains open because there are instances of
right- and left-handedness in nature, such as the spin of
elementary particles, to which his example could be
applied. In any event, Hinton’s final assessment that we
can only regard a four-dimensional space as possible if
three-dimensional mechanics fails to explain known
physical phenomena still rings true today.[166, 167, 272] See
also Boole (Stott), Alicia.

Hippias of Elis (c. 5th century B.C.)
An itinerant Greek philosopher who contributed signifi-
cantly to mathematics by discovering the quadratrix, a
special curve he may have used to trisect an angle (see
quadratrix of Hippias). Hippias is one of the first mathe-
maticians about whom a good deal is known. He came
from a state in the northwest corner of Peloponnesia that
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was the home of the Olympic games. According to Plato,
Hippias boasted, during one of his visits to the Olympics,
that everything he wore—his clothing, sandals, ring, and
oil flask—he’d made himself. Later, in Athens, Hippias
became one of the first to teach for money, a practice for-
bidden by the Pythagoreans and scorned by Plato. He and
other paid teachers became known as “sophists,” which
was a derogatory term at the time but has since come to
mean “wise man.”

hippopede
A quartic curve described by the equation

(x 2
+ y 2)2

+ 4b(b − a)(x 2
+ y 2) − 4b 2x 2

= 0,

where a and b are positive constants. Hippopede means
“foot of a horse.” It is often known as the hippopede of Pro-
clus, after Proclus who was the first to study it (together
with Eudoxus, who used it in his theory of how the planets
move), and also the horse fetter and the curve of Booth because
of work done on it by J. Booth (1810–1878). Any hip-
popede is the intersection of a torus (donut) with one of its
tangent planes—that is, a plane parallel to its axis of rota-
tional symmetry. The curve takes any of a variety of forms
depending on where the donut is sliced. It may be a simple
oval; an indented oval or elliptical lemniscate of Booth (0 < b <

a); two isolated circles; a figure-eight curve or lemniscate
of Bernoulli (the only hippopede that is also a Cassinian
oval); or a hyperbolic lemniscate of Booth (0 < a < b).

Hi-Q
See peg solitaire.

Hnefa-Tafl
The Viking equivalent of chess and a particular form of a
Tafl game. It effectively models the kind of internal con-
flict familiar to the Vikings and recounted in Njal’s Saga,
the best known of the Icelandic sagas. The king or chief-
tain sits in his hall, surrounded by his thanes. His enemies
gather in secret, and in numbers sufficient to overwhelm
the king’s standing forces in a lightning raid. They gather
around the king’s hall and set it alight, forcing the defend-
ers to fight in the open or burn in the hall. If the king can,
by some desperate stratagem, break free and escape the
trap, he can rally his people and strike back at his enemies.
If not, he dies. Hnefa-Tafl reflects this mode of contest.
The board has 19 × 19 grid lines (though sometimes has
as few as 7 × 7 grid lines), and the pieces are placed at the
points of the intersections (curiously analogous to the ori-
ental game of Go, which also uses 19 × 19 lines and where
play occurs at the intersections). The opposing forces are
unequal in size, and have different objectives: the attack-
ers attempt to trap the king in his hall, while the defend-
ers try to open an escape route for him.

Hoffmann, Louis “Professor” (1839–1919)
The pseudonym of Angelo John Lewis, an English barris-
ter who was the leading writer on magic, cards, and “par-
lor amusements” at the turn of the twentieth century. His
Puzzles Old and New[171] (1893) is a major source of infor-
mation about mathematical recreations.

Hofstadter, Douglas R. (1945–)
A physicist and philosopher best known for his 1980
Pulitzer Prize–winning book Gödel, Escher, Bach: An Eternal
Golden Braid.[172] He is currently a professor of cognitive
scienceandcomputer scienceat IndianaUniversity,Bloom-
ington, and has particular interests in themes of the mind,
consciousness, self-reference, translation, and mathemati-
cal games. He is the son of the Nobel Prize–winning physi-
cist Robert Hofstadter.

Hofstadter’s law
It always takes longer than you think, even when you take
Hofstadter’s law into account.

Hogben, Lancelot Thomas (1895–1975)
An English zoologist and geneticist famed for his best-
selling Mathematics for the Million (1933)[173] of which
Albert Einstein said, “It makes alive the contents of the
elements of mathematics” and H. G. Wells said, “A great
book, a book of first class importance.” Hogben was born
in Southsea, Hampshire, and studied at Cambridge and
London. Imprisoned in 1916 as a conscientious objector
during World War I, he was released only when his health
went into serious decline. He held various academic
posts in Britain, Canada, and South Africa, becoming
professor of social biology at London University in 1930.
During World War II he was put in charge of the medical
statistics records for the British Army. After the war he
became professor of medical statistics at the University of
Birmingham, where he remained until his retirement in
1961. Hogben first began to apply mathematical princi-
ples to the study of genetics in the 1930s, focusing on the
study of generations of the fruit fly Drosophila and how it
related to research on heredity in humans. In addition to
Mathematics for the Million, he authored half a dozen
other books, including the popular Science for the Citizen.
Though trained as a scientist, Hogben was passionately
interested in linguistics. In The Loom of Language, which
he edited, he set out the principles of his own invented
language, “Interglossa,” based on Greek and Latin roots
but with a syntax resembling that of Chinese.

hole
A topological structure (see topology) that prevents any
object in which it occurs from being continuously shrunk
to a point. A sphere has no holes; a torus and a teacup
each have one hole. See also genus.
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hole-in-a-postcard problem
With a pair of scissors, make cuts in a regular-sized post-
card to create a hole large enough for a person to step
through it. The solution is shown in the diagram. The
number of lines determines the size of the resulting aper-
ture. With enough cuts you could literally drive a horse
and cart through the card!

hole-through-a-sphere problem
A number of geometry puzzles hinge on a surprising
fact about spheres that have had holes bored through
them. Imagine you have a round bead that is 1 inch
(about 2.5 cm) in diameter and that you drill a hole
exactly through the middle of this so that the remaining
part of the sphere is only half an inch thick. Now imagine
that an enormously large drill has been used to bore a
hole though Earth so large that the part of Earth that is
left behind is only half an inch thick. Amazingly, the
residual volumes of these two holey spheres, the drilled
bead and the drilled Earth, are exactly the same! It just
happens that even though Earth is vastly larger than the
bead, the drill has to take out proportionately more in
order to make the thickness of the hole the same, so that
the volume left doesn’t depend separately on the initial
size of the sphere or of the hole, but only on their rela-
tion, which is forced by requiring the hole to be half an
inch long. This fact enables the following poem-problem
to have a solution even though its seems as if not enough
information has been provided:

Old Boniface he took his cheer,
Then he bored a hole through a solid sphere,
Clear through the center, straight and strong,
And the hole was just six inches long.
Now tell me, when the end was gained,
What volume in the sphere remained?

Sounds like I haven’t told enough,
But I have, and the answer isn’t tough.

Having already learned the secret that the volume that
remains of a drilled sphere doesn’t depend on the initial
size of the sphere, we can cheat and give a kind of meta-
argument that is much shorter than the geometric proof.
The volume left behind of any sphere with a 6-inch-long
hole through it must be the same as the volume left
behind of a 6-inch-diameter sphere with a hole of 0 diam-
eter drilled through it. This is equal to 4⁄3(π63), or approx-
imately 905 cubic inches.

hole-through-the-earth problem

I wonder if I shall fall right through the earth!
—Alice in Alice in Wonderland

Imagine there is a hole going from one point on Earth’s
surface, all the way through the center of Earth, to the
exact opposite (antipodal) point on the other side. What
would happen if you dropped something into this hole?
The Greek historian Plutarch considered the problem
some 2,000 years ago. In 1624, van Etten argued that a
millstone dropped down such a hole at 1 mile per minute
would take more than 21⁄2 days to reach the center, where
“it would hang in the air.” The first correct answer was
given by Galileo is his Dialogue Concerning the Two Chief
World Systems (1632). Galileo realized a dropped object
would accelerate until it reached the center of Earth, travel
through to the other side, then oscillate back and forth.

holism
The idea that the whole is greater than the sum of the
parts. Holism is credible on the basis of emergence alone,
since reductionism and bottom-up descriptions of nature
often fail to predict complex higher-level patterns.

homeomorphic
In topology, two objects are said to be homeomorphic if
they can be smoothly deformed into each other. See also
homeomorphism.

homeomorphism
A one-to-one continuous transformation that preserves
open and closed sets.

homology
A way of attaching Abelian groups, or more elaborate
algebraic objects, to a topological space so as to obtain
algebraic invariants. In a sense, it detects the presence of
“holes” of various dimensions in the space. The methods
developed to handle this led to what is now called homo-
logical algebra, a subject in which homological invariants
are calculated for many purely algebraic structures.

hole-in-a-postcard problem Photocopy the diagram, cut
along the lines, and step through the postcard!



154 homomorphism

homomorphism
A function that preserves the operators associated with
the specified structure.

homotopy
A continuous transformation from one path in a topo-
logical space to another, or more generally, of one func-
tion to another (see continuity). Paths connected by a
homotopy are called homotopic and are said to be in the
same homotopy class. Properties left unchanged by such
homotopies are known as homotopy invariants. Homotopy
classes of paths can be composed to form the fundamen-
tal group, or first homotopy group. Other maps can be used
to form higher homotopy groups.

Hordern, L. Edward (d. 2000)
An English puzzlist and leading authority and writer on
sliding-piece puzzles.[175]

hundred
The smallest three-digit number in the decimal system
and the smallest square of a two-digit number (10). A
hundred today means 100 but, over the years and in dif-
ferent places, it has stood for different values including
112, 120, 124, and 132. The remnants of these old mea-
sures still persist in the hundredweight of some countries
representing 112 or 120 pounds. A hundred is also a mea-
sure of land area, frequently used in colonial America
and in England to signify a division of a county or a shire
having its own court. A strange custom is invoked if a
member of the English Parliament’s lower house, the
House of Commons, wishes to resign his seat (something
that is technically illegal). That member accepts steward-
ship of the “Chiltern Hundreds,” an area of chalk hills
near Oxford and Buckingham, which effects his release
from Parliament. The “Hundred Years’ War” between the
English and the French actually lasted 116 years.

hundred fowls problem
A Chinese puzzle found in the sixth-century work of the
mathematician Zhang Qiujian. Similar problems involv-
ing two constraints and three unknowns are found in
early European and Arabic mathematics from about the
eighth century A.D. on.

PUZZLE

If a rooster is worth five coins, a hen three coins, and

three chicks together are worth one coin, how many

roosters, hens, and chicks totaling 100 can be bought

for 100 coins? It turns out that there are three different

solutions. These can be found the long way, by trial

and error, or by using algebra. Call the number of

roosters R, the number of hens H, and the number of

chicks C. The problem gives two constraints. First, the

total number of fowl must be 100, so R + H + C = 100.

Second, the total cost of the fowl must be 100. The

cost of roosters is 5R, the cost of hens is 3H, and the

cost of chicks is (1⁄3)C, so 5R + 3H + (1⁄3)C = 100. These

two equations can be used to get rid of one of the

unknowns; then it’s a question of guess and check.

Solutions begin on page 369.

Hunter, James Alston Hope
An American mathematician and puzzlist who has writ-
ten numerous articles and several books on recreational
mathematics (two in partnership with Joseph Madachy),
and was the author of a syndicated puzzle column read
throughout the United States and Canada. In 1955, he
coined the name “alphametic” and is probably the most
prolific producer of cryptarithms.

Huygens, Christiaan (1629–1695)
A Dutch scientist and mathematician who solved the tau-
tochrone problem, proposed a new wave theory of light,
designed a new pendulum clock, discovered Saturn’s
largest moon (Titan), and sketched the first feature on the
surface of another planet (Syrtis Major on Mars). In his
final years Huygens composed one of the earliest discus-
sions of extraterrestrial life, published after his death as
the Cosmotheoros (1698).

Hypatia of Alexandria (c. A.D. 370–417)
The first woman known to have made a significant con-
tribution to mathematics. Although there is no evidence
that Hypatia did any original research, she assisted her
father, Theon of Alexandria, in writing his 11-part com-
mentary on Ptolemy’s great work on astronomy and
mathematics, the Almagest. It’s thought that she also
helped in producing a new version of Euclid’s Elements,
which formed the basis for all later editions of Euclid.
Hypatia became head of the Platonist school at Alexan-
dria in about A.D. 400 and, as a pagan, represented a men-
ace to some Christian sects who felt threatened by her
learning and depth of scientific knowledge. In the end,
although the exact circumstances are unclear, she was
murdered by a mob. The event served as a trigger for the
departure of many scholars and the beginning of the
decline of Alexandria as a major academic center.

hyperbola
One of the conic section family of curves, which also
includes the circle, the ellipse, and the parabola; it is
obtained if a double cone is cut by a plane inclined to the
axis of the cone such that it meets both branches of the
cone. Of the four conic curves, the hyperbola is the one
least encountered in everyday life. A rare chance to see



hyperboloid 155

the complete shape is when a lamp with a cylindrical or
conical shade throws shadows on a nearby wall. Part of a
hyperbola is produced by the liquid that climbs by capil-
lary action between two microscope slides held vertically
and almost touching.

A hyperbola is the path followed by a smaller object
that is traveling fast enough to escape completely from
the gravitational pull of a larger object. Some comets, for
example, have hyperbolic or “open” orbits so that, after
one swing around the Sun, they head off into interstellar
space never to return. It can be difficult to tell, in some
cases, whether a comet’s orbit is hyperbolic or is highly
elliptical and, therefore, closed. In fact, one way to think
of a hyperbola is as a kind of ellipse that is split in half by
infinity. Not surprisingly, the hyperbola and the ellipse
share many inverse relationships. For example, whereas
the eclipse is the locus of all points whose distances from
two fixed points, called foci, have a constant sum, the
hyperbola is the locus of all points whose distances, r1 and
r2, from two fixed points, F1 and F2, is a constant differ-
ence, r2 − r1 = k. If a is the distance from the origin to
either of the x intercepts of the hyperbola, then k = 2a.
Also, let the distance between the foci, F2 − F1 = 2c. Then
the eccentricity, a measure of the flatness of the hyperbola,
is given by e = c/a. For all hyperbolas, e > 1; the larger the
value of e, the more the hyperbola resembles two parallel
lines. Just as the circle (for which e = 0) is the limiting case
of the ellipse (for which 0 < e < 1), so the parabola (e = 1)
is the limiting case of both the ellipse and the hyperbola.

A hyperbola has two asymptotes: the never-quite-

attainable limits of the curve’s branches as they run away
to infinity. The transverse axis of the hyperbola is the line
on which both foci lie and that also intersects both ver-
tices (turning points); the conjugate axis goes through the
center and is perpendicular to the transverse axis.

A rectangular hyperbola has an eccentricity of !2",
asymptotes that are mutually perpendicular, and the
property that when stretched along one or both of its
asymptotes remains unchanged. This special case of the
hyperbola was first studied by Menaechmus. Euclid and
Aristaeus wrote about the general hyperbola but only
studied one branch of it, while Apollonius was the first
to study the two branches of the curve of the hyperbola
and is generally thought to have given it its present name.

The pedal curve of a hyperbola with one focus as the
pedal point is a circle. The pedal of a rectangular hyper-
bola with its center as pedal point is a lemniscate of
Bernoulli. The evolute of a hyperbola is a Lamé curve. If
the center of a rectangular hyperbola is taken as the center
of inversion, the rectangular hyperbola inverts to a lem-
niscate. If the vertex is used as the center of inversion, the
rectangular hyperbola inverts to a right strophoid. If the
focus of a hyperbola is taken as the center of inversion,
the hyperbola inverts to a limaçon (see limaçon of Pas-
cal). In this last case if the asymptotes of the hyperbola
make an angle of π/3 with the axis that cuts the hyper-
bola, then it inverts to the Maclaurin trisectrix. See also
hyperboloid.

hyperbolic geometry
One of the two main types of non-Euclidean geometry
and the first to be discovered. It is concerned with saddle-
surfaces, which have negative curvature and on which
the geodesics are hyperbolas. In hyperbolic geometry,
contrary to the parallel postulate, there exists a line m
and a point p not on m such that at least two distinct lines
parallel to m pass through p. As a result, the sum of the
angles of a triangle is less than 180° and, for a right trian-
gle, the square of the hypotenuse is greater than the sum
of the squares of the other two sides. See also elliptical
geometry.

hyperbolic spiral
The curve whose equation in polar coordinates is rθ = a.

hyperboloid
A quadratic surface of which there are two basic forms: a
hyperboloid of one sheet, generated by spinning a hyperbola
around its conjugate axis, and a hyperboloid of two sheets
produced by rotating a hyperbola about its transverse
axis. The hyperboloid of one sheet, first described by
Archimedes, has some particularly remarkable proper-
ties. In 1669 Christopher Wren, the architect who de-

hyperbola © Jan Wassenaar, www.2dcurves.com
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signed St. Paul’s Cathedral in London, showed that this
kind if hyperboloid is what mathematicians now call a
ruled surface—a surface composed of infinitely many
straight lines. This fact enables a close approximation to
a hyperboloid to be made in the form of a string model.
Two circular disks, of the same size, are held parallel, one
exactly above the other, by a framework. Strings are then
run through holes near the circumference of one circle to
corresponding holes in the other circle that are a fixed
distance farther around the circumference. Each string is
perfectly straight but the surface that emerges takes the
curved form of a hyperboloid. For the same reason, a
cube spun rapidly on one of its corners will appear to
describe a hyperbolic curve when viewed side-on.

Prominent examples of hyperboloids can be seen in
the form of cooling towers at power stations and, most
strikingly, in the shape of the McDonnell Planetarium in
St. Louis, Missouri. The designer of this building, Gyo
Obata, chose the design because the hyperbolic paths of
some comets suggest “the drama and excitement of space
exploration.”

hypercube
A higher dimensional analog of a cube. A four-
dimensional hypercube is known as a tesseract.

hyperellipse
See superellipse.

hyperfactorial
A number such as 108, which is equal to 33

× 22
× 11. In

general, the nth hyperfactorial H(n) is given by

H(n) = nn (n − 1)n − 1 . . . 33 22 11.

The first eight hyperfactorials are 1, 4, 108, 27,648,
86,400,000, 4,031,078,400,000, 3,319,766,398,771,200,000,
and 55,696,437,941,726,556,979,200,000. See also large
numbers and superfactorials.

hypergeometric function
The sum of the hypergeometric series:

F(a; b; c; x) = 1 + x + x 2
+ . . .

Many common functions can be written as hypergeo-
metric functions.

hyperreal number
Any of a colossal set of numbers, also known as nonstan-
dard reals, that includes not only all the real numbers but
also certain classes of infinitely large (see infinity) and
infinitesimal numbers as well. Hyperreals emerged in the
1960s from the work of Abraham Robinson who showed
how infinitely large and infinitesimal numbers can be rig-
orously defined and developed in what is called nonstan-
dard analysis. Because hyperreals represent an extension
of the real numbers, R, they are usually denoted by *R.

Hyperreals include all the reals (in the technical sense
that they form an ordered field containing the reals as a
subfield) and they also contain infinitely many other
numbers that are either infinitely large (numbers whose
absolute value is greater than any positive real number)
or infinitely small (numbers whose absolute value is less
than any positive real number). No infinitely large num-
ber exists in the real number system and the only real
infinitesimal is zero. But in the hyperreal system, it turns
out that each real number is surrounded by a cloud of
hyperreals that are infinitely close to it; the cloud around
zero consists of the infinitesimals themselves. Con-
versely, every (finite) hyperreal number x is infinitely
close to exactly one real number, which is called its stan-
dard part, st(x). In other words, there exists one and only
one real number st(x) such that x − st(x) is infinitesimal.

hypersphere
A four-dimensional analog of a sphere; also known as a
4-sphere. Just as the shadow cast by a sphere is a circle, the
shadow cast by a hypersphere is a sphere, and just as the
intersection of a sphere with a plane is a circle, the inter-
section of a hypersphere with a hyperplane is a sphere.
These analogies are reflected in the underlying mathe-
matics.

x 2
+ y 2

= r 2 is the Cartesian equation of a circle of
radius r;

x 2
+ y 2

+ z 2
= r 2 is the corresponding equation of a

sphere;

a(a + 1)b(b + 1)
!!

1.2.c(c + 1)

ab
!

1.c

hyperboloid The McDonnell Planetarium in St. Louis is an
example of a hyperboloid. Courtesy of the St. Louis Science Center
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hyperboloid A hyperboloidal sculpture at the Fermi National Accelerator Laboratory. FNAL
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x 2
+ y 2

+ z 2
+ w 2

= r 2 is the equation of a hypersphere,
where w is measured along a fourth dimension at
right angles to the x-, y-, and z-axes.

The hypersphere has a hypervolume (analogous to the vol-
ume of a sphere) of π2r 4/2, and a surface volume (analo-
gous to the sphere’s surface area) of 2π

2r 3. A solid angle
of a hypersphere is measured in hypersteradians, of which
the hypersphere contains a total of 2π

2. The apparent 
pattern of 2π radians in a circle and 4π steradians in a
sphere does not continue with 8π hypersteradians be-
cause the n-volume, n-area, and number of n-radians of an
n-sphere are all related to the gamma function and the
way it can cancel out powers of π halfway between inte-
gers. In general, the term “hypersphere” may be used to
refer to any n-sphere.

hypocycloid
A curve formed by the path of a point attached to a cir-
cle of radius b that rolls around the inside of a larger 
circle of radius a. The parametric equations for a hypo-
cycloid can be written as:

x = (a − b) cos(t) + b cos((a/b − 1)t)
y = (a − b) sin(t) − b sin((a/b − 1)t)

The type of hypocloid depends on where the point
whose path is being traced is located on the rolling circle.
If it lies on the circumference of the circle, the curve gen-
erated is an ordinary hypocycloid. If it lies elsewhere the
result is a hypotrochoid. A hypocycloid has a closed
form—that is, the moving point eventually retraces its
steps—when the ratio of the rolling circle and the larger
circle, fixed, is equal to a rational number. When this
ratio is in its simplest form, the numerator is the number

of revolutions covered inside the fixed circle before the
curve closes. In the same family of curves as the hypocy-
cloid (and hypotrochoid) are the epicycloid and epitro-
choid.

hypoellipse
See superellipse.

hypotenuse
The longest side of a right triangle—the one opposite the
right angle. The word comes from the Greek roots hypo
meaning “under” (which also appears, for example, in
hypodermic, “under the skin”) and tein or ten, for stretch.
Thus hypotenuse is the line segment “stretched under”
the right angle.

hypothesis
See conjecture.

hypotrochoid
A curve formed by the path of a point attached to a point
c, which is not on the circumference, of a circle of radius
b that rolls around the inside of a larger circle of radius a.
The parametric equations for a hypotrochoid can be writ-
ten as:

x = (a − b) cos(t) + c cos((a/b − 1)t)
y = (a − b) sin(t) − c sin((a/b − 1)t)

The hypotrochoid is a generalizedhypocycloid and comes
in two varieties: a prolate hypocycloid if the starting point
is outside the circumference of the rolling circle and a cur-
tate hypocycloid if the starting point is inside the rolling
circle. In the same family of curves as the hypotrochoid
(and hypocycloid) are the epicycloid and epitrochoid.



i

The square root of minus one; i is also known as the
imaginary unit number, !−1". The product of i and a real
number is known as an imaginary number. For details, see
complex number.

I-Ching
A system of Chinese divination based on 64 hexagrams,
each consisting of six horizontal lines each of which may
be solid (representing the male principle, or yang) or
have a break in the middle (representing the female prin-
ciple, or yin). The first three lines of the hexagram, from
the bottom up, constitute the lower trigram and symbol-
ize the inner world. The fourth, fifth, and sixth lines con-
stitute the upper trigram and symbolize the outer world.
One of the first Europeans to see the hexagram structure
when it was brought out of China in the early 1700s was
Gottfried Leibniz, the first mathematician to work with
base two, or binary, arithmetic.

icosahedron
A polyhedron with 20 faces. A regular icosahedron has
faces that are all equilateral triangles, and is one of the
five Platonic solids. The length from vertex to opposing
vertex of a regular icosahedron is 51/4 × φ1/2 × d where φ is
the golden ratio and d is the length of the side of one of
the triangular faces. Chopping off each vertex (corner) of
a regular icosahedron reveals the 12 pentagonal and 20
hexagonal faces of the truncated icosahedron, which is one
of the 13 Archimedean solids (shapes made from trun-
cating Platonic solids in certain ways). See also bucky-
ball.

Icosian game
A game devised by William Hamilton and first described
by him in 1857 at a meeting of the British Association for
the Advancement of Science in Dublin. The object of the
game is to find a way around the edges of a dodecahe-
dron so that every vertex (corner) is visited once and only
once. A path such as this became known as a Hamilton
circuit, though the task of finding a circuit that passes
just once through every vertex of a shape seems to have
arisen first in connection with Leonhard Euler’s study of
the knight’s tour. Two years before Hamilton introduced
his game, Thomas Kirkman posed the problem explicitly
in a paper that he submitted to the Royal Society: Given

a graph of a polyhedron, does there exist a cycle passing
through every vertex?

The Icosian game stemmed from Hamilton’s inven-
tion of a curious kind of algebra that he called icosians,
based on the symmetry properties of the icosahedron.
Hamilton connected the mathematics of his icosians
with the problem of traveling along the edges of a dodec-
ahedron, hitting each vertex just once, and coming back
to the starting point. His friend and fellow Irishman John
Graves (1806–1870) suggested turning the problem into a
commercial game and put Hamilton in contact with the
London company of John Jacques and Sons, toy-makers
and manufacturer of high quality chess sets. Jacques
bought the rights to the game for £25 and marketed two
versions of it, under the name Around the World. One
version, for the parlor, was played on a flat board;
another, for the “traveler,” consisted of an actual dodeca-
hedron. In both cases, nails at each vertex stood for a
major city of the world and the player wrapped a piece of
string around these nails as they went. The game was a

I
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icosahedron The most multifaceted of the Platonic solids.



in the afternoon. It is the month of May. How old is
the captain?

impossible figure
An image in two dimensions of an object that, because of
spatial inconsistencies, is impossible to realize fully in
three dimensions. Among the best known impossible fig-
ures are the Penrose triangle, the Penrose stairway, the
Impossible trident, and the Freemish crate. Notable pio-
neers of this peculiar form of representation have been
Ocar Reutersvärd, Roger Penrose (and his father), and
M. C. Escher. See also optical illusion.

impossible tribar
See Penrose triangle.

impossible trident
One of the most notorious impossible figures. It was
first seen by many when it appeared on the cover of the
March 1965 issue of Mad magazine. The two halves of
the figure seem perfectly reasonable in themselves. When
the top part is covered, the bottom part is taken to be
three separate cylinders or tubes. With the bottom part
hidden, the foreground figure is interpreted as being built
of flat faces making two rectangular prongs. The trouble
is that these two aspects of the figure are totally incom-
patible. Somewhere in the middle, the foreground and
background swap places and give rise to an irreconcilable
paradox. Over the years, countless adaptations of the tri-
dent have appeared with names such as the devil’s fork,
the three-stick clevis, the blivit, the impossible colum-
nade, the trichotometric indicator support, and, most
extravagantly, the triple encabulator tuned manifold.
Swedish artist Oscar Reutersvärd’s mastery of such fig-
ures has led him to draw thousands of variations on the
theme. When the figure is drawn long, it is easy to 
perceive locally as a three-dimensional object and to
overlook its inherent inconsistency, because the contra-
dictory clues are too well separated. When the figure is of
medium length, the figure is easily interpreted as a three-
dimensional object, and its impossibility is quickly per-
ceived. If the prongs are very short, the two different
interpretations vie for acceptance within the same local
area; thus there is no consistent interpretation and the
illusion breaks down. Some early writers commented that
the impossible trident couldn’t be built in any form in
three dimensions. However, this has been shown to be
false. In 1985, the Japanese artist Shigeo Fukuda made a
three-dimensional model of the trident in the form of
classical columns in which the illusion works—from one
critical angle.

The origins of the figure are uncertain. It turns out that
Mad magazine bought the illustration rights from a con-
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complete sales flop, mainly because it was too easy, even
for children—but not for Hamilton himself who always
used the icosian calculus to figure out his moves, instead
of just trying different paths like everyone else! See also
traveling salesman problem.

idempotent
The element x in some algebraic structures is called idem-
potent if x × x = x.

identity
A statement that two expressions are always equal, for
any values of their variables.

imaginary number
A number whose square is negative. Every imaginary
number can be written in the form ib where b is a real
number and i the imaginary unit with the property that 
i 2 = −1. Imaginary numbers are complex numbers in
which the real part is zero. The term “imaginary” is unfor-
tunate because it suggests something that has less reality
than a “real” number, which isn’t the case.

impossibilities in mathematics

Alice laughed: “There’s no use trying,” she said;
“one can’t believe impossible things.” “I daresay you
haven’t had much practice,” said the Queen. “When
I was younger, I always did it for half an hour a
day. Why, sometimes I’ve believed as many as six
impossible things before breakfast.”

—Lewis Carroll, Alice in Wonderland

Mathematicians are used to believing things that most
people would consider impossible or, at least, too outra-
geous to contemplate, such as the Banach-Tarski para-
dox. However, there are some genuine impossibilities,
even in mathematics, including trisecting an angle,
duplicating the cube, and squaring the circle using only
a straightedge and compass; finding the center of a given
circle with a straightedge alone; deriving Euclid’s parallel
postulate from the other four; and representing the
square root of 2 as a rational fraction a/b. Less well
known is this little gem from Gustave Flaubert
(1821–1880), who sounds as if he had seen too much of
this type of problem in school:

Since you are now studying geometry and
trigonometry, I will give you a problem. A ship sails
the ocean. It left Boston with a cargo of wool. It
grosses 200 tons. It is bound for Le Havre. The
mainmast is broken, the cabin boy is on deck, there
are 12 passengers aboard, the wind is blowing East-
North-East, the clock points to a quarter past three
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tributor who claimed that it was original; however, the
magazine’s management soon found out to their embar-
rassment that the figure had been previously published. It
began to surface in several popular engineering, aviation,
and science-fiction periodicals in May and June of 1964.
D. H. Schuster published an article that same year in the
American Journal of Psychology, which first brought the fig-
ure to the attention of the psychological community.

incircle
The inscribed circle of a triangle.

incomputable number
A real number with an infinite decimal (or binary)
expansion that cannot be enumerated by any universal
computer.

induction
A method of reasoning by which one infers a generaliza-
tion from a series of instances. Say there is a hypothesis
H that contains the variable n, which is a whole number.
To prove by induction that H is true for every value of n
is a two-step process: (1) prove that H is true for n = 1; (2)
prove that H being true for n = k implies that H is true for
n = k + 1. This is sufficient because (1) and (2) together
imply that H is true for n = 2, which, from (2), then
implies H is true for n = 3, which implies H is true for 
n = 4, and so on. H is called an inductive hypothesis. Some
philosophers don’t accept this kind of proof, because it
may take infinitely many steps to prove something; how-
ever, most mathematicians are happy to use it.

inequality
The statement that one quantity is less than or greater
than another.

infinite dimensions
In mathematics, the concept of an infinite-dimensional
space considered literally. It is a vector space with an
infinite basis or a space with infinitely many coordinates.

impossible figure “The Rollercoaster,” a rendering in two
dimensions of a structure impossible to build in three dimen-
sions. Jos Leys, www.josleys.com

impossible trident
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paradoxes). Confident of victory, Achilles gives the tor-
toise a head start. But then how can he ever overtake the
sluggish reptile? First he must catch up to the point where
it began, by which time the tortoise will have moved on.
When he makes up the new distance that separated them,
he finds his adversary has advanced again. And so it goes
on, indefinitely. No matter how many times Achilles
reaches the point where his competitor was, the tortoise
has progressed a bit farther. So perplexed was Zeno by
this problem that he decided not only was it best to avoid
thinking about the infinite but also that motion was
impossible!

A similar shock lay in store for Pythagoras and his fol-
lowers who were convinced that everything in the uni-
verse could ultimately be understood in terms of whole
numbers (even common fractions being just one whole
number divided by another). The square root of 2—the
length of the diagonal of a right-angled triangle whose
shorter sides are both one unit long—refused to fit into
this neat cosmic scheme. It was an irrational number,
inexpressible as the ratio of two integers. Put another
way, its decimal expansion goes on forever without ever
settling into a recurring pattern.

These two examples highlight the basic problem in
coming to grips with infinity. Our imaginations can cope
with something that hasn’t yet reached an end: we can
always picture taking another step, adding one more to a
total, or visualizing another term in a long series. But
infinity, taken as a whole, boggles the mind. For mathe-
maticians this was a particularly serious problem because
mathematics deals with precise quantities and meticu-
lously well-defined concepts. How could they work with
things that clearly existed and went on indefinitely—a
number like !2" or a curve that approached a line ever
more closely—while avoiding a confrontation with infin-
ity itself? Aristotle provided the key by arguing that there
were two kinds of infinity. Actual infinity, or completed infin-
ity, which he believed could not exist, is endlessness fully
realized at some point in time. Potential infinity, which
Aristotle insisted was manifest in nature—for example, in
the unending cycle of the seasons or the indefinite divisi-
bility of a piece of gold—is infinitude spread over unlim-
ited time. This fundamental distinction persisted in
mathematics for more than 2,000 years. In 1831, no less a
figure than Karl Gauss expressed his “horror of the actual
infinitude,” saying: “I protest against the use of infinite
magnitude as something completed, which is never per-
missible in mathematics. Infinity is merely a way of speak-
ing, the true meaning being a limit which certain ratios
approach indefinitely close, while others are permitted to
increase without restriction.”

By confining their attention to potential infinity,
mathematicians were able to address and develop crucial

infinite series
An infinite sum of the form

a1 + a2 + a3 + . . . = #
∞

k = 1

ak.

Such series crop up in many areas of modern mathemat-
ics. Their development began in the seventeenth century
and was continued by Leonhard Euler, who, in the
process, solved many important problems.

infinitesimal
A number that is greater than zero yet smaller than any
positive real number. In a sense, infinitesimals are to
small what infinity is to large. They were first introduced
by Isaac Newton and Gottfried Leibniz in their early ver-
sions of calculus; however, the lack of a rigorous defini-
tion for them stood in the way of calculus being fully
accepted. As Bertrand Russell later put it: “Calculus
required continuity, and continuity was supposed to
require the infinitely little; but nobody could discover
what the infinitely little might be.” In the 1800s, calculus
was put on a firmer footing by Augustin Cauchy, Karl
Weierstrass, and others, who clarified and redefined the
notion of a limit without reference to infinitesimals.
When a function f (x) can be made as close as desired to
L by taking x close enough to a, then L is the limit of f (x)
as x approaches a. This is the classical or epsilon-delta for-
mulation of calculus, named for the common use of δ for
|x − a| and ε for | f (x) − L|. For a long time, this was the
only rigorous foundation for calculus, and it is still the
one taught in most calculus classes. But in 1960, Abra-
ham Robinson discovered nonstandard analysis, which
provides a rigorous formulation of infinitesimals, confers
on them a new significance, and brings them closer to the
vision of Newton and Leibniz.

infinity

Mystery has its own mysteries, and there are gods
above gods. We have ours, they have theirs. That is
what’s known as infinity.

—Jean Cocteau (1889–1963),

French author and filmmaker

A concept that has always fascinated philosophers and
theologians, linked as it is to the notions of unending dis-
tance or space, eternity, and God, but that was avoided or
met with open hostility throughout most of the history
of mathematics. Only within the past century or so have
mathematicians dealt with it head on and accepted infin-
ity as a number—albeit the strangest one we know.

An early glimpse of the perils of the infinite came to
Zeno of Elae through his paradoxes, the best known of
which pits Achilles in a race against a tortoise (see Zeno’s
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concepts such as those of infinite series, limit, and infin-
itesimals, and so arrive at calculus, without having to
grant that infinity itself was a mathematical object. Yet as
early as the Middle Ages certain paradoxes and puzzles
arose, which suggested that actual infinity was not an
issue to be easily dismissed. These puzzles stem from the
principle that it is possible to pair off, or put in one-to-one
correspondence, all the members of one collection of
objects with all those of another of equal size. Applied to
indefinitely large collections, however, this principle
seemed to flout a commonsense idea first expressed by
Euclid: the whole is always greater than any of its parts.
For instance, it appeared possible to pair off all the posi-
tive integers with only those that are even: 1 with 2, 2 with
4, 3 with 6, and so on, despite the fact that positive inte-
gers also include odd numbers. Galileo, in considering
such a problem, was the first to show a more enlightened
attitude toward the infinite when he proposed that
“infinity should obey a different arithmetic than finite
numbers.” Much later, David Hilbert offered a striking
illustration of how weird the arithmetic of the endless
can get.

Imagine, said Hilbert, a hotel with an infinite number
of rooms. In the usual kind of hotel, with finite accom-
modation, no more guests can be squeezed in once all
the rooms are full. But “Hilbert’s Grand Hotel” is dra-
matically different. If the guest occupying room 1 moves
to room 2, the occupant of room 2 moves to room 3, and
so on, all the way down the line, a newcomer can be
placed in room 1. In fact, space can be made for an infi-
nite number of new clients by moving the occupants of
rooms 1, 2, 3, etc, to rooms 2, 4, 6, etc, thus freeing up all
the odd-numbered rooms. Even if an infinite number of
coaches were to arrive each carrying an infinite number
of passengers, no one would have to be turned away: first
the odd-numbered rooms would be emptied as above,
then the first coach’s load would be put in rooms 3n for
n = 1, 2, 3, . . . , the second coach’s load in rooms 5n for
n = 1, 2, . . . , and so on; in general, the people aboard
coach number i would empty into rooms pn where p is the
(i + 1)th prime number.

Such is the looking-glass world that opens up once the
reality of sets of numbers with infinitely many elements
is accepted. That was a crucial issue facing mathemati-
cians in the late nineteenth century: Were they prepared
to embrace actual infinity as a number? Most were still
aligned with Aristotle and Gauss in opposing the idea.
But a few, including Richard Dedekind and, above all,
Georg Cantor, realized that the time had come to put the
concept of infinite sets on a firm logical foundation.

Cantor accepted that the well-known pairing-off prin-
ciple, used to determine if two finite sets are equal, is just
as applicable to infinite sets. It followed that there really

are just as many even positive integers as there are posi-
tive integers altogether. This was no paradox, he realized,
but the defining property of infinite sets: the whole is no
bigger than some of its parts. He went on to show that
the set of all positive integers, 1, 2, 3, . . . , contains pre-
cisely as many members—that is, has the same cardinal
number or cardinality—as the set of all rational numbers
(numbers that can be written in the form p/q, where p
and q are integers). He called this infinite cardinal num-
ber aleph-null, ‡0 (“aleph” being the first letter of the
Hebrew alphabet). He then demonstrated, using what has
become known as Cantor’s theorem, that there is a hierar-
chy of infinities of which ‡0 is the smallest. Essentially,
he proved that the cardinal number of all the subsets—the
different ways of arranging the elements—of a set of size
‡0 is a bigger form of infinity, which he called ‡1. Simi-
larly, the cardinality of the set of subsets of ‡1 is a still
bigger infinity, known as ‡2. And so on, indefinitely,
leading to an infinite number of different infinities.

Cantor believed that ‡1 was identical with the total
number of mathematical points on a line, which, aston-
ishingly, he found was the same as the number of points
on a plane or in any higher n-dimensional space. This
infinity of spatial points, known as the power of the contin-
uum, c, is the set of all real numbers (all rational numbers
plus all irrational numbers). Cantor’s continuum
hypothesis asserts that c = ‡1, which is equivalent to say-
ing that there is no infinite set with a cardinality between
that of the integers and the reals. Yet, despite much effort,
Cantor was never able to prove or disprove his contin-
uum hypothesis. We now know why—and it strikes to the
very foundations of mathematics.

In the 1930s, Kurt Gödel showed that it is impossible
to disprove the continuum hypothesis from the standard
axioms of set theory. Three decades later, Paul Cohen
showed that it cannot be proven from those same axioms
either. Such a situation had been in the cards ever since
the emergence of Gödel’s incompleteness theorem. But
the independence of the continuum hypothesis was still
unsettling because it was the first concrete example of an
important question that could not be proven either way
from the universally accepted system of axioms on which
most of mathematics is built.

Currently, the preference among mathematicians is to
regard the continuum hypothesis as being false, simply
because of the usefulness of the results that can be
derived this way. As for the nature of the various types of
infinities and the very existence of infinite sets, these
depend crucially on what number theory is being used.
Different axioms and rules lead to different answers 
to the question what lies beyond all the integers? This can
make it difficult or even meaningless to compare the var-
ious types of infinities that arise and to determine their
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relative size, although within any given number system
the infinities can usually be put into a clear order. Certain
extended number systems, such as the surreal numbers,
incorporate both the ordinary (finite) numbers and a
diversity of infinite numbers. However, whatever number
system is chosen, there will inevitably be inaccessible
infinities—infinities that are larger than any of those the
system is capable of producing.[198, 214, 275]

inflection
A point of inflection of a plane curve is a point where the
curve has a stationary tangent, at which the tangent is
changing from rotating in one direction to rotating in the
opposite direction.

information theory
A mathematical theory of information born in 1948 with
the publication of Claude Shannon’s landmark paper, “A
Mathematical Theory of Communication.” Its main goal
is to discover the laws governing systems designed to
communicate or manipulate information, and to set up
quantitative measures of information and of the capacity
of various systems to transmit, store, and otherwise
process information. Among the problems it treats are
finding the best methods of using various communica-
tion systems and the best methods for separating the
wanted information, or signal, from the noise. Another
of its concerns is setting upper bounds on what it is pos-
sible to achieve with a given information-carrying
medium (often called an information channel). The the-
ory overlaps heavily with communication theory but is
more oriented toward the fundamental limitations on
the processing and communication of information and
less oriented toward the detailed operation of the devices
used.

injection
A one-to-one mapping.

inscribed angle
The angle formed by two chords of a curve that meet at
the same point on the curve.

inscribed circle
A circle inside a triangle or other polygon whose edges
are tangents to the circle. Such a polygon is said to be cir-
cumscribed to the circle. The (unique) circle inscribed to a
triangle is called the incircle.

instability
The condition of a system when it is easily disturbed by
internal or external forces or events, in contrast to a stable

system, which will return to its previous condition when
disturbed. A pencil resting vertically on its eraser or a
coin standing on edge are examples of systems that have
the property of instability since they easily fall over at the
slightest breeze or movement of the surface they are rest-
ing on. An unstable system is one whose attractors can
change; thus, instability is a characteristic of a system that
is far from equilibrium or at bifurcation.

integer
Any positive or negative whole number or zero: . . ., −3,
−2, −1, 0, 1, 2, 3, . . . . Integer is Latin for “whole” or
“intact.” The set of all integers is denoted by Z, which
stands for zahlen (German for “numbers”). The integers
are an extension of the natural numbers to include neg-
ative numbers and so make possible the solution of all
equations of the form a + x = b, where a and b are natural
numbers. Integers can be added and subtracted, multi-
plied, and compared. Like the natural numbers, the inte-
gers form a countably infinite set. However, the integers
don’t form a field since, for instance, there is no integer
x such that 2x = 1; the smallest field containing the inte-
gers is that of the rational numbers. An important 
property of the integers is division with remainder: given
two integers a and b with b ≠ 0, it is always possible to
find integers q and r such that a = bq + r, and such that 
0 ≤ r < |b|. q is called the quotient and r is called the remain-
der resulting from division of a by b. The numbers q and
r are uniquely determined by a and b. From this follows
the fundamental theorem of arithmetic, which states that
integers can be written as products of prime numbers in
an essentially unique way.

integral
The area, or a generalization of area, under any section of
a graph that is described by a function; in other words,
the continuous cumulative sum of a function (see conti-
nuity). Not all functions have an exact formula that
allows an integral to be found. In such cases, numerical
integration has to be used, in which the area is found using
approximate numerical techniques. Integrals, together
with derivatives, are the fundamental objects of calcu-
lus.

integral equation
An equation that involves an integral of the function
which is to be solved for.

integration
An operation that corresponds to the informal idea of
finding the area under the graph of a function. The first
theory of integration was developed by Archimedes with
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his method of quadratures, but this could be applied only
in circumstances where there was a high degree of geo-
metric symmetry. In the seventeenth century, Isaac New-
ton and Gottfried Leibniz independently discovered the
idea that integration was a sort of opposite of differenti-
ation (which they had just invented); this allowed math-
ematicians to calculate a broad class of integrals for the
first time. However, unlike Archimedes’s method, which
was based on Euclidean geometry, Newton’s and Leib-
niz’s integral calculus lacked a secure foundation.

In the nineteenth century, Augustin Cauchy finally
developed a rigorous theory of limits, and Bernhard Rie-
mann followed this up by formalizing what is now called
the Riemann integral. To define this integral, one fills the
area under the graph with smaller and smaller rectangles
and takes the limit of the sums of the areas of the rectan-
gles at each stage. Unfortunately, some functions don’t
have well-defined limits to these sums, so they have no
Riemann integral. Henri Lesbesgue invented another
method of integration to solve this problem. He first pre-
sented his ideas in Intégrale, Longueur, Aire (Integral, length,
area) in 1902. Instead of using the areas of rectangles, a
method that puts the focus on the domain of the func-
tion, Lebesgue turned to the codomain of the function for 
his fundamental unit of area. Lesbesgue’s idea was to build
first the integral for what he called simple functions—
functions that take only finitely many values. Then he
defined it for more complicated functions as the upper
bound of all the integrals of simple functions smaller than
the function in question. Lesbesgue integration has the beau-
tiful property that every function with a Riemann integral
also has a Lebesgue integral, and the two integrals agree.
But there are many functions with a Lebesgue integral that
don’t have a Riemann integral. As part of the development
of Lebesgue integration, Lebesgue introduced the concept
of Lebesgue measure, which measures lengths rather than
areas. Lebesgue’s technique for turning a measure into an
integral generalizes easily to many other situations, leading
to the modern field of measure theory.

The Lebesgue integral was deficient in one respect. The
Riemann integral had been generalized to the improper
Riemann integral to measure functions whose domain of
definition was not a closed interval. The Lebesgue inte-
gral integrated many of these functions (always repro-
ducing the same answer when it did), but not all of them.
The Henstock integral is an even more general notion of
integral (based on Riemann’s theory rather than
Lebesgue’s) that subsumes both Lebesgue integration and
improper Riemann integration. However, the Henstock
integral depends on specific features of the real number
line and so doesn’t generalize as well as the Lebesgue
integral does.

interesting numbers
Clearly some numbers are of greater interest (at least to
mathematicians) than are others. The number pi, for
instance, is far more interesting than 1.283—or virtually
any other number for that matter. Confining our atten-
tion to integers, can there be such a thing as an uninter-
esting number? It is easy to show that the answer must be
“no.” Suppose there were a set U of uninteresting inte-
gers. Then it must contain a least member, u. But the
property of being the smallest uninteresting integer
makes u interesting! As soon as u is removed from U,
there is a new smallest uninteresting integer, which must
then also be excluded. And so the argument could be
continued until U was empty. Given that all integers are
interesting, can they be ranked from least to most inter-
esting? Again, no. To be ranked as “least interesting” is an
extremely interesting property, and thus leads to another
logical contradiction!

When Srinivasa Ramanujan, the great Indian mathe-
matician, was ill with tuberculosis in a London hospital,
his colleague G. H. Hardy went to visit him. Hardy
opened the conversation with: “I came here in taxicab
number 1729. That number seems dull to me which I
hope isn’t a bad omen.” Ramanujan replied, without hes-
itation: “Nonsense, the number isn’t dull at all. It’s quite
interesting. It’s the smallest number that can be expressed
as the sum of two cubes in two different ways.” (1729 =
13 + 123 and 93 + 103.)

International Date Line
Is it possible to assign a time to every longitude on Earth,
so that each longitude has a different time but the times at
nearby longitudes are always close? The answer is no,
which is mathematically equivalent to saying that there’s
no way to continuously map points on a real number
line onto a circle. This explains why an International
Date Line is needed. It allows most regions on Earth to
have times similar to their neighbors, though, by con-
vention, time changes are (usually) made in chunks of
one hour between adjacent time zones. Then it takes care
of the inevitable discontinuity by having it happen all at
once, as a jump by one whole day, on a longitude that
passes mostly through open water in the Pacific. The 
fact that there doesn’t exist any continuous one-to-one
function from the circle onto the line follows from the
Borsuk-Ulam theorem in one dimension.

interpolate
To estimate the value of a point that lies between two
known values of a function. This is often done by
approximating a line or a smooth curve between the val-
ues, which is the literal meaning of the word. Inter is the
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Latin prefix for “between,” polire translates as “to adorn
or polish,” so together they mean “to smooth between.”
Extrapolate was created as an extension of interpolate to
suggest the smoothing of a line outside the known points.
This operation is often done in statistics when patterns
are studied over time to predict future events.

intersection
A place where two or more things meet or overlap. Two
lines intersect at a point, two planes can intersect in a
line, and so forth. The intersection of two or more sets,
represented by the symbol !, is the set of elements that
all the sets have in common; in other words, all the ele-
ments contained in every one of the sets.

invariant
(1) Something that stays the same when a particular
transformation is carried out. (2) A value that is
unchanged when a particular function is applied. (3) In
topology, a number, polynomial, or other quantity asso-
ciated with a topological object such as a knot or
3-manifold, which depends only on the underlying
object and not on its specific description or presentation.

invariant theory
The study of quantities that are associated with polyno-
mial equations and that are left invariant under transfor-
mations of the variables. For example, the discriminant
b 2 − 4ac is an invariant of the quadratic form ax2 + bxy +
cy2.

inverse
(1) The inverse of a number, or a reciprocal, is 1 divided
by the number; for example, the inverse of 8 is 1⁄8 and the
inverse of 3⁄5 is 5⁄3. (2) The inverse of a function or a trans-
formation is the function or transformation that reverses
the effect of the function or transformation. For example,
the inverse of addition is subtraction, and of clockwise
rotation is anticlockwise rotation. (3) The inverse of an
element of a set, or a number, with respect to a particular
operation, is what has to be combined with the element
or number in order to obtain that operation’s identity
element.

involute
Attach a string to a point on a curve. Extend the string so
that it is tangent to the curve at the point of attachment.
Then wind the string up, always keeping it taut. The
locus of points traced out by the end of the string is
called the involute of the original curve, and the original
curve is called the evolute of its involute. Although a
curve has a unique evolute, it has infinitely many invo-
lutes corresponding to different choices of initial point.

An involute can also be thought of as any curve orthog-
onal to all the tangents to a given curve. See also circle
involute.

irradiation illusion
A distortion illusion discovered by Hermann von
Helmholtz in the nineteenth century. Despite the fact
that the two figures are identical in size, the white hole
looks bigger than the black one.

irrational number
A real number that can’t be written as one whole num-
ber divided by another; in other words, a real number
that isn’t a rational number. The decimal expansion of
an irrational number doesn’t come to an end or repeat
itself (in equal length blocks), though it may have a pat-
tern such as 0.101001000100001000001 . . . . The vast
majority of real numbers are irrational, so that if you were
to pick a single point on the real number line at random
the chances are overwhelmingly high that it would be
irrational. Put another way, whereas the set of all rationals
is countable, the irrationals form an uncountable set and
therefore represent a larger kind of infinity. Indeed, as
the Harvard logician Willard Van Orman Quine pointed
out: “The irrationals exist in such variety . . . that no
notation whatever is capable of providing a separate
name for each of them.”

There are two types of irrational number: algebraic
numbers, such as the square root of 2, which are the
roots of algebraic equations, and the transcendental
numbers, such as pi and e, which aren’t. In some cases it
isn’t known if a number is irrational or not; undecided
cases include 2e, πe, π2, and the Euler-Mascheroni con-
stant, γ. An irrational number raised to a rational power
can be rational; for instance, !2" to the power 2 is 2.
Also, an irrational number to an irrational power can be
rational. What kind of number is !2"√"2? The answer is
irrational. This follows from Gelfond’s theorem, which

irradiation illusion Despite appearances, the inner squares
are the same size.
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says that if a and b are roots of polynomials, and a is not
0 or 1 and b is irrational, then ab must be irrational (in
fact, transcendental).

irreptile
See rep-tile.

Ishango bone
A bone tool handle discovered around 1960 in the
African area of Ishango, near Lake Edward. It has been
dated to about 9000 B.C. and was at first thought to have
been a tally stick. At one end of the bone is a piece of
quartz for writing, and the bone has a series of notches
carved in groups on three rows running the length of the
bone. The markings on two of these rows each add to 60.
The first row is consistent with a number system based on
10, since the notches are grouped as 20 + 1, 20 − 1, 10 +
1, and 10 − 1, while the second row contains the prime
numbers between 10 and 20! A third seems to show a
method for multiplying by 2 that was used in later times
by the Egyptians. Additional markings suggest that the
bone was also used as a lunar phase counter. The Ishango

Bone is kept at the Royal Institute for Natural Sciences of
Belgium in Brussels. See also Lebombo bone.[45, 157]

isochrone
A set of points with the property that a given process or
trajectory will take the same length of time to complete
starting from any of the points. The curve formed by
such a set of points is called an isochronous curve. See also
tautochrone problem.

isogonal conjugate
Isogonal lines of a triangle are cevians (see Ceva, Giovanni)
that are symmetric with respect to the angle bisector. Two
points are isogonal conjugates if the corresponding lines
to the vertices are isogonal (see vertex).

isometry
A symmetry operation, which may involve translation,
rotation, and reflection, that preserves the distance of
any two points. Each isometry of a wallpaper group, for
example, can be represented by a 3 × 3 matrix.

Ishango bone The marks on this 11,000-year-old bone speak of a surprisingly sophisticated mathematical knowledge. Museum of

Natural Sciences (Brussels)
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isomorphism
In geometry, a transformation that doesn’t alter the 
side lengths and the angle sizes of the figure involved.
Examples of such transformations include reflections,
rotations, translations, or transformations by a glide. In
set theory, an isomorphism is a one-to-one correspon-
dence between the elements of two sets such that the
result of an operation on elements of one set corresponds
to the result of the analogous operation on their images
in the other set.

isoperimetric inequality
For any closed, three-dimensional body with volume V
and surface area A, the following inequality always holds:

36πV 2 ≤ A3

isoperimetric problem
Among all shapes of a given perimeter, which encloses
the greatest area? This ancient conundrum is alluded to
in the tale of Queen Dido in Virgil’s Aeneid. Threatened
by her brother, who had already murdered her father, the
queen was obliged to hastily gather her valuables and flee
her native city of Tyria in ancient Phoenicia. In due
course, her ship landed in North Africa, where she made
the following offer to a local chieftain: in return for her
fortune he would give as much land as she could isolate
with the skin of an ox. This was readily agreed to, where-
upon the crafty queen sliced the skin into very fine
threads, which she tied together and made into a giant
semicircle. Combined with the natural boundary pro-
vided by the sea, this enclosed such a large area that a
city—Carthage—was eventually built upon it. Two millen-
nia later, Karl Weierstrass was the first to prove rigor-
ously, using analysis and calculus, that the solution to the
isoperimetric problem is a circle (something the Greeks
suspected but were not able to prove geometrically).
When the same question is asked in one dimension
higher it becomes the isovolume problem.

isosceles
Having two sides of the same length, as in the case of an
isosceles triangle. An isosceles trapezoid in the United
States is the equivalent of a trapezium in Britain. Isosceles
comes from the Greek iso (“same or equal”) and skelos
(“legs”).

isotomic conjugate
Two points on the side of a triangle are isotomic if they are
equidistant from the midpoint of that side. Two points
inside a triangle are isotomic conjugates if the corre-
sponding cevians (see Ceva, Giovanni) through these
points meet the opposite sides in isotomic points.

isovolume problem
What surface encloses the maximum volume per unit
surface? The answer is a sphere, for which

volume/surface area = (4⁄3πr 3)/(4πr 2) = 1⁄3r,

where r is the sphere’s radius. Proof of the solution to the
isovolume problem came as recently as 1882 from Her-
mann Schwarz. See also bubbles and isoperimetric prob-
lem.

iterate
Do something repeatedly. Do something repeatedly. . . .

iteration

If at first you don’t succeed, try, try, again. Then
quit. There’s no use being a damn fool about it.

—W. C. Fields

A feedback process that repeats n number of times. Iter-
ation refers to the act of performing the calculation of a
certain function and then picking the result, or output,
as the starting value, or input, for the next calculation of
the same function. The operation repeats on and on—
even infinitely, despite Fields’s comment!



Jacobi, Karl Gustav Jacob (1804–1851)
A German mathematician who did important work on
elliptic functions, partial differential equations, and
mechanics. Although he was preceded in many of his
discoveries about elliptic functions by Carl Gauss (who
didn’t publish) and Niels Abel, Jacobi is nevertheless
considered one of the founders of the subject. His name
is probably best known from the Jacobian, an n × n
determinant formed from a set of n functions in n
unknowns. He wasn’t the first to use it—the “Jacobian”
appears in an 1815 paper of Agustin Cauchy—but
Jacobi did write a long memoir about it in 1841, and
proved that the Jacobian of n functions vanishes if and
only if the functions are related (Cauchy had proved
the “if ” part). He also did important work on partial dif-
ferential equations and their application to physics.
Along with William Hamilton, he developed an ap-
proach to mechanics based on generalized coordinates.
In this method, the total energy of a mechanical system
is represented as a function of generalized coordinates
and corresponding generalized momenta; for example,
in a double pendulum the two generalized coordinates
could be two angles. Hamilton-Jacobi theory is the tech-
nique of solving the system by transforming coordi-
nates so that the transformed coordinates and momenta
are constants.

Jacobi was appointed to a position at the University of
Königsberg in 1826. He gained a reputation as a gifted
teacher and is credited with introducing the seminar
method (giving lectures on his own ongoing research)
into the university. After a collapse from overwork in
1843, Jacobi was allowed to stay in Berlin with a gener-
ous allowance from the king of Prussia. Five years later,
revolution swept Europe and Jacobi was persuaded to
run for parliament. This proved a disaster; not only did
he loose the election, but his foray into politics annoyed
his royal patron, who cut off his pension. Jacobi, with a
large family to support, was faced with destitution. Only
his reputation as the greatest German mathematician
besides Gauss saved him; faced with the prospect of los-
ing Jacobi to the University of Vienna, the king was pre-
vailed upon to restore the pension. Jacobi was a
notoriously hard worker (indeed, he had several break-
downs due to overwork), but his death in 1851 was the
result of smallpox.

Johnson solid
Any convex polyhedron with regular faces that is not a
Platonic solid, an Archimedean solid, or a prism (or an
antiprism). There are 92 Johnson solids, which are named
after Norman W. Johnson who was the first to catalog
them in 1966. They include equilateral deltahedra and
dipyramids (two pyramids placed symmetrically base to
base) and any irregular convex solid that can be made by
sticking together triangles, squares, pentagons, and so on,
in a way that happens to close. Some of the simpler John-
son solids are assemblages of pyramids, prisms, and
antiprisms; for example, a gyrobifastigium is two triangu-
lar prisms glued together with a twist. Others are frag-
ments of Archimedean solids; for example, a pentagonal
rotunda is half an icosidodecahedron. When stretched
out with a prism this makes the marvelously named elon-
gated pentagonal orthocupolarotunda.

Johnson’s theorem
If three congruent circles all intersect in a single point,
then the other three points of intersection will lie on
another circle of the same radius. This simple little theo-
rem was discovered by Roger Johnson in 1916.

Jordan, (Marie-Ennemond) Camille (1838–1922)
A French mathematician who made important contribu-
tions to group theory. He was the first to draw attention
to the work of Evariste Galois, which had until then been
almost entirely ignored. He built on Galois’s study by
grasping the intimate connection between groups of per-
mutations and the solvability of polynomial equations.
Jordan also introduced the idea of an infinite group. He
passed on his interest in group theory to two of his most
outstanding pupils, Felix Klein and Sophus Lie, both of
whom went on to develop the subject in new and impor-
tant ways.

Jordan curve
A simple, closed curve.

Jordan matrix
A matrix whose diagonal elements are all equal (and
nonzero) and whose elements above the principal diago-
nal are equal to 1, but all other elements are 0.

J
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Journal of Recreational Mathematics

The only international journal devoted to the lighter side
of mathematics. It was started in 1968 and is currently
edited by Charles Ashbacher.

Julia set
Any of any infinite number of fractal sets of points on
an Argand diagram (the complex plane) defined by a
simple rule. Given two complex numbers z and c, and
the recursion zn + 1 = zn

2
+ c, the Julia set for any given

value of c, consists of all values of z for which z, when
iterated in the equation above, does not “blow up” or
tend to infinity. Julia sets are closely related to the
Mandelbrot set, which is, in a way, an index of all Julia
sets. For any point on the complex plane (which repre-
sents a value of c) a corresponding Julia set can be
drawn. We can imagine a movie of a point moving
about the complex plane with its corresponding Julia
set. When the point lies inside the Mandelbrot set the
corresponding Julia set is topologically unified or con-
nected. As the point crosses the boundary of the Man-
delbrot set, the Julia set explodes into a cloud of
disconnected points called Fatou dust. If c is on the
boundary of the Mandelbrot set, but not a waist point
(where two large regions of the Mandelbrot set are con-
nected by a narrow bridge), the Julia set of c looks like
the Mandelbrot set in sufficiently small neighborhoods
of c.

Johnson solid Two of the 92 Johnson solids: the bilunabirotunda (J91, right) and the snub disphenoid (J84, left). Robert Webb,

www.software3d.com; created using Webb’s Stella program

Julia set A fractal image based on a Julia set. Jos Leys,

www.josleys.com
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Julia sets are named after the French mathematician
Gaston Julia (1893–1978), whose most famous work,
Memoire sur l’iteration des fonctions rationnelles, provides the
theory for Julia sets before computers were available. In
1918, at the age of 25 Julia was severely wounded in
World War I and lost his nose. He wrote his greatest trea-

tise in a hospital between the painful operations necessi-
tated by his wounds.

jump discontinuity
A discontinuity in a function where the left- and right-
hand limits exist but are not equal to each other.



Kaczynski, Theodore John (1942–)
Known as the Unabomber before his true identity was
discovered, a Harvard graduate with a genius IQ who
abandoned a promising career as a mathematician for a
life of social isolation and intermittent terrorist attacks.
Kaczynski eluded the FBI for 17 years, during which time
he orchestrated 16 explosions that killed 3 people and
injured 23 others. He avoided execution following his
arrest in 1996 through a plea bargain and was given
instead 4 life sentences plus 30 years in prison. During his
mathematical career in the late 1960s, Kaczynski pub-
lished a doctoral dissertation and several papers in acade-
mic journals and served as an assistant math professor at
the University of California, Berkeley (1967–1969).

Kakeya needle problem
A famous problem named after the Japanese mathemati-
cian Sôichi Kakeya, who first posed it in 1917. It asks:
What is the smallest-area plane figure inside which a unit
straight-line segment can be rotated through 180°? For
some years, the answer was thought to be a deltoid. How-
ever, in 1928, the Russian mathematician Abram Besico-
vitch shocked the mathematical world by showing that
the problem had no answer or, to be more precise, that
there was no minimum area.[39] In 1917 Besicovitch had
been working on a problem in Riemann integration, and
had reduced it to the question of existence of planar sets
of measure 0, which contain a line segment in each direc-
tion. He then constructed such a set, and published his
construction in a Russian journal in 1920. Due to the civil
war and the blockade, there was hardly any communica-
tion between Russia and the rest of the world at the time,
so Besicovitch hadn’t heard about the challenge posed by
Kakeya. Several years later, after he left Russia and learned
about the needle problem, Besicovitch modified his orig-
inal construction and was able to give the startling an-
swer that the area in question may be made arbitrarily
small.

Kaluza-Klein theory
A model that seeks to unite classical gravity and electro-
magnetism by resorting to higher dimensions. In 1919
the German mathematician Theodor Kaluza (1885–1954)
pointed out that if general relativity theory is extended to
a five-dimensional space-time, the equations can be sepa-
rated out into ordinary four-dimensional gravitation plus

an extra set (which is equivalent to Maxwell’s equations
for the electromagnetic field) plus an extra field known as
the dilaton). Thus, electromagnetism is explained as a
manifestation of curvature in a fourth dimension of
physical space, in the same way that gravitation is ex-
plained in Einstein’s theory as a manifestation of curva-
ture in the first three. In 1926 the Swedish physicist Oskar
Klein (1894–1977) proposed that the reason the extra spa-
tial dimension goes unseen is that it is compact—curled up
like a ball with a fantastically small radius. In the 1980s
and 1990s, Kaluza-Klein theory experienced a big revival
and can now be seen as a precursor of string theory.

Kampyle of Eudoxus
An hourglass-shaped curve that was first studied by
Eudoxus in an attempt to solve the classical problem of
duplicating the cube. It is described by the Cartesian
equation

a 2x 4 = b 4(x 2 + y 2).

It is also the radial curve of the catenary.

K
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Kampyle of Eudoxus © Jan Wassenaar, www.2dcurves.com
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kappa curve
Also known as Gutschoven’s curve, named after Gérard van
Gutschoven (1615–1668), who first studied it around
1662. The kappa curve, which resembles the Greek letter
κ, was also investigated by Isaac Newton and, some years
later, by Johann Bernoulli (see Bernoulli family). It is
given by the Cartesian equation

y 2(x 2 + y 2) = a 2x 2.

Kaprekar constant
Take any four-digit number whose digits are not all
identical. Rearrange the digits to make the largest and
smallest 4-digit numbers possible. Subtract the smaller
number from the larger. Use the resulting number and
repeat the process. For example, starting with 4,731:
7,431 − 1,347 = 6,084; 8,640 − 468 = 8,172; 8,721 −

1,278 = 7,443; 7,443 − 3,447 = 3,996; 9,963 − 3,699 =

6,264; 6,642 − 2,466 = 4,176; 7,641 − 1,467 = 6,174.
After this, the result is always 6174. Remarkably, every
four-digit number whose digits are not all the same will
eventually reach 6,174, in at most seven steps, and then
stay there. This is called the Kaprekar constant for four-
digit numbers, after the Indian mathematician Dat-
tathreya Ramachandra Kaprekar who made the discovery
in 1949. The Kaprekar constant for three-digit numbers is
495, which is arrived at for any three-digit number in no
more than six iterations. The same process, or algorithm,
can be applied to numbers of n-digits, where n is any
whole number. Depending on the value of n, the algo-
rithm will result in a nonzero constant, zero (the degen-
erate case), or a cycle.

Kaprekar number
Take a positive whole number n that has d number of dig-
its. Take the square of n and separate the result into two
pieces: a right-hand piece that has d digits and a left-hand
piece that has either d or d − 1 digits. Add these two
pieces together. If the result is n, then n is a Kaprekar
number. Examples are 9 (92 = 81, 8 + 1 = 9), 45 (452 =

2,025; 20 + 25 = 45), and 297 (2972 = 88,209; 88 + 209 =

297). The first 10 Kaprekar numbers according to this
definition are 1; 9; 45; 55; 99; 297; 703; 999; 2,223; and
2,728. Kaprekar numbers can also be defined by higher
powers. For example, 453 = 91,125; and 9 + 11 + 25 = 45.
The first 10 numbers with this property are: 1; 8; 10; 45;
297; 2,322; 2,728; 4,445; 4,544; and 4,949. For fourth
powers, the sequence begins 1; 7; 45; 55; 67; 100; 433;
4,950; 5,050; 38,212. Notice that 45 is a Kaprekar num-
ber for second, third, and fourth powers (454 =

4,100,625; and 4 + 10 + 06 + 25 = 45)—the only number
in all three Kaprekar sequences, up to at least 400,000.
See also unique number.

Kasner, Edward (1876–1955)
An American mathematician at Columbia University
best remembered for introducing the words googol and
googolplex into the popular mathematical lexicon. He is
also well known as the coauthor, with James Newman,
of Mathematics and the Imagination, first published in
1940.[186] In a later edition (1967), he spoke about the
term mathescope, which was coined by the science reporter
Wilson Davis after listening to one of Kasner’s public lec-
tures. In Kasner’s words: “It is not a physical instrument;
it is a purely intellectual instrument, the ever-increasing
insight which mathematics gives into the fairyland which
lies beyond intuition and beyond imagination.” His
main field of research was differential geometry, which
he studied in its applications to mechanics, cartography,
and stereographic projections, though he also wrote
papers on circle packing and on the horn angle and stud-
ied an extension of right triangles to the complex plane.

Kepler, Johannes (1571–1630)
A German astronomer and mathematician best remem-
bered for his three laws of planetary motion. He also did
important work in optics, discovered two new regular
polyhedra (1619), gave the first mathematical treatment
of close packing of equal spheres (in 1611, leading to an
explanation of the shape of the cells of a honeycomb),
gave the first proof of how logarithms work (1624), and
devised a method of finding the volumes of solids of rev-
olution that (with hindsight) can be seen as contributing
to the development of calculus (1615–1616). Although
his work eventually led to our modern view of the solar
system, he himself held beliefs about the arrangement of
the planets that smack of Pythagorean mysticism, though
ultimately they stemmed from his belief that mathemati-
cal harmony was a reflection of God’s perfection. In his
first cosmological model (Mysterium cosmographicum,
1596) he suggested that if a sphere were drawn to touch
the inside of the path of Saturn, and a cube were in-
scribed in the sphere, then the sphere inscribed in that
cube would be the sphere circumscribing the path of
Jupiter. Then if a regular tetrahedron were drawn in the
sphere inscribing the path of Jupiter, the insphere of the
tetrahedron would be the sphere circumscribing the path
of Mars, and so inward, putting the regular dodecahe-
dron between Mars and Earth, the regular icosahedron
between Earth and Venus, and the regular octahedron
between Venus and Mercury. Thus the number of (then-
known) planets is explained perfectly in terms of the five
convex regular solids—the Platonic solids.

Kepler’s second work on cosmology (Harmonices mundi
[Harmony of the world], book V, 1619) offers a more elab-
orate mathematical model but still with the polyhedra in
place. The mathematics in this work includes the first 
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systematic treatment of tessellations, a proof that there are
only 13 convex uniform polyhedra (the Archimedean
solids) and the first account of two non-convex regular
polyhedra (see Kepler-Poinsot solids).

Kepler’s mathematical work was full time and contin-
ued even during the wedding to his second wife in 1613.
The dedicatory letter to a book he wrote shortly after
explains that at the wedding celebration he noticed that
the volumes of wine barrels were estimated by means of
a rod slipped in diagonally through the bunghole, which
prompted him to wonder how that could work. The
result was a study of the volumes of solids of revolution,
Nova Stereometria Doliorum (New stereometry of wine
barrels, 1615).

Kepler-Poinsot solids
The four regular nonconvex polyhedra that exist in addi-
tion to the five regular convex polyhedra known as the
Platonic solids. As with the Platonic solids, the Kepler-

Poinsot solids have identical regular polygons for all their
faces, and the same number of faces meet at each vertex.
What is new is that we allow for a notion of “going around
twice,” which results in faces that intersect each other. In
the great stellated dodecahedron and the small stellated dodeca-
hedron, the faces are pentagrams (five-pointed stars). The
center of each pentagram is hidden inside the polyhedron.
These two polyhedra were described by Johannes Kepler
in 1619, and he deserves credit for first understanding
them mathematically, though a sixteenth-century drawing
by the Nuremberg goldsmith Wentzel Jamnitzer (1508–
1585) is very similar to the former and a fifteenth-century
mosaic attributed to the Florentine artist Paolo Uccello
(1397–1475) illustrates the latter. The great icosahedron and
great dodecahedron were described by Louis Poinsot in
1809, though Jamnitzer made a picture of the great dodec-
ahedron in 1568. In these two, the faces (20 triangles and
12 pentagons, respectively) that meet at each vertex “go
around twice” and intersect each other, in a manner that is

Kepler-Poinsot solids From left to right: the small stellated dodecahedron, great stellated dodecahedron, great icosahedron,
and great dodecahedron. Robert Webb, www.software3d.com; created using Webb’s Stella program
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the three-dimensional analog to what happens in two
dimensions with a pentagram. Together, the Platonic sol-
ids and the Kepler-Poinsot polyhedra form the set of nine
regular polyhedra. Augustin Cauchy first proved that no
other polyhedra can exist with identical regular faces and
identical regular vertices.

Kepler’s conjecture
No packing of spheres of the same radius in three dimen-
sions has a density greater than the face-centered (hexago-
nal) cubic packing. This claim was first published by
Johannes Kepler in his monograph The Six-Cornered
Snowflake (1611), a treatise inspired by his correspondence
with Thomas Harriot (see cannonball problem). In his
slender essay, Kepler asserted that face-centered cubic
packing—the kind greengrocers use to stack oranges—is
“the tightest possible, so that in no other arrangement
could more pellets be stuffed into the same container.”
The question of whether Kepler’s conjecture is right or
not has became known, not surprisingly, as Kepler’s prob-
lem. In the nineteenth century, Carl Gauss proved that
face-centered cubic packing is the densest arrangement in
which the centers of the spheres form a regular lattice, but
he left open the question of whether an irregular stacking
of spheres might be still denser. In 1953, László Tóth
reduced the Kepler conjecture to an enormous calculation
that involved specific cases, and later suggested that com-
puters might be helpful for solving the problem. This was
the approach taken by Thomas Hales, a mathematician at
the University of Michigan at Ann Arbor, and which led
him, in 1998, to claim that he had proved Kepler was right
all along. Hales’s proof of Kepler’s conjecture remains
controversial simply because of the length of the com-
puter calculations involved and the difficulty of verifying
them. The casebook on this mystery remains open. See
also monster group.

Khayyam, Omar (1044–1123)
An outstanding Persian mathematician and astronomer,
whose full name was Abu al-Fath Omar ben Ibrahim al-
Khayyam, or “tent-maker”—possibly his father’s profes-
sion. His work on algebra was known throughout Europe
in the Middle Ages. He made several important contribu-
tions: he discovered a geometrical method to solve cubic
equations by intersecting a parabola with a circle, dis-
cussed what would become known as Pascal’s triangle,
and asked if a ratio could be regarded as a number. He is
best known, however, as a poet. In 1859, Edward Fitzger-
ald (1809–1883) translated Khayyam’s Rubaiyat—a popu-
lar collection 600 short four-line poems. Rosehips from
Khayyam’s tomb were germinated at Kew Gardens, Lon-
don, and planted on Fitzgerald’s tomb in St. Michael’s

Churchyard, Boulge, Suffolk, in 1893; the original plant
has died, but its descendents continue to bloom.

Khintchine’s constant
One of the most remarkable, yet poorly understood,
constants in mathematics, which captures, in a fascinat-
ing way, the behavior of almost all real numbers. Pick a
real number at random and write it down as a continued
fraction. Almost certainly, the geometric mean of the
terms in this continued fraction will be Khintchine’s
constant, which has the value 2.685452 . . . . It is impor-
tant to say “almost certainly” because there are some real
numbers including all rational numbers, roots of third-
order polynomials, and certain other classes of number,
whose continued fractions would give a different result.
These exceptions, however, form a tiny minority of all
real numbers.

kings problem
The problem of determining how many nonattacking
kings, K(n), can be placed on an n × n chessboard. For 
n = 8, the solution is 16. The general solution is K(n) =
1⁄4n 2 if n is even and K(n) = 1⁄4(n + 1)2 if n is odd. The min-
imum number of kings needed to attack or occupy all
squares on an 8 × 8 chessboard is nine.

kinship puzzles
Like age puzzles and tricks, problems to do with how
family members are related go back many centuries.
Some of these can be fiendishly convoluted, especially if
incestual pairings are allowed (in the puzzle!). Sketching
a genealogical tree is sometimes helpful. The following
all involve legitimate ties.

PUZZLES

1. Brothers and sisters have I none, but that man’s

father is my father’s son. Who is that man? (This is

one of the oldest problems of the kinship variety.)

2. What is the simplest way in which two people can

be an uncle to each other? (From Dudeney’s A

Puzzle-Mine.)

3. A certain family party consisted of 1 grandfather, 1

grandmother, 2 fathers, 2 mothers, 4 children, 3

grandchildren, 1 brother, 2 sisters, 2 sons, 2

daughters, 1 father-in-law, 1 mother-in-law, and 1

daughter-in-law. Twenty-three people, you will

say. No; there were only seven people present.

Can you show how this might be? (From Amuse-

ments in Mathematics.)

Solutions begin on page 369.
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Kirkman, Thomas Penyngton (1806–1895)
An English rector and mathematician who did important
work in combinatorics. His schoolgirls problem, which
he posed in 1850, led to a more general study of certain
ways of combining objects. He also explored the possi-
bility of finding a route around the edges of a given poly-
hedron that passes through each vertex (corner) of the
shape once and only once. His rather complex and ulti-
mately unprovable ideas were later picked up and refined
successfully by William Hamilton, but not be-fore Kirk-
man had managed to supply a general proof of the fact
that “if a polyhedron has an odd number of vertices and
each face has an even number of edges, then there is no
circuit which passes through all the vertices.” This result
introduces the concept of a bipartite graph—a graph that
can be divided into two separate sets of vertices such that
every edge in one set joins a vertex.

kite
A quadrilateral, with two pairs of congruent adjacent
sides, that is named after one of the traditional forms of
toy kite. The toy itself probably draws its name from the
bird commonly called a kite, or kyte, in England. The old
English form of the word, cyte, may in turn derive from
an early German name for an owl. A nonconvex kite is
often called a dart, a term used by Roger Penrose in his
proof on a nonperiodic tiling of the plane (see also Pen-
rose tiling). Proclus referred to this shape as a “four-
sided triangle” and spoke of it as a geometric paradox.
John Conway pointed out that there is no special name
for a quadrilateral that has two pairs of equal sides that,
unlike in the case of a kite, are not parallel sides. He pro-
posed the name strombus for such a figure, from the
Greek for a spinning top.

Klein, Christian Felix (1849–1925)
A German mathematician noted for his work on non-
Euclidean geometry, the connections between geometry
and group theory, and the theory of functions. His Er-
langen Programm (1872) for unifying the diverse forms
of geometry through the study of equivalence in trans-
formation groups was profoundly influential, especially
in the United States, for over 50 years. In his Lectures on
the Icosahedron and the Solution of Equations of the Fifth
Degree (1884, tr. 1888) he showed how the rotation
groups of regular solids could be applied to the solution
of difficult algebraic problems. Klein was a professor of
mathematics successively at the University of Erlangen,
the Technical Institute in Munich, and the universities of
Leipzig and Göttingen, and was a prolific writer and lec-
turer on the theory, history, and teaching of mathemat-
ics. See also Klein bottle.

Klein bottle

A mathematician named Klein,
Thought the Möbius band was divine,
He said, “If you glue,
The edges of two,
You’ll get a weird bottle like mine.”

—Leo Moser

Take a rectangle and join one pair of opposite sides to
make a cylinder. Now join the other pair with a half-twist.
The result is a Klein bottle. Sound easy? It is if you have
access to a fourth dimension because that’s what is
needed to carry out the second step and to allow the sur-
face to pass through itself without a hole. A true Klein
bottle is a four-dimensional object. It was discovered in
1882 by Felix Klein when he imagined, as in the limerick,
joining two Möbius bands together to create a single-
sided bottle with no boundary.

An ordinary (three-dimensional) bottle has a crease or
fold around the opening where the inside and outside of
the bottle meet. A sphere doesn’t have this crease or fold,
but it has no opening. A Klein bottle has an opening but
no crease: like a Möbius band, it is a continuous one-
sided structure. Because it has no crease or fold, there’s

Klein bottle The famous container, with zero volume, ren-
dered in the improbable form of a soap bubble. © John M. Sulli-

van, University of Illinois and TU Berlin
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no verifiable definition of where its inside and outside
begin. Therefore, the volume of a Klein bottle is consid-
ered to be zero, and the bottle has no real contents—
except itself! As the joke goes: “In topological hell the
beer is packed in Klein bottles.” Take a coin, slide it
across the surface of a Klein bottle until it returns to its
starting point, and the coin, as if by magic, will be flipped
over. This is because, unlike a sphere or a regular bottle, a
Klein bottle is nonorientable.

Although a Klein bottle can’t be “embedded” (that is,
fully realized) in three dimensions, it can be “immersed”
in three dimensions. Immersion is what happens when a
higher dimensional object cuts through a lower dimen-
sional one, producing a cross section. When a sphere is
immersed in a plane, for example, it produces a circle.
The computer-generated soap bubble structure shown
here could be created by stretching the neck of a bottle
through its side and joining its end to a hole in the base.
Except at the side-connection (the nexus), this properly
shows the shape of a four-dimensional Klein bottle. Just
as the picture here is of a three-dimensional Klein bottle
immersion, so an immersion in real life is like a drawing
of the true four-dimensional bottle.

knights problem
To find the maximum number of knights that can be
placed on an n × n chessboard in such a way that no two
pieces are attacking each other. For a standard 8 × 8 chess-
board, the answer is 32 (all on white squares or all on
black). In the general, the solution is 1⁄2 n 2 if n is even and
1⁄2 (n 2 + 1) if n is odd, giving the sequence 1, 4, 5, 8, 13,
18, . . . .

knight’s tour
A classic chess puzzle: to find a sequence of moves by
which a knight can visit each square of a chessboard
exactly once. If the final position is a knight’s move away
from the first position, the tour is said to be closed or reen-
trant. The earliest recorded solution for a standard 8 × 8
chessboard was given by Abraham de Moivre; the earliest
known reentrant solution came from the French mathe-
matician Adrien-Marie Legendre (1752–1833). Not to be
outdone Leonhard Euler found a reentrant tour that visits
two halves of the board in turn. The problem can be gen-
eralized to an n × n board, with some surprising results; for
example, a reentrant tour is not possible on a 4 × 4 board.

A knight’s tour is called a magic tour if the resulting
arrangement of numbers forms a magic square, and a
semimagic tour if the resulting arrangement of numbers is
a semi-magic square. It has long been known that magic
knight’s tours aren’t possible on n × n boards if n is odd.
It was also known that such tours are possible for all

boards of size 4k × 4k for k > 2. However, while a number
of semi-magic knight’s tours were known on the usual 
8 × 8 chessboard, it was not known if any fully magic
tours existed on the 8 × 8 board. This longstanding open
problem was finally settled in the negative by an exhaus-
tive computer enumeration of all possibilities. The soft-
ware for the computation was written by J. C. Meyrignac,
and a Web site was established by Guenter Stertenbrink
to distribute and collect results for all possible tours.
After 61.40 CPU-days, corresponding to 138.25 days of
computation at 1 GHz, the project was completed on
August 5, 2003. As well as netting a total of 140 distinct
semi-magic knight’s tours, the computation showed for
the first time that no 8 × 8 magic knight’s tour is possible.

More magical and mysterious tours can be conducted
on boards on the surfaces of cubes, cylinders, toruses,
and multidimensional shapes, such as hypercubes. See
also Hamilton path.

knot

Never cut what you can untie.
—Joseph Joubert

A closed curve in three dimensions. The two simplest non-
trivial knots are the trefoil knot, whose picture has three
crossings, and the figure-eight knot, whose picture has four.
To date, more than 1.7 million nonequivalent knots with

knight’s tour After visiting every square of the chessboard
exactly once, the knight returns to its starting point.
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pictures of 16 or fewer crossings have been identified. The
mathematical theory of knots was born out of attempts to
model the atom. Near the end of the nineteenth century,
William Thomson (Lord Kelvin) suggested that different
atoms were actually different knots tied in the ether that
was believed to permeate all of space. Physicists and math-
ematicians set to work making a table of distinct knots,
believing they were making a table of the elements. A pio-
neer in this effort, alongside Thomson, was Peter Tait. By
the time the theory of the ether vanished into thin air, knot
theory was firmly tied into mainstream mathematics. It blos-
somed with the development of topology and eventually
led to important applications in DNA research and molec-
ular biology. Today it is one of the most active areas of
mathematical research. See also tie knot, loop, and braid.

Knuth’s up-arrow notation
A notation for large numbers developed by the Ameri-
can mathematician Donald Knuth in 1976. A single up-
arrow (↑) is the same as exponentiation:

m ↑ n = m × m × . . . × m (n terms) = mn.

Two up-arrows together represent a power tower:

m ↑↑ n = mm ..
.m}n

.

(a tower of height n), which is the same as the operation
known as hyper4 or tetration. This can very rapidly gener-
ate huge numbers. For example:

2 ↑↑ 2 = 2 ↑ 2 = 4
2 ↑↑ 3 = 2 ↑ 2 ↑ 2 = 2 ↑ 4 = 16
2 ↑↑ 4 = 2 ↑ 2 ↑ 2 ↑ 2 = 2 ↑ 16 = 65,536
3 ↑↑ 2 = 3 ↑ 3 = 27
3 ↑↑ 3 = 3 ↑ 3 ↑ 3 = 3 ↑ 27 = 7,625,597,484,987
3 ↑↑ 4 = 3 ↑ 3 ↑ 3 ↑ 3 = 3 ↑ 3 ↑ 27 = 37625597484987

Three up-arrows together represent a still more vastly
powerful operator, equivalent to hyper5 or pentation, or a
power tower of power towers:

m ↑↑↑ n = m ↑↑ m ↑↑ . . . ↑↑ m (n terms)

For example:

2 ↑↑↑ 2 = 2 ↑↑ 2 = 4
2 ↑↑↑ 3 = 2 ↑↑ 2 ↑↑ 2 = 2 ↑↑ 4 = 65,536
2 ↑↑↑ 4 = 2 ↑↑ 2 ↑↑ 2 ↑↑ 2 = 2 ↑↑ 65,536 = 2 ↑ 2

↑ . . . ↑ 2 (65,536 terms)
3 ↑↑↑ 2 = 3 ↑↑ 3 = 7,625,597,484,987
3 ↑↑↑ 3 = 3 ↑↑ 3 ↑↑ 3 = 3 ↑↑ 7,625,597,484,987 = 3

↑ 3 ↑ . . . ↑ 3 (a power tower 7,625,597,484,987 
layers high)

3 ↑↑↑ 4 = 3 ↑↑ 3 ↑↑ 3 ↑↑ 3 = 3 ↑↑ 3 ↑↑

7,625,597,484,987 = 3 ↑↑ 3 ↑ . . . ↑ 3 (a tower
3 ↑↑ 7,625,597,484,987 layers high)

Similarly,

m ↑↑↑↑ n = m ↑↑↑ m ↑↑↑ . . . ↑↑↑ m (n terms)

so that, for example:

2 ↑↑↑↑ 2 = 2 ↑↑↑ 2 = 4
2 ↑↑↑↑ 3 = 2 ↑↑↑ 2 ↑↑↑ 2 = 2 ↑↑↑ 4 = 2 ↑ 2 ↑ . . . ↑

2 (65,536 terms)
2 ↑↑↑↑ 4 = 2 ↑↑↑ 2 ↑↑↑ 2 ↑↑↑ 2 = 2 ↑↑↑ 2 ↑ 2

↑ . . . ↑ 2 (65,536 terms)
3 ↑↑↑↑ 2 = 3 ↑↑↑ 3 = 3 ↑ 3 ↑ . . . ↑ 3

(7,625,597,484,987 terms)
3 ↑↑↑↑ 3 = 3 ↑↑↑ 3 ↑↑↑ 3 = 3 ↑↑↑ 3 ↑ 3 ↑ . . . ↑ 3

(7,625,597,484,987 terms)
= 3 ↑↑ 3 ↑ 3 ↑ . . . ↑ 3 (3 ↑ 3 ↑ . . . ↑ 3

(7,625,597,484,987 terms)

Even up-arrow notation becomes cumbersome, how-
ever, when one is faced with staggeringly large numbers
such as Graham’s number. For such cases, more exten-
sive systems such as Conway’s chained arrow notation
or Steinhaus-Moser notation are better suited. See also the
Ackermann function, to which up-arrow notation is
closely related.

Koch snowflake
One of the most symmetric and easy to understand frac-
tals; it is named after the Swedish mathematician Helge
von Koch (1870–1924), who first described it in 1906. To
make the snowflake, start with a straight line and split it
into three equal parts. Replace the middle part with two
lines, both of the same length as the first three, creating an

Koch snowflake This fractal shape emerges from continually
sprouting equilateral triangles. Xah Lee, www.xahlee.org
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equilateral triangle missing the bottom line. The shape now
consists of four straight lines with the same length. For
each of these lines, repeat this process, then continue the
transformation indefinitely. The Koch snowflake has infi-
nite length because each iteration increases the length of a
line segment one-third, and the iterations go on forever.

The same kind of process can be applied to a tetrahe-
dron. Take a regular tetrahedron (all side lengths the
same) and glue to each of its faces a smaller regular tetra-
hedron. (Each smaller tetrahedron is scaled down by a
factor of 1⁄2 from the larger one, and placed on each face
in an inverted fashion, so that it divides the face into four
equilateral triangles and covers the center one.) Then iter-
ate this process. Intuition suggests that the end product
might be a very strange-looking jagged object. But in fact,
in the limit, as the number of iterations tends to infinity,
the result is a perfect cube! The cube has side length
t/!2", where t is the length of one of the edges of the reg-
ular tetrahedron you started with. Variations on the flat
Koch snowflake include the exterior snowflake, the Koch
antisnowflake, and the flowsnake curves.

Kolmogorov, Andrei Nikolaievich (1903–1987)
A Russian mathematician and physicist who advanced
the foundations of probability theory, the algorithmic
theory of randomness, and made crucial contributions
to the foundations of statistical mechanics, stochastic
processes, information theory, fluid mechanics, and
nonlinear dynamics. All of these areas, and their interre-
lationships, underlie complex systems as they are stud-
ied today. His work on reformulating probability started
with a 1933 paper in which he built up probability theory
in a rigorous way from fundamental axioms, similar to
Euclid’s treatment of geometry. Kolmogorov went on to
study the motion of the planets and turbulent fluid

flows, publishing two papers in 1941 on turbulence that
even today are of fundamental importance.

In 1954 he developed his work on dynamical systems
in relation to planetary motion, thus demonstrating the
vital role of probability theory in physics and reopening
the study of apparent randomness in deterministic sys-
tems, along the lines originally conceived by Henri Poin-
caré. In 1965 he introduced the algorithmic theory of
randomness via a measure of complexity, now referred to
as Kolmogorov complexity. According to Kolmogorov, the
complexity of an object is the length of the shortest com-
puter program that can reproduce the object. Random
objects, in his view, were their own shortest description,
whereas periodic sequences have low Kolmogorov com-
plexity, given by the length of the smallest repeating
“template” sequence they contain. Kolmogorov’s notion
of complexity is a measure of randomness, one that is
closely related to Claude Shannon’s entropy rate of an
information source.

Königsberg bridge problem
See bridges of Königsberg.

Kronecker, Leopold (1823–1891)
A German mathematician and pioneer in the field of alge-
braic numbers who formulated the relationship between
the theory of numbers, the theory of equations, and ellip-
tic functions. He acquired a passion for number theory
from Ernst Kummer, his instructor at the Liegnitz Gymna-
sium. Kronecker, who made a fortune in business before
returning to his academic studies, claimed that mathemat-
ical argumentation should be based only on integers and
finite procedures. He was one of Georg Cantor’s sternest
critics and refused to accept the validity of Weierstrass’s
nondifferentiable function.



labyrinth
See maze.

Lagrange, Joseph Louis (1736–1813)
An Italian-born French mathematician who made impor-
tant contributions to number theory and to classical and
celestial mechanics. By his mid-twenties he was recog-
nized as one of the greatest living mathematicians
because of his papers on wave propagation and the max-
ima and minima of curves. His prodigious output in-
cluded his textbook Mécanique Analytique (Analytical
mechanics, 1788), the basis for all later work in this field.
His remarkable discoveries include the Lagrangian, a dif-
ferential operator characterizing a system’s physical state,
and the Lagrangian points, points in space where a small
body in the gravitational fields of two large ones remains
relatively stable. Under Napoleon, Lagrange was made
both a senator and a count; he is buried in the Panthéon.

lambda calculus
A model of computation that is capable of universal
computation. The Lisp programming language was in-
spired by lambda calculus.

Lamé curve
Any of a family of curves related to the ellipse and that
was first recognized and studied in 1818 by the French
physicist and mathematician Gabriel Lamé (1795–1870).
The formula for the Lamé curve family is a generalization
of the equation for an ellipse (|x/a|2 + | y/b|2 = 1), namely:

|x/a|n + | y/b|n = 1,

where n is any real number. When n = 0, the curve
reduces to a pair of crossed lines. As n increases, the curve
changes from a curved star shape to a rectangle, with
diagonals a and b, when n = 1. The special case when 
n = 2⁄3 corresponds to the astroid. Between n = 1 and n =
2 the curve turns from a curved rectangle to an ellipse (or
a circle when both a and b are 1). For values of n greater
than 2, Lamé curves are known as superellipses.

lamination
A decoration of a manifold in which some subset is par-
titioned into sheets of some lower dimension, and the
sheets are locally parallel. It may or may not be possible
to fill the gaps in a lamination to make a foliation.

Langley’s adventitious angles
A seemingly simple problem first posed in 1922 by E. M.
Langley[195] in connection with an isosceles triangle. In its
original form, it is stated as follows: ABC is an isosceles
triangle. B = C = 80°. CF at 30° to AC cuts AB in F. BE
at 20° to AB cuts AC in E. Prove angle BEF = 30°. (No
mention is made of D. Perhaps it is at the intersection of
BE and CF.) A number of solutions appeared shortly
after, including this one given by J. W. Mercer: Draw BG
at 20° to BC, cutting CA in G. Then angle GBF = 60°
and angles BGC and BCG are 80°. So BC = BG. Also
angle BCF = angle BFC = 50°, so BF = BG and triangle
BFG is equilateral. But angle GBE = 40° = angle BEG, so
BG = GE = GF. And angle FGE = 40°, hence GEF = 70°
and BEF = 30°.

Langton’s ant
A type of cellular automaton, or a simple form of artifi-
cial life, named after its designer, Christopher Langton.
The ant lives on an infinitely large chessboard, each
square of which can be either black or white. Two pieces
of information are associated with this digital insect: the

L
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Lamé curve One example from the family of Lamé curves. ©
Jan Wassenaar, www.2dcurves.com
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direction that it’s facing, and the state of the square that
it currently occupies. Three simple rules govern the ant’s
behavior: (1) If it’s on a black square, it turns left. (2) If
it’s on a white square, it turns right. (3) As it moves to the
next square, the one it was on reverses color. Interest in
Langton’s ant stems from the fact that despite being a
completely determined system governed by extremely
simple rules, the patterns it produces are fantastically rich
and complex. For the first 10,000 moves or so, the ant
meanders around, building and then unbuilding struc-
tures with little pattern to them. Then, near the end of

this chaotic phase, the ant begins to construct a diagonal
highway off toward one edge of the board. In fact, this
pattern stems from a sequence of 104 moves that, once
started, will go on forever. In the language of chaos the-
ory, the pattern is a stable attractor for the system. Remark-
ably, no matter what the initial arrangement of squares—
even if the white and black squares are set up randomly—
the ant will end up building a highway. The ant can be
allowed to wrap around the edges of a finite board, thus
allowing it to intersect its own path, and it will still end up
building the highway. Are there any initial states that
don’t lead to the diagonal-road-building loop? No excep-
tions have been found from experiments—but proving it
is another matter. Most mathematicians believe there is
no general analytical method of predicting the position
of the ant, or of any such chaotic system, after any given
number of moves. Its behavior can’t be reduced to the
rules that govern it. In this sense, Langton’s ant is a sim-
ple demonstration of the undecidability of the halting
problem. The British mathematician Ian Stewart and
biologist Jack Cohen, in their book Figments of Reality,[321]

go a step further and use Langton’s ant as an analog of an
essential stage in the evolution of complex systems such
as life: a stage in which the existence of chaotic behavior
contains the potential for the spontaneous emergence of
unpredictable forms of order.

Laplace, Pierre Simon (1749–1827)
A French mathematician and astronomer who was heav-
ily involved with the development of celestial mechanics.
He made an early impact by solving a complex problem
of mutual gravitation that had eluded both Leonhard
Euler and Joseph Lagrange. Laplace was among the most
influential scientists of his time and was called the New-
ton of France for his study of and contributions to the
understanding of the stability of the solar system. Laplace
generalized the laws of mechanics for their application to
the motion and properties of the heavenly bodies. He is
also famous for his great treatises Mécanique céleste (Celes-
tial mechanics, 1799–1825) and Théorie analytique des prob-
abilités (Analytical theory of probabilities, 1812) which
were advanced in large part by the mathematical tech-
niques that Laplace developed early in his life.

large number

Bigger than the biggest thing ever and then some.
Much bigger than that in fact, really amazingly
immense, a totally stunning size, real “wow, that’s
big!” time. . . . Gigantic multiplied by colossal mul-
tiplied by staggeringly huge is the sort of concept
we’re trying to get across here.

—Douglas Adams, The Restaurant at the End of the Universe

Langton’s ant After 368 steps, a symmetrical pattern
emerges.

Langton’s ant After 10,647 steps the “highway” is under
construction.
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Making, naming, and representing very large numbers is
itself a big problem. A simple way to start is by adding
zeros: 10; 100; 1,000; 10,000; . . . , 1,000,000; . . . . But
this quickly gets tedious and exponentiation becomes a
more attractive option: 101, 102, 103, . . . , 106, . . . . Nam-
ing the various powers of 10 follows a regular pattern of
prefixes. In the United States, 103 is one thousand, 106 is
one million, 109 is one billion, 1012 is one trillion, 1015 is
one quadrillion, and so on. The “-illion” root kicks in at
the sixth power of 10 prefixed by “m” for “mono”; then,
every jump of three powers (factor of a thousand) comes
the next prefix. Put another way, the U.S. name for 103n

uses the Latinized prefix for n − 1. One centillion, which
is the largest number with a single-word name in English,
is 10303. Elsewhere in the world, “billion,” “trillion,” and
so on, can mean things other than they do in the U.S.
system. A British billion, for example, is one million mil-
lion, or 1012, while the now largely obsolete term milliard
was used for a thousand million. However, the American
forms have become fairly standard internationally and
are used without qualification in this book. It’s also
worth noting that, while “quadrillion,” “quintillion,” and
so forth, are perfectly valid terms, “one thousand tril-
lion,” “one million trillion,” and so forth, are generally
preferred.

Exponentiating quite small numbers seems at first to
be a pretty economical way of making and writing large
numbers: 1030, for example, is a highly effective short-
hand for 1,000,000,000,000,000,000,000,000,000,000.
But this method runs out of steam as the numbers get
bigger and bigger. Take, for instance, the googol and the
googolplex. One googol is the unofficial name for 10100,
or 1 followed by 100 zeros. This innocuous-looking
number is larger than the number of atoms in the uni-
verse. What happens, therefore, if we want to represent
the number that is 1 followed by a googol number of zeros?
One way would be to write “1 followed by a googol
number of zeroes”! But this is cheating because it
couldn’t be generalized without first giving a proper
name to a fantastically large number of numbers. A bet-
ter solution is to exponentiate using large numbers.
Thus, 1 googolplex = 10googol = 1010100. This is the begin-
ning of a power tower.

Are numbers as large as the googol, not to mention the
googolplex, of any practical importance? Science has
given us such colossi as the Avogadro constant (the num-
ber of molecules in a sample whose weight in grams
equals its molecular weight) = 6.023 × 1023, the Eddington
number (astrophysicist Arthur Eddington’s best estimate
of the number of protons in the universe) = 1.575 × 1079,
and the Supermassive Black Hole Evaporation Time =
10100 years (or thereabouts)—which brings us to the level of

the googol. But there’s nothing known or that can be rea-
sonably conjectured in the “real” world of physics that
goes much beyond this.

Science fiction can carry us a bit further. In The Hitch-
hiker’s Guide to the Galaxy[5] by Douglas Adams appears
one of the largest numbers ever used in a work of fiction:
2260199. These are the odds quoted against the characters
Arthur Dent and Ford Prefect being rescued by a passing
spaceship just after having been thrown out of an airlock.
As it happens, they are rescued by a spaceship powered
by the “infinite improbability drive.” By contrast, some
special numbers in mathematics make even the googol-
plex look tiny. Skewes’ number, 10101034

, was long held 
up as an example of a googolplex-dwarfing number that
nevertheless served a bonafide purpose in mathematics.
However, even this seemingly immense integer is made
to look ridiculously small by the likes of more recently
described numbers, such as Graham’s number, the
Mega, and the Moser, which are so utterly vast that it takes
a page or two simply to describe the various special nota-
tions used to represent them.

Just as writing out a number in full, or in place-value
notation, becomes unwieldy with numbers as big as a
googol, so exponentiation, in turn, endangers the world’s
forests if it tries to take on seriously large numbers. 
A more effective shorthand is tetration—tetra (from the
Greek meaning “four”) because it is the fourth dyadic
operation in the series: addition, multiplication, ex-
ponentiation, tetration. Dyadic means that two num-
bers, or arguments, are involved in the operation.
Multiplication is repeated addition (e.g., 2 × 3 = 2 + 2 +
2), exponentiation is repeated multiplication (e.g., 23 =
2 × 2 × 2), and tetration is repeated exponentiation. For
example, 2 tetrated to 3, represented as 32, is 222 = 24 =
16; 2 tetrated to 4, or 42, is 2222

= 216 = 65,536; and 2
tetrated to 5, or 52, is 22222

= 265,536 = something too big 
to write out in full. Tetration goes by various other
names including superpower, superdegree, and, the one
used most commonly in mathematical circles and also
here, hyper4.

Just as the exponentiation of two numbers, a and b, is
represented as ab and defined as a × a × . . . × a (b terms),
the hyper4 of a and b is represented as a(4)b and defined 
as aaa . . . a

(a power tower with b levels). Alternatively, the
hyper4 operator can be represented in Knuth’s up-arrow
notation as a ↑↑ b. Continuing this pattern:

hyper5 of a and b = a(5)b = a(4)a(4) . . . a(4) = a ↑↑↑ b
hyper6 of a and b = a(6)b = a(5)a(5) . . . a(5) = a ↑↑↑↑ b
hyper7 of a and b = a(7)b = a(6)a(6) . . . a(6) = a ↑↑↑↑↑ b

To get some idea of the potency of this kind of represen-
tation, consider the sequence
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1

10

10,000,000,000

10,000,000,000,000,000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000 (100 zeroes)

. . .

Notice how big even the fourth term is? The seemingly
innocuous-looking number 5 ↑↑↑↑↑ 5 (or 5(7)5) is so huge
that it would be around the 100,000,000,000,000,000th
(one hundred thousand trillionth) term of this sequence!

Since the dyadic operators discussed previously form a
pattern, they can be telescoped into a single triadic oper-
ator that has three arguments. This can be defined as:

hy(a, n, b) =!
Beyond hyper are other triadic operators capable of gen-
erating large numbers even faster. The Ackermann func-
tion and the Steinhaus-Moser notation are both equivalent
to a triadic operator that is somewhat more powerful
than hy(a, n, b). Similarly, Conway’s chained-arrow
notation marks an evolution of Knuth’s symbolism.
These various techniques and notations can produce
immense finite numbers. But beyond any of these lie the
many different kinds of infinity.

lateral inhibition illusion
See Hermann grid illusion.

Latin square
An n × n square grid, or matrix, whose entries consist of n
symbols such that each symbol appears exactly once in
each row and each column. The following are some
examples:

1 2 1 2 3 1 2 3 4 1 2 3 4 M A G I C
2 1 2 3 1 2 3 4 1 2 1 4 3 G I C M A

3 1 2 3 4 1 2 3 4 1 2 C M A G I
4 1 2 3 4 3 2 1 A G I C M

I C M A G

Latin squares have a long history, stretching back at least
as far as medieval Islam (c. 1200), when they were used
on amulets. Abu l’Abbas al Buni wrote about them and
constructed, for example, 4 × 4 Latin squares using let-

1 + b for n = 0
a + b for n = 1
a × b for n = 2
a ↑ b for n = 3
a ↑ hy(a, 4, b − 1) for n = 4
hy(a, n − 1, hy(a, n, b − 1)) for n > 4
a for n > 1, b = 1

ters from a name of God. In his famous etching Melan-
cholia, the fifteenth-century artist Albrecht Dürer por-
trays a 4 × 4 magic square, a relative of Latin squares, in
the background. Other early references to them concern
the problem of placing the 16 face cards of an ordinary
deck of cards in the form of a square so that no row, col-
umn, or diagonal contains more than one card of each
suit and each rank. Leonhard Euler began the systematic
treatment of Latin squares in 1779 and posed a problem
connected with them, known as the thirty-six officers
problem, that wasn’t solved until the beginning of the
twentieth century. Arthur Cayley continued work on
Latin squares, and in the 1930s the concept arose again
in the guise of multiplication tables when the theory of
quasigroups and loops began to be developed as a gen-
eralization of the group concept. Latin squares played
an important role in the foundations of finite geome-
tries, a subject that was also in development at that time.
Also in the 1930s, a large application area for Latin
squares was opened by R. A. Fisher who used them and
other combinatorial structures in the design of statistical
experiments.

lattice
A periodic arrangement of points such as the vertices (see
vertex) of a tiling of space by cubes or the positions of
atoms in a crystal. More technically, a discrete Abelian
subgroup (see Abelian group) of an n-dimensional vec-
tor space that is not contained in an (n − 1)-dimensional
vector space. Lattices play a central role in the theory of
Lie groups, in number theory, in error-correcting codes,
and many other areas of mathematics. See also geo-
board.

lattice path
A sequence of points in a lattice such that each point dif-
fers from its predecessor by a finite list of allowed steps.
Random lattice paths are an interesting model for the
random motion of a particle and lattice paths are also
important in enumerative combinatorics.

lattice point
A point with integer coordinates.

latus rectum
A chord of an ellipse that passes through a focus and is
perpendicular to the major axis of the ellipse. Its plural is
latera recta.

league
An archaic unit of traveling distance. The precise value
varied, but was usually around 3 miles (4.8 kilometers).
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least common multiple
The smallest integer that is an exact multiple of every
number in a set of integers.

least upper bound
The smallest number that is larger than every member of
a set of numbers.

Lebesgue, Henri Leon (1875–1941)
A French mathematician who introduced the modern
definition of an integral. Lebesgue graduated from the
École Normale Supériere and, from 1921, taught at 
the College de France. He and Emile Borel founded the
modern theory of functions of a real variable, Lebesgue’s
great contribution being his new general definition of an
integral (1902), which became known as the Lebesgue inte-
gral (see integration). This led to important advances in
calculus, curve rectification, and trigonometric series,
and, in Borel’s hands, marked the start of measure the-
ory. Although the Lebesgue integral was an example of
the power of generalization, Lebesgue himself wasn’t a
fan of generalization and spent the rest of his life working
on very specific problems, mostly in analysis.

Lebombo bone
One of the oldest mathematical artifacts known, a small
piece of the fibula of a baboon, found near Border Cave
in the Lebombo Mountains between South Africa and
Swaziland. Discovered in the 1970s during excavations of
Border Cave and dated about 35,000 B.C., the Lebombo
bone is marked with 29 clearly defined notches. This sug-
gests it may have been used as a lunar phase counter, in
which case African women may have been the first math-
ematicians, because keeping track of menstrual cycles
requires a lunar calendar. Certainly, the Lebombo bone
resembles calendar sticks still used by Bushmen in
Namibia. See also Ishango bone.

left-right reversal
See mirror reversal problem.

Leibniz, Gottfried Wilhelm (1646–1716)
A German philosopher, mathematician, and statesman
who developed differential and integral calculus inde-
pendently of Isaac Newton. He also invented a calculat-
ing machine, is considered a pioneer in mathematical
logic, and proposed the metaphysical theory that we live
in “the best of all possible worlds.” In Leibniz’s philo-
sophical view, the universe is composed of countless
conscious centers of spiritual force or energy known as
monads. Leibniz talks about the “compossible” elements
of any possible world—elements that allow a logically

consistent structure. Though one of the finest minds 
of his age, Leibniz was not immune to blunders: he
thought it just as easy to throw 12 with a pair of dice as
to throw 11.

Leibniz harmonic triangle
A triangle of fractions that is related to the more famous
Pascal triangle in a very simple way. Each row of the
Leibniz harmonic triangle starts with the reciprocal of
the row number (or the row number plus one depending
on whether one starts counting from 1 or 0). Every entry
is the sum of the two numbers just below it. The entries
can thus be computed sequentially left to right and top
to bottom using subtraction instead of addition.

1/1
1/2   1/2

1/3   1/6   1/3
1/4   1/12   1/12   1/4

1/5   1/20   1/30   1/20   1/5

lemma
A short auxiliary proposition used in the proof of a larger
theorem.

lemniscate of Bernoulli
A curve “shaped like a figure 8, or a knot, or the bow of a
ribbon” in the words of Jacob Bernoulli (see Bernoulli
family) in an article published in 1694. Bernoulli named
the curve “lemniscate” after the Greek lemniskus for a pen-
dant ribbon (the type fastened to a victor’s garland). It
has the Cartesian equation

(x 2 + y 2)2 = a 2(x 2 − y 2).

At the time he wrote his article, Bernoulli wasn’t aware
that the curve he was talking about was a special case of a
Cassinian oval, which had been described by Cassini in
1680. The general properties of the lemniscate were
established by Giovanni Fagnano (1715–1797) in 1750;
Leonhard Euler’s investigations of the length of arc of
the curve (1751) led to later work on elliptic functions.
There is a relationship between the lemniscate and the
rectangular hyperbola. If a tangent is drawn to the
hyperbola and the perpendicular to the tangent is drawn
through the origin, the point where the perpendicular
meets the tangent is on the lemniscate. See also hip-
popede.

Leurechon, Jean (c. 1591–1670)
A French Jesuit priest and mathematician who wrote
Recreations mathématiques (1624) under the pseudonym
Henrik van Etten. Much of the mathematical content
centers around Claude Bachet’s problems and may have
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been copied from it or some common source. The book
also gives the earliest known description of the operation
of an ear trumpet.

liar paradox
“This statement is false.” What do we make of this state-
ment (call it S)? If S is true, then S is false. On the other
hand, if S is false, then it is true to say S is false; but,
because the liar sentence is saying precisely that (namely
that it is false), S is true. So S is true if and only if it is
false. Since S is one or the other, it is both! Debate about
sentences like S has been going on among philosophers
and logicians for more than 2,000 years without any clear
resolution.

The roots of the liar paradox stretch back to the
philosopher Epimenides in the sixth century B.C. He
said: “All Cretans are liars. . . . One of their own poets
has said so.” Another version of this can be found in the
Bible, Titus 1:12–13, “Even one of their own prophets
has said, ‘Cretans are always liars, evil brutes, lazy glut-
tons.’ This testimony is true.” The poet’s (or prophet’s)
statement is sometimes wrongly considered to be para-
doxical because he himself is a Cretan. But actually
there’s no paradox here. A “liar,” in everyday language,
is someone who on occasion knowingly gives false
answers. This isn’t problematic: the poet, while lying
occasionally, this time spoke the truth. However, most
formulations of logic define a “liar” as an entity that
always produces the negation of the true answer, that is,
someone who does nothing but lie. Thus, the poet’s
statement can’t be true: if it were, then he himself
would be a liar who just spoke the truth, but liars don’t
do that. However, no contradiction arises if the poet’s
statement is taken to be false: the negation of “All Cre-
tans are liars” is “Some Cretans aren’t liars,” in other
words: some Cretans sometimes speak the truth. This
doesn’t contradict the fact that our Cretan poet just
lied. Therefore, the statement “All Cretans are liars,” if
uttered by a Cretan, is necessarily false, but not para-

doxical. Even the statement “I am a liar” is not para-
doxical; depending on the definition of “liar” it may be
true or false. However, the statement “I am lying now,”
first attributed to Eubulides of Miletus in the fourth
century B.C., definitely is paradoxical. It is exactly
equivalent to the sentence, we started with: “This state-
ment is false.”

Various elaborations of the basic Eubulides liar para-
dox have appeared over the ages. In the fourteenth cen-
tury, the French philosopher Jean Buridan applied it in
his argument for the existence of God. In 1913, the Eng-
lish mathematician Philip Jourdain (1879–1921) offered a
version that is sometimes referred to as “Jourdain’s card
paradox.” On one side of a card is written:

The sentence on the other side of this card is true.

On the other side is written:

The sentence on the other side of this card is false.

Yet another popular version of the liar paradox, guaran-
teed to perplex, is given by the following three sentences
written on a card:

1. This sentence contains five words.

2. This sentence contains eight words.

3. Exactly one sentence on this card is true.

Lie, Marius Sophus (1842–1899)
A Norwegian mathematician who, along with his close
friend Felix Klein, introduced group theory into geome-
try and used it to classify geometries. Lie discovered the
contact transformation, which maps curves into surfaces
(1870), and Lie groups, which use continuous or infini-
tesimal transformations. He used these groups to classify
partial differential equations, making the traditional
methods of solution all reduce to a single principle. Lie
groups also provided a basis for the growth of modern
topology. See also Lie algebra.

lemniscate of Bernoulli © Jan Wassenaar, www.2dcurves.com
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Lie algebra
An algebra, named after M. Sophus Lie, in which multi-
plication satisfies properties similar to the bracket operation
on matrices given by [A, B] = AB − BA, where the oper-
ation on the right-hand side involves ordinary multipli-
cation and subtraction of matrices. The operation is not
associative.

Lie group
A group, named after M. Sophus Lie, that is also a man-
ifold. Groups of a real matrix, such as occur in quantum
field theory, give naturally occurring examples of Lie
groups. The tangent space at the identity element of a Lie
group forms a Lie algebra in a natural way.

Life, Conway’s game of
The best known example of a cellular automaton; it was
invented by John Conway and first brought to public
attention in Martin Gardner’s Scientific American column
in October 1970.[120] Conway’s goal in creating Life was to
devise a universal Turing machine—a sort of infinitely
programmable computer. John von Neumann had de-
scribed such a system in the 1950s, but it had very com-
plex rules; Conway wanted to find one that was much
simpler to describe and to operate. Life is played on a
grid of squares on which each cell is either alive (occu-
pied) or dead (empty). The game starts from an arbitrary
initial configuration of live cells, and then progresses
through generations as the life and death rules are
applied. These rules are very simple: (1) A live cell sur-
vives to the next generation if it has two or three neigh-
bors. (2) A live cell dies if it has four or more neighbors
(overcrowding) or if it has only one neighbor or none
(isolation). (3) A dead cell becomes a live cell in the next
generation if it has exactly three neighbors (birth). The
rules of Life were developed over a two-year-period dur-
ing tea and coffee breaks by Conway and a group of grad-
uate students and colleagues. Because Go boards and
counters were used at this stage, instead of computers, it
was important to have a death rule so that populations
didn’t tend to explode and quickly race off the board. On

the other hand, to enable sufficiently interesting behav-
ior so the game had a chance of being a universal system,
it was equally important to have a birth rule that pre-
vented populations from dying out. The rules eventually
chosen provided a balance between birth and death so
that the system tended to be fairly stable yet interesting
enough to study. An early sign of success was the discov-
ery of patterns, known as “gliders,” that kept their shape
while drifting across the plane. This was a hopeful step
toward proving universality because it showed that the
system had a way to transmit information from one place
to another. Conway and his group went on to build
nearly all the necessary configurations for arbitrary com-
putations: AND gates, OR gates, and so on, just like the
components of an ordinary computer. What they needed
next was a way of producing gliders at will—a “glider
gun.” At this point, Conway sent a letter describing Life
and the early findings to Martin Gardner, offering a prize
of $50 for a configuration whose population tended
toward infinity. The resulting Scientific American column
sparked the public’s imagination and very quickly a glider
gun was discovered by a group at the Massachusetts Insti-
tute of Technology led by R. W. Gosper. Within two
weeks of the discovery of the glider gun, both Conway’s
group and the group at MIT had shown that the system
was indeed universal.

limaçon of Pascal
A snail-shaped curve (limaçon is French for “snail”) named
by the French mathematician Gilles Roberval after Eti-
enne Pascal, the father of Blaise Pascal. It had been dis-
covered earlier, however; Albrecht Dürer gave a method
for drawing it as early as 1525 in his Underweysung der Mes-
sung. The limaçon of Pascal is a special case of an epitro-
choid in which the rolling circle and the rolled circle have
the same radius, and is also the catacaustic and the pedal
curve of the circle. It has the quartic Cartesian equation

(x 2 + y 2 − 2rx)2 = k 2(x 2 + y 2),

where r is the radius of the rolling circle or the rolled cir-
cle and k is a constant.

Life, Conway’s game of A “glider” advances one cell down and one cell to the right.
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Sometimes the term ordinary limaçon is used to de-
scribe the curve when the value of k is greater than 0 and
less than 1. When k = 0 the curve is a circle and when 
k = 1 the curve is a cardioid, so the ordinary limaçon is a
transitional form between these two. The ordinary lima-
çon is also the inverse of the ellipse. For values of k > 1,
a loop or noose appears in the curve. The inverse of a
limaçon with a noose is a hyperbola. In fact, the con-
stant k is the same as the eccentricity for a conic section.
When k = 2, the limaçon is also called a trisectrix.

limerick
Why is this a limerick?:

((12 + 144 + 20) + 3"4#/7) + 5 × 11 = 92 + 0

Because, as its inventor, Jon Saxton, has pointed out:

A dozen, a gross, and a score,
Plus three times the square root of four,
Divided by seven,
Plus five times eleven,
Is nine squared and not a bit more.

limit
The target value that terms in a sequence of numbers get
closer and closer to. This limit is not necessarily ever
reached but can be approached arbitrarily close if the
sequence is taken far enough.

limping triangle
A right triangle with two shorter sides (i.e., those other
than the hypotenuse) that differ in length by one unit.
An example is the 20-21-29 triangle (202 + 212 = 292).

line
The shortest distance between any two points in Euclid-
ean space. A line is implicitly a straight line; the alterna-
tive is a curve. Mathematically, a line may be determined
by the presence of any two points in an n-dimensional
space (where n is two or more). A line segment is a piece of
a line with definite endpoints.

linear
Having only a multiplicative factor. If f ( x) is a linear func-
tion, then f ( a + b) = f ( a) + f ( b) and c f ( x) = f ( cx) must
both be true for all values of a, b, c, and x.

linear algebra
The study of vectors and vector spaces. Linear algebra
has a central place in modern mathematics, is used
widely in both abstract algebra and functional analysis,
and finds a concrete representation in the form of ana-
lytical geometry. Linear algebra began as the study of
vectors in two- and three-dimensions but has now been
extended to a generalized n-space.

linear group
A group of matrices under matrix multiplication.

linear programming
The problem, and associated area of mathematics, of max-
imizing or minimizing a linear function on a convex set,
especially a polytope. Equivalently, maximizing a linear
expression in some number of variables subject to linear
equalities and inequalities.

linear system
Any system whose change of values of its variables can be
represented as a series of points suggesting a straight line
on a coordinate; hence, linear for “line.” More generally,
a linear system is one in which small changes result in
small effects, and large changes in large effects. In a linear
system, the components are isolated and noninteractive.
Real linear systems are rare in nature since living organ-
isms and their components are not isolated and do inter-
act. Compare with nonlinear system.

Liouville number
A transcendental number that can be approximated
very closely by a rational number. Normally, proving
that any given number is transcendental is difficult. 
However, the French mathematician Joseph Liouville
(1809–1882) showed the existence of a large (in fact, 
infinitely large) class of transcendentals whose nature is
easy to ascertain. An example of a Liouville number is
0.10100100000010000000000000000000000001 . . . in
which the successive groups of zeros are of length 1!, 2!,
3!, 4!, and so on.

limaçon of Pascal © Jan Wassenaar, www.2dcurves.com
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Lissajous figure
A figure or graph of the type most often seen on an oscil-
loscope. The simplest Lissajous figures are circles or
ellipses, but they can also take the form of lemniscates
and other, more complex shapes. They are named for the
French scientist Jules Antoine Lissajous (1822–1880),
who experimented with them in the 1850s, and are also
known as Bowditch curves, because they had been written
about earlier by the American astronomer and mathe-
matician Nathanial Bowditch (1773–1838).

lituus
A spiral curve that was discovered by the English mathe-
matician Roger Cotes (1682–1716) and named by the
Scottish mathematician Colin Maclaurin (1698–1746) in
1722. The Latin lituus refers to a staff shaped like a
bishop’s crosier. The lituus is the locus of a point that
moves in such a manner that the area of a circular sector
remains constant; it has the polar equation

r 2 = a 2/θ.

See polar coordinates.

Lobachevsky, Nikolai Ivanovich (1793–1856)
A Russian mathematician who was one of the pioneers of
non-Euclidean geometry. He developed, independently
of János Bólyai, the self-consistent system of hyperbolic
geometry in which Euclid’s parallel postulate is replaced
by one allowing more than one parallel through the fixed
point. Lobachevsky first announced his system in 1826
and subsequently wrote several expositions of it, in-
cluding Geometrical Researches on the Theory of Parallels
(originally published in 1840 in German). Lobachevsky
studied and taught at the University of Kazan and even-
tually became rector of this institution in 1826. However,
for some reason, despite serving his country and univer-
sity well, he fell from favor and in 1846 was relieved by
the government of his posts as professor and rector.

localized solution
A solution of a differential equation, or a similar math-
ematical object, that is confined to a small region even
though it has the freedom to spread out.

loculus of Archimedes
A dissection game, similar to tangrams, which consists
of 14 polygonal shapes that fit together to make a square.
These pieces can be rearranged to make pictures of peo-
ple, animals, and objects, or reassembled into their origi-
nal form. There are many references to the game in
ancient literature, including a description by the Roman
poet and statesman Magnus Ausonius (A.D. 310–395).

Only two fragmentary manuscripts, one an Arabic trans-
lation and the other a Greek manuscript dating from the
tenth century discovered in Constantinople in 1899,
connect the puzzle to Archimedes by calling it loculus
Archimedius (“Archimedes’s box”). More generally, but
for unclear reasons, it is known as the ostomachion (Greek
for “stomach”), or, in Latin texts, as the syntemachion. In
2003, William Cutler used a computer program to enu-
merate all 536 distinct ways (barring rotations and reflec-
tions) in which the pieces can be arranged into a square.

locus
The set of all points (usually forming a curve or surface)
that satisfy some condition. For example, the locus of
points in the plane equidistant from a given point is a cir-
cle. The Latin word locus simply means “place.” (The
Greek equivalent is topos, which crops up in “topology”.)

logarithm
The logarithm of a number or variable x to base b, log bx,
is the exponent of b needed to give x. The bases most
commonly used in mathematics are e and 10. A loga-
rithm to base e, written as log x or ln x, is known as a nat-
ural logarithm. A logarithm to base 10 is written as log10x
and is known as a common logarithm.

logarithmic spiral
A type of spiral, also known as an equiangular spiral, that
is very common in the natural world. Wonderful exam-
ples are found in the shells of some mollusks, such as that
of the nautilus, and in spider webs. The angle any tan-
gent to the curve makes with a tangent to a circle at the
same radius, known as the pitch angle, is constant and
results in a logarithmic spiral being self-similar: in other
words, any part of it looks like any other part (though
possibly rotated). Hawks approach their prey in the form
of a logarithmic spiral and their sharpest view is at an
angle to their flight direction that is the same as the spi-
ral’s pitch. On an altogether different scale, the arms of
spiral galaxies are roughly logarithmic spirals. Our own
galaxy, the Milky Way, is believed to have four major
arms, each of which is a logarithmic spiral with pitch of
about 12°. Approximate logarithmic spirals with a pitch
of about 17° can be generated using the Fibonacci
sequence or the golden ratio.

In polar coordinates (r, θ) the equation of the loga-
rithmic spiral is

r = a bθ,

with positive real numbers a and b. Changing a rotates
the spiral while b controls how tightly and in which direc-
tion it is wrapped. It can be distinguished from the
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Archimedean spiral by the fact that the distance be-
tween the arms of a logarithmic spiral increase in a geo-
metric sequence while in an Archimedean spiral this
distance is constant. Starting at a point P and moving
inward along the spiral, one has to circle the origin infi-
nitely often before reaching it; yet, the total distance 
covered is finite. This was first realized by the Italian
physicist Evangelista Torricelli (1608–1647) even before
calculus had been invented. The total distance covered is
r/sin θ where θ is the pitch angle and r is the straight-line
distance from P to the origin.

The logarithmic spiral was first described by René
Descartes and later studied in depth by Jakob Bernoulli
(see Bernoulli family), who called it Spiralis mirabilis (the
wonderful spiral) and wanted one engraved on his tomb-
stone. He did get a spiral, but unfortunately it was a
rather crudely cut Archimedean type.

logic
The branch of mathematics concerned with how one
statement can imply others, or how sets of statements can

logarithmic spiral © Jan Wassenaar, www.2dcurves.com

loculus of Archimedes The loculus of Archimedes is one of the most ancient dissection puzzles. Kadon Enterprises, Inc.,

www.gamepuzzles.com
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be connected by chains of implication. Such relation-
ships can be written down using special symbols, and dif-
ferent sets of rules can be studied to see how they give
rise to different sorts of structures.

logical depth
A measure of the complexity of a system, developed in
1988 by the American computer scientist and mathe-
matician Charles Bennett. It contrasts with another such
measure, algorithmic complexity, but, like it, is a mea-
sure of the algorithms needed to generate the data from a
system.

loop
(1) A knot or hitch that holds its form. (2) A degenerate
edge of a graph that joins a vertex to itself. (3) A se-
quence of instructions that is repeated either a specified
number of times or until a particular condition prevails.
Loops lie at the heart of most computer programs. The
most common type is the iterative loop, signified by key-
words such as for, while, do, and repeat, or their equivalent,
in which a given set of instructions is repeated a specified
number of times. The recursive loop is a more powerful
construct that carries out a given set of instructions, typ-
ically including recursive calls with modified parameters
back to the instruction set itself, until a terminating con-
dition is met. Recursive algorithms solve problems by
reducing them to smaller and smaller subproblems until
a solution is found, reusing the same set of instructions as
often as needed.

Lorenz, Edward Norton (1917–)
A research meteorologist at the Massachusetts Institute of
Technology who, in the early 1960s, using a simple sys-
tem of equations to model convection in the atmos-
phere, ran headlong into the phenomenon of “sensitivity
to initial conditions.” In the process he sketched the out-
lines of one of the first recognized chaotic attractors. In
Lorenz’s meteorological computer modeling, he discov-
ered the underlying mechanism of deterministic chaos:
simply formulated systems with only a few variables can
display highly complicated behavior that is unpredict-
able. Using his digital computer, culling through reams
of printed numbers and simple strip chart plots of the
variables, he saw that slight differences in one variable
had profound effects on the outcome of the whole sys-
tem. This was one of the first clear demonstrations of 
sensitive dependence on initial conditions. Equally im-
portant, Lorenz showed that this occurred in a simple,
but physically relevant model. He also appreciated that
in real weather situations, this sensitivity could mean the
development of a front or pressure-system where there

never would have been one in previous models. In his
famous 1963 paper, Lorenz picturesquely explained that
a butterfly flapping its wings in Beijing could affect the
weather thousands of miles away some days later. This
sensitivity is now called the butterfly effect.

Lorenz system
A system of three differential equations, named after its
discoverer Edward Lorenz, that was the first concrete
example of chaos and a chaotic attractor.

Lovelace, Lady
See Byron, Ada.

loxodrome
A path on Earth’s surface that is followed when a compass
is kept pointing in the same direction. It is a straight line
on a Mercator projection of the globe precisely because
such a projection is designed to have the property that all
paths along Earth’s surface that preserve the same direc-
tional bearing appear as straight lines. The loxodrome
isn’t the shortest distance between two points on a sphere.
The shortest distance is an arc of a great circle. But, in the
past, it was hard for a ship’s navigator to follow a great cir-
cle because this required constant changes of compass
heading. The solution was to follow a loxodrome (from

loxodrome Following a constant-compass heading between
Earth’s poles produces the winding path shown.
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the Greek loxos for “slanted” and drome for “course”), also
known as a rhumb line, by navigating along a constant
direction. In middle latitudes, at least, this didn’t lengthen
the journey unduly. If a loxodrome is continued indefi-
nitely around a sphere it will produce a spherical spiral, or
a logarithmic spiral on a polar projection.

Loyd, Sam (1841–1911)
A great American inventor of puzzles among whose best-
known creations are the Hoop-Snake Puzzle, Get Off the
Earth, the Pony Puzzle, and, most famous of all, the Fif-
teen Puzzle. By age 17 he was already hailed as one of
the world’s leading writers of chess problems and had
also just invented his deceptively simple-looking trick
mules puzzle. The object of this is to cut apart three
pieces that show two mules and two jockeys and then
reassemble the pieces so that the jockeys are riding the
mules. Loyd sold the puzzle to the showman Phineas T.
Barnum (of Barnum & Bailey Circus fame) for some
$10,000. This was to become his forte: devising puzzles
that looked so simple to solve that people felt compelled
to try them, only to find, hours later, that they were still
trying to figure them out. Loyd became a full-time pro-
fessional puzzlemaker only in the 1890s. He corre-
sponded with his English counterpart Henry Dudeney
and worked alongside his son Sam Loyd Jr. After the
death of his father, Sam Loyd Jr. continued publishing
puzzles that were mainly compilations of his father’s
work and in 1914 issued a now out-of-print and much
sought-after mammoth collection of his father’s puz-
zles called Cyclopedia of 5,000 Puzzles, Tricks, and Conun-
drums.[111, 207, 208]

lozenge
A rhombus with a 60° angle.

L-system
A method of constructing a fractal that is also a model
for plant growth. L-systems use an axiom as a starting
string and iteratively apply a set of parallel string substi-
tution rules to yield one long string that can be used as
instructions for drawing the fractal. Many fractals, in-
cluding Cantor dust, the Koch snowflake, and the
Peano curve, can be expressed as an L-system.

Lucas, (François) Edouard (Anatole) (1842–1891)
A French mathematician well known for his study of the
Fibonacci sequence and the related Lucas sequences
named after him. He devised methods of testing for
prime numbers—work that was later refined by D. H.
Lehmer to yield the Lucas-Lehmer test for checking
Mersenne numbers to see if they are prime. Lucas was

also interested in recreational mathematics, the Tower of
Hanoi being his best known puzzle game. He worked at
the Paris Observatory and later became a professor of
mathematics in Paris.

Lucas sequences
Generalizations of the Fibonacci sequence first investi-
gated by Edouard Lucas. One kind can be defined as fol-
lows: L(0) = 0, L(1) = 1, L(n + 2) = PL(n + 1) + QL(n),
where the normal Fibonacci sequence is the special case
of P = Q = 1. Another kind of Lucas sequence begins with
L(0) = 2, L(1) = P. Such sequences are used in number
theory and in testing for prime numbers.

lucky number
A number in a sequence, first identified and named
around 1955 by Stanislaw Ulam, that evades a particular
type of number “sieve” (similar to the famous sieve of
Eratosthenes), which works as follows. Start with a list of
integers, including 1, and cross out every second num-
ber: 2, 4, 6, 8, . . . . The second surviving integer is 3.
Cross out every third number not yet eliminated. This
removes 5, 11, 17, 23, . . . . The third surviving number
from the left is 7; cross out every seventh integer not yet
eliminated: 19, 39, . . . . Repeat this process indefinitely
and the numbers that survive are the “lucky” ones: 1, 3, 7,
9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67 . . . .

Amazingly, though produced by a sieve based solely
on a number’s position in an ordered list, the luckies
have many properties in common with prime numbers.
For example, there are 25 primes less than 100 and 23
luckies less than 100. In fact, primes and luckies crop up
about equally often between any two given integers.
Also, the gaps between successive primes and the gaps
between successive luckies widen at roughly the same rate
as the numbers increase, and the number of twin primes
(primes that differ by 2) is close to the number of twin
luckies. The luckies even have their own equivalent of the
famous (still unsolved) Goldbach conjecture, which
states that every even number greater than 2 is the sum of
two primes. In the case of luckies, it’s conjectured that
every even number is the sum of two luckies; no excep-
tion has yet been found. Another unresolved problem is
whether there are an infinite number of lucky primes. See
also Ulam spiral.

Ludolph’s number
Also known as Ludolphine, a name by which the number
pi was known in Germany for many years following its
evaluation to 35 digits by Ludolph von Ceulen (1540–
1610).
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lune
The portion of a sphere between two great semicircles
(see great circle) having common endpoints (including
the semicircles).

Lyapunov fractal
A particularly photogenic type of fractal that is popular
with computer artists. It also represents a simple biologi-

cal model of population growth in which the degree of
the growth of the population can periodically alter be-
tween two values a and b.

Lyapunov fractal A computer-generated image using Lyapunov exponents. Radek Novak/Infojet



Maclaurin, Colin (1698–1746)
A Scottish mathematician who developed and extended
Isaac Newton’s work on calculus and gravitation, and
did notable work on higher plane curves (see Maclaurin
trisectrix). In his Treatise of Fluxions (1742), he gave the
first systematic formulation of Newton’s methods and set
out a method for expanding functions about the origin in
terms of series now known as Maclaurin series. Maclaurin
also invented several devices, made astronomical obser-
vations, wrote on the structure of bees’ honeycombs, and
improved maps of the Scottish isles.

Maclaurin trisectrix
A curve first studied by Colin Maclaurin in 1742 with a
view to solving one of the great geometric problems of

antiquity: trisecting an angle. The Maclaurin trisectrix
results from the Cartesian equation

y 2(a + x) = x 2(3a − x).

It is an anallagmatic curve that intersects itself at the
origin.

MacMahon, Percy Alexander (1854–1929)
A British mathematician, physicist, and naval officer, born
into a military family, whose leanings were evident early
on when as a young child he showed a fascination with the
way artillery was stacked. MacMahon later did work on
missile trajectories, taking resistance into account, and on
symmetric functions in the field of combinatorics, build-
ing on the results of James Sylvester and Arthur Cayley.
His studies in symmetry led him to investigate partitions
and to become a world authority on Latin squares. He
wrote a two-volume treatise Combinatory Analysis (1915–
1916), which became a classic, and a book on mathemati-
cal recreations called New Mathematical Pastimes (1921).[210]

The latter shows another of the topics that intrigued
MacMahon: the construction of patterns that can be
repeated to fill the plane. However, much to his regret, as
he wrote in the preface, “It has not been found possible to
produce the book in colour.” See also MacMahon
squares and thirty colored cubes puzzle.

MacMahon squares
The concept of color-matching tiles based on all the per-
mutations of colors on their edges dates from 1926, when
Percy MacMahon invented and introduced three-color
squares and four-color triangles as mathematical pas-
times. MacMahon divided squares and triangles into tri-
angles to give each edge of a piece its own color, in all
possible combinations. Each set contains 24 different
tiles, and MacMahon discovered that they could form a
single figure with all adjacent edges matching and just
one color all around the outside border. The most exten-
sive research into these sets, over three decades, was done
by the American engineer Wade Philpott (1918–1985), of
Lima, Ohio, who identified all the possible symmetrical
shapes that MacMahon squares and triangles could solve
with both matching edge colors and uniform border
color, and who calculated all the numbers of solutions
for the MacMahon squares’ 4 × 6 rectangle. See also
thirty colored cubes puzzle.

M
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Maclaurin trisectrix Jan Wassenaar, www.2dcurves.com
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Madachy, Joseph S.
An American mathematician, founder of Recreational
Mathematics Magazine, editor of the Journal of Recre-
ational Mathematics for nearly 30 years (now editor emer-
itus), the author of articles and books on the subject, and
a well-known puzzlist.

magic cube
Similar to a magic square but having three dimensions
instead of two. It contains the integers from 1 to n 3 and
has 3n 2 + 4 lines that sum correctly. All rows, columns,
pillars, and the four triagonals (three-dimensional diago-
nals) must sum to the constant 1⁄2n(n 3 + 1). A cross sec-
tion through a magic cube is a magic square.

magic square
An n × n square of the distinct whole numbers 1, 2, . . . , n 2,
such that the sum of the numbers along any row, column,
or main diagonal is the same. This sum is known as the

magic constant and is equal to 1⁄2 n(n 2 + 1). There is only one
3 × 3 magic square (not counting reflections and rota-
tions), which was known to the Chinese as long ago as 650
B.C. as lo-shu and is bound up with a variety of myths.
Associations between magic squares and the supernatural
are also evident in early Indian and Arabian mathematics.
The 3 × 3 square can be written as:

8 1 6
3 5 7
4 9 2

Each row, column, and main diagonal sums to 15. If the
rows are read as three-digit numbers, forward and back-
ward, and then squared, we find the interesting relation

8162 + 3572 + 4922 = 6182 + 7532 + 2942.

The reader may wish to see if the same rule holds for the
columns and main diagonals.

magic square A 4 × 4 magic square carved on the side of the Sagrada Familia cathedral in Barcelona.
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In the early sixteenth century Cornelius Agrippa con-
structed squares for n = 3, 4, 5, 6, 7, 8, and 9, which he
associated with the seven “planets” then known (includ-
ing the Sun and the Moon). Albrecht Dürer’s famous
engraving of Melancholia (1514) includes a picture of an
order-4 (4 × 4) magic square. There are 880 distinct
squares of order-4 and 275,305,224 squares of order-5,
but the number of larger squares is unknown. A square
that fails to be magic only because one or both of the
main diagonal sums don’t equal the magic constant is
called a semi-magic square. If all diagonals (including those
obtained by wrapping around) of a magic square sum to
the magic constant, the square is said to be a pandiagonal
square (also known as a panmagic or diabolical square). Pan-
diagonal squares exist for all orders except 6, 10, 14, . . . ,
2(2i + 1). There are 48 pandiagonal 4 × 4 squares. If
replacing each number ni by its square ni

2 produces
another magic square, the square is said to be a bimagic or
doubly magic square. If a square is magic for ni, ni

2, and ni
3,

it is known as a trebly magic square.
A little trial and improvement is all it takes to con-

struct the 3 × 3 magic square, but for building 4 × 4
squares and larger, a systematic method, or algorithm, is
important. Interestingly, different algorithms are needed
depending on whether the square is of an even order or
an odd order. Odd order squares are the easier variety to
make and there are several standard techniques, includ-

ing the Siamese (sometimes called de la Loubere’s or the
Staircase), the Lozenge, and de Meziriac’s methods. Here
is yet another approach, known as the Pyramid or ex-
tended diagonals method: (1) Draw a pyramid of same
size squares as the magic square’s squares, on each side of
the magic square; the number of squares on the pyra-
mid’s base should be two less than the number of squares
on the side of the magic square. (2) Sequentially place
the numbers 1 to n 2 of the n × n magic square in the diag-
onals. (3) Relocate any number not in the n × n square to
the opposite hole inside the square.

An antimagic square is an n × n array of integers from 1
to n 2 in which each row, column, and main diagonal gives
a different sum such that these sums form a sequence of
consecutive integers. A 4 × 4 antimagic square is a square
arrangement of the numbers 1 to 16 so that the totals of
the four rows, four columns, and two main diagonals
form a sequence of 10 consecutive integers, for example:

1 12 3 12
15 9 4 10
7 2 16 8
14 6 11 5

The principle of magic squares can be extrapolated from
two dimensions to any number of higher dimensions,
including magic cubes and magic tesseracts, whose cross
sections consist of magic cubes, and so forth.[10, 160, 162] See
also Latin squares and magic tour.

magic tour
A tour by a chess piece on an n × n chessboard, whose
squares are numbered from 1 to n 2 along the path of the
piece, such that the resulting arrangement of numbers is
a magic square. The tour is a semi-magic tour if the result-
ing arrangement of numbers is a semi-magic square.
Magic knight’s tours aren’t possible on n × n boards if n
is odd. They are possible for all boards of size 4k × 4k for
k > 3, but are believed to be impossible for n = 8.

main diagonal
In the n × n matrix [aij], the elements a11, a22, . . . , ann. See
also diagonal.

major axis
The longest chord of an ellipse.

Malfatti circles
In 1803 the Italian mathematician Giovanni Malfatti
(1731–1807) posed the following problem: Given a trian-
gle, find three nonoverlapping circles inside it such that
the sum of their areas is maximal. Malfatti and many
other mathematicians thought that the solution is given
by the three circles, each of which is tangent to the other

magic square A replica of a cast iron 6 × 6 magic square
(vertical, horizontal, and main diagonal lines add to 111) from
the Chinese Yuan dynasty (1271–1368), used as a sacred
object to ward off evil spirits. Sue & Brian Young/Mr. Puzzle Australia,

www.mrpuzzle.com.au
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two and also to two sides of the triangle. Malfatti com-
puted the radii of these circles, and they are now known
as Malfatti’s circles. Later it became clear that Malfatti’s
conjecture isn’t true. In particular, Goldberg proved, in
1969, that the Malfatti circles never give a solution of the
Malfatti problem! In other words, for any triangle there
are three nonintersecting circles inside it, whose areas are
bigger than the area of the Malfatti circles. So far as is
known, the Malfatti problem hasn’t been solved yet in
the general case although it seems reasonable to suppose
that the solution is given by what is called the greedy algo-
rithm: First inscribe a circle in the given triangle; then
inscribe a circle in the smallest angle of the triangle that
is tangent to the first circle. The third circle is inscribed
either in the same angle or in the middle angle of the tri-
angle, depending on which of them has the bigger area.

Mancala
What is today almost universally called Mancala is, cor-
rectly speaking, the game of Wari. Mancala refers to a
type of counting game of which Wari is a specific exam-
ple, dating back to ancient times, known in Egypt and
throughout Africa and Asia, and probably brought to
Europe by sailors returning from those lands. Wari is
played with a board and 48 markers or playing pieces,
which are usually small colored stones or shells. The
board consists of a piece of wood with two rows of six
hollowed-out circular spaces, called cups, on each side,
and one larger oval space at each end called a reservoir.
The game is set up by placing four markers in each of the
twelve cups. The first player picks up the markers in one
of the cups on his side, then distributes the markers by
placing one (and only one) in the other cups, going
counterclockwise around the board. Markers are not
placed in the reservoirs, which are for holding captured
pieces only. Should there be enough markers that a com-
plete circle of the board is made, the cup just emptied is
skipped over. If the last marker put down goes into a cup
on the opponent’s side, and ends there with a total of two
or three markers in that cup, then the markers in that cup
are captured, and go into the reservoir at the player’s
right. Also, if the next cup clockwise from the captured
cup has only two or three markers in it, that cup is like-
wise captured and the markers taken. This continues so
long as the cup is clockwise to the last captured cup, has
only two or three markers in it, and is an opponent’s cup.
However, a player can’t capture all of an opponent’s
remaining pieces in a move, leaving him nothing to play.
In capturing cups, if there’s only one opponent cup left
with markers in it, it can’t be captured. Also, you cannot
leave your opponent with all empty cups if you have a
move that would put some pieces in one or more of his

cups. When one side of the board is empty, play is ended.
This happens when a player has to move his last markers
onto his opponent’s side. At the end of play each player
takes any markers left on his side of the board and adds
them to his reservoir. The winner is the person with the
most markers in his reservoir.

Mandelbrot, Benoît B. (1924–)
A Polish-born French mathematician, largely responsible
for the present interest in fractal geometry. A native of
Warsaw, he spent most of his early life in France. Man-
delbrot was born into a family with a strong academic tra-
dition: his mother was a doctor and his uncle Szolem
Mandelbrot was a famous Parisian mathematician. His
family left Poland for Paris in the 1930s to escape Hitler’s
regime. There, Mandelbrot was introduced to mathemat-
ics by his two uncles. Educated in France, he developed
the mathematics of Gaston Julia, and began the (now
common) graphing of equations on a computer. Mandel-
brot originated what became known as fractal geometry
and the object known as the Mandelbrot set is named
after him. His work on fractals as a mathematician at
IBM earned him an emeritus fellowship at the Thomas J.
Watson Research Laboratories. In addition to his study of
fractals in mathematics, he showed that fractals can be
found in many places in nature, leading to entire new
fields of exploration in chaos theory. He joined the fac-
ulty of Yale in 1987.

Mandelbrot set
The best known fractal and one of the most complex and
beautiful mathematical objects known. It was discovered
by Benoît Mandelbrot in 1980 and named after him by
Adrien Douady and J. Hubbard in 1982. The set is pro-
duced by the incredibly simple iteration formula

zn + 1 = zn
2 + c,

where z and c are complex numbers and z0 = 0. This can
be written without complex numbers as

xn + 1 = xn
2 − yn

2 + a, and
yn + 1 = 2xnyn + b,

where z = (x, y) and c = (a, b). The Mandelbrot set consists
of all the points on the Argand diagram for which the
function z 2 + c doesn’t diverge under iteration. A com-
puter is essential for carrying out the necessary calcula-
tions and for producing pictures of this remarkable
structure. For the purposes of computation, the Argand
diagram is broken down into pixels (picture elements),
and the coordinates of each supply the constant c in z 2 +

c. For each pixel (value of c) the function is iterated. If the
function either rapidly diverges (blows up) or rapidly
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converges (collapses), the pixel is left black. If the func-
tion is more indecisive about which way it is heading, it
is allowed to iterate longer. In some cases the iterations
could go on for a very long time before it became clear
that the function would ultimately diverge, so a limit is
established, known as the depth, beyond which iterations
are stopped. If the depth is reached without divergence,
the corresponding pixel is left black as though it were in

the set. At locations where divergence becomes clear
prior to hitting the limit, the pixel is displayed according
to a scale that represents how many iterations are needed
to show divergence. The whole Mandelbrot set lies
within a circle of radius 2.5 centered at the origin of the
Argand diagram. Although finite in area, the set has a
boundary that is infinitely long and has a Hausdorff
dimension of 2.

The overall appearance of the Mandelbrot set is that of
a series of disks. These disks have irregular borders and
decrease in size heading out along the negative real axis;
moreover, the ratio of the diameter of one disk to the next
approaches a constant. More complex shapes branch out
from the disks. One region of the Mandelbrot set con-
taining spiral shapes is known as Seahorse Valley because it
resembles a seahorse’s tail. A computer can be used, like a
microscope, to zoom in on different parts of the set. This
reveals that, although the shape is infinitely complex, it
also displays self-similarity with regions that look like the
outline of the entire set. The Mandelbrot set also reveals
symmetry on different levels. It is identically symmetrical
about the real axis, and almost symmetrical at smaller
scales. This kind of “near-but-not-quite” symmetry is one
of the most unexpected properties to find in an object
generated from such a simple formula and process. The
Mandelbrot set was created by Mandelbrot as an index to
the Julia sets. Each point in the Argand diagram corre-
sponds to a different Julia set, and those points within the
Mandelbrot set correspond precisely to the connected
Julia sets.

manifold
A mathematical object that, in geometrical terms, is nearly
“flat” on a small scale (though on a larger scale it may
bend and twist into exotic and intricate forms). More pre-
cisely, a manifold is a topological space that looks locally
like ordinary Euclidean space. Every manifold has a
dimension, which is the number of coordinates needed to
specify it in the local coordinate system. A circle, al-
though curved through two dimensions, is an example of
a one-dimensional manifold, or one-manifold. A close-up
view reveals that any small segment of the circle is 
practically indistinguishable from a straight line. Simi-
larly, a sphere’s two-dimensional surface, even though it 
curves through three dimensions, is an example of a two-
manifold. Seen locally, the surface, like that of a small
portion of Earth, appears flat. A manifold that is smooth
enough to have locally well-defined directions is said 
to be differentiable. If it has enough structure to enable
lengths and angles to be measured, then it is called a Rie-
mannian manifold. Differentiable manifolds are used in
mathematics to describe geometrical objects, and are also

Mandelbrot set A general view of the Mandelbrot set.

Mandelbrot set A zoom view of the Mandelbrot set reveals
some of the infinite variety of remarkable patterns that inhabit it.
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the most natural and general settings in which to study
differentiability. In physics, differentiable manifolds serve
as the phase space in classical mechanics, while four-
dimensional pseudo-Riemannian manifolds are used to
model space-time in general relativity.

mantissa
The positive fractional part of the representation of a log-
arithm. For example, in the expression log 3,300 =

3.5185 . . . , 0.5185 is the mantissa.

many worlds hypothesis

Do you not think it a matter worthy of lamentation
that when there is such a vast multitude of them
[worlds], we have not yet conquered one?

—Alexander the Great

An interpretation of quantum mechanics, first proposed
by the American physicist Hugh Everett III in 1957,
according to which, whenever numerous viable possibili-
ties exist, the world splits into many worlds, one world for
each different possibility (in this context, the term worlds
refers to what most people call “universes”). In each of
these worlds, everything starts out identical, except for the
one initial difference; but from this point on, they develop
independently. No communication is possible between
the separate universes, so the people living in them (and
splitting along with them) would have no idea what was
really going on. Thus, according to this view, the world
branches endlessly. What is “the present” to us, lies in the
pasts of an uncountably huge number of different futures.
Everything that can happen does happen, somewhere.
Until the many worlds interpretation, the generally ac-
cepted interpretation of quantum mechanics was (and per-
haps still is) the Copenhagen interpretation. The Copenhagen
interpretation makes a distinction between the observer
and the observed; when no one is watching, a system
evolves deterministically according to a wave equation,
but when someone is watching, the wave function of the
system “collapses” to the observed state, which is why the
act of observing changes the system. The Copenhagen
interpretation gives the observer special status, not ac-
corded to any other object in quantum theory, and cannot
explain the observer itself, while the many worlds hypoth-
esis models the entire observer-observee system.

map
(1) A synonym for function, in which context it is also
known as a mapping. More generally, the correspondence of
elements in one set to elements in the same set or another
set. (2) A representation, usually on a plane surface, of geo-
graphical regions. See four-color map problem.

Markov chain
A sequence of random variables in which the future vari-
able is determined by the present variable but is indepen-
dent of the way in which the present state arose from its
predecessors. In other words, a Markov chain describes 
a chance process in which the future state can be pre-
dicted from its present state as accurately as if its entire
earlier history was known. Markov chains are named after 
the Russian mathematician Andrei Andrevich Markov
(1856–1922) who first studied them in a literary context,
applying the idea to an analysis of vowels and consonants
in a text by Pushkin. But his work launched the theory of
stochastic processes and has since been applied in quan-
tum theory, particle physics, and genetics.

Martingale system
A simple, popular, and ultimately disastrous gambling
system that, on the face of it, seems like a dream come
true. In the short run the player has a good chance of
making a few dollars using this method. But, in the long
run, two things conspire to defeat him—the table betting
limits and the player’s available funds. The Martingale
system calls for an initial bet of, say, $2. If the player
loses, he doubles his bet to $4. Another loss puts the net
loss at $6 and requires a doubling of the bet to $8 to
recoup the losses and show a profit. Assume the player
loses five hands in a row. The sixth bet requires $64. Let’s
say this wins—the gambler has now won $128 but has lost
$124—a net win of $4. Of course, any win, however small,
if repeated over and over, could produce a fortune. The
trouble is that many losing streaks run longer than 6 or 8
or 10 in a row. The Martingale quickly runs into the table
limits. For example, if the player is at a $2 blackjack table
with a $500 upper limit, he has to retire after 9 losses in a
row and is down over $1,000. It would take another 500
winning hands to make up this loss! Basically, one losing
streak will put the Martingale gambler in a hole he is
unlikely ever to climb back out of.

Mascheroni construction
A construction done using a moveable compass alone,
named after the Italian geometer Lorenzo Mascheroni
(1750–1800), who, in his Geometria del compasso (1797),
astonished the mathematical world by showing how every
compass-and-straightedge construction can be done in this
minimalist way. (Since straight lines can’t be drawn with
just a compass, it’s assumed that two points, obtained by
arc intersections, define a straight line.) It is now known
that Georg Mohr (1640–1697) proved the same results ear-
lier in his obscure Euclides danicus (1672). Mascheroni, or
Mohr-Mascheroni, constructions are today primarily of
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interest to puzzle enthusiasts who try to improve on the
older solutions by finding ones with fewer steps.

matchstick puzzle
A form of mechanical puzzle that involves rearranging a
pattern of ordinary matches, according to a given instruc-
tion, to make a new shape or solve some other mathe-
matical problem.

mathematical lifespan
“The mathematical life of a mathematician is short. Work
rarely improves after the age of twenty-five or thirty. If lit-
tle has been accomplished by then, little will ever be
accomplished.” Thus wrote Alfred Adler in an article
titled “Mathematics and Creativity” in the New Yorker
magazine (1972), echoing a common belief that mathe-
maticians tend to do their best work before the age of 30,
physicists before the age of 40, and biologists before the
age of 50 (though there are exceptions!). The mathemati-
cal physicist Freeman Dyson put it more succinctly:
“Young men should prove theorems, old men should
write books.” On the other hand, there are compensa-
tions for early burnout, as G. H. Hardy pointed out (in
A Mathematician’s Apology): “Archimedes will be remem-
bered when Aeschylus is forgotten, because languages die
and mathematical ideas do not. ‘Immortality’ may be a
silly word, but probably a mathematician has the best
chance of whatever it may mean.”

mathematics

Pure mathematics consists entirely of assertions to
the effect that if such and such a proposition is true
of anything, then such and such another proposition
is true of that thing. It is essential not to discuss
whether the first proposition is really true, and not to
mention what the anything is of which it is supposed
to be true. . . . Thus mathematics may be defined as
the subject in which we never know what we are
talking about, nor whether what we are saying is
true.

—Bertrand Russell

The science of patterns, real or imagined; mathematics
comes from the Greek mathema for “knowledge” or “that
which is learned.” Its roots lie in the practical need to
carry out commercial calculations, to measure land, and
to forecast astronomical events. These activities corre-
spond roughly to the mathematics of structure, space,
and change. The investigation of structure begins with
numbers—initially the natural numbers and integers.
The rules governing arithmetical operations are dealt
with in elementary algebra, while the deeper properties

of whole numbers are the province of number theory.
The study of methods to solve equations leads to
abstract algebra, which deals with structures that gener-
alize the properties of familiar numbers. The physically
important concept of vector, generalized to vector
spaces and studied in linear algebra, embraces both
structure and space. The mathematics of space stems
from geometry, first the Euclidean geometry and
trigonometry of the everyday world, and later the vari-
ous forms of non-Euclidean geometry. The modern
fields of differential geometry and algebraic geometry
generalize geometry in different ways. Differential geom-
etry builds upon the concepts of coordinate system,
smoothness, and direction, while algebraic geometry
treats geometrical objects as sets of solutions to polyno-
mial equations. Group theory places the concept of sym-
metry on an abstract footing and provides a bridge
between space and structure. Topology links space and
change through its emphasis on continuity. Analyzing
and describing change in the physical world is a perennial
theme of the natural sciences, and calculus was devel-
oped as a tool for doing this. The central concept used to
describe a changing variable is that of a function. Many
problems lead to relations between a quantity and its rate
of change, and the methods to solve these are studied in
the field of differential equations. The numbers used to
represent continuous quantities are real numbers, and
the study of their properties and the properties of real-
valued functions is known as real analysis. For various
reasons, it’s convenient to generalize to complex num-
bers, which are dealt with in complex analysis. Func-
tional analysis focuses attention on (typically infinite-
dimensional) spaces of functions, laying the groundwork
for quantum mechanics among many other things. In
order to probe the foundations of mathematics, the fields
of set theory, mathematical logic, and model theory were
developed.

Since the time of the ancient Greeks, thought has been
given to the ultimate nature of mathematics. What is its
role and status in reality? Most crucially, is it invented or
discovered? Leopold Kronecker was on the side of inven-
tion: “God made the integers; all the rest is the work of
Man.” Charles Hermite, by contrast, was clearly a Platon-
ist: “There exists . . . an entire world, which is the totality
of mathematical truths, to which we have access only with
our mind, just as a world of physical reality exists, the one
like the other independent of ourselves, both of divine
creation.” The German physicist Heinrich Hertz went
even further: “One cannot escape the feeling that these
mathematical formulas have an independent existence
and an intelligence of their own, that they are wiser than
we are, wiser even than their discoverers, that we get more



200 matrix

out of them than was originally put into them.” G. H.
Hardy summed up what many mathematicians today
have a tendency to believe:[151] “that mathematical reality
lies outside us, that our function is to discover or observe
it, and that the theorems which we prove, and which we
describe grandiloquently as our ‘creations,’ are simply the
notes of our observations.” In another passage, he made
this point more precisely: “317 is a prime, not because we
think so, or because our minds are shaped in one way
rather than another, but because it is so, because mathe-
matical reality is built that way.” We are struck by how
well mathematics describes the behavior of the world in
which we live. The universe, in fact, appears to have a
deep mathematical infrastructure. Martin Gardner makes
the bold claim that: “Mathematics is not only real, but it
is the only reality. [The] . . . entire universe is made of
matter. . . . And matter is made of particles. . . . Now what
are the particles made out of? They’re not made out of
anything. The only thing you can say about the reality of
an electron is to cite its mathematical properties. So
there’s a sense in which matter has completely dissolved
and what is left is just a mathematical structure.”

matrix
A square or rectangular array of numbers, usually written
enclosed in a large pair of parentheses. Matrices, which
are added and multiplied using a special set of rules, are
extremely useful for representing quantities, particularly
in some branches of physics. A matrix can be thought of
as a linear operator on vectors. Matrix-vector multiplica-
tion can be used to carry out geometric transformations
such as scaling, rotation, reflection, and translation.

Matrix comes from the same Latin root that gives us
mother, and was used to refer to the womb and to pregnant
animals. It became generalized to mean any situation or
substance that contributes to the origin of something. The
first mathematical use of the word matrix was around 1850
by James Sylvester who saw a matrix as a way of obtaining
determinants, but didn’t fully appreciate its potential.
Within a year of his first mention of the term, he intro-
duced the idea to Arthur Cayley who was the first to pub-
lish the inverse of a matrix and to treat matrices as purely
abstract mathematical forms. The use of mathematical
arrays to solve problems predates the application of the
name by about 2,000 years. Around 200 B.C. in the Chi-
nese text Juizhang Suanshu (Nine Chapters on the Mathe-
matical Arts) the author solves a system of three equations
in three unknowns by placing the coefficients on a count-
ing board and solving by a process that today would be
called Gaussian elimination.

maximum
The largest of a set of values.

maze
A network of winding and interconnected passageways
that a traveler must negotiate in order to reach some goal.
The terms maze and labyrinth are often used interchange-
ably, though sometimes a distinction is made based on
the layout. A labyrinth is then defined as a construction
that leads from a starting point to a goal by a single path,
with no branches or dead ends. No matter how long and
twisting the route, it is predetermined by the builder: a
labyrinth, according to this definition, is unicursal. A
maze, by contrast, is multicursal and calls for the traveler
to make a series of decisions that affect how quickly the
goal is reached. In this book, maze and labyrinth mean the
same thing, and refer to unicursal and multicursal mazes.

The most famous of legendary mazes was the lair (or
prison) of the Minotaur at Knossos on Crete. According
to Greek mythology, King Minos of Crete had his chief
engineer, Daedalus, build the labyrinth in order to keep
the half-human half-bovine offspring of his wife Pasiphae
and a bull out of the public eye. King Aegeus of Athens
was forced to pay a periodic tribute to Minos (the Athe-
nians having earlier murdered Minos’s son) in the form
of seven young men and seven maidens. These unfortu-
nates were forced to enter the maze below Minos’s palace
where they would get hopelessly lost and eventually be
eaten by the monster. King Aegeus’ son, Theseus,
decided to put a stop to this and offered to take the place

maze Possibly the world’s oldest surviving labyrinth: a seven-
ring labyrinth rock carving inside the Tomba del Labirinto, a
Neolithic tomb at Luzzanas, Sardinia, dating somewhere
between 2500 and 2000 B.C. National University of Singapore
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only one way in and out is anybody’s guess. But the
underlying reason for the early unicursal design isn’t hard
to find. These mazes were intended not as intellectual
puzzles but as symbolic representations of destiny as a
matter of fate, beyond personal control. The world’s old-
est known maze-like designs, dating back about 3,500
years, have been found carved on rocks in northwest
Spain and around the shores of the Mediterranean, and
according to legend, were walked by fishermen before
setting sail to ensure favorable winds and a good catch. In
medieval times, mazes started to appear in churches, as
art painted on walls or inlaid as “pavement mazes” on the
floor. Some of the larger floor versions were traversed by
people on their knees as a form of repentance or tra-
versed as a substitute for an actual pilgrimage to the holy
city, earning them the name “Chemin de Jerusalem,” or
Road of Jerusalem. The oldest-known church labyrinth,
at the Basilica of Reparatus at Orleansville, Algeria, dates
from the fourth century A.D. and measures about 8 feet in
diameter. One of the largest, built in 1288, formed part of
the floor in the nave of Amiens Cathedral in France and
spanned about 42 feet, but was destroyed in 1825. A
splendid surviving example, however, is in Chartres
Cathedral near Paris. Laid down in about 1200, this is an
11-circuit design (11 concentric windings) divided into
quadrants, of the type often found in Gothic cathedrals.
The only cathedral maze in Britain is at Ely, 16 miles
north of Cambridge; when the Cathedral was restored
around 1870, the architect, Gilbert Scott, installed a pave-
ment maze of his own design under the west tower.

Mazes built primarily as puzzles or for recreation repre-
sent a different type of structure. For one thing, they are
multicursal, offering those who enter a series of choices
about which way to proceed. In his Natural History, the
Roman historian Pliny comments that the classical type of
labyrinth is quite distinct from “the mazes formed in the
fields for the entertainment of children,” suggesting that
these diversions may have a long history. But it was in Eng-
land that they really came of age. Church mazes never
caught on in England, but turf mazes became tremen-
dously popular. Ranging from 25 feet to over 80 feet
across, they were constructed in or just outside villages
across the countryside and were given names such as “Miz-
maze,” “Troy Town,” “Shepherd’s Race,” and “Julian’s
Bower.” A Welsh history book Drych y Prif Oesoedd (Mirror
of the first age) published in 1740 notes the curious cus-
tom shepherds had of cutting the turf in the form of a
labyrinth, which would seem to account for the origin of
“Shepherd’s Race.” “Troy Town” probably refers to a leg-
end that the city of Troy had seven exterior walls arranged
as a maze to frustrate an attacking force.

From the turf maze it was no great leap to perhaps the
most famous form of full-size maze—the topiary or hedge

maze A plan of the maze in Chartres Cathedral as drawn by
Henry Dudeney.

of one of the sacrificial virgins. He fell in love with Ari-
adne, one of Minos’s daughters, who gave him a clew, or
ball of yarn, to unravel as he entered the labyrinth so that
he would be able to find his way back out. (Originally,
clue and clew were alternative spellings of the same word.
The modern sense of clue as a guide to solving a problem
comes from the legend of the Minotaur, while clew
retains its ancient meaning.) In true heroic style, Theseus
slew the Minotaur but then spoiled the fairytale ending
by abandoning Ariadne on the voyage home. Did this
labyrinth really exist? In Roman times some writers sug-
gested that a set of winding caves at Gortyan, in southern
Crete, might have formed the basis for the tale. Although
this complex of natural passages sounds similar to the
maze in the myth, the story definitely places the
labyrinth at the ancient Cretan capital. Archaeologists
have found no evidence of a labyrinth structure at Knos-
sos, but it has been suggested that the palace was so com-
plicated, with its many levels, stairs, and rooms, that it
may itself have inspired the story.

Minoan coins from about 300 B.C. bear a round, wind-
ing design, thought to be a representation of the lab-
yrinth. A very similar geometric pattern recurs across
many different cultures and times—scratched into caves
in Cornwall (possibly by visiting Phoenician seafarers),
on Roman coins, and in pictures drawn by native Ameri-
can Indians. Almost all these designs, including the one
on the Minoan coins, are unicursal. Quite why Theseus
would have needed a clew to navigate a maze that had



202 maze

in a 30-acre field and the 1997 maze in Reignac sur Indre
covers 37 acres.[101]

When faced with a maze, what is the best way of
reaching the goal, whether this is a point in the middle
of the maze or an exit that forms a second opening to
the structure? A unicursal maze calls for no brainwork,
only footwork, since it consists of a single winding pas-
sage with no offshoots. Multicursal mazes are a differ-
ent story. The easiest solution is to place a hand on one
wall at the outset and follow that wall, come what may.
Each blind alley will be traversed one time in and out
until the whole maze is completed, or the goal is found.
This simple method isn’t the most efficient and it will
fail altogether if the goal lies within an island in the
maze—that is, a section detached from any of the exte-
rior walls. A classic general method of “threading a
maze” is: (1) never traverse a path more than twice; (2)
when arriving at a new branch point or node, select
either path; (3) when arriving at an old node or at a
dead end by a new path, return by the same path; and
(4) when arriving at an old node by an old path, select 
a new path, if possible; otherwise, an old path. An

maze. While the use of hedges in gardens dates back to
Roman times, the earliest references to a topiary maze
appears in thirteenth-century Belgium. By the sixteenth
century the hedge maze had spread to England, as a land-
scape painting by Tintoretto attests. In the later part of
the seventeenth century, Louis XIV had a labyrinth built
as a part of the gardens at Versailles, which included 39
groups of hydraulic statuary representing the fables of
Aesop. The most famous surviving historic hedge maze 
is that on the grounds of Hampton Court Palace in 
England, designed by George London and Henry Wise
for William of Orange, planted between 1689 and 1694,
and occupying about a third of an acre. The finest turf
maze in England may be that at Bridge End Gardens in
Saffron Walden, Essex, which was replanted with yew in
1838–1840, abandoned and lost by 1949, then restored
in 1983. A second maze, an imitation of that at Hampton
Court, is on the Common.

In August 1997, Adrian Fisher opened the “World’s
Largest Maze” at Millets Farm Centre, Frilford, Oxford-
shire, England, cut from about six acres of grain. How-
ever, his 1995 effort in Shippensburg, Pennsylvania, was

maze A handheld maze, the object of
which is to get the silver ball from the
starting rectangle on the left to the fin-
ishing rectangle on the right. Crafted 
from Tasmanian blackheart sassafrass 
by Kym Anderson. Mr. Puzzle Australia,

www.mrpuzzle.com.au
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explorer who follows these rules, using marks on the
ground, as a record, can be assured of visiting every part
of the maze.[48, 219, 240, 294]

See also Rosamund’s bower.

mean

When she told me I was average, she was just being
mean.

—Anonymous

A precisely calculated “typical” value of a group of num-
bers. There are several kinds of means. The arithmetic
mean, which is usually what is meant when people talk
about an average, is the sum of a set of values divided 
by the number of values. For example, the arithmetic
mean of 3, 4, 7, and 10 is (3 + 4 + 7 + 10)/4 = 6. The geo-
metric mean of n values is the nth root of the product of the
values. For example, the geometric mean of 3, 8, and 10 is
(3 × 8 × 10)1/3 or the cube root of 240. The harmonic mean
is the reciprocal of, or one over, the mean of the recipro-
cals of the values. For example, the harmonic mean of 3,
8, and 10 is 1/[(1⁄3 + 1⁄8 + 1⁄10)/3]. A different kind of aver-
age is median, which is generally the center term when a
group of numbers are ordered by size. If there are an even
number of values then the arithmetic mean of the center
two is the median. The words mean and median both come
from the Indo-European root medhyo meaning “middle.”

measure
A way of gauging how big something is in terms of length,
volume, or some other quality. One of the strangest facts
in mathematics is that some objects exist that can’t be
measured. In the language of sets, the basic rules (some-
what simplified) of mathematical measures are as follows:
(1) the measure of any set is a real number; (2) the empty
set has measure zero; (3) if A and B are two sets with no
elements in common then the measure of A ∪ B (the
union of A and B) is equal to the measure of A plus the
measure of B. The second of these rules can be very use-
ful, for example, when integrating a function, since it
allows us to ignore any points where the function jumps
around, provided that such points are isolated. A slightly
jittery function is one thing; a nonmeasurable set is a very
different animal. Imagine a three-dimensional shape so
fantastically intricate, so jagged and crinkled, that it is
impossible to measure its volume and this gives some idea
of the concept of nonmeasurability. From it flow such
bizarre conclusions as the Banach-Tarski paradox.

measure theory
The part of mathematics that investigates the conditions
under which integration can be carried out. It focuses

mainly on the various ways in which the size, or mea-
sure, of a set can be estimated.

measuring and weighing puzzles
Problems that involve measuring a given quantity of liquid
by pouring from one vessel into others of known capacity
go back to medieval times. One of the earliest to appear in
print was given by Niccoló Tartaglia and asks for 24
ounces of balsam to be divided into three equal portions
using vessels that hold 5, 11, and 13 ounces, respectively.
A similar problem was posed by a fellow traveler to the
young Siméon Poisson while on a journey. Poisson’s fam-
ily had tried to steer him into careers ranging from a sur-
geon to a lawyer, the last on the theory that he was fit for
nothing better. He seemed inept at everything he did.
However, he saw the solution to the measuring problem
immediately and realized his true calling. Thereafter, he
threw himself into mathematics and became one of the
greatest mathematicians of the nineteenth century.

The classic weighing problem was proposed by
Claude-Gaspar Bachet and entails finding the least num-
ber of weights needed to weigh any integral number of
pounds from 1 to 40 pounds inclusive, when no weights
are allowed in either of the two pans. The answer is 1, 3,
9, and 27 pounds. Tartaglia had previously stated the
same puzzle with the condition that the weights may
only be placed in one pan, in which case the solution is
1, 2, 4, 8, 16, and 32 pounds.

PUZZLE

The following is a measuring problem from Henry

Dudeney’s Canterbury Puzzles, which Dudeney

claimed was the most popular of the whole collection

and which the reader may like to try: 

Here be a cask of fine London ale, and in my hands

do I hold two measures—one of five pints, and the

other of three pints. Pray show how it is possible for

me to put a true pint into each of the measures.

Solutions begin on page 369.

mechanical puzzle
A puzzle, involving several objects or a single object
composed of one or more movable parts, whose solu-
tion requires moving from an initial state to a predefined
final state. Mechanical puzzles were first classified by
Louis Hoffmann in Puzzles Old and New[171] (1893). A
modified form of his scheme is shown in the table “Me-
chanical Puzzles” on the following page.

medial triangle
The triangle whose vertices are the midpoints of the sides
of a given triangle (see vertex).
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median
1. The line from a vertex of a triangle to the midpoint of
the opposite side. 2. See mean.

Menaechmus (c. 380–c. 320 B.C.)
A Greek mathematician, thought to have been a pupil of
Eudoxus, who is famed for his discovery of the conic
sections and for being the first to show that ellipses,
parabolas, and hyperbolas are formed by cutting a cone
in a plane that is not parallel to the base. Menaechmus
made his discoveries on conic sections while attempting,
unsuccessfully, to solve the problem of duplicating the
cube. It has also been suggested that he served as a tutor
to Alexander the Great.

Menger sponge
A famous fractal solid that is the three-dimensional
equivalent of the Sierpinski carpet (which, in turn, is the

Menger sponge

Mechanical Puzzles

Type Subtype Examples

Assembly 2-dimensional assembly Tangrams, T-puzzle, jigsaw
3-dimensional assembly (noninterlocking) Soma cube
Matchstick puzzles
Miscellaneous Puzzle rings

Disassembly Trick or secret opening Puzzle jug
Miscellaneous Trick locks, keys, etc.

Interlocking solid Burr puzzle
3-dimensional jigsaws
Miscellaneous Cubes, other objects

Disentanglement and entanglement Wire puzzles Chinese rings
String puzzles Cat’s cradle
Miscellaneous

Sequential movement Peg solitaire (peg removal)
Other counter (peg rearrangement)
Sliding-piece puzzles Fifteen Puzzle
Miscellaneous Tower of Hanoi

Puzzle vessels Puzzle jug
Miscellaneous Bottom-fill teapots, pitchers

Vanishment puzzle Get Off the Earth

Folding Origami
Flexagon

Impossible figure Penrose stairway
Penrose triangle
Impossible trident
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two-dimensional equivalent of Cantor dust). To make a
Menger sponge, take a cube, divide it into 27 (= 3 × 3 × 3)
smaller cubes of the same size and remove the cube in the
center and the six cubes that share faces with it. What’s
left are the eight small corner cubes and twelve small edge
cubes holding them together. Now, imagine repeating this
process on each of the remaining 20 cubes. Repeat it
again. And again . . . ad infinitum. The Menger sponge
was invented in 1926 by the Austrian mathematician Karl
Menger (1902–1985).

Mersenne, Marin (1588–1648)
A French monk, philosopher, and mathematician best
remembered for his work to find a formula to generate
prime numbers based on what are now known as
Mersenne numbers. However, in addition to being a
mathematician, he wrote about music theory and other
subjects; edited works of Euclid, Archimedes, and other
Greek mathematicians; but most importantly, corre-
sponded extensively with mathematicians and other sci-
entists in many countries. At a time before scientific
journals existed, Mersenne was at the heart of a network
for information exchange.

Mersenne number
A number of the form 2n − 1 (one less than a power of
2), where n is a positive integer. Mersenne numbers are
named after Marin Mersenne who wrote about them
in his Cogita Physico-Mathematica (Physical Mathemat-
ics Knowledge 1644) and wrongly conjectured that
they were prime for n = 2, 3, 5, 7, 13, 17, 19, 31, 67, and
257, and composite for n < 257. See also Mersenne
prime.

Mersenne prime
A prime number of the form 2p − 1, where p is prime. A
prime exponent is necessary for a Mersenne number to
be prime but is not sufficient; for example, 211 − 1 = 2,047
= 23 × 89. In fact, after an early clustering of Mersenne
primes for fairly small values of p, further occurrences
become increasingly rare. At the time of writing there 
are 40 known Mersenne primes, corresponding to values
for p of 2; 3; 5; 7; 13; 17; 19; 31; 61; 89; 107; 127; 521; 
607; 1,279; 2,203; 2,281; 3,217; 4,253; 4,423; 9,689; 
9,941; 11,213; 19,937; 21,701; 23,209; 44,497; 86,243;
110,503; 132,049; 216,091; 756,839; 859,433; 1,257,787;
1,398,269; 2,976,221; 3,021,377; 6,972,593; 13,466,917;
and 20,996,011. However, it isn’t known if the current
largest Mersenne prime is the fortieth in order of size
because not all lower exponents have been checked.
Mersenne primes rank among the largest of all known

primes because they have a particularly simple test for pri-
mality, called the Lucas-Lehmer test.

The search for Mersenne primes has been going on for
centuries. They are named after Marin Mersenne who, in
1644, helped the search gain wide recognition by writing
to many mathematicians of his conjecture about which
small exponents yield primes. Around the time that
Mersenne’s conjecture was finally settled, in 1947, digital
computers gave a new impetus to the hunt for Mersenne
primes. As time went on, larger and larger computers
found many more Mersennes and, for a while the search
belonged exclusively to those with the fastest computers.
This changed in 1995 when the American computer sci-
entist George Woltman began the Great Internet Mersenne
Prime Search (GIMPS) by providing a database of what
exponents had been checked, an efficient program based
on the Lucas-Lehmer test that could check these numbers,
and a way of reserving exponents to minimize the dupli-
cation of effort. Today GIMPS pools the combined
efforts of dozens of experts and thousands of amateurs.
This coordination has yielded several important results,
including the discovery of the Mersennes M3021377, M2976221,
and M20996011 and the proof that M756839, M859433, and
M3021377 are the thirty-second, thirty-third, and thirty-
fourth Mersennes.

meter
The basic unit of length adopted under the System Inter-
national d’Unites (SI units). Over the years the definition
of the meter has changed several times. Throughout all
these definition changes the length of the meter hasn’t
changed, but the precision by which it is measured was
improved. In 1793, the meter was defined to be
1/10,000,000 of the distance from the pole to the equa-
tor. During the nineteenth century, the definition was in
terms of the length of standard bars of platinum kept
under controlled conditions. In 1983, the current defini-
tion was adopted of the distance traveled by light in a
vacuum in 1/299,792,458 of a second.

method of exhaustion
Finding an area by approximating it by the areas of a
sequence of polygons; for example, filling up the interior
of a circle by inscribing polygons with more and more
sides.

metric
Any function d(x, y) that describes the distance between
two points. Distance is formally defined as a single num-
ber with the following properties: (1) d(x, y) = 0 if and only
if x = y; (2) d(x, y) = d(y, x); (3) d(x, y) + d(y, z) ≥ d(x, z) (the
triangle inequality).
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metric space
A set that has a metric; in other words, a kind of space in
which the concept of distance has meaning. Compare
with topological space.

metrizable
For a topological space, the property that there exists a
metric compatible with the topology. To say that a topo-
logical space is metrizable is to treat it as a metric space,
but without distinguishing any specific or preferred dis-
tance function.

Michell, John (1724–1793)
An English natural philosopher and clergyman, educated
at Queen’s College, Cambridge, who discovered that the
force between magnetic poles varies as 1/r 2. In 1767,
Michell became rector of Thornhill, now a suburb of
Dewsbury, Yorkshire. Sometime in the early 1770s, he
played music with the great astronomer William Her-
schel and gave Herschel his first telescope. In 1784,
Michell deduced the existence of what are now called
black holes from Newton’s corpuscular theory of light,
and suggested that some stars might have dark compan-
ions. He also devised and built the torsion balance for
determining the universal gravitational constant G, but
died before having the chance to use it. The balance was
passed to the Cambridge physicist F. J. H. Wollaston, and
from him to Henry Cavendish, who used it at his house
in London and is often, mistakenly, identified as its
inventor.

midpoint
The point M is the midpoint of line segment AB if AM =
MB. That is, M is halfway between A and B.

mile
A measure of distance, the name of which is an abbre-
viation of the Latin mille passes or “one thousand
paces.” Since the paces (one step with each foot) of the
Roman Army were supposed to be two steps, each 2.5
feet long, 1,000 paces is very close to the length now
called a statute mile (5,280 feet). A nautical mile was
developed to be a distance equal to 1 minute of arc (1⁄60

of a degree) distance along a great circle and is equal to
6,076 feet.

million
A thousand thousand, 1,000,000, or 106. The word comes
from the Latin mille for “thousand” (which is also the root
for mile and millennium) and the suffix ion that implies
“large” or “great;” thus a million is literally a “great thou-
sand.”Although million seems tohavecome intouse as early
as the middle of the fourteenth century, most mathemati-

cians would use the phrase “thousand thousands” to avoid
confusion and it was not until the 1700s that “million”
caught on. It appears in the King James Version of the Bible
(Genesis 24:60) and in Shakespeare (Hamlet act II scene II)—
“for the play, I remember, pleased not the million.”

minimal prime
A prime number that is a substring of another prime
when written in base 10. A string a is a substring of
another string b, if a can be obtained from b by deleting
zero or more of the characters in b. For example, 392 is a
substring of 639,802. The minimal primes are:

2; 3; 5; 7; 11; 19; 41; 61; 89; 409; 449; 499; 881; 991; 
6,469; 6,949; 9,001; 9,049; 9,649; 9,949; 60,649; 
666,649; 946,669; 60,000,049; 66,000,049; 66,600,049

minimal surface
A surface that, bounded by a given closed curve or curves,
has the smallest possible area. A minimal surface has a
mean curvature of zero. Finding and classifying minimal
surfaces and proving that certain surfaces are minimal have
been major mathematical problems for over 200 years. If
the closed curve is planar then the solution is trivial; for
example, the minimal surface bounded by a circle is just a
disk. But the problem becomes much more difficult if the
bounding curve is nonplanar—in other words, is allowed to
move up and down in the third dimension. The first non-
trivial examples of minimal surfaces, the catenoid and the
helicoid, were discovered by the French geometer and
engineer Jean Meusnier (1754–1793) in 1776, but there was
then a gap of almost 60 years before the German Heinrich
Scherk found some more. In 1873 the Belgian physicist
Joseph Plateau carried out experiments that led him to con-
jecture that soap bubbles and soap films always form min-
imal surfaces. Proving mathematically this was true became
known as the Plateau problem. Most minimal surfaces are
extremely hard to construct and visualize, in part because
the majority of them are self-intersecting. However, the
development of high-performance computer graphics has
provided mathematicians with a powerful tool and the last
couple of decades have seen a huge increase in the number
of such surfaces that have been defined and investigated.

minimax theorem
A theorem that says there is always a rational solution to
a precisely defined conflict between two people whose
interests are completely opposite. It is rational in that
both parties can convince themselves that they can’t
expect to do any better, given the nature of the conflict.

minimum
The smallest of a set of values.
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Minkowski, Hermann (1864–1909)
A German mathematician, born in Lithuania, who
played an important part in the early development of rel-
ativity theory. Minkowski was the first to realize that the
work of Hendrik Lorentz and Albert Einstein could be
best understood if space and time, formerly thought to
be separate entities, were treated as part of a four-
dimensional space-time with a non-Euclidean geome-
try. The concept of the space-time continuum, which
provided a framework for all later mathematical work in
relativity, appeared in Minkowski’s book Raum und Zeit
(Space and Time 1907). From 1896 to 1902, Minkowski
taught at the Zurich Federal Institute of Technology when
Einstein was a student. In fact, Einstein attended several
of the courses he gave but didn’t create a good impres-
sion at the time. Minkowski described him as a “lazy
dog” who “never bothered about mathematics at all.” In
1902, Minkowski accepted a chair at the University of
Göttingen, where he stayed for the rest of his life. His
main interest was in pure mathematics, including num-
ber theory and geometry, and it was through his under-
standing of the more abstract side of mathematics and
geometry in more than three dimensions that he devel-
oped the idea of four-dimensional space-time.

Minkowski space
A finite-dimensional vector space, especially a four-
dimensional one, together with an indefinite inner product
with one positive or timelike direction and many negative
or spacelike directions. In particular, Minkowski space is
ordinary space-time in the special relativity theory.

minor axis
The smallest chord of an ellipse.

minute
(1) One sixtieth of an hour or of a degree of arc or angle.
(2) One sixtieth of an hour. As a measure of both time
and angle, it equals 60 seconds.

mirror reversal problem
Why does a mirror reverse right and left, but not up and
down? This question crops up perennially in the letter
and query columns of magazines and newspapers. It was
the inspiration for Lewis Carroll’s Alice through the Look-
ing Glass. Alice Raikes (not to be confused with Alice Lid-
dell, after whom the fictional Alice was modeled) was
another of Carroll’s young friends. On one occasion, in
1868, Carroll put an orange in her right hand and then
asked her to stand in front of a mirror and say which
hand showed the reflection of the orange. She said the
left hand and Carroll asked her to explain. She finally
replied “If I was on the other side of the glass, wouldn’t
the orange still be in my right hand?” Carroll said this
was the best answer he’d had and later said it gave him
the idea for his book.

Others have struggled harder but not always convinc-
ingly to explain the phenomenon, appealing variously to
gravity, the psychology of perception, and philosophy.
Why does a mirror reverse right and left, but not up and
down? A frequently given answer is that a mirror doesn’t
reverse right and left. It reverses front and back. This is cer-
tainly true: the looking glass you is facing in the opposite

minimal surface A Scherk Surface—a type
of minimal surface—portrayed as a mem-
brane. Anders Sandberg
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direction to the “real” you. But this short, crisp explanation
doesn’t completely dispel the mystery. If you imagine that
the mirror is not there and that instead you are looking at a
flesh-and-blood twin of yourself, that twin is differently
handed. If you have a watch on your left wrist, the person
you are facing has his/her watch on the right wrist. The mir-
ror has done a left-right swap, surely! At any rate, some-
thing has happened to left and right that hasn’t happened
to up and down. To be more convinced of this, hold this
book up to the mirror and try to read it. If no left-right swap
has happened, why is the reflected writing so hard to read?
First, remember that you are only looking at an image! The
mirror hasn’t (Carrollian fantasies aside) created something
of opposite handedness. Secondly, appreciate how the
writing appears in the mirror’s frame of reference. This is
easy to do by looking at the writing from the other side of
the page (i.e., back to front, thus undoing the back to front
reversal caused by the reflection). From the mirror’s point
of view the writing looks perfectly normal.

missing dollar problem
A version of this problem first appeared in R. M. Abra-
ham’s Diversions and Pastimes in 1933.[2] See also nine
nooms paradox.

Mittag-Leffler, (Magnus) Gösta (1846–1927)
A Swedish mathematician who, in 1882, founded the
international journal Acta Mathematica, and was its chief
editor for 45 years. He studied in Paris under Charles
Hermite and in Berlin under Karl Weierstrass, and made
significant contributions to analysis. His best known
work concerned the analytic representation of a one-
valued functions and culminated in the Mittag-Leffler the-
orem. Since he took a special interest in Georg Cantor’s
discoveries, much of Cantor’s work was published in
Acta Mathematica. Inscribed on the mantlepiece of 
Mittag-Leffler’s home—now a research institute—in Djur-
sholm is the epitaph: “Number is the beginning and end
of thought. Thought gave birth to number but reaches
not beyond. ML 1903”

mixed strategy
In game theory, a strategy that uses randomness by em-
ploying different actions in identical circumstances with
different probabilities.

Möbius band
A simple and wonderfully entertaining two-dimensional
object, also known as the Möbius strip, that has only one
surface and one edge. It is named after the German math-
ematician and theoretical astronomer August Ferdinand
Möbius (1790–1868), who discovered it in September
1858, although his compatriot and fellow mathematician
Johann Benedict Listing (1808–1882) independently
devised the same object in July 1858. Making a Möbius
band is simple: take an ordinary sheet of typing paper, cut
an 11″ × 1″ rectangle, bring the two long ends together,
twist one of the ends 180°, and tape the two ends together.
To prove that the band is single-sided, take a pen and start
drawing a line around the band’s circumference. When
drawing the line, never take the pen off the paper; just

PUZZLE

Three people dine at a restaurant and receive a total bill

for $30. They agree to split the amount equally and pay

$10 each. The waiter hands the bill and the $30 to the

manager, who realizes there has been a mistake and

the correct charge should be only $25. He gives the

waiter five $1 bills to return to the customers, with the

restaurant’s apologies. However, the waiter is dishonest.

He pockets $2, and gives back only $3 to the customers.

So, each of the three customers has paid $9 and the

waiter has stolen $2 making a total of $29. But the origi-

nal bill was for $30. Where has the missing dollar gone?

Solutions begin on page 369.

mirror reversal problem A looking-glass world beckons the
curious Alice in Lewis Carroll’s book Alice through the Looking
Glass.
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Möbius band A sculpture of a Möbius band outside the Fermi National Accelerator Laboratory. FNAL
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keep drawing the line until the starting point is reached.
Once you are finished, look at both sides: there should be
a line on both sides, thus proving that it is all the same side
because you never took the pen off the paper.

The Möbius band has a lot of curious properties. If
you cut down the middle of the band, instead of getting
two separate strips, it becomes one long strip with two
half-twists in it. If you cut this one down the middle, you
get two strips wound around each other. Alternatively, if
you cut along the band, about a third of the way in from
the edge, you will get two strips; one is a thinner Möbius
band, the other is a long strip with two half-twists in it.
Other interesting combinations of strips can be obtained
by making Möbius bands with two or more flips in them
instead of one. Cutting a Möbius band, giving it extra
twists, and reconnecting the ends produces unexpected
figures called paradromic rings.

The Möbius band has provided inspiration both for
sculptures and for graphical art. M. C. Escher was espe-
cially fond of it and based many of his lithographs on it.
It is also a recurrent feature in science fiction stories, such
as Arthur C. Clarke’s The Wall of Darkness. A common fic-
tional theme is that our universe might be some kind of
generalized Möbius band. There have been technical
applications; giant Möbius bands have been used as con-
veyor belts (to make them last longer, since “each side”
gets the same amount of wear) and as continuous-loop
recording tapes (to double the playing time).

A closely related strange geometrical object is the Klein
bottle, which can be produced by gluing two Möbius
bands together along their edges; however, this can’t be
done in ordinary three-dimensional Euclidean space with-
out creating self-intersections.[116]

mode
The most frequently occurring value in a sequence of
numbers.

model of computation
An idealized version of a computing device that usually
has some simplifications such as infinite memory. A Tur-
ing machine and the lambda calculus are models of
computation.

model theory
The study of mathematical structures that satisfy a partic-
ular set of axioms, especially in the field of logic.

modulo
The integers a and b are said to be congruent modulo m
if a − b is divisible by m.

Moiré pattern
A radiating curved pattern created when two repetitive
patterns overlap and interfere with one another. A Moiré
pattern is seen, for example, when someone on TV wears
a herringbone jacket. Moiré is the French word for “silk”,
and silk moiré, introduced from China to France in 1754,
is the fabric that shows the familiar shifting patterns.

Moivre, Abraham de
See de Moivre, Abraham.

monad
A central concept in the Pythagorean worldview (see
Pythagoras of Samos), in which it is regarded as the 
first thing that came into existence. Following the mo-
nad came, in order: the dyad, numbers, lines, two-
dimensional entities, three-dimensional entities, bodies,
the four elements (earth, air, fire, and water), and the rest
of the world. The monad plays a similarly fundamental
role in the metaphysics of Leibnitz as an indivisible,
impenetrable unit of mental experience. It also has sev-
eral different technical meanings in modern mathemat-
ics. For example, in nonstandard analysis, a monad
consists of all those numbers infinitesimally closer to a
given number. The word comes from the Latin monas
(single) and Greek monos (unit).

Monge, Gaspard (1746–1818)
A French mathematician and physicist who put descrip-
tive geometry, introduced by Albrecht Dürer, on a firm
mathematical footing. He became professor of mathe-
matics at Mézières (1768) and of hydraulics at the Lycée
in Paris (1780), and published his groundbreaking treatise
on the application of geometry to the arts of construc-
tion in 1795.

monkeys and typewriters
Six monkeys pounding away on typewriters would, by
pure chance, if given enough time, be bound to write out
all the works held in the British Library (or in all other
libraries, for that matter). This idea was first suggested by
the biologist Julian Huxley (1887–1975); it was discussed
by the physicist James Jeans (1877–1946) in his Mysterious
Universe (1930); and it has been restated in various forms
over the years, in terms of chimpanzees, Shakespeare’s
sonnets, and the like. It was also the subject of Russell
Maloney’s short story “Inflexible Logic,” first published
in the New Yorker magazine (1940) and reprinted in
Clifton Fadiman’s Fantasia Mathematica,[96] which tells
the tragic tale of what happens when the fantastically
improbable comes true. See also Universal Library.
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monochromatic triangle
A triangle whose vertices are all colored the same (see
vertex).

monomial
An algebraic expression that consists of just one term.

monotonic
The property of a function that is always strictly increas-
ing or strictly decreasing, but never both.

Monster curve
See Peano curve.

Monster group
The largest, most fascinating, and most mysterious of the
so-called sporadic groups; it was constructed by Robert
Griess at Princeton in 1982, having been predicted to
exist by him and Bernd Fischer in 1973, and was named
the Monster by John Conway. Think of the Monster
group as a preposterous snowflake with more than 1,050
symmetries that exists in a space of 196,883 dimensions.
It contains the following number of elements:

246 × 320 × 59 × 76 × 112 × 133 × 17 × 19 × 23 × 29 × 31
× 41 × 47 × 59 × 71

= 808,017,424,794,512,875,886,459,904,961,710,757,
005,754,368,000,000,000

≈ 8 × 1053 (more than the number of quarks in the Sun).

Despite these impressive credentials, however, it is still
classified as a simple group, meaning that it doesn’t have
any normal subgroups other than the identity element
and itself. All 26 simple groups have now been classified
and the Monster is far and away the biggest. At first, it
seemed that the Monster was just a curiosity—a Guinness
Book record of pure math. Its only “useful” application
seemed to be to give the best way for packing spheres in
24 dimensions! In ordinary three-dimensional space (and
also four and five dimensions), the grocer’s way of stack-
ing oranges in a hexagonal lattice is thought to be the
tightest possible (see Kepler’s conjecture). But as the
number of dimensions increases, the optimal packing
method changes. A 24-dimensional grocer would get 
the most efficient arrangement of his 24-dimensional
oranges by using the same symmetry as that of the Mon-
ster. This is unlikely to be immediately useful. Much
more interesting, however, is the connection that has
been found between the symmetry of the Monster and
one of the most promising unifying theories in physics—
string theory—which has been revealed by the Mon-
strous Moonshine conjecture.[70]

Monstrous Moonshine conjecture
An outrageous idea that stemmed from an observation
made by John McKay of Concordia University in 1978.
McKay was leafing through a table of abstruse mathemati-
cal data, giving possible values for coefficients of the 
j-function of certain elliptic curves, when he noticed the
number 196,884 in the expression j(q) = q − 1 + 196884q +

21493760q 2 + . . . . In a moment of inspiration, he recog-
nized this number as being one more than the number of
dimensions in which the Monster group can be most sim-
ply represented. Looking into this “coincidence” more
closely, he found that it was no coincidence at all. In fact,
all the coefficients of the j-function were simple combina-
tions of the degrees of possible representations of the
Monster. This pointed to some deep connection between
two seemingly unrelated areas of mathematics. On the one
hand were the coefficients of what is called an elliptic
modular function—exactly the kind of function that would
play a key role in the proof of Fermat’s last theorem. On
the other was the number of dimensions, and combina-
tions of degrees, of a crystal lattice whose symmetry rota-
tions and reflections formed the Monster. Subsequently,
McKay and a few other mathematicians, including John
Conway and Simon Norton, drew out the link between
elliptic modular functions and the Monster in a proposi-
tion christened, because of its fantastic nature, the Mon-
strous Moonshine. In 1998, this conjecture was proved
by Richard Borcherds (a former student of Conway’s) at
the University of California at Berkeley. Astonishingly,
Borcherds’s proof reveals a deep relationship between
elliptic curves, the Monster Group, and string theory—
the most promising theory on offer to unify our under-
standing of nature at the subatomic level. Borcherds
showed that the Monster is the group of symmetries of
26-dimensional strings expressed in a form known as vertex
algebra. Some people believe the connection may run even
deeper and that Monstrous Moonshine may hold clues to
the very existence of the reality in which we live.[69]

Monte Carlo method
A method of estimating the true value of a quantity by car-
rying out a lot of random samples. For example, suppose
we want to know the probability of getting a double six
when we roll two dice. We could roll a pair of dice a thou-
sand times, and count how many times, n, a double six
came up; the estimated probability would then be n/1,000.
A famous example of using the Monte Carlo method is to
calculate pi. Get a computer to generate two random num-
bers x and y, each in the range −1 to 1, so that the point 
(x, y) lies somewhere randomly inside a square of side 2
units. Do this thousands of times, and count up what pro-
portion of the points also lie inside the circle that inscribes
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the square (you can tell whether a point does or not by
working out whether x 2 + y 2 < 1). The proportion inside
the circle is an approximation to π/4 (because the circle
has area π but the square has area 4); millions of points are
needed to obtain a good estimate.

This method was developed by researchers working on
the Manhattan Project during World War II. To answer
some of their scientific questions, they would repeatedly
sample from their best estimates of the partial results,
then apply the math they knew to the interactions and
study the range of results. This process, which they
named after the famous Monaco casino town of Monte
Carlo, was created by John von Neumann and Stanislaw
Ulam. The term and a description of the method seems
not to have been published until some time after the war.

Montucla, Jean Etienne (1725–1799)
A French writer, mathematician, and scientist, who wrote
several important early works on the history of mathe-
matics. His Histoire des mathématiques (1758) was pub-
lished in two volumes, the first of which covers the
subject from ancient times to 1700, while the second is
entirely devoted to seventeenth-century mathematics. It
is considered the first attempt at a history of mathemati-
cal ideas and problems, in contrast to earlier works that
were mostly lists of names, titles, and dates. Montucla
had intended to produce a third volume covering the
first half of the eighteenth century but the amount of
new developments that had appeared during this time,

and the difficulties of putting recent work into its histor-
ical context, led him to abandon this aim. A few years
later he published another text for which he is famed—a
new, greatly expanded and improved edition of Jacques
Ozanam’s Récréations mathématiques et physiques (1778).
Montucla’s edition was particularly influential in popu-
larizing geometric dissection problems. Charles Hutton
translated it into English in 1803 and Riddle’s edition
was published in 1844, called Recreations in science and nat-
ural philosophy.

Monty Hall problem
A puzzle in probability that was inspired by the American
game show Let’s Make a Deal, hosted by Monty Hall. In its
original form it goes like this: at the end of the show, you,
the player, are shown three doors. Behind one of them is a
new car, behind the other two are goats. Monty knows
where the car is, but you don’t. You choose a door. Before
that door is opened however, Monty opens one of the two
other doors with a goat behind it. He then gives you the
option of switching to the other closed door. Should you
switch or stick? At first glance, it seems as if it shouldn’t
make any difference. But the answer is surprising.

Suppose you stick. Your original choice made when all
three doors were equally likely gives you a probability of
winning the car of 1⁄3. Now suppose you switch. In other
words, you choose a door, wait for Monty to expose a
goat, then switch to the other remaining door. This
means that you win if the door you chose to begin with

Morley’s miracle The trisectors of the angles of triangle ABC meet the corners of a inner equilateral
triangle FED known as Morley’s triangle.
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Moscow papyrus
See Rhind papyrus.

mousetrap
See Cayley’s mousetrap.

moving sofa problem
In Douglas Adams’s book Dirk Gently’s Holistic Detective
Agency, the character Richard MacDuff says at one point,
“It would be really useful to know before you buy a piece
of furniture whether it’s actually going to fit up the stairs
or around the corner.” Mathematicians call this the mov-
ing sofa problem and it has been tackled in various forms
over the past few decades. One version of it, formulated
by Leo Moser in 1966, asks: What is the largest sofa (in
terms of area) that can be moved around a right-angled
corner in a hallway of unit width? The sofa can be any
shape and doesn’t even have to resemble a piece of fur-
niture! The question simply asks for the biggest, unbend-
able area that can be maneuvered around the corner.
Several different approaches suggest that the answer is
about 2.21 square units. Variations on the problem in-
volve negotiating pianos and other items around differ-
ent types of bends and passageways.[133]

Mrs. Perkins’s quilt
A square dissection problem first posed by Henry
Dudeney in his Amusements in Mathematics (1917):[88]

PUZZLE

It will be seen that in this case the square patchwork

quilt is built up of 169 pieces. The puzzle is to find the

smallest possible number of square portions of which

the quilt could be composed and show how they

might be joined together. Or, to put it the reverse way,

divide the quilt into as few square portions as possible

by merely cutting the stitches.

Solutions begin on page 369.

Dudeney’s problem can be generalized to the dissec-
tion of a square of side n into a number Sn of smaller
squares. Unlike a perfect squaring the square problem,
the smaller squares needn’t be all different sizes. In addi-
tion, only prime dissections are considered so that pat-
terns that can be dissected on lower order squares aren’t
allowed. The smallest number of relatively prime dissec-
tions of an n × n quilt for n = 1, 2, . . . , are 1, 4, 6, 7, 8, 9,
9, 10, 10, 11, 11, 11, 11, 12, . . . .[66]

Müller-Lyer illusion
A distortion illusion in which the orientation of arrow-
heads makes one line segment look longer than another.

had a goat behind it. The odds that your initial choice
had a goat is two thirds, so you are twice as likely to win
the car if you switch! This can be hard to grasp. To make
it easier, suppose there are 100 doors to choose from, but
still only one car. You pick a door, Monty opens 98 that
have goats behind them, then he gives you the option of
switching to the other remaining closed door. Should
you? Of course—it’s almost certain that the car is behind
the other door, and very unlikely that it’s behind your
original choice.

In a generalization of the original problem there are n
doors. In the first step, you choose a door. Monty then
opens some other door that’s a loser. If you want, you
may then switch your choice to another door. Monty will
then open an as yet unopened losing door, different from
your current preference. Then you may switch again, and
so on. This carries on until there are only two unopened
doors left: your current choice and another one. How
many times should you switch, and when, if at all? The
answer is: stick all the way through with your first choice
but then switch at the very end.

In another variation of the problem, consider that in
the actual game show there were two contestants. Both of
them were allowed to pick a door but not the same one.
Monty then eliminated a player with a goat behind his
door (if both players had a goat, one was eliminated ran-
domly, without letting either player know about it),
opened the loser’s door, and then offered the remaining
player a chance to switch. Should the remaining player
switch? The answer is no. The reason: a switcher in this
game will lose if and only if either of two initial choices
of the two contestants was correct. How likely is that?
Two-thirds. A sticker will win in those 2⁄3 of the cases. So
stickers will win twice as often as switchers.

Morley’s miracle
A remarkable theorem, discovered in 1899, by Frank
Morley, then professor of Mathematics at Haverford Col-
lege. Take any triangle. Mark the three points that are the
intersections of adjacent angle trisectors. Then, no matter
what triangle you start with, these three points will form
an equilateral triangle. That such a simple and elegant
result was not known to the ancient Greeks may be
because it is quite hard to prove.

One of the interesting auxiliary results of some of the
proofs is that the side of the equilateral triangle is equal
to 8r sin(A/3) sin(B/3) sin(C/3), where A, B, and C are
the angles of the larger triangle, and r is the radius of the
circumcircle. A surprise awaits anyone who takes the
intersections of the exterior, as well as the interior, angle
trisectors. In addition to the interior equilateral triangle,
four exterior equilateral triangles appear, three of which
have sides that are extensions of a central triangle.
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multigrade
A set of equations in which the sums of powers of two
different sets of numbers are the same for several differ-
ent exponents. The simplest example is:

1 + 6 + 8 = 2 + 4 + 9
12 + 62 + 82 = 22 + 42 + 92

Another multigrade is:

1 + 8 + 10 + 17 = 36 = 2 + 5 + 13 + 16
12 + 82 + 102 + 172 = 454 = 22 + 52 + 132 + 162

13 + 83 + 103 + 173 = 6426 = 23 + 53 + 133 + 163

Remarkably, if any integer is added to all the terms of
a multigrade it will still hold. Adding 1 to the example
above, gives the multigrade (2, 9, 11, 18); (3, 6, 14, 17) 
(n = 1, 2, 3). Some high-order multigrades include: (1, 50,
57, 15, 22, 71); (2, 45, 61, 11, 27, 70); (5, 37, 66, 6, 35, 67)
(n = 1, 2, 3, 4, 5), and (1, 9, 25, 51, 75, 79, 107, 129, 131,
157, 159, 173); (3, 15, 19, 43, 89, 93, 97, 137, 139, 141, 167,
171) (n = 1, 3, 5, 7, 9, 11, 13).

Müller–Lyer illusion Which of the horizontal lines is longer?

Mrs. Perkins’s quilt Dudeney’s drawing of one of
his most famous puzzles.

multiple
The integer b is a multiple of the integer a if there is an
integer d such that b = da.

multiplication
A binary operation that is the equivalent of repeated
addition and the inverse of division.
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Mydorge, Claude (1585–1647)
A French mathematician who trained as a lawyer but was
wealthy enough that he didn’t have to work for a living.
He was interested in mathematical puzzles and his book
Examen du livre des récréations mathématiques (Study of the
book of recreational mathematics, 1630) formed the basis
for later works such as that by Denis Henrion (1659).
Mydorge edited Récréations mathématique and left an un-
published manuscript of over 1,000 geometric problems
and their solutions. He was also interested in optics and
made a large number of instruments for his close friend
René Descartes; the two shared a strong interest in

explaining vision and the instruments and lenses were
designed to help test their theories.

myriad
A term which today is normally synonymous with “very
large number.” Its origins go back to the Greek word
murious, meaning “uncountable”. The plural of this,
murioi, evolved into the Latin myriad, which the Romans
used to represent ten thousand. Myriapod is a general
name for any many-legged anthropod, such as a milli-
pede or a centipede



Nagel point
A point in a triangle where the lines from the vertices (see
vertex) to the points of contact of the opposite sides with
the excircles to those sides meet. (An excircle touches
one side of a triangle and also touches the lines extended
from the other two sides.)

nano-
Prefix for billionth (10−9), from the Greek nanos, meaning
“dwarf.”

Napier, John (1550–1617)
A Scottish mathematician and theological writer who
invented logarithms and wrote Mirifici logarithmorum
canonis descriptio (The description of the wonderful canon
of logarithms, 1614), which contains the first logarithmic
table and the first use of the word logarithm. He also
introduced the decimal point in writing numbers. His
Rabdologiae (1617) describes various shortcuts for carry-
ing out arithmetical calculations. One method of multi-
plication uses a system of numbered rods called Napier’s
rods, or Napier’s bones—a major improvement on the
ancient system of counters then in use. In 1619, after
Napier’s death, his Mirifici logarithmorum canonis construc-
tio, which gave the method of construction of his loga-
rithms, was published by his son Robert and edited by
Henry Briggs.

Napoleon Bonaparte (1769–1821)

The advancement and perfection of mathematics are
intimately connected with the prosperity of the state.

Emperor of France and a very good amateur mathe-
matician, having excelled in this subject as a student at
school and at military college. Even after becoming first
consul he was proud of his membership in the Institute
de France (the nation’s leading scientific society), and
was close friends with several mathematicians and sci-
entists, including Joseph Fourier, Gaspard Monge,
Pierre Simon Laplace, Chaptal, and Berthollet. Indeed,
in his grand expedition to Egypt in 1798 Napoleon
brought along (in addition to 35,000 troops) over 150
experts in various fields, among them Monge, Fourier,
and Berthollet, not to mention a complete encyclopedie
vivante with libraries and instruments. One result of the
expedition was that Fourier served for a time as the gov-

ernor of lower Egypt. Likewise Laplace (who inter-
viewed the young Napoleon for admission to the
artillery) received titles and high office as a result of 
his friendship with Bonaparte. However, Laplace was
relieved of his duties as the minister of the interior after
only six weeks, and Napoleon later commented that
Laplace had “sought subtleties everywhere, had only
doubtful ideas, and carried the spirit of the infinitely
small into administration.” The most famous exchange
between these two men occurred after Laplace had
given Napoleon a copy of his great work, Mecanique
Celeste. Napoleon looked it over, and remarked that in
this massive volume about the universe there was not a
single mention of God. Laplace replied “Sire, I had 
no need of that hypothesis.” Regarding the idea that
Napoleon might have discovered what is now called
Napoleon’s theorem (if equilateral triangles are con-
structed on the sides of any triangle (all outward or all
inward), the centers of these equilateral triangles them-
selves form an equilateral triangle), Harold Coxeter
and Samuel Greitzer have said that “The possibility of
[Napoleon] knowing enough geometry for this feat is as
questionable as the possibility of his knowing enough
English to compose the famous palindrome, ABLE
WAS I ERE I SAW ELBA.”

nappe
Either of the two parts into which a cone is divided by
the vertex. “Nappe” is the French for “tablecloth,” which
in turn comes from the Latin mappa (napkin).

narcissistic number
Also known as an Armstrong number or a plus perfect
number, an n-digit number equal to the sum of its dig-
its raised to the nth power. For instance, 371 is narcis-
sistic because 33

+ 73
+ 13

= 371, and 9474 is narcissistic
because 94

+ 44
+ 74

+ 44
= 9474. The smallest nar-

cissistic number of more than one digit is 153 = 13
+

53
+ 33. The largest narcissistic number (in base 10) is

115,132,219,018,763,992,565,095,597,973,971,522,401,
which is the sum of the thirty-ninth powers of its digits.
The reason there are no larger numbers is related to the
fact that, as the number of digits increases, more and
more nines are required to get a sum that has n digits.
For example, 1070

− 1 is a number consisting of 70 nines
in a row, and the sum of the seventieth powers of its

N

216
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digits is 70 × 970
! 4.386051 × 1068, which is only 69

digits long. So there is no way any 70-digit number can
be equal to the sum of the seventieth powers of its dig-
its. The reason we see the last number occur at 39 dig-
its is because, as the limit is approached, the number of
big digits like eights and nines has to increase to make
sure the sum will be big enough, but this means that
there are a lot fewer combinations of digits to choose
from.

Nash, John Forbes Jr. (1928–)
An American mathematician not very accurately por-
trayed in the Oscar-winning film A Beautiful Mind
(2001), loosely based on the biography of the same name
by Sylvia Nasar (1998).[229] Nash, who worked in game
theory and differential geometry, shared the 1994 
Nobel prize for economics with two other game theo-
rists, Reinhard Selten and John Harsanyi. After a promis-
ing start to his mathematical career, Nash began to suffer
from schizophrenia around the age of 30 and battled
with the illness for the next quarter of a century. His
Ph.D. dissertation, entitled “Non-cooperative Games,”
contained the definition and properties of what would
later be called Nash equilibrium and the basis of the
work that, 44 years later, would make him a Nobelist.
Between 1966 and 1996, Nash published nothing. How-
ever, as his mental health slowly began to improve in the
mid-1990s, his ability to tackle mathematical problems
returned, and he also became interested in computer pro-
gramming.

Nash equilibrium
In game theory, a pair of strategies (see strategy) for a
game such that neither player can improve his outcome
by changing his strategy. A Nash equilibrium sometimes
takes the form of a saddle structure. In other cases, when
a strategy is at a Nash equilibrium with itself, the strategy
resembles an evolutionary stable strategy.

natural logarithm
Also called a Naperian logarith, a logarithm to base e. For
example, loge10 (also written as 1n 10) is approximately
2.30258.

natural number
A number used for counting: 1, 2, 3, . . . . The debate
about whether zero should also be included as a natural
number has been going on for hundreds of years, and
there’s no general agreement even today. To avoid confu-
sion, 0, 1, 2, 3, . . . , are often referred to as nonnegative
integers or whole numbers, while 1, 2, 3, . . . , are called pos-
itive integers. Adding or multiplying natural numbers
always produces other natural numbers. However, sub-

tracting them can produce zero or negative integers,
while dividing them produces rational numbers. An
important property of the natural numbers is that they
are well-ordered, in other words, every set of natural num-
bers has a smallest element. The deeper properties of the
natural numbers, such as the distribution of prime num-
bers, are studied in number theory. Natural numbers
can be used for two purposes: to describe the position of
an element in an ordered sequence, which is generalized
by the concept of ordinal number, and to specify the
size of a finite set, which is generalized by the concept of
cardinal number. In the finite world, these two concepts
coincide; however, they differ when it comes to infinite
sets (see infinity).

Necker cube
A classic example of an ambiguous figure. In 1832, the
Swiss crystallographer Louis Necker noticed, while exam-
ining crystals, that three-dimensional objects can fluctu-
ate in appearance. He published pictures of an unusual
cube that appeared to assume different orientations as
one looked at it. The effect works because the drawing of
the cube (an orthographic projection) carefully elimi-
nates all depth cues. In attempting to fit the expected
model of a cube to the picture, our brain must resolve the
ambiguity as to which corner of the cube is closer.

negative base
The use of a negative base to represent numbers gives rise
to some intriguing possibilities. Consider “negadecimal,”

Necker cube Is the circle on the front face of the cube or 
the back?
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for example, in which the base is minus 10 instead of the
familiar positive 10. In this system, the number 365 is
equivalent to the decimal number 5 + (6 × −10) + (3 ×

−10 × −10), = 245, while 35 in negadecimal is equivalent
to 5 + (3 × −10), = −25, in ordinary decimal. This points
to an interesting fact: the negadecimal equivalent of any
positive or negative decimal number is always positive
and therefore doesn’t need to be accompanied by a sign.
The Polish UMC-1, of which a few dozen were built in
the late 1950s and earlier 1960s, is the only computer
ever to use “negabinary” (base 2 arithmetic).

negative number
Long denied legitimacy in mathematics, negative num-
bers are nowhere to be found in the writings of the Baby-
lonians, Greeks, or other ancient cultures. On the 
contrary, because Greek mathematics was grounded in
geometry, and the concept of a negative distance is mean-
ingless, negative numbers seemed to make no sense. They
surface for the first time in bookkeeping records in 
seventh-century India and in a chapter of a work by the
Hindu astronomer Brahmagupta. Their earliest docu-
mented use in Europe is in 1545 in the Ars magna of
Girolamo Cardano. By the early seventeenth century,
Renaissance mathematicians were explicitly using nega-
tive numbers but also meeting with heavy opposition.
René Descartes called negative roots “false roots,” and
Blaise Pascal was convinced that numbers “less than
zero” couldn’t exist. Gottfried Leibniz admitted that
they could lead to some absurd conclusions, but de-
fended them as useful aids in calculation. By the eigh-
teenth century, negative numbers had become an
indispensable part of algebra.

Neile’s parabola
Also known as the semi-cubical parabola, a curve discov-
ered by the English mathematician William Neile (1637–
1670) in 1657; it is the first algebraic curve to have its arc
length calculated. (Before this, only the arc lengths of
transcendental curves such as the cycloid and the loga-
rithmic spiral had been calculated.) Neile’s parabola is
described in Cartesian coordinates by the formula

y 3
= ax2.

Christiaan Huygens showed that this curve satisfies the
requirement requested by Gottfried Leibniz in 1687,
namely, the curve along which a particle may descend
under gravity so that it moves equal vertical distances in
equal times. Neile’s parabola is the evolute of a parabola.

nephroid
A type of curve often seen on the surface of a cup of cof-
fee in the sunshine—a crescent of light formed by sun-

light reflecting off the inside of the cup onto the surface
of the drink. More generally, it is the shape made by par-
allel rays of light reflecting from the inside of any semi-
circle. In mathematical terms, this means that the
nephroid is the catacaustic of a circle when the light
source is at infinity, a fact first demonstrated by Christi-
aan Huygens in 1678 and published by him in his Traité
de la Lumière (Treatise on light, 1690). A physical expla-
nation wasn’t forthcoming, however, until 1838 when
George Airy gave a proof in terms of the wave theory of
light. The name nephroid (from the Latin for “kidney-
shaped”) was introduced in 1878 by the English mathe-
matician Richard Proctor in his book The Geometry of
Cycloids. Prior to that it was known as a two-cusped epicy-
cloid. Specifically, the nephroid is the epicycloid formed
by a circle of radius a rolling around the outside on a
fixed circle of radius 2a. It has a length of 24a, an area of
12π

2, and is given by the parametric equations:

x = a(3cos(t) − 3cos(3t))
y = a(3sin(t) − sin(3t)).

The nephroid is the involute of Cayley’s sextic and is
also the envelope of circles with their centers on a given
circle, touching a given diameter of that circle. The
nephroid has been described as the perfect shape for a
multiseat dining table. Freeth’s nephroid, not to be mis-
taken for the ordinary nephroid just described, is named
after the English mathematician T. J. Freeth (1819–1904)
who first wrote about it in a paper published by the Lon-
don Mathematical Society in 1879. Freeth’s nephroid is

nephroid A nephroid curve spun by thread on a computer
loom. Jos Leys, www.josleys.com
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the strophoid of a circle and has the polar equation r =

a(1 + 2sin(θ/2)). Freeth’s nephroid is also the name of a
group of mathematicians, mostly from Royal Holloway
College, London, who gather weekly in a pub called the
Beehive and compete in games of trivial pursuit.

net
A drawing of a polyhedron unfolded along its edges, so
as to lie flat in a plane. The earliest known examples of
nets to represent polyhedra are by Albrecht Dürer.

neural network
An electronic automaton, similar in some ways to a cellu-
lar automaton, that offers a highly simplified model of a
brain. As such, a neural network is a device for machine
learning that is based on associative theories of human
cognition. Using various algorithms and weightings of dif-
ferent connections between “neurons,” neural networks
are set up to learn how to recognize a pattern in applica-
tions such as voice recognition, visual pattern recognition,
robotic control, symbol manipulation, and decision mak-
ing. Generally, they consist of three layers: input neurons,
output neurons, and a layer in between where information
from input to output is processed. Initially the network
is loaded with a random program, then the output is
measured against a desired output which prompts an
adjustment in the weights assigned to the connections in
response to the discrepancy between the actual and
desired output. This is repeated many times so that the
network effectively learns as a child does: in a sense, the
net discovers its own rules. Changing the rules of interac-
tion between the “neurons” in the net can lead to inter-
esting emergent behavior, so that neural networks have
become another tool for investigating emergence and
self-organization.

Neusis construction
A geometric construction that breaks the strict rules of
classical Greek straightedge-and-compass construction
(see constructible) by allowing a marked ruler to be slid
into different positions. Neusis construction makes pos-
sible duplicating the cube and trisecting an angle. John
Conway and Richard Guy have also shown how Neusis
constructions, based on angle trisection, can be used to
draw regular polygons with 7, 9, and 13 sides.

Newcomb’s paradox
One of the most simply stated but astonishing of the so-
called prediction paradoxes that bear on the problem of
free will. It was devised in 1960 by William Newcomb, a
theoretical physicist at the Lawrence Livermore Labora-
tory, while contemplating the prisoner’s dilemma. A
superior being, with super-predictive powers that have

never been known to fail, has put $1,000 in box A and
either nothing or $1 million in box B. The being presents
you with a choice: (1) open box B only, or (2) open both
box A and B. The being has put money in box B only if
it predicted you will choose option (1). The being put
nothing in box B if it predicted you will do anything
other than choose option (1) (including choosing option
(2), flipping a coin, etc.). The question is, what should
you do to maximize your winnings? You might argue that
since your choice now can’t alter the contents of the
boxes you may as well open them both and take what-
ever’s there. This seems reasonable until you bear in
mind that the being has never been known to have made
an incorrect prediction. In other words, in some peculiar
way, your mental state is highly correlated with the con-
tents of the box: your choice is linked to the probability
that there’s money in box B. These arguments and many
others have been put forward in favor of either choice.
The fact is there is no known “right” answer, despite the
concerted attentions of many philosophers and mathe-
maticians over several decades.[123]

Newton, Isaac (1642–1727)
One of the great intellectual giants in human history; an
English mathematician, physicist, and sometime head of
the Royal Mint, Newton was one of the chief architects of
calculus (though not in its modern form), discovered the
binomial theorem, established the principles of univer-
sal gravitation, and saw through numerous other devel-
opments, any one of which would have brought a lesser
person fame. Interestingly, his most productive period
was 1665–1666, his so-called “miraculous year,” when
Cambridge University was closed because of the plague
and Newton had to work at home. He was born in the
same year that Galileo died. After publishing his Principia
(1687), the most important and influential scientific
book ever written, his interests drifted toward theology,
politics, and, for a while, alchemy. His last two decades
were largely spent in acrimonious debate with Gottfried
Leibniz, over priority in the discovery of calculus, and
with the astronomer John Flamsteed.

Newton’s method
An iterative method for finding the zeros of a function.

n-gon
A polygon with n sides.

Nim
A game, of which there are many different versions, that
involves two players alternately removing at least one
item from one of two or more piles or rows. The person
who picks up the last item wins. In one form of the game,
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five rows of matches are laid out in such a way that there
is one match in the first row, two matches in the second,
and so on, down to five matches in the bottom row. Play-
ers take turns to remove any nonzero number of matches
from any one row. The game may have originated in
China. The name “Nim” was coined by Charles Bouton,
an associate professor of mathematics at Harvard at the
turn of the twentieth century, who took it from an
archaic English word meaning to steal or to take away. In
1901 he published a full analysis of Nim and proof of a
winning strategy.[50] The first Nim-playing computer, the
Nimatron, a 1-ton behemoth, was built in 1940 by the
Westinghouse Electrical Corporation and was exhibited
at the New York World’s Fair. It played 100,000 games
against spectators and attendants, and won an impressive
90% of the time; most of its losses came at the hands of
attendants who were instructed to reassure incredulous
onlookers that the machine could be beaten! In 1951 a
Nim-playing robot, the Nimrod, was shown at the Festi-
val of Britain, and later at the Berlin trade fair. It was so
popular that spectators entirely ignored a bar at the other
end of the room where free drinks were being offered.
Eventually the local police had to be called in to control
the crowds.[110]

nine
A number long considered to have strange, mystic prop-
erties. A phrase in a book written during the Dark Ages
gave rise to the superstition that cats have nine lives. Eng-
lish author and satirist William Baldwin wrote in his
Beware the Cat, “It is permitted for a witch to take her cat’s
body nine times.” There were nine Muses, nine rivers of
Hades, and nine heads on the Hydra. It took nine days
for Vulcan to fall from the heavens. The phrase “nine
days’ wonder” comes from the proverb “a wonder lasts
nine days and then the puppy’s eyes are open.” A cat-o’-
nine-tails is a whip, usually made of nine knotted lines or
cords fastened to a handle that produces scars like the
scratches of a cat. Being on “cloud nine” may have its ori-
gin in Dante’s ninth heaven of Paradise, whose inhabi-
tants are blissful because they are closest to God.

The term “the whole 9 yards” came from World War II
fighter pilots in the Pacific. When arming their planes on
the ground, the .50-caliber machine gun ammo belts mea-
sured exactly 27 feet, before being loaded into the fuse-
lage. If the pilots fired all their ammo at a target, it got “the
whole 9 yards.” Less certain—though there is no shortage
of theories—is the source of the expression “dressed to the
nines.”

Nine is the largest single-digit number and the one that
occurs least frequently in most situations; an exception is
the tendency of businesses to set prices that end with one
or more nines. Because nine is one less than the base of

our number system, it is easy to see if a number is divisi-
ble by 9 by adding the digits (and repeating on the result
if necessary: the result should be nine). This process is
sometimes called casting out nines. Similar processes
can be developed for divisibility by 99, 999, etc. or any
number that divides one of these numbers. Nine has
many other interesting properties. For example, write
down a number containing as many digits as you like,
add these digits together, and deduct the sum from the
first number. The sum of the digits of this new number
will always be a multiple of nine.

nine holes
See three men’s morris.

nine men’s morris

The nine-men’s morris is filled up with mud;
And the quaint mazes in the wanton green,
For lack of tread, are indistinguishable.

—Midsummer Night’s Dream (Act 2, scene 1), 
Shakespeare

One of the oldest of board games, known by different
names and played with variations of rules in different
places and periods. In France it is Marelle, in Austria it
is Muhle, and in England it was known as Peg Meryll,
Meg Marrylegs, and other names, all referring to a
“mill” because that is the name of a run of three coun-
ters in the game. Versions of it have been found etched
into the roof of the Temple of Kurna in Egypt (dated to
about 1400 B.C.), cut into the oak planks that form the
deck of the great Viking ship discovered at Gokstad in
1880, and carved in the choir stalls of several English
cathedrals. A typical board layout is shown in the

nine men’s morris A modern version of the playing board.
Kadon Enterprises, Inc., www.puzzlegames.com
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accompanying figure; diagonal lines may or may not
be included. Joseph Strutt in The Sports and Pastimes of
the People of England (1801) described the rules in this
way:

Two persons, having each of them nine pieces, or
men, lay them down alternately, one by one upon
the spots; and the business of either party is to pre-
vent his antagonist from placing three of his pieces
so as to form a row of three, without the interven-
tion of an opponent piece. If a row be formed, he
that made it is at liberty to take up one of his com-
petitor’s pieces from any part he thinks most to his
advantage; excepting he has made a row, which must
not be touched if he have another piece upon the
board that is not a component part of that row.
When all the pieces are laid down, they are played
backwards and forwards, in any direction that the
lines run, but only can move from one spot to
another (next to it) at one time. He that takes off all
his antagonist’s pieces is the conqueror.

In 1996, the German mathematician Ralph Gasser
used a computer to prove that nine men’s morris is a
guaranteed draw if both players make optimal moves
from the outset. He programmed the computer to fig-
ure out and tabulate 10 billion positions that were
known to be a win for one side or the other, then
worked forward 18 moves from the beginning of the
game until his opening analysis met his endgame analy-
sis. As a result he showed that every potentially winning
position could be countered by the opponent in the
early stages of the game. See also three men’s mor-
ris.[132]

nine rooms paradox
A puzzle that was first published in Current Literature vol.
2, April 1889. It takes the form of a poem and is similar
to that of the missing dollar.

PUZZLE

Ten weary, footsore travellers,

All in a woeful plight,

Sought shelter at a wayside inn

One dark and stormy night.

‘Nine rooms, no more,’ the landlord said

‘Have I to offer you.

To each of eight a single bed,

But the ninth must serve for two.’

A din arose. The troubled host

Could only scratch his head,

For of those tired men not two

Would occupy one bed.

The puzzled host was soon at ease—

He was a clever man—

And so to please his guests devised

This most ingenious plan.

In a room marked A two men were placed,

The third was lodged in B,

The fourth to C was then assigned,

The fifth retired to D.

In E the sixth he tucked away,

In F the seventh man.

The eighth and ninth in G and H,

And then to A he ran,

Wherein the host, as I have said,

Had laid two travellers by;

Then taking one—the tenth and last—

He logged him safe in I.

Nine single rooms—a room for each—

Were made to serve for ten;

And this it is that puzzles me

And many wiser men.

How has the host managed to bamboozle his patrons?

Solutions begin on page 369.

nine-point circle
Draw a triangle, any triangle (although it may be best to
start with an acute triangle). Mark the midpoints of each
side. Drop an altitude from each vertex to the opposite
side, and mark the points where the altitudes intersect the
opposite side. (If the triangle is obtuse, an altitude will be
outside the triangle, so extend the opposite side until it
intersects.) Notice that the altitudes intersect at a com-
mon point. Mark the midpoint between each vertex and
this common point. No matter what triangle you start

nine-point circle



222 node

with, these nine points all lie on a perfect circle! This
result was known to Leonhard Euler in 1765, but was
rediscovered by the German mathematician Karl Feuer-
bach (1800–1834) in 1822.

node
See crunode.

Noether, Emmy (Amalie) (1882–1935)
A German mathematician, one of the most talented of
the early twentieth century. The crucial result now known
as Noether’s theorem, which is important in other symme-
tries in natural systems, is of great importance in physics.
She received her doctorate in 1907 and rapidly built an
international reputation, but the University of Göttingen
refused to let her teach, and her colleague David Hilbert
had to advertise her courses in the university’s catalog
under his own name. A long controversy ensued, with
her opponents asking what the country’s soldiers would
think when they returned home and were expected to
learn at the feet of a woman. Allowing her on the faculty
would also mean letting her vote in the academic senate.
Said Hilbert, “I do not see that the sex of the candidate is
against her admission as a privatdozent. After all, the uni-
versity senate is not a bathhouse.” She was finally admit-
ted to the faculty in 1919. A Jew, Noether was forced to
flee Nazi Germany in 1933 and joined the faculty at Bryn
Mawr in the United States.

non-Abelian
Noncommutative or order-dependent. For example, the
group of manipulations of Rubik’s cube is non-Abelian
because the state of the cube depends greatly on the order
of the moves performed on it. See also Abelian group.

nonagon
A polygon with nine sides. A nonagonal number is a num-
ber of the form n(7n − 5)/2.

nonconvex uniform polyhedron
A uniform polyhedron of a type obtained by relaxing
the conditions used to produce the Archimedean solids
(which have regular convex faces and identical convex
vertices) to allow both nonconvex faces and vertex types,
as in the case of the Kepler-Poinsot solids. The con-
dition that every vertex must be identical, but the 
faces need not be, gives rise to 53 nonconvex uniform
polyhedra. An example is the great truncated dodecahedron,
obtained by truncating the corners of the great dodeca-
hedron at a depth which gives regular decagons.

non-Euclidean geometry
Any geometry in which Euclid’s parallel postulate
doesn’t hold. (One way to state the parallel postulate is:
given a straight line and a point A not on that line, there
is only one exactly straight line through A that never
intersects the original line.) The two most important
types of non-Euclidean geometry are hyperbolic geome-
try and elliptical geometry. The different models of
non-Euclidean geometry can have positive or negative
curvature. The sign of curvature of a surface is indicated
by drawing a straight line on the surface and then draw-
ing another straight line perpendicular to it: both these
lines are geodesics. If the two lines curve in the same
direction, the surface has a positive curvature; if they
curve in opposite directions, the surface has negative cur-
vature. Elliptical (and spherical) geometry has positive
curvature whereas hyperbolic geometry has negative cur-
vature.

The discovery of non-Euclidean geometry had immense
consequences. For more than 2,000 years, people had
thought that Euclidean geometry was the only geometric
system possible. Non-Euclidean geometry showed that
there are other conceivable descriptions of space—a real-
ization that transforms mathematics into an altogether
more abstract science. Thereafter, it was clear that in math-
ematics, one could start out with any set of self-consistent

Types of Geometry

Euclidean Elliptical Hyperbolic

Curvature Zero Positive Negative

Given a line m and a point P not on m, 1 0 Many
the number of lines passing through P
and parallel to m

Sum of interior angles of a triangle 180° > 180° < 180°

Square of hypotenuse of a right triangle a 2
+ b 2

< a 2
+ b 2

> a 2
+ b 2

with sides a and b

Circumference of a circle with diameter 1 π < π > π
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postulates and follow through their ramifications. The dis-
covery of non-Euclidean geometry has been compared
with Copernicus’s theory and Einstein’s relativity theory,
the analogy being that each freed people from long-held
models of thought. In fact, Einstein said about non-
Euclidean geometry: “To this interpretation of geometry, 
I attach great importance, for should I have not been
acquainted with it, I never would have been able to de-
velop the theory of relativity.”

It’s important to realize that both Euclidean and 
non-Euclidean geometry are consistent in that the as-
sumptions on which they rest don’t involve any contra-
dictions. In response to a question as to which geometry
is true, Henri Poincaré said: “One geometry cannot be
more true than the other; it can only be more conve-
nient.” Which geometry is valid in the physical space in
which we live? On a small scale, and for all practical pur-
poses on Earth, Euclidean geometry works just fine. But
on larger scales this is no longer true. Einstein’s general
theory of relativity uses non-Euclidean geometry as a
description of space-time. According to this idea, space-
time has a positive curvature near gravitating matter and
the geometry is non-Euclidean. When a body revolves
around another body, it appears to move in a curved path
due to some force exerted by the central body, but it is
actually moving along a geodesic, without any force act-
ing on it. Whether all of space-time contains enough
matter to give itself an overall positive curvature is one of
the many unanswered question in physics today, but it is
generally accepted that the geometry of space-time is
more non-Euclidean than Euclidean. It is proposed that
if space-time does happen to have an overall positive
curvature, then the universe will stop expanding after a
fixed amount of time and start to shrink resulting in a
“big crunch,” as opposed to the “big bang” that resulted
in its creation. At the moment, astronomical observa-
tions seem to favor a universe that is “open” and has a
hyperbolic geometry. Another consequence of non-
Euclidean geometry is the possibility of the existence of a
fourth dimension. Just as the surface of the sphere
curves in the direction of the third dimension, i.e., per-
pendicular to its surface, it is believed that space-time
curves in the direction of the fourth dimension. Non-
Euclidean geometry has applications in other areas of
mathematics, including the theory of elliptic curves,
which was important in the proof of Fermat’s last theo-
rem.[72, 140] (See table, “Types of Geometry.”)

nonlinear system
Any system in which the data points coming from the
measurement of the values of its variables can be repre-
sented as a curvilinear pattern on a coordinate plane;

hence, “nonlinear” for “not-a-line.” More generally, a sys-
tem in which small changes can result in large effects, and
large changes in small effects. Thus, sensitive dependence
on initial conditions (see butterfly effect) in chaotic sys-
tems illustrates the extreme nonlinearity of these systems.
In a nonlinear system the components are interactive,
interdependent, and exhibit feedback effects.

nonstandard analysis
In a broad sense, the study of the infinitely small; more
specifically, the study of hyperreal numbers, their func-
tions and properties. Nonstandard analysis, which was
pioneered by Abraham Robinson in the 1960s, puts the
concept of infinitesimals on a firm mathematical footing
and is, for many mathematicians, more intuitive than
real analysis.

normal
A line that is perpendicular to a given line or plane.

normal number
A number in which digit sequences of the same length
occur with the same frequency. A constant is considered
normal to base 10 if any single digit in its decimal expan-
sion appears one-tenth of the time, any two-digit combi-
nation one-hundredth of the time, any three-digit
combination one-thousandth of the time, and so on. In
the case of pi, the digit 7 is expected to appear 1 million
times among the first 10 million digits of its decimal
expansion. It actually occurs 1,000,207 times—very close
to the expected value. Each of the other digits also turns
up with approximately the same frequency, showing no
significant departure from predictions. A number is said
to be absolutely normal if its digits are normal not only to
base 10 but also to every integer base greater than or
equal to 2. In base 2, for example, the digits 1 and 0
would appear equally often. Émile Borel introduced the
concept of normal numbers in 1909 as a way to charac-
terize the resemblance between the digits of a mathemat-
ical constant such as π and a sequence of random
numbers. He quickly established that there are lots of
normal numbers, though finding a specific example of
one proved to be a major challenge. The first to be found
was Champernowne’s number, which is normal to base
10. Analogous normal numbers can be created for other
bases. To date, no specific “naturally occurring” real
number has been proved to be absolutely normal, even
though it is known that almost all real numbers are
absolutely normal! However, in 2001, Greg Martin of the
University of Toronto found some examples of the op-
posite extreme—real numbers that are normal to no 
base whatsoever. To start with, he noted that every 
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rational number is absolutely abnormal. For example, 
the fraction 1⁄7 can be written in decimal form as
0.1428571428571 . . . . The digits 142857 just repeat
themselves. Indeed, an expansion of a rational number to
any base b or bk eventually repeats. Martin then focused
on constructing a specific irrational absolutely abnormal
number. He nominated the following candidate, ex-
pressed in decimal form, for the honor:

α = 0.6562499999956991999999 . . . 9999998528404201690728 . . .

The middle portion (underlined) of the given fragment
of α consists of 23,747,291,559 nines. Martin’s formula-
tion of this number and proof of its absolute abnormal-
ity involved so-called Liouville numbers.[216]

nothing
The absence of anything; nonexistence. Nothing is not
the same as the empty set, which exists as the set that
mathematically denotes nothing, nor is it the same as
zero, which exists as the number that denotes how
many members the empty set contains. In physics,
nothing is not a vacuum, because a vacuum not only
contains energy but exists in space and time; nor is it a
singularity, which contains a great deal of concentrated
matter and energy. So, can there be nothing? No. “To
be” implies existence of some sort: the one thing we can
be absolutely sure has never existed, or will exist, is
nothing.

noughts and crosses
See tic-tac-toe.

NP-hard problem
A mathematical problem for which, even in theory, no
shortcut or smart algorithm is possible that would lead
to a simple or rapid solution. Instead, the only way to
find an optimal solution is a computationally intensive,
exhaustive analysis in which all possible outcomes are
tested. Examples of NP-hard problems include the trav-
eling salesman problem and the popular game Tetris.
NP stands for “non-deterministic polynomial-time.”

nucleation
A process in a physical system, or a mathematical model
such as a cellular automaton or a statistical model,
whereby a bubble or other structure appears sponta-
neously at a random or unpredictable spot.

null hypothesis
The hypothesis that is being tested in a hypothesis-
testing situation.

null set
See empty set.

number
An abstract measure of quantity. The most familiar
numbers are the natural numbers, 0, 1, 2, . . . , used for
counting. If negative numbers are included, the result is
the integers. Ratios of integers are called rational num-
bers, which can be expressed as terminating or repeating
decimals. If all infinite and nonrepeating decimal
expansions are thrown in as well, the scope of numbers
extends to all real numbers, which can be extended to
the complex numbers in order to include all possible
solutions to algebraic equations. More recent develop-
ments are the hyperreal numbers and the surreal num-
bers, which extend the real numbers by adding
infinitesimal and infinitely large numbers. For measur-
ing the size of infinite sets, the natural numbers have
been generalized to the ordinal numbers and to the
cardinal numbers. See also numeral and number sys-
tem.

number line
A way of representing numbers by thinking of them as
the positions of points on a line.

number system
A way of counting using a particular base. The familiar
decimal number system is a base 10 system, because it
uses 10 different digits, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and com-
binations of these. Other number systems, used for spe-
cial purposes or by certain cultures, are the binary (base
2), trinary (base 3), hexadecimal (base 16), vigesimal
(base 20), and sexagesimal (base 60). In a positional num-
ber system of base b, b basic symbols (or digits) corre-
sponding to the first b natural numbers, including zero,
are used. To generate the rest of the numbers, the posi-
tion of the symbol in the figure is used. The symbol in
the last position has its own value, and as it moves to the
left its value is multiplied by b. In this way, with only
finitely many different symbols, every number can be
expressed. This is unlike systems, such as that of Roman
numerals, which use different symbols for different
orders of magnitude.

number theory
The study of the whole numbers and their properties and
relationships. Often, a problem in number theory can be
restated in terms of finding the solution, or showing that
there is no solution, to a Diophantine equation. A Dio-
phantine equation is one where the coefficients are
whole numbers and where the solution is also con-
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strained to be a whole number. Sometimes, what appears
to be a simple Diophantine equation can lead to an ellip-
tic curve.[30]

numeral
A symbol, or combination of symbols, that describes a
number. See Arabic numeral and Roman numeral.

numerator
The number above the fraction bar that indicates the num-
ber of parts of the whole there are in a rational number.

numerical analysis
The study of methods for approximating the solutions of
various classes of mathematical problems including error
analysis.



obelus
The name of the symbol “÷”, used as a sign for division. It
comes from the Greek obelos meaning a pointed stick (a
spit) used for cooking. This root word also gave rise to
obelisk for a pointed stone pillar. The “÷” symbol was origi-
nally used as an editing mark in early manuscripts, some-
times only as a line without the two dots, to point out
material that the editor thought needed cutting. It was also
used occasionally as a symbol for subtraction. As a division
symbol it was first employed by the Swiss mathematician
Johann Rahn (1622–1676) in his Teutsche Algebra in 1659.
By a misunderstanding of a credit to John Pell about other
material in the book, many English writers started using the
symbol and calling it “Pell’s notation.” Although it appears
regularly in literature produced in Britain and the United
States, it is virtually unknown in the rest of the world.

oblate spheroid
An ellipsoid produced by rotating an ellipse through
360° about its minor axis.

oblique
Slanted or not perpendicular. Oblique coordinates are mea-
sured on a plane coordinate system whose axes are not per-
pendicular. An oblique angle is any angle except a right angle
and an oblique triangle is any triangle that doesn’t contain a
right angle. The first reference to “oblique angled triangles”
may have been by Thomas Blundevil in his Exercises in 1594.

oblong
An alternate name for any rectangle that is not a square.
The word comes from the Latin ob (“excessive”) and
longus (“long”).

oblong number
Any positive integer that is not a perfect square.

obtuse
An obtuse angle is an angle greater than 90° but less than
180°. An obtuse triangle is a triangle that contains an
obtuse angle. The word comes from the Latin ob
(“against”) and tundere (“to beat”) and thus refers to
things that are blunt, dull, or rounded.

octa-
The Greek prefix meaning “eight.”

octagon
An eight-sided polygon. One of the most remarkable
examples of octagonal design in architecture is the Castel
del Monte, in southern Italy, which consists of a central
octagonal core containing an inner octagonal courtyard
that is surrounded by eight tall, perfectly octagonal towers.
Another famous octagon is Oxford University’s Radcliffe
Observatory tower, built from 1772 to 1794, vaguely based
on the Tower of the Winds in Athens, and considered
architecturally the finest observatory in Europe.[139]

octahedron
A polyhedron with eight faces, each of which is an equi-
lateral triangle. A regular octahedron, whose sides are all
equilateral triangles, is one of the Platonic solids; it looks
like two square pyramids with their square bases stuck
together. See also octa-.

octant
Any one of the eight portions of space determined by the
three coordinate planes.
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octa- An aerial view of Castel del Monte in Italy’s Apulien
region.
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octonion
Also known as a Cayley number. Octonions are a nonasso-
ciative generalization of the quaternions and the complex
numbers involving numbers with one real coefficient and
seven imaginary coefficients.

odd
Not divisible by two. An odd function is a function f (x)
with the property that f (−x) = −f (x) for any value of x; an
example is sin(x).

officer problem
See thirty-six officers problem.

omega
See Chaitin’s constant.

one
The first positive integer and the first odd number; it is
also known as unity. From the time of Euclid to the late
1500s, one wasn’t generally considered to be a number
but instead was thought of as the unit of which bonafide
numbers were composed. The Old English (c. 550–
c. 1100) ane served both for counting and as the indefi-
nite article. Toward the end of the Old English period
and the beginning of Middle English (c. 1100–c. 1500),
ane developed two pronunciations, the first being used
for 1 and the other for the indefinite article an, a. The

existence of different words for the number one and the
indefinite article seems to be unique to the English lan-
guage. “One” can be traced back to the Latin unus and
the Greek oine but probably came into English from the
German eine.

153
A number with some very curious properties. It is the
smallest number that can be expressed as the sum of
the cubes of its digits: 153 = 13 + 53 + 33. It is equal to
the sum of the factorials of 1 to 5: 153 = 1! + 2! + 3! +

4! + 5! The sum of the digits of 153 is a perfect square:
1 + 5 + 3 = 9 = 32. The sum of the aliquot parts of 153
is also a perfect square: 1 + 3 + 9 + 17 + 51 = 81 = 92.
On adding the number 153 to its reverse (351), the
result is 504 whose square is the smallest square that
can be expressed as the product of two different num-
bers that are the reverse of one another: 153 + 351 =

504; 5042 = 288 × 882. It can be expressed as the sum of
all integers from 1 to 17. In other words, 153 is the sev-
enteenth triangular number; its reverse is also a triangu-
lar number. In addition, 153 and its reverse are
Harshad numbers. It can be expressed as the product
of two numbers formed from its own digits: 153 = 3 ×

51. A reference to 153 occurs in the New Testament:
the net that Simon Peter drew from the Sea of Tiberias
held 153 fishes.

one-to-one
A function or map that for every possible output has
only one input that yields that particular output; if f (a) =

f (b), then a = b.

open
An open interval is a piece of a straight line that doesn’t
contain its endpoints; a half-open interval contains one
endpoint. An open set is one in which every point in the
set has a neighborhood lying in the set.

operator
Something that acts on a function to give another func-
tion.

optical illusion
A picture or figure that deceives or confuses the eye
and/or brain. Categorization of optical illusions is diffi-
cult because several underlying mechanisms may con-
tribute to an effect, or the cause of the illusions may not
be completely understood. For the purposes of this book
illusions are grouped as shown in the table “Some Types
and Examples of Optical Illusions.” See individual
entries for details. See also anamorphosis.

octahedron One of the Platonic solids.
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Some Types and Examples of Optical Illusions

Type Examples

Distortion illusion Fraser spiral
Müller-Lyer illusion
Orbison’s illusion
Poggendorff illusion
Titchener illusion
Zöllner illusion

Impossible figures Freemish crate
and objects Penrose triangle

Penrose stairway
Tribar illusion

Ambiguous figure Ames room
Necker cube
Schröder’s reversible staircase
Thiery figure

Lateral inhibition Hermann grid illusion
illusion

Antigravity houses and 
hills

Orbison’s illusion
A distortion illusion in which a background of radiating
lines appears to distort the shape of a superimposed fig-
ure, such as a square or circle.

orbit
(1) The path, in the form of a conic section, that an
object takes when under the gravitational influence of
another body. (2) More generally, the trajectory of a dif-
ferential equation.

order
A word with many different meanings in mathematics.
Among these are: (1) the sequence in which a set of objects
or numbers is placed; (2) the number of elements in a set;
(3) the number of times a shape can be fitted back onto its
own outline during a complete turn (order of symmetry); (4)
the highest order power in a one-variable polynomial
(order of a polynomial, also known as its degree); (5) the type
of curve described by such a polynomial (order of a curve).

Orbison’s illusion Is the square really a square?
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ordered pair
A collection of two objects such that one can be distin-
guished as the first element and the other as the second ele-
ment. An ordered pair with first element a and second
element b is usually written as (a, b). Two such ordered
pairs (a1, b1) and (a2, b2) are equal if and only if a1 = a2 and
b1 = b2. Ordered triples and ordered n-tuples (ordered lists of n
terms) are defined in the same way. An ordered triple (a,
b, c) can be defined as (a, (b, c)), that is, as two nested pairs.

ordinal number
A number used to give the position in an ordered
sequence: first, second, third, fourth, . . . .Ordinal num-
bers are distinct from cardinal numbers (one, two, three,
four, . . .), which describe the size of a collection. The
mathematician Georg Cantor showed in 1897 how to
extend the concept of ordinals beyond the natural num-
bers to the infinite and how to do arithmetic with the
resulting transfinite ordinals (see infinity).

ordinary differential equation
Any equation relating a function of one variable to its
derivatives. Compare with partial differential equation.

ordinate
The y-coordinate, or vertical distance from the x-axis, in 
a system of Cartesian coordinates. Compare with ab-
scissa.

origami
The Japanese art of the paper-folding, without cutting
and joining, to form definite objects.

origin
The point (0, 0) on the coordinate axes.

orthic triangle
The triangle whose vertices (see vertex) are the feet of the
altitudes of a given triangle.

orthocenter
The point of intersection of the altitudes of a triangle.

orthogonal
At right angles to; independent of. Orthogonal curves are
two families of curves with the property that each mem-
ber of one family meets members of the other family at
right angles.

osculating
To share the same tangent and curvature and at a given
point, as in the case of two osculating curves. For example
the curve y = x3 and the x-axis osculate at the origin.

Oughtred, William (1574–1660)
An English clergyman and mathematician who invented
the slide rule and who, in the first English edition of his
Clavis Mathematicae in 1647, first used the name “pi” for
the number 3.141 . . . . He wrote it π.δ, where π stood for
the English word periphery (what we would call circum-
ference), the dot was his symbol for division, and δ stood
for the English word diameter. The use of π to represent
words starting with the letter p, like periphery, was not
uncommon. Before π = 3.14 . . . caught on, π was vari-
ously used to indicate a point, a polygon, a positive
number, a power, a proportion, the number of primes in
a series, and a factorial (which is a product). Oughtred
used the same notation in all later English and Latin edi-
tions of his book, but not in the earlier first Latin edition.
He was a prodigious inventor of mathematical symbols,
though most of them have not survived. He did, how-
ever, introduce a couple of other symbols we still use: ×
for multiplication (as distinct from the letter x, which he
also used for this purpose) and ! for “plus or minus.”
Oughtred served as rector of Albury from 1608 or 1610
until his death. There he tutored many young mathe-
maticians of the time, including John Wallis, Seth Ward,
Charles Scarburgh, and Christopher Wren. Moreover, all
English mathematicians for the next century, including
Isaac Newton, learned algebra from Clavis Mathematicae
(first published in 1631).

oval
A curve that looks like a squashed circle but, in contrast
with the ellipse, doesn’t have a precise mathematical def-
inition. The word oval comes from the Latin ovus for
“egg.” Unlike ellipses, ovals sometimes have only a single
axis of reflection symmetry (instead of two).

Ovid’s game
A board game, described by the Roman poet Ovid in
Book III of his Art of Love, that was popular in ancient
Greece, Rome, and China. Each player has three coun-
ters, which they place alternately on to nine points laid
out in a 3 × 3 grid, with the object of getting three in a
line and so winning. This may sound like tic-tac-toe, and
there is no doubt that both Ovid’s game and nine men’s
morris are antecedents of the familiar noughts and
crosses. But in Ovid’s game play continues after the six
counters are down, if no one has yet won, by moving a
single counter on each turn, though not diagonally, to
any adjacent square. As in the case of tic-tac-toe, two
experts (i.e., “rational” players) will always draw. Because
the first player is ensured a win by covering the center
square, this move is usually not allowed. Ovid advised
women to master the game in order to gain the attention
of men!
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Ozanam, Jacques (1640–1717)
A French mathematician, scientist, and writer best remem-
bered for his book on mathematical and scientific puzzles
Récréations Mathématiques et Physiques (four volumes, 1694),
which later went through 10 editions. Based on earlier
works by Claude Bachet, Claude Mydorge, Jean Leure-
chon, and Daniel Schwenter (1585–1636), it was later
revised and enlarged by Jean Montucla, then translated
into English by Charles Hutton (1803, 1814). Edward Rid-

dle edited a new edition, which was published in 1844,
removing some old material and adding new material so
that “[T]he work might continue to be to the present gen-
eration a useful manual of scientific recreation, as its pre-
decessors have been to the generation which has passed.”
Ozanam’s original edition contained an early example of a
problem about orthogonal Latin squares: “Arrange the 16
court cards so that each row and each column contains
one of each suit and one of each value.”



Pacioli, Luca (1445–1517)
An Italian mathematician and Franciscan monk who
wrote several influential books. His encyclopedic Summa
de Arithmetica, Geometria, Proportioni et Proportionalita
(Summary of arithmetic, geometry, proportion and pro-
portionality, 1494) summarized what was known about
contemporary arithmetic, algebra, geometry, and trigo-
nometry and gave a basis for the major progress in math-
ematics which subsequently took place in Europe. Divina
proportione (1509), with drawings by none other than
Leonardo da Vinci (surely no mathematical text was
more impressively illustrated!), deals with the golden
ratio, a subject that Pacioli treats from an architectural
standpoint in a second volume. At his death, he left a
major book unpublished, De Viribus Amanuensis, on
recreational problems, geometrical problems, and prov-
erbs. It makes frequent reference to Leonardo, who
assisted him with the project: many of the problems in
this treatise are also in Leonardo’s notebooks. Again it is
a work for which Pacioli claimed no originality, describ-
ing it as a compendium.

packing
A way to place objects of the same kind so that they
touch in some specified way, often inside a container
with specified properties. The objects to be packed
may be polyhedra, polygons, spheres, ellipsoids, hyper-
spheres, or any other type of shape, and the number
of dimensions involved may range upward from two.
The fraction of a space filled by a given collection of
objects is called the packing density. The densest pack-
ing of circles in the plane is the hexagonal lattice of
the bee’s honeycomb, which has a packing density
of 0.9069 . . . . In 1611, Johannes Kepler proposed
that hexagonal, or face-centered cubic, packing is also
the densest possible way to arrange spheres in three
dimensions—an assertion known as Kepler’s conjec-
ture. Currently, the worst known convex packer in
two-dimensions is the smoothed octagon, with a pack-
ing density of about 0.902. Stanislaw Ulam conjectured
that the sphere was the worst packing object in three-
dimensional space.

Padovan sequence
See plastic number.

palindrome
A word, verse, sentence, or passage that reads the same
forward or backward; the term comes from the Greek
palindromos for “running back again.” Well-known exam-
ples include: “Madam, I’m Adam;” “A man, a plan, a
canal—Panama!;” and “Able was I ere I saw Elba.” A
slightly longer one, devised by Peter Hilton, a code-
breaker on the British team that cracked the German
Enigma, is “Doc, note. I dissent. A fast never prevents a
fatness. I diet on cod.” Credit for inventing the palin-
drome is often given to Sotades the Obscene of Maronea
(third century B.C.). Though only eleven lines of his work
have survived, he is thought to have recast the entire Iliad
in palindromic verse. Sotades also wrote lines (now
sometimes called Sotadic verses) that, when read back-
ward, had the opposite meaning. His acid tongue even-
tually landed him in jail by order of Ptolemy II, though
worse was to follow. Sotades escaped but was captured by
Ptolemy’s admiral Patroclus, who sealed him in a leaden
chest and tossed him into the sea. A musical palindrome
is formed by Haydn’s Symphony No. 47 in G, sometimes
referred to as The Palindrome, because in both the minuet
and the trio the orchestra plays the music twice forward
and then twice backward to arrive at the beginning. See
also palindromic number.

palindromic number
A number such as 1,234,321 that reads the same forward
and backward; more generally, a symmetrical number
written in some base a as a1 a2 a3 . . . | . . . a3 a2 a1. In the
familiar base 10 system, there are nine two-digit palin-
dromic numbers: 11, 22, 33, 44, 55, 66, 77, 88, 99; there
are 90 palindromics with three digits: 101, 111, 121, 131,
141, . . . , 959, 969, 979, 989, 999; and there are 90
palindromics with four digits: 1,001; 1,111; 1,221;
1,331; 1,441; . . . , 9,559; 9,669; 9,779; 9,889; 9,999, giv-
ing a total of 199 palindromic numbers below 104.
Below 105 there are 1,099 palindromics and for other
exponents of 10n there are 1,999; 10,999; 19,999;
109,999; 199,999; 1,099,999; . . . . It is conjectured, but
has not been proven, that there are an infinite number
of palindromic prime numbers. With the exception of
11, palindromic primes must have an odd number of
digits. A normally quick way to produce a palindromic
number is to pick a positive integer of two or more 
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digits, reverse the digits, and add to the original, then
repeat this process with the new number, and so on. For
example, 3,462 gives the sequence 3,462; 6,105; 11,121;
23,232. Does the series formed by adding a number to
its reverse always end in a palindrome? It used to be
thought so. However, this conjecture has been proven
false for bases 2, 4, 8, and other powers of 2, and seems
to be false for base 10 as well. Among the first 100,000
numbers, 5,996 numbers are known that have not pro-
duced palindromic numbers by the add-and-reverse
method in calculations carried out to date. The first few
of these are 196; 887; 1,675; 7,436; 13,783; 52,514; . . . .
A proof that these numbers never produce palindromes,
however, has yet to be found. The largest known palin-
dromic prime, containing 30,913 digits, was found by
David Broadhurst in 2003.

pandiagonal magic square
A magic square in which all the broken diagonals as well
as the main diagonals add up to the magic constant.

pandigital number
An integer that contains each of the digits from zero to
nine exactly once and whose leading digit is nonzero.
The smallest pandigital numbers are 1,023,456,789;
1,023,456,798; 1,023,456,879; 1,023,456,897; and
1,023,456,978. Like all pandigitals these are divisible by
nine. The first few “zeroless” pandigitals are 123,456,789;
123,456,798; 123,456,879; 123,456,897; 123,456,978; and
123,456,987; and the first few zeroless pandigital 
primes are 1,123,465,789; 1,123,465,879; 1,123,468,597;
1,123,469,587; and 1,123,478,659. The sum of the first
32,423 (a palindromic number) consecutive primes is
5,897,230,146, which is pandigital. No other palindromic
number shares this property. Examples of palindromic
numbers that are the product of pandigital numbers 
are 2,970,408,257,528,040,792 (= 1,023,687,954 ×

2,901,673,548) and 5,550,518,471,748,150,555 
(= 1,023,746,895 × 5,421,768,309), both found in 2001.
See also pandigital product.

pandigital product
A product in which the digits of the multiplicand, multi-
plier, and product, taken together, form a pandigital
number.

pangram
A phrase or sentence that contains every letter of the
alphabet at least once. The best known example in Eng-
lish and a familiar typing test is “The quick brown fox
jumps over the lazy dog.” One of the shortest known that
still makes some kind of sense is “The five boxing wizards
jump quickly.”

Pappus of Alexandria (c. A.D. 300)
The last of the great Greek geometers whose eight-
volume Mathematical Collection summarized the bulk of
mathematics known at that time. In this compendium,
Pappus added a considerable number of his own expla-
nations and amplifications of the earlier work of Euclid,
Archimedes, Apollonius, and others.

parabola
One of the conic sections and one of the most studied
curves in the history of mathematics. A parabola is the
outline of the figure obtained if a right circular cone is
cut by a plane that is exactly parallel to the cone’s side.
Just as the circle is a limiting case of the ellipse when the
two foci coincide, the parabola is a limiting case of the
ellipse when one of the foci is moved to infinity. As 
the French mathematician Henri Fabre eloquently put it,
the parabola is an ellipse that “seeks in vain for its sec-
ond, lost center.” Johannes Kepler drew this further con-
nection between the parabola and other conic sections:
“Because of its intermediate nature the parabola occupies
a middle position [between the ellipse and the hyper-
bola]. As it is produced it does not spread out its arms
like the hyperbola but contracts them and brings them
nearer to parallel, always encompassing more, yet always
striving for less—whereas the hyperbola, the more it
encompasses, the more it tries to obtain.”

A parabola is the locus of all points in a plane that are
equidistant from a given line, known as the directric, and

parabola Jan Wassenaar, www.2dcurves.com
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a given point not on the line, known as the focus. The
Cartesian equation of a parabola that opens upward and
has its vertex (turning point) at the origin is y = 4ax2,
where a is the distance from the vertex to the focus, and
the quantity 4a is known as the latus rectum. More gener-
ally, any quadratic equation of the form y = ax2 + bx + c,
where a is not zero, graphs a parabola. The simplest form
of this, when a = 1, and both b and c are zero, is y = x2.
Like the circle, but unlike the ellipse and the hyperbola,
the parabola has only one distinct shape. In other words,
any parabola can be superimposed exactly on any other
parabola simply by rotating, translating (sliding), and/or
enlarging or shrinking it.

Euclid dealt with the parabola in his Conic Sections, and,
although this treatise was lost, it provided a foundation
for the first four books by Apollonius of the same name.
Galileo (1564–1642) discovered that a cannonball, or any
other projectile launched at an angle to ground, follows a
parabolic path: a result that immediately grabbed the
attention of not only scientists but of monarchs and mili-
tary leaders. René Descartes, in writing La Géométrie
(1637), chose the parabola to illustrate his innovative ana-
lytical geometry. In 1992, Rudolph Marcus of the Cali-
fornia Institute of Technology won the Nobel Prize in
Chemistry for his work showing that parabolic reaction
surfaces can be used to calculate how fast electrons travel
in molecules. His most famous theoretical result, an
inverted rate-energy parabola, predicts electron transfer
will slow down at very high-reaction free energies.

paraboloid
The surface of revolution of the parabola. It is a qua-
dratic surface described by the equation z = a(x 2 + y 2).

paradox

Please accept my resignation. I don’t want to belong
to any club that will accept me as a member.

—Groucho Marx (1895–1977)

A statement that seems to lead to a logical self-
contradiction, or to a situation that contradicts common
intuition. The word paradox comes from the Greek para
(“beyond”) and doxa (“opinion” or “belief”). The identi-
fication of a paradox based on seemingly simple and rea-
sonable concepts has often led to significant advances in
science, philosophy, and mathematics. See Allais para-
dox, Arrow paradox, Banach-Tarski paradox, Berry’s
Paradox, birthday paradox, Burali-Forti paradox, coin
paradox, grandfather paradox, Grelling’s paradox,
liar paradox, Newcomb’s paradox, nine rooms para-
dox, Parrondo’s paradox, raven paradox, Russell’s
paradox, St. Petersburg paradox, Siegel’s paradox,
unexpected hanging, and Zeno’s paradoxes.

parallel
Said of two or more things, such as lines or planes, that
are equally distant from one another at all points.

parallel postulate
The fifth and most controversial of Euclid’s postulates
set forth in the Greek geometer’s great work, Elements. To
later mathematicians, the parallel postulate seemed less
obvious than the other four and many attempts were
made to derive it from them, but without success. In
1823, János Bólyai and Nikolai Lobachevsky indepen-
dently realized that entirely self-consistent types of non-
Euclidean geometry could be created in which the
parallel postulate doesn’t hold. Carl Gauss had made the
same discovery earlier but kept the fact secret.

parallelepiped
A polyhedron with six faces bounded by three pairs of
parallel planes, so that all its faces are parallelograms. It
is also a prism with a parallelogram for a base. A rectan-
gular parallelepiped has the shape of a shoebox. The word
comes from the Greek parallelepipedon for the same shape,
which in turn comes from the roots para (“beside”), allel
(“other”), epi (“on”), and pedon (“ground”). Paral-
lelepipedon may have been first used in English by
Billingsley in his 1570 translation of Euclid. It seems to
have then given way to parallelepiped in the last quarter of
the nineteenth century.

parallelogram
A quadrilateral (four-sided figure) whose opposite sides
are parallel, and whose opposite angles, therefore, are
equal. The diagonals of a parallelogram bisect each other.
A parallelogram of base b and height h has an area

bh = ab sinA = absinB.

The height of a parallelogram is h = a sinA = a sinB. The
sides a, b, c, and d and diagonals p and q of a parallelo-
gram satisfy the equality

p 2 + q 2 = a 2 + b 2 + c 2 + d 2.

parallelogram The two lines drawn inside this parallelogram
have the same length.
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Special cases of a parallelogram are a rhombus, which
has sides of equal length; a rectangle, which has two sets
of parallel sides that are perpendicular to each other; and
a square, which meets the conditions of both a rectangle
and a rhombus.

In the parallelogram illusion shown, despite appearances
to the contrary, the interior diagonal lines are of equal
length.

parameter
An independent variable; one of the inputs for a func-
tion. Parametric equations are equations in which the vari-
ables of interest are given in terms of another variable.

parity
(1) The sum of the digits in a binary representation of a
number. (2) An indication of whether two numbers are
both even or both odd (same parity), or are such that one
is even and one is odd (opposite parity). This concept, of
same or opposite parity, can be applied to any things that
can have two different states—the sense in which a knot is
tied, the color of a chessboard square, and so on.

Parrondo’s paradox
Two losing gambling games can be set up so that when
they are played one after the other, they become win-
ning. This paradox is named after the Spanish physicist
Juan Parrondo who, in the late 1990s, discovered how
to construct such a scenario. The simplest way is to use
three biased coins. Imagine you are standing on stair
zero, in the middle of a long staircase with 1001 stairs
numbered from −500 to 500. You win if you can get to
the top of the staircase, and the way you move depends
on the outcome of flipping one of two coins. Heads you
move up a stair, tails you move down a stair. In game 1,
you use coin A, which is slightly biased and comes up
heads 49.5% of the time and tails 50.5%. Obviously,
these are losing odds. In game 2, you use two coins, B
and C. Coin B comes up heads only 9.5% of the time,
tails 90.5%. Coin C comes up heads 74.5% of the time,
tails 25.5%. In game 2 if the number of the stair you are
on at the time is a multiple of 3 (that is, . . . , −9, −6,
−3, 0, 3, 6, 9, 12, . . .), then you flip coin B; otherwise
you flip coin C. Game 2, it turns out, is also a losing
game and would eventually take you to the bottom of
the stairs. What Parrondo found, however, is that if you
play these two games in succession in random order,
keeping your place on the staircase as you switch
between games, you will steadily rise to the top of the
staircase! This kind of process has been called a Brown-
ian motion.[153]

partial differential equation
An equation that involves derivatives with respect to
more than one variable. Many of the equations used to
model the physics of the real world are partial differential
equations.

partition number
A number that gives the number of ways of placing n
indistinguishable balls into n indistinguishable urns. For
example:

1: (*)

2: (**) (*)(*)

3: (***) (**)(*) (*)(*)(*)

5: (****) (***)(*) (**)(**) (**)(*)(*) (*)(*)(*)(*)

7: (*****) (****)(*) (***)(**) (***)(*)(*) (**)(**)(*)
(**)(*)(*)(*)(*)(*)(*)(*)(*)

11: (******) (*****)(*) (****)(**) (****)(*)(*)
(***)(***) (***)(**)(*)(***)(*)(*)(*)
(**)(**)(**) (**)(**)(*)(*) (**)(*)(*)(*)(*)
(*)(*)(*)(*)(*)(*)

The sequence runs: 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77,
101, 135, 176, 231, 297, 385, . . . . If the urns are distin-
guishable, the number of ways is 2n. If the balls are dis-
tinguishable, the number of ways is given by the nth Bell
number.

Pascal, Blaise (1623–1662)
A French mathematician, philosopher, and pioneer of
probability theory whose short life was rich with mathe-
matical invention but whose name, ironically, is most
familiar from its association with an array of numbers
known as Pascal’s triangle (which he didn’t discover,
though he did important work on it). Educated by his
father (after whom the limaçon of Pascal is named), Pas-
cal showed his intellectual prowess early on by proving
one of the most important theorems in projective geom-
etry at the age of 16. Three years later he devised the
world’s second mechanical calculating machine (the first
was made by Wilhelm Schickard in 1623) to help with his
father’s business; he sold about 50 of these “Pascalines,”
several of which survive. In 1654, he and Pierre de Fer-
mat, in an exchange of correspondence, laid the founda-
tion for probability theory. They considered the dice
problem, already studied by Girolamo Cardano, and the
problem of points also considered by Cardano and,
around the same time, by Luca Pacioli and Niccoló
Tartaglia. The dice problem asks how many times one
can expect to throw a pair of dice before getting a double
six; the problem of points asks how to divide the stakes if
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a game of dice is incomplete. Pascal and Fermat solved
the problem of points for a two-player game but didn’t
develop powerful enough methods to solve it for three or
more players. In the same year, Pascal was almost killed
in an incident in which the horses pulling his carriage
bolted and the carriage was left hanging over a bridge
above the river Seine. Though rescued unharmed, he
shortly after converted to the rigorous Jansenist sect of
the Catholic Church. His philosophical work Pensées,
written between 1656 and 1658 contains his famous argu-
ment, often called Pascal’s wager, for belief in God. Hav-
ing suffered poor health for most of his adult life, he died
in great pain of cancer at the age of 39.

Pascal’s mystic hexagon
If a hexagon ADBFCE (not necessarily convex) is
inscribed in a conic section (in particular a circle), then
the points of intersections of opposite sides (AD with
FC, DB with CE and BF with EA) are collinear. This line
is called the Pascal line of the hexagon. A special case is
when the conic degenerates into two lines; the theorem
still holds but is then usually called Pappus’s theorem.

Pascal’s triangle
A triangular pattern of numbers in which each number is
equal to the sum of the two numbers immediately above
it:

1
1   1

1   2   1
1   3   3   1

1   4   6   4   1
1   5   10   10   5   1

1   6   15   20   15   6   1
1   7   21   35   35   21   7   1

1   8   28   56   70   56   28   8   1
!

Although named after Blaise Pascal, who studied it, this
arithmetic triangle has been recognized since the twelfth
century and has a variety of other names. In Italy it is
called Tartaglia’s triangle and in many parts of Asia it is
referred to as Yang Hui’s triangle. Yang Hui was a minor
Chinese official who wrote two books, dated 1261 and
1275, that use decimal fractions (long before they
appeared in the West) and contain one of the earliest
accounts of the triangle. At about the same time, Omar
Khayyam also wrote about it. The Chinese triangle
appears again in 1303 on the front of Chu Shi-Chieh’s
Ssu Yuan Yü Chien (Precious mirror of the four elements),
a book in which Chu says the triangle was known in
China more than two centuries before his time.

The numbers in Pascal’s triangle give the number of
ways of picking r unordered outcomes from n possibilities.
This is equivalent to saying that the numbers in each row
are the binomial coefficients in the expansion of (x + y)n:

(x + y)0 = 1
(x + y)1 = 1x + 1y
(x + y)2 = 1x 2 + 2xy + 1y 2

(x + y)3 = 1x 3 + 3x 2y + 3xy2 + 1y 3

(x + y)4 = 1x 4 + 4x 3y + 6x 2y 2 + 4xy3 + 1y 4

and so on. In addition, the shallow diagonals of the tri-
angle sum to give the Fibonacci sequence.

path
See trajectory.

pathological curve
A curve often specifically devised to show the falseness of
certain intuitive concepts. In particular, the image of con-
tinuity as a smooth curve in our mind’s eye severely 
misrepresents the situation and is the result of a bias
stemming from an overexposure to the much smaller
class of differentiable functions (see differentiation). A
chief lesson of pathological curves is that continuity is a
weaker notion than differentiability. Many pathological
curves are fractals, such as Cantor dust, including space-
filling curves, such as the Peano curve. The earliest
known example is the graph of Weierstrass’ nondiffer-
entiable function.

payoff
In game theory, the amount that a player wins, given the
player’s and his opponent’s actions.

Peano, Guiseppe (1858–1932)
An Italian pioneer of mathematical logic and the axi-
omatization of mathematics. In 1889, he published his
first version of a system of mathematical logic in Arith-
metics Principia, which included his famous axioms of nat-
ural numbers, now known as Peano’s axioms. Two years
later, he established a journal, the Rivista, in which he pro-
posed the symbolizing of all mathematical propositions
into his system. The project, which became known as the
Formulario, was his chief focus for the next fifteen years.

Peano curve
The first known example of a space-filling curve. Discov-
ered by Guiseppe Peano in 1890, its effect was like that of
an earthquake on the traditional structure of mathemat-
ics. Commenting in 1965 on the impact of the curve in
Peano’s day, N. Ya Vilenkin said: “Everything has come
unstrung! It’s difficult to put into words the effect that
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Peano’s result had on the mathematical world. It seemed
that everything was in ruins, that all the basic mathemati-
cal concepts had lost their meaning.” Today, the Peano
curve is recognized as just one of an infinite class of fa-
miliar objects known as fractals. But at the end of the
nineteenth century it was an extravagant, completely
counterintuitive thing; indeed, it was something that had
been believed impossible. Writing of Peano’s result in
Grundzüge der Mengenlehre (Basic features of set theory) in
1914, Felix Hausdorff said: “This is one of the most
remarkable facts of set theory.” Originally, the Peano
curve was derived purely analytically, without any kind of
drawing or attempt at visualization. But the first few steps
in drawing it, as shown in the diagrams, are easy enough,
even though the finished product is unattainable in this
way—and totally unimaginable. To fill the unit square, as
the Peano curve does, without leaving any holes, the
curve has to be both continuous and self-intersecting.

pearls of Sluze
Curves that are generated by the Cartesian equation

yn = k(a − x) p xm,

where n, m, and p are integers. They were first studied by
the French mathematician René de Sluze (1622–1685)
and named the pearls of Sluze by Blaise Pascal.

pedal curve
The locus of the feet of the perpendiculars from a given
point to the tangents to the given figure. The “given
point” is known as the pedal point.

pedal triangle
The pedal triangle of a point P with respect to a triangle
ABC is the triangle whose vertices (see vertex) are the
feet of the perpendiculars dropped from P to the sides of
triangle ABC.

peg solitaire
Also known as Hi-Q, a game that, in its commonest
form, is played with 32 pegs or marbles on a rectangular
grid, the middle position of which starts out empty. A
peg may jump horizontally or vertically, but not diago-
nally, over a peg in an adjacent hole into a vacant hole
immediately beyond. The peg that was jumped over is
then removed. The object is to be left with a single peg in
the center position.

The quickest solution of peg solitaire was found by
Ernest Bergholt in 1912 and was proved to be minimal
by John Beasley in 1964. Suppose the rows and columns
of the board are each labeled 1 to 7 so that, for example,
a peg on the fourth row and the third column is in posi-
tion 43. The quickest solution is: (1) 46→44. (2) 65→45.

Peano curve A simple iterative process produces a remark-
able space-filling shape.

pearls of Sluze Jan Wassenaar, www.2dcurves.com
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(3) 57→55. (4) 54→56. (5) 52→54. (6) 73→53. (7)
43→63. (8) 75→73→53. (9) 35→55. (10) 15→35. (11)
23→43→63→65→45→25. (12) 37→57→55→53. (13)
31→33. (14) 34→32. (15) 51→31→33. (16) 13→15→35.
(17) 36→34→32→52→54→34. (18) 24→44.[28]

Pell equation
An equation of the form y 2 = ax2 + 1, where a is any pos-
itive whole number except a square number. The name
comes from the English mathematician John Pell
(1611–1685); however, he was wrongly credited. In writ-
ing about some of the work done on this type of equa-
tion, Leonhard Euler gave priority to Pell whereas, in
fact, Pell had done no more than copy it in his papers
from some of Pierre de Fermat’s letters. Fermat had been
the first to state that an equation of this form always has
an unlimited number of integer solutions. For example,
the equation y 2 = 92x 2 + 1, has the solutions x = 0, y = 1;
x = 120, y = 1,151; x = 276,240, y = 2,649,601; and so on.
Each successive solution is about 2,300 times the previ-
ous solution. In fact, the solutions are every eighth partial
fraction (where x is the numerator and y is the denomi-
nator) of the continued fraction for !92". A Pell equa-
tion was used in finding the solution to Archimedes’s
cattle problem.

Pell numbers
Numbers, named after John Pell (1611–1685), that are
similar to the Fibonacci sequence and are generated by
the formula An = 2 An − 1 + An − 2. The sequence runs: 1; 2;

5; 12; 29; 70; 169; 408; 985; 2,378; 5,741; 13,860; 33,461;
80,782; 195,025; . . . . The ratio of successive terms
approaches 1 plus the square root of 2.

Penrose, Roger (1931–)
An English mathematical physicist famous for his impor-
tant contributions to cosmology and the physics of black
holes, for his controversial views on the nature of human
consciousness and its relationship to quantum mechan-
ics, and for his work in the field of recreational mathemat-
ics. The Penrose tiling and the Penrose triangle are
named after him (but not the Penrose stairway, which is
named after his father). In his book The Emperor’s New
Mind he argues that there must be errors in the known laws
of physics, notably in quantum mechanics, and that true
artificial intelligence is impossible.[242] The latter claim is
based on his assertion that humans can do things outside
the power of formal logic systems, such as knowing the
truth of unprovable statements, or solving the halting
problem (claims that were originally made by the philoso-
pher John Lucas of Merton College, Oxford). These are
controversial views, with which most of the mathematical
and computer science communities disagree.

Penrose stairway
An impossible figure named after the British geneticist
Lionel Penrose (1898–1972), father of Roger Penrose. It
served as an inspiration for the staircase in M. C.
Escher’s famous print “Ascending and Descending.”
Although the Penrose stairway cannot be realized in

peg solitaire A version of peg solitaire made of tin with marbles by the British firm MAR Toys in the 1950s. Sue & Brian Young/Mr.

Puzzle Australia, www.mrpuzzle.com.au



238 Penrose tiling

three dimensions, this impossibility is not immediately
perceived and, in fact, the paradox is not even apparent
to many people at a quick glance. Although Escher and
the Penroses made the Stairway famous, it was, unbe-
knownst to them, independently discovered and refined
years before by the Swedish artist Oscar Reutersvärd. In

the 1960s the Stanford psychologist Roger Shepard cre-
ated an auditory analogue of the Stairway. See also Pen-
rose triangle.

Penrose tiling
A kind of aperiodic tiling discovered by Roger Penrose.
In 1973 he announced a tiling made from a set of six tiles
and then, by slicing and re-gluing, was able to reduce the
number of tiles to just two. The most elegant of Penrose
tilings use two rhombi (see rhombus), a thick one called
a “kite” and a thin one called a “dart,” which are fitted
together so that no two tiles are aligned to form a single
parallelogram (otherwise, a single rhombus could be used
to make a periodic tiling). All angles are multiples of π/5
radians (36°, or one-tenth of a circle). Each tile has four
sides with a length of one unit. One tile has four corners
with the angles 72°, 72°, 108°, and 108° (2, 2, 3, and 3
multiples of 36°); the other has angles of 36°, 36°, 144°,
and 144° (1, 1, 4, and 4 multiples of 36°). On each tile
one of the vertices (corners) is colored black and two of
the sides are marked with arrows. The only rules for
assembling the tiles to ensure an aperiodic tiling are that
two adjacent vertices must be of the same color, and two
adjacent edges must have arrows pointing in the same
direction or have no arrows at all. These rules ensure that,
taken over a large enough area of the plane, the pattern of
tiles doesn’t repeat. In a correct Penrose tiling, the ratio
of kites to darts is always the same and is equal to the
golden ratio. Although Penrose tilings started out as
nothing more than an interesting mathematical diver-

Penrose stairway Steps that ascend and descend simulta-
neously. Jos Leys, www.josleys.com

Penrose tiling Two of an infinite variety of nonperiodic patterns possible using Penrose tiles. Jos Leys, www.josleys.com
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sion, they have turned out to mimic the arrangements of
atoms in some newly discovered materials, known as
quasicrystals.[127]

Penrose triangle
The most famous and one of the simplest impossible fig-
ures. Its roots go back to 1934 when Oscar Reutersvärd
made the first recognizable impossible triangle out of a
strange two-dimensional representation of cubes; this art-
work appeared on a Swedish postage stamp issued in
1982. In 1954, Roger Penrose, after attending a lecture by
the artist M. C. Escher, rediscovered the impossible trian-
gle and drew it in its most familiar form, which he pub-
lished in a 1958 article in the British Journal of Psychology,
coauthored with his father Lionel.[241] Penrose was unfa-
miliar with the work of Reutersvärd, Giovanni Piranesi,
and others who had previously created impossible figures.
Penrose’s impossible triangle, unlike Reutersvärd’s earlier
version, was drawn in perspective, which added an addi-
tional size paradox to the object. In 1961, Escher, inspired
by Penrose’s version of the impossible triangle (he was
sent a copy of the article by the Penroses), incorporated it
into his famous lithograph Waterfall.

penta-
The Greek prefix meaning “five.” A pentagon is a five-
sided polygon and a pentahedron, such as the Great Pyra-
mid of Gisa, is a five-sided polyhedron. A pentagram, or
pentacle, is a five-pointed star formed by the pairwise
extension of the sides of a regular polygon so that each
side meets not with the next side but with the one after
that. The Pythagoreans (see Pythagoras of Samos) used
the pentagram as a secret identification emblem; later it
became a trademark of alchemists and, perhaps because

of its repeating properties, a sign of the occult. According
to legend, a pentagram was used by Doctor Faustus to
exorcise Mephistopheles. Pentagonal numbers are figurate
numbers (numbers that can be represented by a regular
geometric arrangement of equally spaced points) of the
form n(3n − 1)/2; the first few are 1, 5, 12, 22, . . . .

pentomino
A five-square polyomino.

Perelman, Yakov Isidorovitch (1882–1942)
A Russian scientist and exponent of recreational mathe-
matics whose stature in his own country was, and
remains, similar to that of Martin Gardner in the United
States. Between 1913 and his death, Perelman authored a
dozen books and scores of articles covering many differ-
ent aspects of popular mathematics, physics, and astron-
omy. His books have been republished so often in Russia
that Perelman is universally known among both amateur
and professional mathematicians across several genera-
tions. He was also a leading proponent of the ideas of the
spaceflight visionary Konstantin Tsiolkovsky.

perfect cube
An integer of the form n 3 where n is an integer.

perfect cuboid problem
See cuboid.

perfect number
A whole number that is equal to the sum of all its factors
except itself. For example, 6 is a perfect number because
its factors, 1, 2, and 3 add to give 6. The next smallest is
28 (the sum of 1 + 2 + 4 + 7 + 14). Augustine (354–430)
argued that God could have created the world in an
instant but chose to do it in a perfect number of days, 6.
Early Jewish commentators saw the perfection of the
universe in the Moon’s period of 28 days. The next in
line are 496, 8,128, and 33,550,336. As René Descartes
pointed out: “Perfect numbers like perfect men are very
rare.” All end in six or eight, though what seems to be an
alternating pattern of sixes and eights for the first few
perfect numbers doesn’t continue. All are of the form
2n − 1(2n − 1), where 2n − 1 is a Mersenne prime, so 
that the search for perfect numbers is the search 
for Mersenne primes. The largest one found is 23021376

(23021377 − 1). It isn’t known if there are infinitely many
perfect numbers or if there are any odd perfect numbers.
A pseudoperfect number or semi-perfect number is a number
equal to the sum of some of its divisors, for example, 12 =
2 + 4 + 6, 20 = 1 + 4 + 5 + 10. An irreducible semi-perfect
number is a semi-perfect number, none of whose factors
is semi-perfect, for example, 104. A quasi-perfect number

Penrose triangle
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would be a number n whose divisors (excluding itself)
sum to n + 1, but it isn’t known if such a number exists.
A multiply perfect number is a number n whose divisors
sum to a multiple of n. An example is 120, whose divi-
sors (including itself) sum to 360 = 3 × 120. If the divi-
sors sum to 3n, n is called multiply perfect of order 3, or
tri-perfect. Ordinary perfect numbers are multiply perfect
of order 2. Multiply perfect numbers are known of order
up to 8. See also abundant number.

perfect power
An integer of the form mn where m and n are integers and
n > 1.

perfect square
A number that is the product of two equal whole num-
bers; for example, 1 = 1 × 1, 4 = 2 × 2, 9 = 3 × 3, 16 =
4 × 4.

Perigal, Henry (1801–1898)
An English amateur mathematician best known for his
elegant dissection proof of Pythagoras’s theorem, a dia-
gram of which is carved on his gravestone. Perigal also
discovered a number of other interesting geometrical dis-
sections and, though employed modestly for much of his
life as a stockbroker’s clerk, was well known in British sci-
entific society.

perimeter
The distance around a two-dimensional shape.

period, of a decimal expansion
The length of the smallest block of repeating digits in the
decimal expansion of a rational number that does not
terminate. For example:

1⁄3 = 0.333333333333 . . .
repeating block = 3, period = 1

5⁄7 = 0.71428571428571 . . .
repeating block = 714285, period = 6

89⁄26 = 3.4230769230769 . . .
repeating block = 230769, period = 6

periodic
Refers to motion or to an entity that goes through a finite
number of regions, returns to a previous state, and
repeats the same fixed pattern forever.

periodic attractor
Also called a limit cycle attractor, an attractor that consists
of a periodic movement back and forth between two or
more values. The periodic attractor represents more pos-
sibilities for system behavior than does the fixed-point

attractor. An example of a period two attractor is the
oscillating movement of a metronome or, in psychiatry, a
bipolar disorder that causes a person’s mood to shift back
and forth from elation to depression.

periodic tiling
A tiling in which a region can be outlined that tiles the
plane by translation, that is, by shifting the position of
the region without rotating or reflecting it. M. C. Escher
is famous for his many pictures of periodic tilings with
shapes that resemble living things. An infinity of shapes—
for instance, the regular hexagon—tile only periodically,
though all these fall into 17 distinct wallpaper groups.
An infinity of other shapes tile both periodically and ape-
riodically. But it was only quite recently that the first
aperiodic tilings were discovered.

periphery
A curved perimeter.

permutable prime
Also known as an absolute prime, a prime number with at
least two distinct digits, which remains prime on every
rearrangement (permutation) of the digits. For example,
337 is a permutable prime because 337, 373, and 733 are
all prime. Most likely, in base 10, the only permutable
primes are 13, 17, 37, 79, 113, 199, 337, and their permu-
tations. Permutable primes can’t have any of the digits 2,
4, 6, 8 or 5, nor can they have all four of the digits 1, 3, 7,
and 9 simultaneously.

permutation
A particular ordering of a collection of objects. For exam-
ple, if an athlete has won three medals, a bronze one (B),
a silver one (S), and a gold one (G), there are six ways
they can be permuted or lined up: BSG, BGS, SBG,
SGB, GBS, and GSB. If six people want to sit on the
same park bench, there are 720 ways in which they can
organize themselves. In general, n things can be per-
muted in n × (n − 1) × (n − 2) × . . . × 2 × 1 = n! ways
(where “!” is the symbol for factorial). How about if
there are n distinct objects but we want to permute them
in groups of k (where k ≤ n): how many ways can that be
done? The first member of the group can be picked in n
ways because there are n objects to pick from. The second
member can be filled in (n − 1) ways since one of the n
elements has already been taken. The third member can
be filled in (n − 2) ways since 2 elements have already
been used, and so on. This pattern continues until k
things have been chosen. This means that the last mem-
ber can be filled in (n − k + 1) ways. Therefore a total of n
(n − 1)(n − 2) . . . (n − k + 1) different permutations of k
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objects, taken from a pool of n objects, exist. If we denote
this number by P(n, k), we can write P(n, k) = n! / (n − k)!

perpendicular
At right angles. Two lines, planes, etc., are said to be per-
pendicular if they are 90° apart.

Perrin sequence
The sequence of integers defined by the recurrence rela-
tion P(n) = P(n − 2) + P(n − 3), with the initial conditions
P(0) = 3, P(1) = 0, P(2) = 2. Although the sequence is
named after R. Perrin who studied it in 1899, it had been
explored earlier, in 1876, by Édouard Lucas. As in the
case of the similar Padovan sequence, the ratio of consecu-
tive Perrin numbers tends toward the plastic number.
More importantly, it appears that n divides P(n) exactly if
and only if n is a prime number. For example, 19 is
prime, P(19) = 209 and 209⁄19 = 11; on the other hand, 18
is composite, P(18) = 158 and 158⁄18 = 8.777, which is not
a whole number. Lucas conjectured that this is true for all
values of n so that the Perrin sequence can be used as a
test for non-primality: any number n that does not divide
P(n) is composite. Whether this conjecture is correct
remains an open question. No one has ever found a com-
posite n that divides A(n), nor has anyone been able to
prove that such numbers, known as Perrin pseudoprimes,
don’t exist. In 1991 Steven Arno of the Supercomputing
Research Center in Bowie, Maryland, proved that Perrin
pseudoprimes must have at least 15 digits.[15] The conjec-
ture that no Perrin pseudoprimes exist is important,
because the remainder on dividing P(n) by n can be cal-
culated very rapidly.

perturbation
A slight nudge that, temporarily or permanently, dis-
places an object or system out of equilibrium.

peta-
Prefix for 1015, from the Greek pentakis, meaning “five
times.”

phase space
The mathematical space of all possibilities in a given sit-
uation. A motion is then described by a path, trajectory, or
orbit in this space. This is not the usual kind of path laid
out on the ground, but a series of locations in phase
space, describing motion or change over a period of time.
The terms do, however, recall the origins of qualitative
dynamics in Henri Poincaré’s study of planetary motion.
The dimension of the phase space is the number of initial
conditions needed to uniquely specify a path and is equal
to the number of variables in the dynamical system. The
temporal behavior of the system is viewed as the succes-
sion of states in the system’s state space. In the case of a

simple pendulum, for example, the instantaneous config-
uration is given by just two numbers—the position of the
pendulum bob and its velocity—which completely
describe the system’s state. For more complex systems,
such as a chain of n pendulums coupled together, the
state of the system is much larger. It requires, in this case,
2n numbers to specify the state of the entire system. This
collection of all possible configurations is the phase
space.

phase transition
In physics, a change from one state of matter to another.
In dynamical systems theory, a change from one mode
of behavior to another.

phi
See golden ratio.

Phillips, Hubert (1891–1964)
An English compiler of crosswords and word puzzles
who wrote under the pseudonyms “Dogberry” in the
News Chronicle magazine and “Caliban” in the New States-
man. He was also a prolific writer of epigrams, parodies,
and satirical verse, and appeared on many radio quizzes.
Phillips earned a first class degree in history at Oxford,
served in the army throughout World War I, taught eco-
nomics at Bristol University, and was active in the British
Liberal Party. He was an accomplished player of contract
bridge, captaining England in 1937 and 1938. Among his
many publications are Caliban’s Problem Book, The Com-
plete Book of Card Games, Brush Up Your Wits, My Best Puz-
zles in Mathematics, over a hundred crime-problem stories,
and a novel, Charteris Royal.[249, 250, 251]

Phutball
Also known as philosopher’s football, a two-player board
game first described by Elwyn Berlekamp, John Conway,
and Richard Guy, in their book Winning Ways for your
Mathematical Plays. Phutball is played on the intersec-
tions of a 19 × 15 grid using one white piece and as many
black pieces as necessary. The objective is to score goals
by using the men (black pieces) to move the football
(white piece) onto or over the opponent’s goal line, that
is, either rows 1 or 0 or rows 19 and 20 (rows 0 and 20
being off the board). At the start of the game the football
is placed on the central point, although a handicapping
scheme exists where the ball can start nearer to the
stronger player’s goal line. Players alternate making
moves, which consist either of adding a man to any
vacant point on the board or of moving the ball. There is
no difference between men played by the two oppo-
nents. The football is moved by a series of jumps over
adjacent men. One jump is from the football’s current
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point to the first vacant point in a straight line orthogo-
nally or diagonally over one or more men. The jumped
men are then removed from the board (before any sub-
sequent jump occurs). Jumping is optional and can be
repeated for as long as there are men available to be
jumped and the player desires to do so. In contrast to
checkers, multiple men in a row are jumped and removed
as a group. If the football ends the move on or over the
opponent’s goal line then a goal has been scored. If the
football passes through a goal line, but ends up elsewhere
due to further jumps, the game continues. The game is
sufficiently complex that, although theoretically one of
the players has a winning strategy, this strategy is not
known.

pi (p)
The ratio of the circumference to the diameter of a circle.
Pi, sometimes known as Archimedes’ constant, is one of the
most important and ubiquitous numbers in mathemat-
ics, popping up in all kinds of seemingly unrelated areas.
Its approximate value is 3.1419 but, being an irrational
number, it can’t be written as a terminating or recurring
decimal. The fact that π can’t be expressed as the ratio of
two integers was proved by Johann Lambert in 1761.
Then, in 1881, Ferdinand Lindemann showed that it is a
transcendental number, meaning that there is no poly-
nomial with integer or rational coefficients of which π is
a root. Because of this, it’s impossible to write π in terms
of any finite number of integers or fractions or their
roots. From the outset, this dooms any attempt at squar-
ing the circle, that is, constructing a square whose area is
equal to the area of a given circle, using straightedge and
compass alone.

The association of the Greek letter π with the number
3.141 . . . started with William Oughtred in 1647 who
used π.δ as a stand-in for “periphery-diameter” in his
Clavis mathematicae. The Welsh mathematician William
Jones was the first to use π as a symbol on its own in his
1706 Synopsis palmariorum matheseos. But it fell to the
great Leonhard Euler to popularize the notation 30 years
later.

Calculating π with greater and greater precision be-
came a popular pursuit. Around 1600, Ludolph van
Ceulen computed the first 35 decimals and was so proud
of his accomplishment that he had the number inscribed
on his tombstone. In 1789, the Slovene mathematician
Jurij Vega extended known π to 140 places (of which only
137 were correct), while, in 1873, William Shanks pushed
back the frontier to 707 places—a record that stood until
1949 when the first electronic computers appeared on
the scene. In September 2002, Yasumasa Kanada and his
colleagues at Tokyo University used 400 hours of super-
computer time to calculate π to 1.24 trillion places, beat-

ing their previous best, set in 1999, of 206 billion places.
Although such an exercise may seem pointless, it serves
as a benchmark for new high-speed computers and algo-
rithms, and also to test the long-standing, but still
unproven assertion that the distribution of digits in π is
completely random.

For the record, the first 100 digits of π are:
3.1415926535 8979323846 2643383279 5028841971
6939937510 5820974944 5923078164 0628620899
8628034825 3421170679. The wonderfully pointless pas-
time of “piphilology” is concerned with devising mne-
monics for remembering some of these: the number of
letters in each word of the mnemonic gives the corre-
sponding digit. A famous example is Isaac Asimov’s
“How I want a drink, alcoholic of course, after the heavy
lectures involving quantum mechanics!” For the more
ambitious, there is Michael Keith’s 1995 poem that sup-
plies the first 42 digits:

Poe, E. Near A Raven
Midnights so dreary, tired and weary,
Silently pondering volumes extolling all by-now

obsolete lore.
During my rather long nap, the weirdest tap!
An ominous vibrating sound disturbing my cham-

ber’s antedoor.
“This,” I whispered quietly, “I ignore.”

There are some reasonably good approximations to π in
the form of ordinary (rational) fractions. The best known
is 22⁄7, but this is only accurate to two decimal places. A
fraction with a larger denominator offers a better chance of
getting a more refined estimate. There is also 333⁄106, which
is good to 5 places. But an outstanding approximation is
355⁄113 which is accurate to 6 places; in fact, there is no bet-
ter approximation among all fractions with denominators
less than 30,000. See also continued fraction.

In 1897 the General Assembly of the state of Indiana
tried to pass legislation to the effect that the exact value
of π is 3.2. The bill was referred, for some bizarre reason,
to the House Committee on Canals. But then the true
motive for the attempted change to the law became clear.
By chance a professor of mathematics happened to be
present during a debate and heard an ex-teacher saying
“The case is perfectly simple. If we pass this bill, which
establishes a new and correct value for π, the author
offers to our state without cost the use of his discovery
and its free publication in our school textbooks, while
everyone else must pay him a royalty.” Fortunately, the
professor was able to teach the senators a little math and
the bill was stopped in its tracks.

Any formulas to do with circles or spheres, not sur-
prisingly, have π in them. For example, the circumference
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of a circle of radius r is 2πr, the area of a circle is πr 2, the
volume of a sphere is (4⁄3)πr 3, and the surface area of a
sphere is 4πr 2. But π also has a strange habit of appearing
in the most unexpected places. In the eighteenth century,
the French naturalist Comte de Buffon showed that you
could estimate π by experiment using the unlikely appa-
ratus of a repeatedly dropped needle and a shove-
halfpenny board (see Buffon’s needle). Two of the most
important, but (as far as is known) unrelated, equations
in modern physics, Heisenberg’s uncertainty principle
(∆x ∆p = h/4π) in quantum mechanics and Einstein’s
field equation (Rik − 1⁄2 gik R + Λ gik = 8πG/c 4 Tik) in gen-
eral relativity theory include π. The ever-present con-
stant also emerges as a result of various remarkable
infinite series. These include:

1⁄12 + 1⁄22 + 1⁄32 + 1⁄42 + . . . = π2/6
(found by Leonhard Euler)

1⁄1 − 1⁄3 + 1⁄5 − 1⁄7 + 1⁄9 − . . . = π/4 
(found by Gottfried Leibniz)

2⁄1 × 2⁄3 × 4⁄3 × 4⁄5 × 6⁄5 × 6⁄7 × 8⁄7 × 8⁄9 × . . . = π/2
(found by John Wallis)

Among many other formulas that give rise to or contain
π are

the integral

#∞
−∞

e−x2 dx = !π",

Stirling’s formula, n! ∼ !2 π n"" (n/e)n and, the most
intriguing equation in mathematics, eiπ + 1 = 0.

In number theory, the probability that two randomly
chosen integers have no common divisors (in other
words, that they’re relatively prime) is 6/π2 or 1 in
1.644934 . . . , and the average number of ways to write a
positive integer as the sum of two perfect squares is π/4.
Both of these facts are astonishing because it is hard to
see how a basically geometric constant to do with circles
has any bearing at all on how various types of numbers
are distributed. Deep truths are buried here!

In 1995, David Bailey, Peter Borwein, and Simon
Plouffe of the University of Quebec at Montreal discov-
ered a new formula for π as an infinite series:[21]

π = $
8

k = 0
% − − − &

What is so remarkable about this is that it enables the cal-
culation of isolated digits of π—say, the trillionth digit—
without computing and keeping track of all the preceding
digits. How such a formula could possibly arise consti-
tutes a mystery in itself. The only catch is that the for-
mula works for base 2 (binary) and 16 (hexadecimal) but
not base 10. So, it’s possible to use the formula to deter-

1
!

8k + 6
1

!

8k + 5
2

!

8k + 4
4

!

8k + 1
1

!

16k

mine, for example, that the five-trillionth binary digit of
π is 0, but there’s no way to convert the result into its
decimal equivalent without knowing all the binary digits
that come before the one of interest. The new formula
allows the calculation of the nth base 2 or base 16 digit of
π in a time that is essentially linear in n, with memory
requirements that grow logarithmically (very slowly) in n.
One possible use of the Bailey-Borwein-Plouffe formula
is to help shed light on whether the distribution of π’s
digits are truly random, as most mathematicians sup-
pose.[29, 42, 68, 114] See also pyramid.

Pick’s theorem
First published in 1899, a theorem that was brought to
broad attention as recently as 1969 through Hugo Stein-
haus’s popular book Mathematical Snapshots.[316] Pick’s
theorem gives an elegant formula for the area of lattice
polygons—polygons that have vertices located at the inte-
gral nodes of a square grid or lattice that are spaced a unit
distance from their immediate neighbors. Pick’s theorem
says that the area of such a polygon can be found simply
by counting the lattice points on the interior and bound-
ary of the polygon. The area is given by

i + (b/2) − 1,

where i is the number of interior lattice points and b is
the number of boundary lattice points. The Austrian
mathematician Georg Pick (1859–1942) after whom the
result is named, was born in Vienna and perished during
World War II in the Theresienstadt concentration camp.
Over the past few decades, beginning with a paper by 
J. E. Reeve in 1957, various generalizations of Pick’s 
theorem have been made to more general polygons, to
higher-dimensional polyhedra, and to lattices other than
square lattices. Most recently, mathematicians have
become interested in the theorem because it provides a
link between traditional Euclidean geometry and the
modern subject of digital (discrete) geometry.

pico-
Prefix meaning a trillionth (10−12), from the Italian piccolo,
meaning “small.”

pitch drop experiment
The world’s longest running experiment. It started in
1927 when Thomas Parnell, the first professor of physics
at the University of Queensland in Brisbane, Australia,
heated a sample of pitch (a derivative of tar) and poured
it into a glass funnel with a sealed stem. Three years were
allowed for the pitch to settle, then, in 1930, the sealed
stem was cut. From that date on the pitch has slowly
dripped out of the funnel—so slowly that, up to the pre-
sent time, only eight drops have fallen! The experiment
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stands in a display cabinet in the foyer of the Department
of Physics at the University of Queensland demonstrat-
ing for all to see the fact that pitch, though it feels like a
solid and is brittle enough to smash with a hammer, is
really a fluid of very high viscosity (about 100 billion
times as viscous as water).[91]

pizza
Order a pizza, pick an arbitrary point in it, and cut the
pizza into eight slices by slicing at 45° angles through 
the chosen point. Color the alternate pieces red, with
ketchup, and yellow, with mustard. Measure the area of
the red slices and the yellow slices. Surprisingly, it will be
found that these areas are the same! This fact holds true
for any multiple of four slices cut by using equal angles
through a fixed arbitrary point in the pizza. See also tau-
tology.

place-value system
A number system in which the value of a number sym-
bol depends not only on the symbol itself but also on the
position where it occurs.

Planck time
In quantum mechanics, the shortest meaningful period
of time; any two events that are separated by less than
this amount of time can be considered simultaneous. It

has the value 5.390 × 10−44 second. Related to this is the
Planck length of 6.160 × 10−35 meters, which is the distance
that light can travel in the Planck time.

plane
A flat surface such that a straight line joining any two
points on it will also lie entirely on the surface.

plane partition
A stack of unit cubes in a rectangular box or in the posi-
tive octant in space such that to the left, behind, and
below every cube lies either another cube or a wall. A
plane partition in a box is equivalent to a lozenge tiling
of a hexagon in the plane.

plastic number
A little-known number that has much in common with
the golden ratio in that it is closely linked to architecture
and to aesthetics. The concept of the plastic number was
first described by the Dutchman Hans van der Laan
(1904–1991) in 1928, shortly after he had abandoned his

plastic number Spiraling systems illustrate the Fibonacci
numbers (top) and the Padovan sequence.

pitch drop experiment Professor John Mainstone alongside
the world’s longest-running experiment. John Mainstone, University

of Queensland
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architectural studies and become a novice monk, and has
subsequently been explored by the English architect
Richard Padovan (1935–). It is derived from a cubic
equation, rather than a quadratic in the case of the
golden ratio, and is intimately linked to two ratios,
approximately 3:4 and 1:7, which van der Laan consid-
ered fundamental in the relationship between human
perception and shape and form. These ratios, he
believed, express the lower and upper limits of our nor-
mal ability to perceive differences of size among three-
dimensional objects. The lower limit is that at which
things differ just enough to be of distinct types of size.
The upper limit is that beyond which they differ too
much to relate to each other; they then belong to differ-
ent orders of size. According to van der Laan, these lim-
its are precisely definable. The mutual proportion of
three-dimensional things first becomes perceptible when
the largest dimension of one thing equals the sum of the
two smaller dimensions of the other. This initial propor-
tion determines, in turn, the limit beyond which things
cease to have any perceptible mutual relation.

In mathematical terms, the plastic number is the
unique real number solution to the equation x 3 − x −

1 = 0 and has the approximate value 1.324718 . . . . Just as
the golden ratio is approximated better and better by suc-
cessive terms of the Fibonacci sequence, F(n + 1) =

F(n) + F(n − 1), where F(0) = F(1) = 1, so the plastic num-
ber arises as the limit of the ratio of successive numbers
in the sequence P(n + 1) = P(n − 1) + P(n − 2) where 
P(0) = P(1) = P(2) = 1. This sequence has been called the
Padovan sequence, and its members the Padovan numbers.
The Padovan sequence increases much more slowly than
does the Fibonacci sequence. Some numbers, such as 3,
5, and 21, are common to both sequences; however, it is
not known if there are finitely many or infinitely many
such pairs. Some Padovan numbers, such as 9, 16, and
49, are perfect squares; the square roots of these (3, 4,
and 7) are also Padovan numbers, but it is not known if
this is a coincidence or a general rule. Another way to
generate the Padovan numbers is to mimic the use of
squares for Fibonacci numbers, but with cuboid struc-
tures—boxes with rectangular faces. A kind of three-
dimensional spiral of boxes emerges. Start with a cube of
side 1 and place another adjacent to it: the result is a 1 ×
1 × 2 cuboid. On the 1 × 2 face, add another 1 × 1 × 2 box
to produce a 1 × 2 × 2 cuboid. Then on a 2 × 2 face, add
a 2 × 2 × 2 cube to form a 2 × 2 × 3 cuboid overall. To a
2 × 3 face, add a 2 × 2 × 3 to get a 2 × 3 × 4 box overall,
and so on. Continue this process, always adding cuboids
in the sequence east, south, down, west, north, and up.
At each stage the new cuboid formed will have three con-
secutive Padovan numbers as its sides. Moreover, if suc-
cessive square faces of the added cuboids are connected

by straight lines, the result is a spiral that lies in a plane.
The Padovan sequence is very similar to the Perrin
sequence.[319]

Plateau, Joseph Antoine Ferdinand (1801–1883)
A Belgian physicist who did pioneering experimental
work on soap bubbles and soap films, which stimulated
the mathematical study of bubbles as minimal surfaces.
In 1829 Plateau carried out an optical experiment that
involved looking at the Sun for 25 seconds: this damaged
his eyes, and he eventually became blind.

Plateau curves
A set of curves, named after Joseph Plateau, that are
described by the parametric equations:

x = a sin(m + n)t / sin(m − n)t
y = 2a sin(mt) sin(nt) / sin(m − n)t

If m = 2n the Plateau curves become a circle with a center
at (1, 0) and a radius of 2.

Plateau problem
The general problem of determining the shape of the
minimal surface constrained by a given boundary. It is
named after Joseph Plateau who noticed that a handful
of simple patterns seemed to completely describe the
geometry of how soap bubbles fit together. Plateau
claimed that soap bubble surfaces always make contact
in one of two ways: either three surfaces meet at 120°

angles along a curve; or six surfaces meet at a vertex,
forming angles of about 109°. For instance, in a cluster
of bubbles, two intersecting bubbles (of possibly differ-
ent sizes) will have a common dividing wall (the third
surface) that meets the outer surfaces of the bubbles in
120° angles. On the other hand, the edges of the six
soap-film faces that emerge within a tetrahedral wire
frame, when dipped in a soapy solution, form angles of
roughly 109° at a central vertex. Until the American
mathematician Jean Taylor came along in the mid-1970s,
Plateau’s patterns were just a set of empirical rules. How-
ever, as a follow-up to her doctoral thesis, Taylor was
able to prove that Plateau’s rules were a necessary conse-
quence of the energy-minimizing principle—no other yet
unobserved configurations were possible—thus settling a
question that had been open for more than a century.
The forces acting along the surface of a soap bubble all
have the same magnitude in all directions. In crystals
this is not the case (magnitudes of surface forces differ in
different directions, though they may exhibit a grain,
analogous to that in a piece of wood), but they still
require the least energy to enclose a given volume. Min-
imal surfaces that model these conditions, like a cube
with its corners chopped off or the bottom half of a cone
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mounted on a cylinder, are known as Wullf Shapes, and
provide fertile ground for mathematical study today.[328]

Platonic solid
Any of the five regular polyhedrons—solids with regular
polygon faces and the same number of faces meeting at
each corner—that are possible in three dimensions. They
are the tetrahedron (a pyramid with triangular faces), the
octahedron (an eight-sided figure with triangular faces),

the dodecahedron (a 12-sided figure with pentagonal
faces), the icosahedron (a 20-sided figure with triangular
faces), and the cube (see table, “The Platonic Solids”).
They are named after Plato who described them in one of
his books, though it was Euclid who proved that there
are only five regular polyhedra. A regular solid with
hexagonal faces cannot exist because if it did, the sum of
the angles of any three hexagonal corners that meet
would already equal 360°, so such an object would be

Platonic solid Clockwise from the extreme right: the cube, tetrahedron, octahedron, icosahedron, and dodecahedron. Robert

Webb, www.software3d.com; created using Webb’s Stella program

The Platonic Solids

Number of

Name Faces Edges Vertices Schläfi Symbol

Tetrahedron 4 6 4 {3,3}

Cube 6 12 8 {4,3}

Octagon 8 12 6 {3,4}

Dodecahedron 12 30 20 {5,3}

Icosahedron 20 30 12 {3,5}
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planar. See also Archimedean solid, Catalan solid, and
Johnson solid.

Platonism
The belief that mathematical objects exist independent
of physical models. It is, at the very least, a useful pre-
tense in mathematics, especially in geometry.

pleated surface
A surface in Euclidean space or hyperbolic space (see
hyperbolic geometry) that resembles a polyhedron in
the sense that it has flat faces that meet along edges.
Unlike a polyhedron, a pleated surface has no corners,
but it may have infinitely many edges that form a lami-
nation.

Poggendorff illusion
A distortion illusion in which the two ends of a straight
line passing behind a rectangle appear offset when, in
fact, they are aligned. It was discovered in 1860 by the
physicist J. C. Poggendorff, editor of Annalen der Physik
und Chemie (Annals of physics and chemistry), after
receiving a letter from the astronomer Friedrich Zöllner.
In this letter, Zöllner described an illusion (see Zöllner
illusion) he had noticed on a fabric design in which par-
allel lines intersected by a pattern of short diagonal lines
appear to diverge.[134]

Poincaré, (Jules) Henri (1854–1912)
A French theoretical physicist and mathematician who
almost discovered relativity theory before Einstein and
who is most famous in mathematics because of his
hypothesis known as the Poincaré conjecture. Poincaré,
who taught for most of his life at the University of Paris,
was sometimes referred to as “the last universalist,”
because of his huge published output on a wide variety of
mathematics and mathematical physics. Strangely, he
was also clumsy, absent-minded, and inept at simple

arithmetic. In order to translate problems in topology
into questions in algebra, he devised (or discovered)
homotopy groups—quantities that capture the essence of
multidimensional spaces in algebraic terms, and have the
power to reveal similarities between them.

Poincaré conjecture
A proposition in topology put forward by Henri Poin-
caré in 1904. Poincaré was led to make his conjecture
during his pioneering work in topology, the mathemati-
cal study of the properties of objects that stay unchanged
when the objects are stretched or bent. In loose terms, the
conjecture is that every three-dimensional object that has
a set of spherelike properties (i.e., is topologically equiv-
alent to a sphere) can be stretched or squeezed until it is
a three-dimensional sphere (a 3-sphere) without tearing
(i.e., making a hole in) it. Strictly speaking, the conjec-
ture says that every closed, simply connected three-
manifold is homeomorphic to the 3-sphere.

Poincaré proved the two-dimensional case and he
guessed that the principle would hold in three dimen-
sions. Determining if the Poincaré conjecture is correct
has been widely judged the most important outstanding
problem in topology—so important that, in 2000, the Clay
Mathematics Institute in Boston named it as one of seven
Millennium Prize Problems and offered a $1 million prize
for its solution. Since the 1960s, mathematicians have
shown by various means that the generalized conjecture is
true for all dimensions higher than three—the four-
dimensional case finally falling in 1982. But none of these
strategies work in three dimensions. On April 7, 2002,
came reports that the Poincaré conjecture might have
been proved by Martin Dunwoody of Southampton Uni-
versity, but within a few days a fatal flaw was found in his
proof. Then, in April 2003, what appears to be a genuine
breakthrough emerged during a series of lectures delivered
at the Massachusetts Institute of Technology by the Russ-
ian mathematician Grigori Perelman of the Steklov Insti-
tute of Mathematics (part of the Russian Academy of
Sciences in St. Petersburg). His lectures, entitled “Ricci
Flow and Geometrization of Three-Manifolds,” consti-
tuted Perelman’s first public discussion of important
results contained in two earlier preprints. Mathematicians
will now scrutinize the validity of Perelman’s work (which
does not actually mention the Poincaré conjecture by
name). In any event, the Clay Institute requires a two-year
cooling-off period before the prize can be awarded.

Poincaré disk
The region inside (but not including) a bounding circle,
where straight lines are defined to be either diameters of
the bounding circle, or arcs of circles that are perpendic-
ular to the bounding circle. The Poincaré disk is a model

Poggendorff illusion
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of hyperbolic geometry. The great flexibility it allows in
specifying the angles of a triangle leads to an infinite
variety of ways in which the disk can be tiled.

Poinsot, Louis (1777–1859)
A French mathematician who invented geometrical me-
chanics while investigating how a system of forces acting
on a rigid body can be resolved into a single force and a
couple (a pair of equal and oppositely directed forces, as
when you try to unscrew a bottle cap). Together with Gas-
pard Monge, he helped geometry regain its leading role
in mathematical research in France in the eighteenth cen-
tury. He wrote an important work on polyhedra in 1809,
discovering four new regular polyhedra, which are now
known as the Kepler-Poinsot solids. Two of these had
been found by Johannes Kepler in 1619 but Poinsot was
unaware of this; the two additional ones that Poinsot dis-
covered were the great dodecahedron and the great icosahe-
dron. In 1810 Augustin Cauchy proved that, with this
definition of regular, the enumeration of regular polyhe-
dra is complete (although a mistake was discovered in
Poinsot’s, and hence Cauchy’s, definition in 1990 when
an internal inconsistency became apparent). Poinsot also
worked in number theory, studying Diophantine equa-
tions with a view to expressing numbers as the difference
of two squares and primitive roots.

point
A dimensionless geometric object having no properties
other than location or place. More generally, an element
in a geometrically described set.

point-set topology
Also known as general topology, a branch of topology con-
cerned with how to put a structure on a set in such a way
as to generalize the idea of continuity for maps from the
real numbers to itself. A topology on a set X is a certain
set of open subsets of the set X which satisfy various
axioms. The set X together with this topology is called a
topological space.

Poisson, Siméon Denis (1781–1840)
A French mathematician whose main interest lay in the
application of mathematics to physics, especially in elec-
trostatics and magnetism. He developed a two-fluid the-
ory of electricity and provided theoretical support for the
experimental results of others, notably Charles de
Coulomb. Poisson also made important contributions to
mechanics, especially the theory of elasticity; optics; cal-
culus, especially definite integrals; differential geometry;
and probability theory. In all, he wrote more than 300
papers on mathematics, physics, and astronomy, and his
Traité de Mécanique (1811) was long a standard work.

polar coordinates
A coordinate system in which distances are measured
from a fixed reference point (the pole) and angles from a
fixed reference line. A polar equation is one that uses polar
coordinates.

pole
(1) The origin of a system of polar coordinates. (2) In
complex analysis, a function of a certain simple type of
singularity. (3) One of the two points, where the axis of
rotation of a rotating body, such as Earth, passes through
the surface. (4) An old unit of length, also called a rod,
equal to 5.5 yards.

Pólya’s conjecture
A hypothesis put forward by the Hungarian mathemati-
cian George Pólya (1887–1985) in 1919. A positive integer
is said to be of even type if it factorizes into an even number
of prime numbers; otherwise it is said to be of odd type.
For example, 4, = 2 × 2, is of even type, whereas 18, = 2 ×

3 × 3, is of odd type. Let O(n) be the number of odd type
and E(n) be the number of even type integers in the first 
n integers. Pólya’s conjecture says that O(n) ≥ E(n) for all 
n ≥ 2. After the conjecture had been checked for all values
of n up to 1 million, many mathematicians assumed it was

Poincaré disk A pattern on a hyperbolic surface. Jos Leys,

www.josleys.com
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probably true. However, in 1942 A. E. Ingham came up
with an ingenious method to show how a counterexample
could be constructed, even though there wasn’t enough
computing power around at the time to do the necessary
calculations.[177] Twenty years later, R. S. Lehman ran Ing-
ham’s method on a computer to find a counterexample to
Pólya’s conjecture at n = 906180359.[199]

polychoron
An unofficial name (from the Greek poly meaning
“many” and choros meaning “room” or “space”) for a
four-dimensional polytope; it was first advocated by
George Olshevsky.

polycube
A polyhedron formed by joining unit cubes by their
faces. Examples of puzzles that involve polycubes are the
Soma cube and Rubik’s cube.

polygon
A plane closed figure whose sides are straight lines. The
term polygon (from the Greek poly for “many” and gwnos
for “angle”) sometimes also refers to the interior of the
polygon (the open area that this path encloses) or to the
union of both. A polygon is simple if it is described by a
single, nonintersecting boundary; otherwise it is said to be
complex. A simple polygon is called convex if it has no inter-
nal angles greater than 180°; otherwise it is called concave.
A polygon is called regular if all its sides are of equal length
and all its angles are equal (see table, “Regular Polygons”).
Any polygon, regular or irregular, has as many angles as it
has sides. See constructible (for constructible polygons).

Regular Polygons

Angle

Name Sides (= 180°–360°/sides)

Equilateral triangle 3 60°

Square 4 90°

Regular pentagon 5 108°

Regular hexagon 6 120°

Regular heptagon 7 128.57° (approx.)

Regular octagon 8 135°

Regular nonagon 9 140°

Regular decagon 10 144°

Regular hectagon 100 176.4°

Regular megagon 106 179.99964°

Regular googolgon 10100 180° (approx.)

polygonal number
The number of equally spaced dots needed to draw a
polygon. Polygonal numbers, which are a type of figu-
rate number, include square numbers, triangular num-
bers, and hexagonal numbers.

polyhedron
A three-dimensional object whose faces are all polygons
and whose edges are shared by exactly two polygons.
Polyhedron comes from the Greek poly for “many” and -
hedron meaning “base,” “seat,” or “face.” Every polyhe-
dron in three-dimensional space consists of
(two-dimensional) faces, (one-dimensional) edges, and
(zero-dimensional) vertices. Sometimes the term polyhe-
dron is used to apply to figures in more than three
dimensions; however, analogs of polyhedra in the
fourth dimension or higher are also referred to as poly-
topes. Polyhedrons, like polygons, may be convex or
nonconvex. If a line that connects any two points on the
surface of a polyhedron is completely inside or on the
polyhedron, the figure is convex. Otherwise, it is non-
convex or concave. A polygon is regular if all of its faces
are exactly the same size and shape and if the same
number of faces meet at each vertex. There are only five
regular convex polyhedra—the Platonic solids. Another
four regular nonconvex polyhedra are called Kepler-
Poinsot solids. However, the term regular polyhedra is
sometimes used to describe only the Platonic solids. A
convex polyhedron is said to be semi-regular if its faces
have a similar arrangement of nonintersecting regular
plane convex polygons of two or more different types
about each vertex. These solids, of which there are 13
different kinds, are commonly called the Archimedean
solids. A dual of a polyhedron is another polyhedron in
which faces and vertices occupy complementary loca-
tions. The duals of the Archimedean solids are known as
the Catalan solids. A quasi-regular polyhedron is the
solid region interior to two dual regular polyhedra; only
two exist: the cuboctahedron and the icoidodecahe-
dron. There are also infinite families of prisms and
antiprisms. In total there are 92 convex polyhedra with
regular polygonal faces (and not necessarily equivalent
vertices); these are the Johnson solids.

The oldest known examples of man-made polyhedra
were found on the islands of northeastern Scotland and
date back to Neolithic times, between 2000 and 3000 B.C.
These stone figures are about 2 inches in diameter and
many are carved into rounded forms of regular polyhe-
dra. Examples including cubical, tetrahedral, octahedral,
and dodecahedral forms, one which is the dual of the
pentagonal prism, are on display in the Museum of Scot-
land and in Oxford’s Ashmolean Museum.
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polyiamond
A shape made from identical equilateral triangles that
have been joined at their edges.

polynomial
An expression in which whole-numbered powers of a
variable multiplied by numerical coefficients are added
together. The powers of the variable must be positive
integers, or zero. An example of a polynomial is 3x 3 +

7x − 2. A polynomial equation has a polynomial expres-
sion, or zero, on each side of the equal sign: for example,
4a 2 − 5.6a + 1.7 = 0 or 5x 2 − 1 = 8x + 2x 4. The type of
polynomial expression or equation is determined by the
highest power present of the variable. A quadratic, for
example, has nothing higher than a squared term.
Cubics, quartics, and quintics have maximum powers of
three, four, and five, respectively. Mathematicians who
have done pioneering work on each of these higher types
of polynomial equations tended, for some reason, to
have had colorful and star-crossed lives. Niccolo Tar-
taglia, who first solved the cubic, failed miserably as a
mathematician for the rest of his life, largely because he
spent it trying to discredit Girolamo Cardano. Tartaglia

told Cardano his method of solution and swore him to
secrecy but Cardano went ahead and published the solu-
tion anyway. Cardono himself lived a long unhappy life
and his only son was executed for murder. Lodovico Fer-
rara, Cardano’s student, who solved the general quartic,
was poisoned, probably by his sister, over an inheritance
dispute. Finally, Evariste Galois, who showed that the
general quintic was unsolvable, died in a duel at the age
of 20.

polyomino
A two-dimensional shape made by connecting n squares
of the same size along their edges. The polyomino is a
generalization of the domino, which can be thought of
as a polyomino with n = 2. Several puzzles involving
polyominoes made from three or more squares stuck
together became popular around the beginning of
the twentieth century. The best-known of these is the
Broken Chessboard, presented as problem no. 74 in
Henry Dudeney’s book The Canterbury Puzzles (1907).[87]

Dudeney gives an amusing introduction to the problem,
first quoting from Hayward’s Life of William the Con-
queror (1613) about an incident in which Prince Henry,

polyomino A complete set of 12 solid pentominos, also known as planar pentacubes. Kadon Enterprises, Inc., www.gamepuzzles.com
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one of William’s sons, smashes a chessboard over the
head of his brother, Prince Robert, and then adding his
own mathematical appendix. By a curious quirk,
Dudeney reveals, the board breaks into 13 pieces, 12 of
which are the different possible ways in which five
squares can be arranged and one square 2 × 2 piece.
The puzzle is to reconstitute the board from these
fragments. This is the earliest example of a mathemati-
cal recreation that involves pentominoes, a name that
wasn’t coined until 1953 when Solomon Golomb first
used it in a talk to the Harvard Math Club. Golomb not
only invented the nomenclature for polyominoes but
did much of the pioneering research on them; his work
was brought to a wide audience and popularized by
Martin Gardner in his Scientific American column, be-
ginning in 1957.[114, 136, 137]

Golomb was particularly interested in the pentomino,
for a reason that becomes clear (see table, “Types of
Polyomino”). The familiar domino comes in just one
configuration as, obviously, does the trivial monomino.
A triomino can have two different shapes—three squares
in a line or in an L shape. The tetromino (or tetramino)
has five distinct arrangements and is used in the popular
video game Tetris. Thus for n ≤ 4 the number of distinct
pieces is ≤ 5, which restricts the variety of combinations
possible. On the other hand, for n > 5, the number of
different pieces is large, making analysis of problems dif-
ficult and games based on such polyominoes difficult
and unwieldy. However, pentominoes, for which n = 5,
come in 12 unique configurations, which is just about an
ideal balance between tractability and combinatorial
richness, hence the high level of interest in this particu-
lar type of polyomino. The problem of tiling an 8 × 8
chessboard with a square hole in the center using pen-
tominoes was first solved in 1935 and found, by com-
puter in 1958, to have exactly 65 solutions. Another
standard pentomino puzzle is to arrange the set of 
12 possible shapes into rectangles without holes: 3 × 20,
4 × 15, 5 × 12, and 6 × 10. Pentominoes are prominently
featured in a subplot of the novel Imperial Earth by
Arthur C. Clarke.

Hexominoes and heptominoes come in 35 and 108
unique arrangements, respectively. One of the 108 hep-
tomino configurations, however, has a hole—a region that
is not tiled with squares but that is unconnected to the
exterior of the polyomino—and may or may not be
counted as a valid piece depending on the rules of a par-
ticular game. All polyominoes made of seven or more
squares may contain holes. There is no known algorithm
or formula for calculating how many distinct polyomi-
noes of each order there are.

Related to polyominoes are polyiamonds (formed
from equilateral triangles) and polyhexes (formed from

regular hexagons). The three-dimensional analog of poly-
ominoes uses cubes instead of squares; an example is the
Soma cube.

Types of Polyomino

Number of Number of Distinct 

Name Unit Squares Configurations

Monomino 1 1

Domino 2 1

Triomino 3 2

Tetromino 4 5

Pentomino 5 12

Hexomino 6 35

Heptomino 7 108

polytope
A higher-dimensional analogue of a polygon or polyhe-
dron. The number of possible regular polytopes depends
on the number of dimensions. In two dimensions there

polytope In descending order: a straight line, a square, a
cube, a tesseract (four-dimensional cube), and a regular,
multidimensional polytope.
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are infinitely many possible regular polygons; in three
dimensions there are five possible regular polyhedra; in
four dimensions there are six possible regular polytopes;
and in each number of dimensions higher than four,
there are just three possible regular polytopes, analogous
to the three-dimensional tetrahedron, cube, and octahe-
dron. A four-dimensional polytope is also sometimes
called a polyhedroid or a polychoron. Just as a polygon 
has vertices and edges, and a polyhedron has vertices,
edges, and faces, a four-dimensional polytope has vertices,
edges, faces, and cells, where a cell is a three-dimensional
figure.[75] See also Boole (Stott), Alicia.

Poncelet, Jean Victor (1788–1867)
A French mathematician who substantially advanced
projective geometry. With Brianchon, he proved Feuer-
bach’s theorem on the nine-point circle in 1820–1821, and
also suggested the theorem proved by Jakob Steiner and
now called the Poncelot-Steiner theorem that Euclidean con-
structions (see constructible) can be done with a straight-
edge alone. As a soldier in Napoleon’s army, he was
captured and imprisoned in Russia. While in prison from
1813–1814, he organized and wrote down his discover-
ies, and the result was published as Traité des Propriétés Pro-
jectives des Figures (Treatise on the properties of the
projections of shapes, 1822). To serve as an introduction
to this work, he also wrote Applications D’analyse et de
Géométrie (Applications of analysis and geometry, 2 vols.,
1862–1864).

Poncelet’s theorem
Given an ellipse, and a smaller ellipse entirely inside it,
start at a point on the outer ellipse, and, moving clock-
wise, follow a line that is tangent to the inner ellipse until
you hit the outer ellipse again. Repeat this over and over
again. It may be that this path will never hit the same
points on the outer ellipse twice. However, if it does close
up in a certain number of steps, then something amazing
is true: all such paths, starting at any point on the outer
ellipse, close up in the same number of steps. This fact is
Poncelet’s theorem, also known as Poncelet’s closure theo-
rem, and is named after the Jean Poncelet.

Pony Puzzle
One of Sam Loyd’s best known and commercially suc-
cessful puzzles. It consists of just six pieces of the silhou-
ette of a horse that have to be assembled in the most
sensible way. Loyd got the idea for the puzzle from the
governor of Philadelphia, Andrew Curtin, when the two
were on a steamer returning from Europe and talking
about the White Horse of Uffington—a famous chalk fig-
ure carved on a hillside in Berkshire, England.

postage stamp problems
Mathematical puzzles that involve postage stamps have
been around almost as long as postage stamps them-
selves, the first of which, the Penny Black, was issued by
Great Britain on May 6, 1840. Some such puzzles ask
what postage amounts can or can’t be made with stamps
of certain values. Others are based on the ways that a
block of stamps can be folded or torn along the perfora-
tions.

PUZZLE

One of this type appears as problem no. 285 in Henry

Dudeney’s Amusements in Mathematics (1917).[88] It

starts by saying you have just bought 12 stamps in a rec-

tangular block of three rows with four stamps in each.

(In Dudeney’s diagram, they are labeled 1, 2, 3, 4 across

the top row, and so on.) He goes on: “[A] friend asks you

to oblige him with four stamps, all joined together—no

stamp hanging on by a mere corner. In how many differ-

ent ways is it possible for you to tear off those four

stamps? You see, you can give him 1, 2, 3, 4, or 2, 3, 6,

7, . . . , and so on. Can you count the number of different

ways in which those four stamps might be delivered?”

This can be thought of as a problem involving tetromi-

noes, which are a type of polyomino.

Solutions begin on page 369.

The postage stamp problem, also known as the Frobe-
nius problem, is a long-standing challenge in number the-
ory and in computer science. Suppose a country issues n
different denominations of stamps but allows no more
than m stamps to be put on a single letter. The postage
stamp problem is to write and implement an algorithm (a
stepwise set of rules) that, for any given values of m and

Pony Puzzle One of Sam Loyd’s best known brain-teasers.
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n, computes the greatest consecutive range of postage val-
ues, from one on up, and all possible sets of denomina-
tions that realize that range. For example, for n = 4 and 
m = 5, the stamps with values (1, 4, 12, 21) allow the
postage values 1 through 71. If the values of the stamps
are constant and not part of the input, algorithms can be,
and have been, devised that give a short-cut solution.
However, in the general case where the number of stamp
values is part of the input, the postage stamp problem has
been shown to be an NP-hard problem, and thus not
susceptible to an efficient algorithmic approach.

potato paradox
Fred brings home 100 pounds of potatoes, which (being
purely mathematical potatoes) consist of 99 percent
water. He then leaves them outside overnight so that they
consist of 98 percent water. What is their new weight?
The surprising answer is 50 pounds!

potential theory
The study of harmonic functions. These functions satisfy
Laplace’s equation, a certain type of partial differential
equation that commonly arises in physics in problems to
do with gravity and electromagnetism.

power
A word that is almost never used in its correct, original
sense any more. Strictly speaking, if we write 8 = 23, then
2 is the base, 3 is the exponent, and 8 is the power. But
almost everyone, including most mathematicians, would
say that 3 is the power, and that “power” and “exponent”
mean the same thing. The misuse has probably come
about from a misunderstanding of statements such “eight
is the third power of two.”

power law
A type of mathematical pattern in which the frequency of
an occurrence of a given size is inversely proportional to
some power (or exponent) of its size. For example, in the
case of avalanches or earthquakes, large ones are fairly
rare, smaller ones are much more frequent, and in be-
tween are cascades of different sizes and frequencies.
Power laws define the distribution of catastrophic events
in self-organized critical systems (see self-organization).

power series
An infinite sum of the form

a0 + a1x + a2x
2 + a3x

3 + . . . ,

where a is a number of any type and x is the variable.
Power series are commonly used to define functions. For
example, the sine function can be written

sin x = x − x3/3! + x 5/5! − x 7/7! + . . . ,

where “!” stands for factorial. Although the series has
infinitely many terms, these get small so quickly that
only the first few terms make much of a contribution.

power set
The set of all subsets of a given set, including the empty
set and the original set. For example, if the original set is
{a, b, c} then the power set is {{∅, {a}, {b}, {c}, {a, b}, {a,
c}, {b, c}, {a, b, c}}.

power tower
A way of representing very large numbers in terms of
stacks of exponents. For example:

103333

= 103327

= 1032541865828329
= enormous

In general, and especially if the number at the top of the
tower is fairly large, adding another exponent to the bot-
tom of a tower will make the value of the tower much
larger than will increasing the size of the bottom expo-
nent. This leads to the (somewhat counterintuitive) result
that to know which of two towers is the larger, you can
look at how many exponents are in the tower and know
right away which is larger. For example:

1.11.11.11,000

is much larger than 1,0001,0001,000

In the case of an infinite power tower of the form

x xx . . .

,

the maximum value that x can take and still cause the
tower to converge to a finite value is e(1/e) = 1.444667 . . . .
The minimum value of x that will produce convergence
is 1/ee = 0.065988 . . . .

powerful number
Also known as a squarefull number, a positive whole num-
ber n such that for every prime number p dividing n, p2

also divides n. Every powerful number can be written as
a 2b 3, where a and b are positive integers. The first few
powerful numbers are 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64,
72, 81, 100, and 108. Pairs of consecutive powerful num-
bers exist, such as (8,9), (288,289), and (675,676). How-
ever, no three consecutive powerful numbers are known
and, in 1978, Paul Erdös conjectured that none exist.

practical number
A number n such that every positive integer less than n is
either a divisor or a sum of distinct divisors of n. The first
few practical numbers are 1, 2, 4, 6, 8, 12, 16, 18, 20, and
24. All perfect numbers are practical.
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prime number

[U]pon looking at prime numbers one has the feeling
of being in the presence of one of the inexplicable
secrets of creation.

—Don Zagier

An integer greater than 1 that is divisible only by 1 and
itself. Prime numbers have fascinated mathematicians for
centuries, in large part because of how they are distrib-
uted. At first sight, their occurrence looks random; yet,
on closer inspection, they reveal a subtle order or pattern,
that seems to hold deep truths about the nature of math-
ematics and of the world in which we live. The German-
born American mathematician Don Zagier (1951–), in
his inaugural lecture at Bonn University, put it this way:

There are two facts about the distribution of prime
numbers which I hope to convince you. . . . The first
is that despite their simple definition and role as the
building blocks of the natural numbers, the prime
numbers . . . grow like weeds among the natural
numbers, seeming to obey no other law than that of
chance, and nobody can predict where the next one
will sprout. The second fact is even more astonish-
ing, for it states just the opposite: that the prime
numbers exhibit stunning regularity, that there are
laws governing their behavior, and that they obey
these laws with almost military precision.

The prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, . . . . The fundamental theorem of
arithmetic declares that the primes are the building blocks
of the positive integers: every positive integer is a product
of prime numbers in one and only one way, except for the
order of the factors. This is the key to their importance: 
the prime factors of an integer determine its properties.
The ancient Greeks proved (c. 300 B.C.) that there are infi-
nitely many primes and that they are irregularly spaced; in
fact, there can be arbitrarily large gaps between successive
primes. On the other hand, in the nineteenth century it
was shown that the number of primes less than or equal to
n approaches n/log n, as n gets very large (a result known as
the prime number theorem), so that a rough estimate for the
nth prime is n log n. In his Disquisitiones Arithmeticae
(1801), Carl Gauss wrote: “The problem of distinguishing
prime numbers from composite numbers and of resolving
the latter into their prime factors is known to be one of the
most important and useful in arithmetic. It has engaged
the industry and wisdom of ancient and modern geome-
ters to such an extent that it would be superfluous to dis-
cuss the problem at length. . . . Further, the dignity of the
science itself seems to require that every possible means be
explored for the solution of a problem so elegant and so
celebrated.” The earliest known primality test is the sieve
of Eratosthenes, which dates from around 240 B.C. How-
ever, high-speed computers and fast algorithms are needed
to identify large primes. New record-breaking primes tend
to be of the variety known as Mersenne primes, since
these are the easiest to find. About 6,000 prime numbers
are known of which the largest is 220996011 − 1.

Much remains unknown about the primes. As Martin
Gardner said:[113] “No branch of number theory is more
saturated with mystery. . . . Some problems concerning
primes are so simple that a child can understand them
and yet so deep and far from solved that many mathe-
maticians now suspect they have no solution. Perhaps
they are ‘undecideable.’ Perhaps number theory, like
quantum mechanics, has its own uncertainty principle
that makes it necessary, in certain areas, to abandon
exactness for probabilistic formulations.” One of the
greatest unsolved problems in mathematics is the Rie-
mann hypothesis concerning the distribution of prime
numbers. See also Goldbach’s conjecture, twin primes,
Ulam spiral, and Ishango bone.

primitive root
A primitive root for a prime number p is one whose pow-
ers generate all the nonzero integers modulo (or mod) p.
For example, 3 is a primitive root modulo 7 since 3 = 31,
2 = 32 mod 7, 6 = 33 mod 7, 4 = 34 mod 7, 5 = 35 mod 7, 
1 = 36 mod 7.

prime number A remarkable pattern generated by the distri-
bution of the first few billion primes. Jean-Francois Colonna/Ecole

Polytechnique
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primitive root of unity
The complex number z such that zn = 1 but zk is not
equal to 1 for any positive integer k less than n.

primorial
Also known as a prime factorial, the product of all prime
numbers that are less than or equal to a given prime p; it
is denoted p#. For example 3# = 2 × 3 = 6, 5# = 2 × 3 ×

5 = 30, and 13# = 2 × 3 × 5 × 7 × 11 × 13 = 30,030.

Prince Rupert’s problem
The problem of pushing a cube through a hole in another
cube of equal or less size; it is named after Prince Rupert
(1619–1682), a nephew of England’s King Charles I, who
won a wager that a hole could be made in one of two equal
cubes large enough for the other cube to slide through.
The mathematics of cubes passing through cubes was con-
sidered by John Wallis. Later, in 1816, a solution was pub-
lished posthumously by the Dutch mathematician Pieter
Nieuwland (1764–1794) to the question: What is the
largest cube that can be passed through a unit cube (a cube
of which each side is one unit long)? Nieuwland answered
this by finding the largest square that fits inside a unit

cube. When viewed from directly above one apex, a unit
cube has the outline of a regular hexagon of side !3"/!2".
The largest square that will go into a cube has a face that
can be inscribed within this hexagon; the length of its edge
is !6" − !2" = 1.03527618.

prism
A semi-regular polyhedron constructed from two con-
gruent n-sided polygons and n parallelograms. The word
comes from the Greek prizma, which relates to cutting 
or sawing. A prismoid resembles a prism but has bases 
that are similar rather than congruent, and sides that are
trapezoids rather than parallelograms. An example of a
prismoid is the frustum of a pyramid. A prismatoid is a
polyhedron with all its vertices lying in two parallel planes.

prisoner’s dilemma
A problem in game theory first described by the 
Canadian-born Princeton mathematician Albert Tucker
(1905–1995) in 1950, while addressing an audience of
psychologists at Stanford University, where he was a vis-
iting professor. It runs along these lines: Al and Bob have
been arrested for holding up the Anyapolis State Bank

prism A pentagonal prism. Robert Webb, www.software3d.com; created using Webb’s Stella program



256 probability

and have been put in separate cells. Each cares a lot more
about his personal freedom than he does about his
accomplice’s welfare. A clever prosecutor makes the fol-
lowing offer to each. “You may choose to confess or
remain silent. If you confess and your accomplice
remains silent, I’ll drop all charges against you and use
your testimony to ensure that your accomplice does seri-
ous time. Likewise, if your accomplice confesses while
you remain silent, he’ll go free while you do the time. If
you both confess I get two convictions, but I’ll see to it
that you both get early parole. If you both remain silent,
I’ll have to settle for token sentences on firearms posses-
sion charges. If you wish to confess, you must leave a
note with the jailer before I come back tomorrow morn-
ing.” The dilemma faced by the prisoners is that, what-
ever the other does, each is better off confessing than
remaining silent. But the outcome when both confess is
worse for each than the outcome if both stay silent!

Tucker’s paradox was based on puzzles with a similar
structure that had been devised in 1950 by Merrill Flood
and Melvin Dresher as part of the Rand Corporation’s
investigations into game theory (which Rand pursued
because of possible applications to global nuclear strat-
egy). Flood and Dresher hadn’t published much about
their work, but the prisoner’s dilemma attracted an enor-
mous amount of attention in subjects as diverse philoso-
phy, biology, sociology, political science, and economics,
as well as game theory itself. A common view is that the
puzzle illustrates a conflict between individual and group
rationality. A group whose members pursue rational self-
interest may all end up worse off than a group whose
members act contrary to rational self-interest. More gen-
erally, if the payoffs aren’t assumed to represent self-
interest, a group whose members rationally pursue any
goals may all meet less success than if they hadn’t ratio-
nally pursued their goals individually.

probability
A measure of how likely it is that some event will occur,
given as a number between 0 (impossible) and 1 (certain).
Usually, probability is expressed as a ratio: the number of
experimental results that would produce the event
divided by the number of experimental results consid-
ered possible. For example, the probability of drawing
the five of hearts from an ordinary deck of cards is one in
fifty-two (1:52).

probability theory
The branch of mathematics that deals with the possi-
ble outcomes of events and their relative likelihoods.
While mathematicians agree on how to calculate the
probability of certain events and how to use those

calculations in certain ways, there’s plenty of disagree-
ment as to what the numbers actually mean. Probabil-
ity divides into two main concepts: aleatory probability,
which represents the likelihood of future events whose
occurrence is governed by some random physical phe-
nomenon like tossing dice or spinning a wheel; and
epistemic probability, which represents our uncertainty 
of belief about past events that either did or didn’t
occur, or uncertainty about the causes of future events.
An example of the latter is when we say that it’s “prob-
able” that a certain suspect committed a crime based 
on the available evidence. It is an open question 
whether aleatory probability is reducible to epistemic
probability based on our inability to precisely pre-
dict every force that might affect the roll of a die, 
or whether such uncertainties exist in the nature of 
reality itself, particularly at the level of quantum
mechanics. One of the earliest mathematical studies on
probability was written by Girolamo Cardano. Among
other important contributions to the development of the
subject were those by Blaise Pascal, Pierre de Fermat,
Jakob Bernouilli (see Bernouilli family), Joseph
Lagrange, Pierre Laplace, Carl Gauss, Siméon Poisson,
Abraham de Moivre, Pafnuty Chebyshev, Andrei
Markov (see Markov chain), and Andrei Kolmogorov.

PUZZLES

The following are two problems in probability. Both are

easier to solve if the various possible outcomes are

written down in the form of a table.

1. You meet a stranger on the street, and ask how

many children he has. He truthfully says two. You

ask “Is the older one a girl?” He truthfully says yes.

What is the probability that both children are girls?

What would the probability be if your second

question had been “Is at least one of them a girl?”,

with the other conditions unchanged?

2. You are in a game of Russian roulette, but this

time the gun (a six-shooter revolver) has three

bullets in a row in three of the chambers. The bar-

rel is spun only once. Each player then points the

gun at his head and pulls the trigger. If he is still

alive, the gun is passed to the other player who

then points it at his own head and pulls the trig-

ger. The game stops when one player dies. Would

you stand a better chance of surviving if you shoot

first or second, or does it make any difference?

Solutions begin on page 369.

See also Buffon’s needle, birthday problem, Monty
Hall problem, and St. Petersburg paradox.
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Proclus Diadochus (c. A.D. 410–485)
The last major Greek philosopher; his Commentary on
Euclid is the main original source we have on the early
history of Greek geometry. He also wrote Hypotyposis,
which gives a detailed account of the Earth-centered
astronomical theories of Hipparchus and Ptolemy.

product
The result of one or more multiplications.

projectile
An object, such as a baseball, spear, or cannonball, that is
thrown, fired, or otherwise propelled but that can’t pro-
pel itself. For centuries, philosophers and mathemati-
cians debated what path a projectile follows under
gravity. Galilei Galileo was the first to establish that (in
the absence of air resistance) this path is a parabola.

projective geometry
The branch of geometry that deals with properties of
geometric figures that remain unchanged under projec-
tion. A mathematical theory of perspective grew out of
the studies of Renaissance architects and painters 
who asked themselves how to best represent a three-
dimensional object on a two-dimensional surface. The
Greeks had done some early work on perspective, and the
great geometer Pappus of Alexandria is credited with 
the first theorem in projective geometry. However, the
subject reached mathematical maturity through the
efforts first of Girard Desargues, and then, much later
through the work of Jean Poncelet and by Karl von
Staudt (1798–1867).

The basic elements of projective geometry are points,
lines, and planes. These elements retain their characteris-
tics under projection; for example, the projection of a
line is another line, and the point of intersection of two
lines is projected into another point that is the intersec-
tion of the projections of the two original lines. However,
lengths and ratios of lengths are not invariant under pro-
jection, nor are angles or the shapes of figures. The con-
cept of parallelism doesn’t appear at all in projective
geometry; any pair of distinct lines intersects in a point,
and if these lines are parallel in the sense of Euclidean
geometry, then their point of intersection is at infinity.
The plane that includes the ideal line, or line at infinity,
consisting of all such ideal points, is called the projective
plane. Two properties that are invariant under projection
are the order of three or more points on a line and the
harmonic relationship, or cross-ratio, among four points,
A, B, C, D, that is, AC/BC : AD/BD. The most remark-
able concept in projective geometry is that of duality. In
the plane, the terms point and line are dual and can be

interchanged in any valid statement to yield another
valid statement; in space, the terms plane, line, and point
are interchanged with point, line, and plane, respectively,
to yield dual statements. Entire theorems also occur in
dual pairs, so that one can be instantly transformed into
the other. For example, Pascal’s theorem (given a hexagon
inscribed in a conic section, the three pairs of the con-
tinuations of opposite sides meet on a straight line) is the
dual of Brianchon’s theorem (given a hexagon circum-
scribed on a conic section, the lines joining opposite
diagonals meet in a single point). In fact, all the proposi-
tions in projective geometry occur in dual pairs.

projective plane
The surface you would get if you glued the edge of a disk
to the edge of a Möbius band. This sounds easy to do,
since a disk and a Möbius band each have one edge. But
the process becomes hopelessly tangled and is, in fact,
impossible. The projective plane needs a fourth dimen-
sion, in addition to the three we live in (up-down, left-
right, and back-forth), to be fully realized. The idea of 
the projective plane arose from the study of perspec-
tive by mathematicians and painters in the Renaissance.
In trying to represent parallel lines in space on the two-
dimensional surface of a painting, it was found useful to
introduce the notion of a line at infinity on which parallel
lines met. The study of the geometry that adds this extra
line of ideal points to the ordinary familiar plane came to
be known as projective geometry, because of its use in
studying projections of figures onto different lines. This
idea was even more important in three dimensions, since
projections are used for representing three-dimensional
figures on planes. An interesting property of the projec-
tive plane is that any “straight” line on it, followed far
enough, comes back to the starting point. (The old arcade
version of the game of Asteroids was played on a virtual
projective plane: the screen was a disk, and when an aster-
oid went off one edge of the screen it emerged on the
opposite side.) The projective plane is also nonorientable, as
a result of which any two-dimensional object pushed
along a path back to its starting point would be reversed.

prolate
(1) Rounded like an egg. (2) Having a polar diameter
greater than the equatorial diameter. See also spheroid.

pronic number
Also known as a rectangular or oblong number, a number
that is the product of two consecutive integers: 2 (1 × 2),
6 (2 × 3), 12 (3 × 4), 20 (4 × 5), . . . . The pronic numbers
are twice the triangular numbers, and represent the
lengths that produce the musical intervals: octave (1:2),
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fifth (2:3), fourth (3:4), major third (4:5) . . . . Pronic
seems to be a misspelling of promic, from the Greek
promekes, for “rectangular” or “oblong”; however, the “n”
form goes back at least as far as Leonhard Euler who used
it in series one, volume fifteen of his Opera.

proof
A sequence of statements in which each subsequent state-
ment is derivable from one of the previous statements or
from an axiom of a formal system. The final statement of
a proof is usually the theorem that one has set out to prove.

proper divisor
See aliquot part.

proportional
A variable a is said to be directly proportional to b if a/b is
a constant. The relationship is written a ∝ b, which
implies that a = kb, where k is a constant. If a is inversely
proportional to b, this is written a ∝ 1/b.

pseudoprime
A number that passes the test of Fermat’s little theorem
(FLT) for prime numbers but actually isn’t a prime. FLT
says that if p is prime and a is coprime to p, then a p − 1 − 1
is divisible by p. If a number x is not prime, a is coprime
to x, and x divides a x − 1 − 1, then x is called a pseudoprime
to base a. A number x that is a pseudoprime for all values
of a that are coprime to x is called a Carmichael num-
ber. The smallest pseudoprime in base 2 is 341. This isn’t
prime because 341 = 11 × 31; however, it satisfies FLT:
2340 − 1 is divisible by 341.

pseudosphere
A saddle-shaped surface that is produced by rotating a
tractrix about its asymptote. The name pseudosphere,
which means “false sphere,” is misleading because it sug-
gests something that is spherelike; however, a pseudo-
sphere is almost exactly the opposite of a sphere. Whereas
a sphere has a constant positive curvature (equal to +l/r,
where r is the radius) at every point on its surface, a pseu-
dosphere has a constant negative curvature (equal to −l/r)
everywhere. As a result, a sphere has a closed surface and
a finite area, while a pseudosphere has an open surface
and an infinite area. In fact, although both the two-
dimensional plane and a pseudosphere are infinite, the
pseudosphere manages to have more room! One way to
think of this is that a pseudosphere is more intensely infi-
nite than the plane. Another result of the pseudosphere’s
negative curvature is that the angles of a triangle drawn on
its surface add up to less than 180°. The geometry on the
surfaces of both the sphere and the pseudosphere is a two-

dimensional non-Euclidean geometry—spherical (or
elliptical) geometry in the case of the sphere and hyper-
bolic geometry in the case of the pseudosphere. Astron-
omers currently suspect that the universe we live in may
have a hyperbolic geometry and thus have properties
analogous to those of a pseudosphere.

Ptolemy’s theorem
The sum of the products of the two pairs of opposite
sides of a convex cyclic quadrilateral (see cyclic poly-
gon) is equal to the product of the lengths of the diago-
nals. The theorem is named after the mathematician,
astronomer, and geographer Ptolemy of Alexandria.

pure mathematics
Mathematics for the sake of its internal beauty or logical
strength. Compare with applied mathematics.

pursuit curve
The path an object takes when chasing after another
object in the most effective way. Pursuit curves can arise
in a variety of situations, for example when a lion is chas-
ing after a gazelle or a heat-seeking missile is homing in
on a moving target. Suppose that four ants are at the cor-
ners of a square. They start to crawl clockwise at a constant
rate, each moving toward its neighbor. At any instant,
they mark the corners of a square. As the ants get closer to

pseudosphere
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the original square’s center, the new square they define
rotates and diminishes in size. In reaching the center, each
ant travels on a logarithmic spiral with a length equal to
the side of the original square. Superimposed snapshots
of the ants’ progress give rise to an intriguing pattern.

puzzle jug
A practical joke in the form of a drinking vessel that,
unless the trick is known, spills all over the user when he
tries to take a sip. As the jug is tilted, liquid pours out
from the pierced decoration surrounding the pot. The
puzzle is to learn the secret of how to successfully drink
without getting wet. Puzzle jugs are the oldest known
mechanical puzzles. Several Phoenician examples are in
New York’s Metropolitan Museum of Art, and in ninth-
century Turkey they were especially popular. Puzzle jugs
have been manufactured in Germany, Holland, France,
and several other European countries since the end of the
thirteenth century. The Exeter puzzle jug, on display in
the Royal Albert Museum in Exeter, Devon, was probably
made in the Saintonge region of western France, around
1300, and is one of the finest examples of medieval pot-
tery imported to England. Puzzle jugs came back into
vogue in the eighteenth and nineteenth centuries and are
still manufactured by ceramicists in France, Germany, and
Britain. And the secret? That is really quite open, and can
be handled by anyone prepared to get to the bottom of it.

puzzle rings
A mechanical puzzle consisting of a group of interlock-
ing rings that fit together to form an intricate design;
when apart, the rings remain interconnected and pose a
challenging puzzle. The puzzle itself has ancient origins
in Egypt, though many stories have been told of its use
throughout the Middle East. According to one, a person
would give the ring to their lover telling them of the
magical qualities of the ring. If the ring was ever worn
while being amorous to another, it would tell the giver
of the ring about the unfaithfulness of the ring wearer.
The wearer, wishing to avoid the watchfulness of the
ring, might remove it from their finger so that it
wouldn’t witness an unfaithful act. But once removed,
the ring would fall into its separate pieces and so the
giver would know their lover had been cheating.

pyramid
A polyhedron whose base is a polygon and whose other
faces are triangles that meet at a common vertex, some-
times called the apex. A right pyramid has its apex directly
above the center of its base. A square-based pyramid, like
the pyramids in Egypt, has a square base and four trian-
gular sides. A triangular pyramid, or tetrahedron, is made
from four triangular sides; if regular, it is one of the Pla-
tonic solids. The volume of a pyramid is 1⁄3Ab h, where Ab

is the area of the base and h is the perpendicular height of
the apex above the base; the surface area is ps, where p is
the base perimeter and s is the slant height.

Pyramidology, which (in its original form) claims links
between biblical prophesy and the construction of the
Egyptian pyramids, stemmed from the publication in 1859
of The Great Pyramid: Why Was It Built? And Who Built It? by

pyramid The Great Pyramid of Cheops at Giza.

pursuit curve A set of superimposed snapshots shows the
lines of sight at regular intervals of four bugs chasing one
another, all moving at the same speed after starting at the cor-
ners of a square. John Sharp
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John Taylor, a British amateur mathematician and
astronomer who was editor of the London Observer. Taylor
became convinced that the Great Pyramid of Cheops, in its
architectural proportions, embodied various remarkable
and deeply meaningful geometric and mathematical prop-
erties. Chief among these, Taylor noted, was that the ratio
of the perimeter of the pyramid’s base to twice its height
closely approximates the universal constant pi. The said
ratio of the Great Pyramid gives a better value for pi than
any found in written Egyptian records. The Rhind papyrus
contains several problems that involve a multistep method
for finding the area of a circle from its diameter. This
method implies a value of π equal to 256⁄81, or 3.1605, which
is less than 1% larger than the true value of 3.14159 . . . .
The values Taylor used for the Great Pyramid’s base and
height gave him a value of π correct to two decimal places.
Further analysis of the pyramid’s dimensions and various
manipulations of numbers led him to conclude that the
builders of the edifice had used a unit that he called “pyra-
mid inch” (equal to about 1.01 times a standard inch).
Twenty-five pyramid inches made a “pyramid cubit,” and
10 million pyramid cubits, Taylor pointed out, approxi-
mate the length of Earth’s polar radius. These and a series
of similar calculations provided what Taylor considered to
be adequate evidence that the Great Pyramid had been
built as a model of Earth. Taylor’s fantastic claims may
never have become popular had not Charles Piazzi Smyth,
the Astronomer Royal of Scotland taken up the cause of
pyramidology. He popularized it in Britain, the rest of
Europe, and the United States, through a number of books
including Our Inheritance in the Great Pyramid (1864) and
Life and Work at the Great Pyramid (1867). (In the churchyard
in Sharow, North Yorkshire, Smyth has a pyramidal grave
marker.) Others who espoused pyramid numerology have
included Helena Blavatsky, the theosophist; Charles Taze
Russell, founder of the Watchtower Bible and Tract Soci-
ety; and Edgar Cayce, the American psychic; not to men-
tion a variety of more recent pseudohistorians who have
linked the Great Pyramid to everything from lost civiliza-
tions to UFOs. Yet Taylor himself was well aware of other,
less dramatic explanations for the pyramid’s dimensions,
including the possibility that the pyramid had been con-
structed so that the area of one of its faces would equal the
square of its height. The mathematical sophistication
required to achieve this is not great and would have
resulted in a ratio of the perimeter of the base to twice the
height of 3.145—about as close as the approximation of pi
used by Smyth in his studies. So, the ratio could have
occurred as a completely coincidental byproduct of a
design that had nothing to do with the ratio of the circum-
ference of a circle to its diameter. The pyramid is a rich
source of the kind of data that Taylor and Smyth worked

with, and it would be surprising if they’d been unable to
come up with some interesting number combinations
given the extent of their efforts.

pyramidal number
The number of dots that may be arranged in a pyramid
with a regular polygon as a base.

Pythagoras of Samos (c. 580–500 B.C.)
A Greek philosopher and mathematician, a native of 
the Aegean island of Samos, and the founder of a se-
cretive pseudoreligious community in Croton, southern
Italy. Pythagoras left no writings and virtually nothing is
known about him as an individual, so it is almost im-
possible to disentangle the beliefs and discoveries of 
the “Pythagoreans” from those of their leader. To the
Pythagoreans, “everything is number” and every number
was supposed to be a quantity that could be expressed as
the ratio of two integers. We now call such a number a
rational number. The Pythagoreans used music as an
example of the perfection and harmony of numbers that
can be expressed as ratios. They showed that pitch could
be represented as a simple ratio that came from the
length of equally tight strings that could be plucked. Per-
haps the most famous of the Pythagoreans’ mathematical
results is Pythagoras’s theorem. Then the sky fell in on
the Pythagoreans’ worldview. Using their very own theo-
rems they showed that not all numbers are rational. Their
discovery that the square root of 2 (the length of the
hypotenuse of a triangle with sides 1 and 1) can’t be
expressed as ratio of two whole numbers was to have
been kept a closely guarded a secret, but was later re-
vealed by one of the cult’s members.

Pythagoras’s lute
The kite-shaped figure that forms the enclosing shape for
a progression of diminishing pentagons and pentagrams,
linking the vertices together. The resulting diagram is
replete with lines in the golden ratio.

Pythagoras’s theorem
The square of the length of the hypotenuse of a right tri-
angle is the sum of the squares of the lengths of the two
sides. This is usually expressed as a 2 + b 2 = c 2. See also
Pythagorean triplet.

Pythagorean square puzzle
A deceptively hard assembly puzzle in which a small
square piece must be combined with four pieces forming
a larger square to make an even larger square.
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PUZZLE Pythagorean triangle
A right triangle whose sides are integers. A primitive
Pythagorean triangle is one whose sides are coprime.

Pythagorean triplet
Also called a Pythagorean triple, a set of three whole num-
bers that satisfies Pythagoras’s theorem, that is, the
squares of two of the numbers add up to the square of the
third number. Examples include (3, 4, 5), (5, 12, 13), and
(7, 24, 25). These are called primitive triplets because they
have no common divisors. If the members of a primitive
triplet are multiplied by the same integer, the result is a new
(but not primitive) triplet. In any primitive Pythagorean
triplet, one, and only one, of the three numbers must be
even (but can’t equal 2); the other two numbers are
coprime. There are infinitely many such triplets, and they
are easy to generate using a classic formula, known since
ancient times. If the numbers in the triplet are a, b, and c,
then: a = n2 − m 2, b = 2mn, c = m 2 + n 2, where m and n are
two integers and m is less than n. Because the square root
of 2 is irrational, there can’t be any Pythagorean triplets (a,
a, c). However, there are an infinite number of triplets (a, a
+ 1, c), the first three of which (apart from the trivial (0, 1,
1)) are (3, 4, 5), (20, 21, 29), and (119, 120, 169).

There are also an infinite number of Pythagorean quar-
tets (a, b, c, d) such that a 2 + b 2 + c 2 = d 2. This is simply the
three-dimensional form of Pythagoras’s theorem and can
be interpreted as the fact that the point in three-
dimensions with Cartesian coordinates (a, b, c) lies an
integer distance d from the origin. A formula that gener-
ates Pythagorean quartets is: a = m2, b = 2mn, c = 2n 2, d =

(m 2 + 2n 2) = a + c. Also note that b 2 = 2ac. When m = 1 and
n = 1, we get the quartet (1, 2, 2, 3)—the simplest example.

Although there are an infinite number of Pythagorean
triplets, Fermat’s last theorem, which is now know to be
true, ensures that there are no triplets for higher powers.
See also Euler’s conjecture and multigrade.

Rearrange the pieces in the Pythagorean square puzzle,
including the small square, to make a single larger square.

Solutions begin on page 369.



QED
Abbreviation for quod erat demonstrandum (“that which
was to be shown”), used to denote the end of a proof.

quadrangle
A plane figure consisting of four points, each of which is
joined to two other points by a line segment. A quadran-
gle may be concave or convex depending on whether
the line segments do or don’t intersect. A convex quad-
rangle is a quadrilateral. The word is from the Latin
quadrangulum for “four-cornered” and is also used to
describe a rectangular area surrounded on all four sides
by buildings, or to such buildings themselves.

quadrant
Any one of the four portions of the plane into which the
plane is divided by the Cartesian coordinate axes.

quadratic
An expression or an equation that contains the variable
squared, but not raised to any higher power. For
instance a quadratic equation in x contains x 2 but not x 3.
Similarly a quadratic expression, or a quadratic form, con-
tains its variable(s) squared but not raised to any higher
power. If there is more than one variable (say, x and y),
quadratic can mean that they are multiplied together in

pairs (xy) but not in threes (such as x 2y). The graph of a
quadratic equation is known as a quadratic curve; the
curve of the general quadratic equation y = ax2

+ bx + c
is a parabola.

quadratrix of Hippias
The first curve in recorded history that was not part of a
line or a circle, and the first curve known that is not
constructible in the classical sense; in other words, it
can’t be drawn using a straightedge and a compass
alone, but instead has to be plotted point by point. The
quadratrix can be thought of as the intersection of two
lines moving with constant velocity: the first line
rotates (e.g., counterclockwise) while the second line
moves along (say, in the direction of the positive y-axis).
It has the Cartesian equation y = x cot(πx/2a). The
quadratrix was discovered by Hippias of Elis in about
430 B.C. and was used by him in his work on trisecting
an angle and squaring the circle. In fact, its name refers
to its use in turning curvilinear space into a rectangular
area.

quadrature
The determination of the area of a geometric figure.

quadric
A surface in three dimensions that is described by equa-
tions containing the squares of x, y, and z, but no higher
powers of them. Examples of such surfaces include the
sphere, ellipsoid, cone, and cylinder.

quadrifolium
See rose curve.

quadrilateral
A polygon that has four sides and four vertices (cor-
ners). Quadrilaterals, and polygons in general, may be
convex or concave. A convex quadrilateral may be fur-
ther classified as a trapezoid or a British trapezium
(one pair of opposite sides are parallel), a trapezium (no
sides parallel); an isosceles trapezoid (United States) or
an isosceles trapezium (United Kingdom) (two of the
opposite sides parallel, the two other sides equal, and
the two ends of each parallel side of equal angles); a par-
allelogram (opposite sides are parallel); a kite (two
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quadrangle The sixteenth-century quadrangle of Oxford Uni-
versity’s Oriel College. Oriel College, Oxford
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adjacent sides of equal length, the other two sides of
equal length); a rhombus (four sides of equal length); a
rectangle (each angle is a right angle); or a square (four
sides of equal length, each angle a right angle). Quad-
rangular prisms and quadrangular pyramids are ones
whose bases are quadrilateral.

quantifier
In symbolic logic, the universal quantifier ∀ indicates “for
every” or “for all.” For example, ∀ x A, p(x) means for all
x belonging to A, the proposition p(x) is valid. The exis-
tential quantifier ∃ indicates “there exists.” So, for
instance, ∃ x A, p(x) means there exists at least one x,
belonging in A, for which the proposition p(x) is valid.

quantum field theory
The study of force fields such as the electromagnetic field
in the context of quantum mechanics, and often special
relativity theory. The mainstay of modern high-energy
physics.

quantum mechanics
The science and mathematics that describe the behav-
ior of nature at the atomic and subatomic level. At the
heart of quantum mechanics are two basic concepts:
(1) that every small bit of matter or energy can behave
as if it were either a particle or a wave; and (2) that cer-
tain combinations of properties such as position and
velocity, and energy and time, can’t be known with
arbitrary precision. The latter idea is encapsulated in
Heisenberg’s uncertainty principle. See also many worlds
hypothesis.

quartic
A polynomial or polynomial equation that contains the
fourth power of the variable, but no higher power. Many
famous curves are described by such equations, including
the bicorn, Cartesian oval, conchoid, deltoid, devil’s
curve, folium, kampyle of Eudoxus, and limacon of
Pascal.

quartile
The first quartile of a sequence of numbers is the num-
ber such that one quarter of the numbers in the sequence
are less than this number.

quasicrystal
A strange type of solid whose atomic structure is very reg-
ular but never quite repeats. Quasicrystalline structures
don’t have a simple unit cell that can be repeated period-
ically in all directions to fill space, although they do have
local patterns that repeat almost periodically. They also

have local rotational symmetries, such as those of a pen-
tagon, that can’t exist in ordinary crystals. Prior to the
discovery of quasicrystals, it was thought that five-fold
crystal symmetry was impossible, because there are no
space-filling periodic tilings of this kind. The best known
examples of quasicrystals resemble Penrose tilings, which
use repeated copies of two different rhombi to cover an
infinite plane in intricate, interlocking patterns. In fact,
some quasicrystals can be sliced in such a way that the
atoms on the surface follow the exact pattern of the Pen-
rose tiling.[293]

quasiperiodic
Refers to a form of motion that is regular but never
exactly repeating. Quasiperiodic motion is always com-
posed of multiple but simpler periodic motions. In the
general case for motion that is the sum of simpler peri-
odic motions, if there exists a length of time that evenly
divides the frequencies of the underlying motions, then
the composite motion will also be periodic; however, if
no such length of time exists, then the motion will be
quasiperiodic.

quasiregular polyhedron
A polyhedron that consists of two sets of regular poly-
gons, m-sided and n-sided respectively, and is constructed
so that each polygon in one set is surrounded by mem-
bers of the other set. There are three convex quasiregular
solids: the cuboctahedron (m = 3, n = 4), the icosidodecahe-
dron (m = 3, n = 5), and the octahedron (m = n = 3). In
each case four faces meet at each vertex in the cyclic order
(m, n, m, n). Because of this, these polyhedra have some
special properties, one of which is that their edges form a
system of great circles. The edges of the octahedron form
three squares; the edges of the cuboctahedron form four
hexagons, and the edges of the icosidodecahedron form
six decagons. Among the nonconvex polyhedra are two
examples of type (m, n, m, n): the dodecadodecahedron (m =

5, n = 5⁄2) and the great icosidodecahedron (m = 3, n = 5⁄2),
which can be made by truncating the Kepler-Poinsot
polyhedra at their edge midpoints. There are also three
nonconvex examples of type (m, n, m, n, m, n): the small
triambic icosidodecahedron (m = 3, n = 5⁄2), the triambic
dodecadodecahedron (m = 5⁄3, n = 5), and the great triambic
icosidodecahedron (m = 3, n = 5). Finally, there is a group of
nine hemihedra, in which some faces pass through the
polyhedron’s center. These hemifaces each cut a sphere
into two hemispheres.

quaternion
An ordered set of four numbers. Quaternions, first intro-
duced by William Hamilton, can also be written in the
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form a + bi + cj + dk, where a, b, c, and d are real numbers
and i, j, and k are imaginary numbers, which is similar to
that of complex numbers. Whereas complex numbers
can be represented by points of a two-dimensional plane,
quaternions can be viewed as points in the fourth
dimension. For a while, quaternions were very influen-
tial: they were taught in many mathematics departments
in the United States in the late 1800s, and were a manda-
tory topic of study at Dublin, where Hamilton ran the
observatory. But then they were driven out by the vector
notation of William Gibbs and Oliver Heaviside. Had
quaternions come along later, when theoretical physicists
were trying to understand patterns among subatomic par-
ticles, they may have found a place in modern science;
after all, the unit quaternions form the group SU(2),
which is perfect for studying spin-1⁄2 particles. But the
way things turned out, quaternions had fallen from favor
by the twentieth century and Wolfgang Pauli used 2 × 2
complex matrices instead to describe the generators of
SU(2).

queens puzzle
A famous chess problem that asks in how many ways
eight queens can be placed on a chessboard so that no
two attack each other. The generalized problem, to find
how many ways n queens can be placed on an n × n board
so that no two attack each other, was first posed by Franz
Nauck in 1850. In 1874 Günther and Glaisher described
methods for solving this problem based on determi-
nants. The number of distinct solutions, not counting
rotations and reflections, for board sizes ranging from 
1 × 1 to 10 × 10 is 1, 0, 0, 1, 2, 1, 6, 12, 46, and 92, respec-
tively. The 6 × 6 puzzle, for which there is a solitary

unique solution, was sold for one penny in Victorian
London in the form of a wooden board with 36 holes
into which pins were placed.

quine

Before we put the motion “that the motion be now
put,” should we not first put the motion “that the
motion ‘that the motion be now put’ be now put?”

—Chairman of the meeting of the Society of Logicians

A term named by Douglas Hofstadter after the Harvard
logician Willard van Orman Quine. It can be used either
as a noun or a verb. (1) Quine (noun). A computer pro-
gram that produces an exact copy of itself (or, alterna-
tively, that prints its own listing.) This means that when
the program is run, it must duplicate (or print out) pre-
cisely those instructions that the programmer wrote as
part of the program, including the instructions that do
the copying (or printing) and the data used in the copy-
ing (or printing.) A respectable quine—one that doesn’t
cheat—is not allowed to do anything as underhand or
trivial as seeking the source file on the disk, opening it,
and copying (or printing) its contents. Although writing
a quine is not always easy, and in fact may seem impossi-
ble, it can always be done in any programming language
that is Turing complete (see Turing machine), which
includes every programming language actually in use. (2)
Quine (verb). To write a sentence fragment a first time,
and then to write it a second time, but with quotation
marks around it. For example, if we quine “say,” we get
“say ‘say’ ”). Thus, if we quine “quine”, we get “quine
‘quine,’ ” so that the sentence “quine ‘quine’ ” is a quine.
In this linguistic analogy, the verb “to quine,” plays the
role of the code, and “quine” in quotation marks plays
the role of the data.

quintic
A polynomial or polynomial equation that contains the
fifth power of the variable, but no higher power. Niels
Abel and Evariste Galois independently proved that
although there exist formulas for the general solution of
quadratic, cubic, and quartic equations, no such formula
exists for quintic equations.

quipu
A recording device generally associated with the Incas,
who ruled Peru before the Spanish conquest. Quipu
consisted of a number of color-coded cords; knots of
various kinds were tied on these cords to represent a vari-
ety of information. An important use of quipu was to
record numbers for use in trade, keeping accounts, and
calendars, but the knotted strings might also have served

quaternion An Irish stamp showing the quaternion equa-
tions in Hamilton’s own hand.
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as mnemonics for important historical events, astro-
nomical data, and mythology (the Incas had no written
language). Some evidence supports the idea that the
knots and cords followed in a decimal system. Similar
devices were used by several other Indian tribes and also
described in Chinese and Persian documents from the

fifth and sixth centuries B.C., and are still used by shep-
herds in the Andes for keeping accounts of their herds.

quotient
The number of times that one number can be divided
exactly into another.



radian
A unit of angular measurement such that there are 2π
radians in a complete circle. One radian = 180/π degrees.
One radian is approximately 57.3°.

radical
The symbol that indicates a root, n√. It seems to have
been first used in 1525 by Christoff Rudolff (1499–1545)
in his Die Coss.

radical axis
The locus of points of equal power with respect to two
circles. The radical center of three circles is the common
point of intersection of the radical axes of each pair of 
circles.

radius
The distance from the center of a circle to its circumfer-
ence, or from the center of a regular polygon to any one
of its vertices. The radius of curvature, r, at any point of a
curve is r = 1/κ, where κ is the curvature.

radix
See base.

railroad problems
See shunting puzzles.

Ramanujan, Srinivasa Aaiyangar (1887–1920)
An extraordinary, largely self-taught, Indian mathemati-
cian who, in the most unorthodox way, made significant
contributions to number theory, including the subject 
of elliptic functions, continued fractions, and infinite
series. During much of his early work, he was unaware
that he was rediscovering results that had taken other
mathematicians centuries to achieve. But even in cases
where he arrived at conclusions already known, he’d often
travel an original route, and, in many cases, almost purely
by intuition. Ramanujan was employed in a lowly clerk’s
position in Madras, when, in 1913, he wrote letters to
three eminent mathematicians in England describing
some of his results. Two of the three letters were returned
unopened. However, G. H. Hardy recognized Ramanu-

jan’s abilities and arranged for him to come to Cam-
bridge. Because of his lack of formal training, Ramanujan
sometimes failed to distinguish between formal proof and
apparent truth based on intuition or numerical evidence.
His extraordinary innate familiarity with numbers was
revealed by an incident recalled by Hardy:[150] “I remem-
ber once going to see him when he was lying ill at Putney.
I had ridden in taxi cab number 1729 and remarked that
the number seemed to me rather a dull one, and that I
hoped it was not an unfavorable omen. ‘No,’ he replied,
‘it is a very interesting number; it is the smallest number
expressible as the sum of two cubes in two different ways
[1729 = 13 + 123 = 93 + 103].’ ”

Unfortunately, Ramanujan’s health deteriorated rap-
idly in England, perhaps due to the unfamiliar climate
and food, and to the isolation which Ramanujan felt as
the sole Indian and a devout Hindu in a culture which
was alien to him. Ramanujan was sent home to recuper-
ate in 1919, but tragically died the following year at the
age of only 32. Although he published some of his results
in journals, much of his work and conclusions have only
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Ramanujan, Srinivasa Aaiyangar The enigmatic mathemati-
cian on an Indian commemorative stamp.



random number 267

come to light more recently, from a scrutiny of his disor-
ganized but fascinating notebooks.[184]

Ramsey theory
A branch of mathematics that asks questions such as:
Can order always be found in what appears to be disor-
der? If so, how much can be found and how big a chunk
of disorder is needed to find a particular amount of order
in it? Ramsey theory is named after the English mathe-
matician Frank P. Ramsey (1904–1930) who started the
field in 1928 while wrestling with a problem in logic.
(Frank’s one-year-younger brother, Arthur, served as
Archbishop of Canterbury from 1961 to 1974.) His life
was cut short at the age of 26, following a bout of jaun-
dice. Ramsey suspected that if a system was big enough,
even if it seemed to be disorderly to an arbitrary degree,
it was bound to contain pockets of order from which
information about the system could be gleaned.

random
Without cause; not compressible; obeying the statistics
of a fair coin toss.

random number
A number generated by a process that is fundamentally
nondeterministic and unpredictable. Computer-generated
“random numbers,” which are calculated through a deter-
ministic process, cannot, by definition, be random. Given
knowledge of the algorithm used to create the numbers
and its internal state, it’s possible to predict all of the num-
bers returned by subsequent calls to the algorithm. For this
reason the numbers produced by computer-based “ran-
dom number generators” are often referred to as pseudo-
random numbers. In the case of genuinely random numbers,
knowledge of one number or an arbitrarily long sequence
of numbers offers no clue of the next number to be gener-
ated. Humans are among the worst random number gen-

ranunculoid A ranunculoid curve spun by thread on a computer loom. Jos Leys, www.josleys.com
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erators. Ask someone to pick a number “at random”
between 1 and 20, and the number they’re most likely to
choose is 17. Psychologically random numbers, such as 17, are
usually odd and don’t end in 5, so that they frequently
tend to be prime numbers. See also Chaitin’s constant.

random walk
A process in which the position of a particle changes by
discrete steps of fixed length, and the direction of each
step is chosen randomly. Random walks have interesting
mathematical properties that vary greatly depending on
the number of dimensions in which the walk takes place
and whether it is confined to a lattice. For a random
walk in one dimension there are only two directions to
choose from. Imagine a drunken person wandering on
the number line who starts at 0, and then moves left or
right (+/−1) with probability 1⁄2. The probability that the
walker will eventually return to his starting point is 1; in
other words, it is certain to happen. The same is true for
a random walk in the plane, moving on the integer lat-
tice points, with probability 1⁄4 in each of the coordinate
directions: the probability of ending up back at the start-
ing point is 1. However, the situation changes in three
dimensions. Suppose a drunken fly moves randomly
from one point to another in a three-dimensional lattice
with a probability of 1 in 6 of arriving at any of the six
adjacent lattice points on each move. No matter how
long the fly roams, it has only a 0.34054 . . . probability
of ever getting back to where it started. Probabilists say
that random walks on the line and plane are recurrent,
whereas random walks in three dimensions or more are
transient. Effectively, this is because there is so much
more “space” in three or more dimensions. The numbers
giving the probability of eventually returning to the
starting point are known as random walk constants. The
random thermal perturbations in a liquid are responsible
for a random walk phenomenon known as Brownian
motion, and the collisions of molecules in a gas are a ran-
dom walk responsible for diffusion.

range
(1) The set of possible values in which a function’s out-
put can be. See also codomain. (2) The set of all points
on a line segment.

rank
(1) Any of the rows of squares running crosswise to the
files on a playing board in chess or checkers. (2) The rank
of a matrix is equal to the dimension of the largest sub-
matrix that can be obtained by deleting rows and
columns of the parent matrix and that has a nonzero
determinant. See also tensor.

ranunculoid
An epicycloid with five cusps (n = 5), named after the
buttercup genus Ranunculus.

ratio
A rational number of the form a/b where a is called the
numerator and b is called the denominator. It may be writ-
ten with a colon (:), as a fraction, or with the word to.

rational number
A number that can be written as an ordinary fraction—a
ratio, a/b, of two integers, a and b, where b isn’t zero—or
as a decimal expansion that either stops (like 4.58) or is
periodic (like 1.315315 . . .). Other examples include 1,
1.2, 385.66, and 1⁄3. Rational numbers are countable,
which means that, although there are infinitely many of
them, they can always be put in a definite order, from
smallest to largest, and can thus be counted. They also
form what’s called a densely ordered set; in other words,
between any two rationals there always sits another one—
in fact infinitely many others. The rational numbers are
a subset of the real numbers; real numbers that aren’t
rational are called, rationally enough, irrational num-
bers. Although rationals are dense on the real number
line, in the sense that any open set contains a rational,
they’re pretty sparse in comparison with the irrationals.
One way to think of this is that the infinity of rationals
(which, strangely enough, is exactly the same size as the
infinity of whole numbers) is smaller than the infinity of
irrational numbers. Another way to grasp the scarcity
versus density issue, is to realize that the rationals can be
covered by a set whose “length” is arbitrarily small. In
other words, given a string of any positive length, no
matter how short, it will still be long enough to cover all
the rationals. In mathematical parlance, the rationals are
a measure zero set. The irrationals, by contrast, are a
measure one set. This difference in measure means that
the rationals and irrationals are quite different even
though a rational can always be found between any two
irrationals, and an irrational exists between any two
rationals.

raven paradox
A paradox put forward by the German logician Carl
Hempel (1905–1997) in the 1940s to highlight a situation
where the logic of induction seems to fly in the face of
intuition. According to the principle of induction, the more
that a theory is supported by observation, the greater 
the probability that the theory is true. Consider, said
Hempel, the theory that all ravens are black. After each
observation of a black raven, our belief in the theory “all
ravens are black” increases. But here’s the rub. The state-
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ment “all ravens are black” is logically equivalent to the
statement “all nonblack things are nonravens.” The
observation of a white swan is consistent with this state-
ment. A white swan is a nonblack thing, and when we
examine it, we observe that it is a nonraven. So by the
principle of induction, observing a white swan should
increase our belief that all ravens are black!

Many solutions have been offered to this enigma. The
American logician Nelson Goodman (1906–1998) sug-
gested imposing restrictions to our reasoning, such as
never considering an instance as support for “All P are
Q” if it would also support “No P are Q.” Others have
questioned the principle of equivalence. Perhaps seeing a
white swan should strengthen our belief in the theory
“all nonblack things are nonravens,” without increasing
our conviction that “all ravens are black.” Yet others
have argued that our intuition is flawed. Observing a
white swan really does increase the probability that all
ravens are black! After all, if you were shown all the non-
black things in existence, and you noticed that none was
a raven, then you could properly conclude that all
ravens were black. The example only seems counterintu-
itive because the set of nonblack things is vastly larger
than the set of ravens. Thus observing one more non-
black thing that is not a raven should make a tiny differ-
ence to our degree of belief in the proposition compared
to the difference made by observing one more raven that
is black.

A way to sidestep the paradox is by using Bayes’s the-
orem. According to this the probability of a hypothesis
H must be multiplied by the ratio:

If a swan is picked at random, the probability of it being
white is independent of the colors of ravens. The numer-
ator in the above ratio will equal the denominator, the
ratio will equal one, and the probability will remain
unchanged. Seeing a white swan doesn’t affect our belief
about whether all ravens are black. If a nonblack thing is
chosen at random, and a white swan is shown, then the
numerator will be bigger than the denominator by a tiny
amount. Seeing the white swan will only slightly increase
our belief that all ravens are black. We’d have to see
almost every nonblack thing in the universe (and see that
they’re all nonravens) before our belief in “all ravens are
black” would increase appreciably. In both cases, these
results are in line with intuition.

ray
A straight path of points that begins at one point and
continues in one direction.

probability of observing X if H is true
!!!!

probability of observing X

real number
Any number that can be represented as a decimal, possi-
bly infinitely long and nonrepeating. Real numbers stand
in one-to-one correspondence with the points on a con-
tinuous line, known as the real number line, that stretches
from zero to infinity in both directions. The set of real
numbers contains the set of all rational numbers and the
set of all irrational numbers. The name “real number” is
a retronym, coined by René Descartes in response to the
concept of imaginary numbers. Number systems that
are even more general than the real numbers include the
complex numbers and, of much more recent discovery,
hyperreal numbers and surreal numbers.

realm
A term advocated for a three-dimensional version of the
two-dimensional plane.

reciprocal
One over a given number; for example, the reciprocal of
4 is 1⁄4.

Recorde, Robert (c. 1510–1558)
A Welsh physician and mathematician, born in Tenby,
Pembrokeshire, and trained at Oxford and Cambridge,
who held various positions, including master of the mint in
Bristol and later in Ireland, and wrote a number of influen-
tial math textbooks. These books formed a complete course
and were written in English, rather than the usual Latin or
Greek, so that they could be read by anyone. In one of
them Recorde introduces the “=” sign for “equals.”

rectangle
A quadrilateral whose interior angles are all 90°. If all of
its sides are the same length, it is a square. The smallest
square that can be cut into m × n rectangles, such that all
m and n are different integers, is the 11 × 11 square, and
the tiling uses five rectangles. The smallest rectangle that
can be cut into m × n rectangles, such that all m and n are
different integers, is the 9 × 13 rectangle; this tiling also
uses five rectangles.

rectangular coordinates
See Cartesian coordinates.

rectangular hyperbola
See hyperbola.

recursion
See recursion.
No, seriously. Recursion is a process that wraps back on
itself and feeds the output of a process or function back
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in as the input. Using some sort of recurrence relation, an
entire class of objects can be built up from a few initial
values and a small number of rules. The Fibonacci
sequence, for example, is defined recursively, as are
many fractal figures. Self-recursion, of which the first two
lines of this entry are an example, leads to an endless
feedback loop. One, somewhat disturbing, notion of
reality is that we live in a recursive universe in which nature
resembles an infinite nest of Russian dolls. One day, we
will simulate the big bang in one of our supercomputers.
Inside this artificial universe (rather like an immense Star
Trek “holodeck” simulation) will evolve new star systems
and new life forms. They too will evolve intelligence one
day and invent computers. And they too may one day
simulate the big bang inside one of their supercomput-
ers. This chain of existence will continue as long as we
continue to run our simulation. Our universe will con-
tinue to exist as long as our parent universes’ continue to
run their simulations. And therein lies madness.

recursive function
Strictly speaking, a function that is computable; however,
in the usual sense of the word, a function is said to be
recursive if its definition makes reference to itself (see
recursion). For example, factorial can be defined as x! =
x(x − 1)! with the base case of 1! equal to 1. See also self-
referential sentence.

recursively enumerable set
A potentially infinite set whose members can be enu-
merated by a universal computer; however, a universal
computer may not be able to determine that something
is not a member of a recursively enumerable set. The halt-
ing set, a concept related to the halting problem, is recur-
sively enumerable but not recursive.

reductio ad absurdum

“Reduction to the absurd”; the process of demonstrat-
ing that an idea is probably false by first assuming its
truth, and then showing how that truth leads to conclu-
sions that can’t possibly be true. In A Mathematician’s
Apology (1941),[151] G. H. Hardy said: “Reductio ad
absurdum, which Euclid loved so much, is one of a
mathematician’s finest weapons. It is a far finer gambit
than any chess play: a chess player may offer the sacri-
fice of a pawn or even a piece, but a mathematician
offers the game.”

reductionism
The idea that nature can be understood by taking it apart.
In other words, knowing the lowest-level details of how
things work (at, say, the level of subatomic physics)

reveals how higher-level phenomena come about. This is
a bottom-up way of looking at the universe, and is the
exact opposite of holism.

redundancy
The existence of repetitive patterns or structures. In an
important sense, redundancy refers to order in a complex
system since order is defined as the existence of struc-
tures that maintain themselves over time. In information
theory, redundancy refers to repetition in patterns of
messages in a communication channel. If the message
contains these redundancies, they can be compressed fur-
ther; for example, a message containing a series of 250
ones, could be compressed into a command that effec-
tively says “and then repeat one 250 times,” instead of
writing out all 250 ones.

reentrant angle
An inward-pointing angle of a concave polygon.

reflection
A way of transforming a shape in the same way that a
mirror does. The reflection of a shape in a mirror line is
an identical shape that has been flipped over. When an
object is placed a certain distance in front of a mirror, its
image in the mirror appears the same distance away from
the edge of the mirror. Likewise, all the points on a shape
and all the points on its image are the same distance away
from the mirror line.

reflex angle
An angle between 180° and 360°.

reflexible
Having a plane of mirror symmetry. Compare with chiral.

regular polygon
A polygon in which all the sides are equal and all the
angles are equal.

regular polyhedron
A polyhedron in which every face and vertex figure is reg-
ular. There are nine regular polyhedra: the five Platonic
solids and the four Kepler-Poinsot solids. However, oth-
ers are sometimes allowed, depending on the definition of
polyhedron.

relativity theory
The physical and mathematical theory due to Albert
Einstein (1879–1955) that revolutionized our under-
standing of space, time, and gravity. In it, space and
time are seen as a unified and inseparable whole—the
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four-dimensional continuum of space-time. The curva-
ture of space-time due to the presence of matter
becomes the extraordinary new explanation and inter-
pretation of gravity. Einstein’s theory of relativity was
published by him in two great parts. Special relativity,
published in 1905, deals exclusively with inertial frames
of reference, that is, reference frames that don’t acceler-
ate with respect to one another. Its two central premises
are that the laws of physics are the same in all reference
frames and that the speed of light (in a vacuum) is con-
stant in all reference frames. General relativity, pub-
lished in 1915, centers on the equivalence principle, the
idea that acceleration and gravity are equivalent. See
also non-Euclidean space.

renormalization
A mathematical technique for looking at a physical sys-
tem at different levels of magnification.

repdigit
A number composed of repetition of a single digit in a
given base, generally taken as base 10 unless otherwise
specified. For example, the beast number 666 is a (base-
10) repdigit.

representation theory
A theory that seeks to understand an abstract algebraic
system such as a group by obtaining it in a more concrete

way as a permutation group or as a group of matrixes (see
matrix).

rep-tile
A repetitive tiling: a shape with the property that it tiles
a larger version of itself, using identical copies of itself. A
simple example is a square because four copies of any
square tile a larger square. Any triangle also is a rep-tile,
because four copies of it tile a larger version of this trian-
gle. Rep-tiles that require n tiles to build a larger version
of themselves are said to be rep-n; thus a square is rep-4.
Since any of these larger replicas can be combined to give
an even larger, second-generation copy, a rep-n tile is also
rep-n2, rep-n3, and so on. Often tiles have several rep-
numbers. If a tile is rep-n and rep-m, it is also rep-mn,
since replicas can be built with n tiles, then combined, m
at a time, to give a yet larger version.

The set of rep-tiles is a subset of the set of irreptiles. An
irreptile is any shape that tiles a larger version of itself
using either differently sized or identical copies of itself.
The problem to find all irreptiles in the Euclidean plane
has been studied but not yet completely solved. A

Reuleaux triangle © Jan Wassenaar, www.2dcurves.com

Reutersvärd, Oscar A Swedish stamp depicting one of
Reutersvärd’s impossible figures.
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re-lated set of problems is to find for each irreptile the
minimum number of smaller copies needed to tile the
original shape; in many cases it is difficult to prove such
a minimality. The name “rep-tile” was coined by Simon
Golomb.

rep-unit
A number whose digits are all units; the rep-unit
(repeated unit) with n digits is denoted Rn. For example,
R1 = 1, R2 = 11, R3 = 111, and Rn = (10n − 1)/9. Rn divides
Rm whenever n divides m. No rep-unit can be a square,
but it is not known if one can be a cube. Rep-unit primes
are rep-units that are prime numbers. The only known
rep-unit primes are R2 (11), R19, R23, R317, and R1031,
though R49081 and R86453 are suspected primes.

resultant
A vector that is the sum of a given set of vectors.

Reuleaux polytope
A convex body in the plane or in higher dimensions
that, like the Reuleaux triangle, consists of pieces of

round spheres, each centered at one of the corners of the
convex body.

Reuleaux triangle
The simplest noncircular curve of constant width; also
known as the Reuleaux wheel, it is named after the German
engineer and mathematician Franz Reuleaux (1829–1905).
Although it was known to earlier mathematicians, Reu-
leaux was the first to show its constant-width properties. To
form a Reuleaux triangle, take the three points at the cor-
ners of an equilateral triangle and connect each pair of
points by a circular arc centered at the remaining point.
The ratio of the circumference to the width of the triangle
is, remarkably, pi. By rotating the centroid of a Reuleaux
triangle appropriately, the figure can be made to trace out
a square, perfect except for slightly rounded corners. This
idea has formed the basis of a drill that will carve out
squares, first patented by Harry Watts in 1914. Bits for
square, pentagonal, hexagonal, and octagonal holes are
still sold by the Watts Brothers Tool Works in Wilmerding,
Pennsylvania. The actual drill bit for the square is a
Reuleaux triangle made concave in three spots to allow for
unobstructed corner-cutting and the discharge of shavings.
The Reuleaux triangle may also form the shape of the pis-
ton in a rotary, or Wankel, engine, in which gasoline burns
in crescent-shaped chambers, turning a rotating piston that
drives an axle through its center.

Reutersvärd, Oscar (1915–)
A Swedish artist who pioneered the creation and design of
impossible figures. His work in this area goes back to one
day in 1934 when, as a young student in Stockholm, he
started doodling in the margins of a textbook during a long
lecture. Reutersvärd’s doodle began with an outline of a
perfect six-pointed star. Once the star was complete he
added cubes around the star, nestled into the spaces
between the points. He soon realized that what he’d drawn
was paradoxical: something that couldn’t be built in the
real world. A different version of this figure, independently
created by Roger Penrose, would later be called the Pen-
rose triangle. Thus began a lifelong fascination with such
objects, which later included work on the impossible stair-
case (a design he sketched in 1950 while on a cross-country
train ride), which is known as the Penrose stairway, and
the discovery of the tribar illusion. In the early 1980s the
Swedish government honored Reutersvärd’s achievements
by issuing a set of three stamps depicting impossible fig-
ures, including a version of his 1934 weird cubes design.

Rhind papyrus
A papyrus scroll, 33 cm high and 565 cm wide, found in
a tomb in Thebes, that is the most valuable source of
information we have about Egyptian mathematics. The

Rhind papyrus British Museum
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scroll was bought at a market in Luxor in 1858 by a 25-
year-old Scotsman, Henry Rhind, who went to Egypt for
health reasons and became interested in archeology. After
his early death at the age of 30, the scroll found its way to
the British Museum in London in 1864 and has remained
there ever since. It is often referred to as the Rhind mathe-
matical papyrus, or RMP for short. The hieroglyphs on the
papyrus were deciphered in 1842, while the Babylonian
clay-tablet cuneiform writing was deciphered later in the
nineteenth century. The text begins by stating that the
scribe “Ahmes” is writing it (in about 1600 B.C., and he is
thus the earliest named individual in the history of math-
ematics) but that he has copied it from “ancient writings,”
which probably go back to at least 2000 B.C. Although
there is some strictly practical mathematics on the papy-
rus, including calculations needed for surveying, building,
and accounting, some of which involve Egyptian frac-
tions, many of the problems in the RMP take the form of
arithmetic puzzles. One of these is: Seven houses contain
seven cats. Each cat kills seven mice. Each mouse had
eaten seven ears of grain. Each ear of grain would have
produced seven hekats of wheat. What is the total of all of
these? This is very similar to the St. Ives problem.

There are also four lesser documents preserving Egyp-
tian arithmetic: the Moscow papyrus and the Berlin
papyrus (named for the places they are kept), the Kahun
papyrus (named for where it was found), and the Leather
Roll (named for its composition). The Moscow papyrus
is sometimes called the Golenischev papyrus after the
Russian V. S. Golenischev, who purchased it in 1893 from
two Egyptian brothers who found it in a tomb at Deir el-
Bahri. It measures 8 cm high and 540 cm wide and con-
tains 25 problems and their solutions. The most unusual
are the tenth, which seems to give the area of the surface
of a hemisphere or perhaps a cylinder, and the four-
teenth, which gives the formula for the volume of the
frustum of a pyramid.

rhombus
A quadrilateral in which both pairs of opposite sides are
parallel and all sides are the same length, that is, an equi-
lateral parallelogram. A rhombus is also sometimes
called a rhomb or a diamond. A rhombus whose acute
angles are 45° is called a lozenge. The diagonals p and q of
a rhombus are perpendicular and satisfy the relationship
p 2 + q 2 = 4a 2. The area of a rhombus is given by A = 1⁄2 pq.

Richard’s paradox
See Berry’s paradox.

Riemann, (Georg Friedrich) Bernhard (1826–1866)
A German mathematician who was the first person to
provide a thorough treatment of non-Euclidean geome-

try and to see how it might be applied in physics; he thus
helped pave the way for the general relativity theory.
Among several profound aspects of mathematics now
named after him are the Riemann hypothesis and the
related Riemann zeta function. His father, a Lutheran
pastor, encouraged him to study theology at Göttingen.
But even as a child Riemann had shown a tremendous
aptitude for mathematics and, in 1847, he persuaded his
father to let him go to Berlin to learn mathematics from
the likes of Karl Jacobi, Peter Dirichlet, and Jakob
Steiner. Two years later, he returned to Göttingen to
study for his Ph.D. and begin his climb up the professor-
ial ladder. In 1854, his inaugural lecture, “Concerning the
hypotheses which underlie geometry,” covered a breath-
taking array of topics, including a workable definition of
the curvature of space and how it could be measured, the
first description of elliptical geometry, and, most impor-
tant of all, the extension of geometry into more than
three dimensions with the aid of algebra.

Riemann hypothesis

If I were to awaken after having slept for a thousand
years, my first question would be: Has the Riemann
Hypothesis been proven?

—David Hilbert

The most important open question in number theory
and, possibly, in the whole of mathematics. A $1 million
prize has been offered by the Clay Mathematics Institute
for a proof. The hypothesis was first formulated by Bern-
hard Riemann in 1859, was included in David Hilbert’s
list of challenging problems for twentieth-century mathe-
maticians, and is widely believed to be true. Yet a proof
remains tantalizingly out of reach. What the Riemann
hypothesis says is that the nontrivial zeros of the Riemann
zeta function all have real parts equal to 1⁄2. In plain lan-
guage, the hypothesis asserts that there is an underlying
order, akin to musical harmonics, in the way prime num-
bers are distributed. It’s known that for any given number
n there are approximately n/log n prime numbers that are
less than n. The formula is not exact: sometimes it is a lit-
tle high and sometimes it is a little low. Riemann looked at
these deviations and found that they contain periodicities.
His hypothesis quantifies and formalizes this discovery,
positing that the zeros of the zeta function can be regarded
as the harmonic frequencies in the distribution of primes.
If the Riemann hypothesis turns out to be true, what do
these harmonics in the “music” of the primes mean?
Remarkably, it is been found by the English physicist
Michael Berry and his colleagues that there is a deep con-
nection between the harmonics—the Riemann zeros—and
the allowable energy states of physical systems that are on
the border between the quantum world (see quantum
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mechanics) and the everyday world of classical physics.
The Riemann harmonics, or “magic numbers,” behave
exactly like the energy levels in quantum systems that clas-
sically would be chaotic. This deep connection between
number theory and the physics of the real universe, if
upheld, is utterly astonishing. If the Riemann hypothesis is
proved true, it could open an entirely new window on the
nature of reality and the relationship between the abstract
world of mathematics and the behavior of matter and
energy. On the other hand, if it is disproven, there will be
an even deeper mystery to explore: How can the Riemann
zeta function so convincingly mimic a quantum system
without actually being one?[40]

Riemann integral
The kind of integral familiar from calculus texts and nor-
mally used by scientists and engineers, in which the pro-
cess of integration of function on an interval amounts to
finding the area under the curve.

Riemann sphere
A topological sphere consisting of the complex plane and
the point at infinity; an example of a Riemann surface.

Riemann surface
Also known as a complex curve, a complex manifold with
one complex dimension. The Riemann surface is a con-
formal structure (see conformal mapping).

Riemann zeta function z(s)

We may—paraphrasing the famous sentence of
George Orwell—say that “all mathematics is beauti-
ful, yet some is more beautiful than the other.” But
the most beautiful in all mathematics is the zeta
function. There is no doubt about it.

—Krzysztof Maslanka, Polish cosmologist

One of the most profound and mysterious objects in
modern mathematics; from it has sprung the Riemann
hypothesis and all that this conjecture seems to imply.
The Riemann zeta function is closely tied to the distribu-
tion of prime numbers. It is an extension of the Euler zeta
function, first studied by Leonhard Euler, which is the sum

ζ(s) = 1 + 1/2s + 1/3s + 1/4s + . . . = !
∞

n = 1

1/ns.

Euler found that this function is linked to the occurrence
of prime numbers by the following fundamental rela-
tionship:

ζ(s) = 1 + 1/2s + 1/3s + 1/4s + . . . = 2n/(2n − 1)
× 3n/(3n − 1) × 5n/(5n − 1) × 7n/(7n − 1) × . . .
= ∏

p
1/(1 − p−s)

The Riemann zeta function extends the definition of
Euler’s zeta function to all complex numbers.

Riemannian geometry
See elliptical geometry.

right
A right angle is an angle of 90°. A right triangle is a triangle
that contains a right angle.

ring
(1) Another name for an annulus. (2) A number system
in which addition, subtraction, and multiplication are
always defined and the associative and distributive laws
are valid. Compare with field.

Rithmomachia
A medieval, chesslike board game for two players that is
based on the number theories of Pythagoras and
Boethius. Rithmomachia or “battle of numbers” (rithmo,
“arithmetic, numbers”; machia “battle”) dates back to
about A.D. 1150 although the earliest publication of the
rules was by Jean de Boissiere in the sixteenth century.
Used as an educational tool (the only game allowed in
medieval schools and universities) and as an intellectual
exercise, it enjoyed a last wave of popularity during the
Renaissance before the early Scientific Revolution led to
its disappearance.

The game is played on an 8 × 16 board. Each player
starts with either 24 black or white pieces: 8 circles, 8 tri-
angles, 7 squares, and 1 pyramid. Each of these has a
number, which is how many places it can move. A square
can move 4 spaces, a triangle 3, a circle 1, and the pyra-
mid as many spaces as the player chooses. Opponent
pieces can be captured in a variety of ways: siege capture
(surrounding the opponent piece on all four sides; meet-
ing capture (attacking a piece with the same type of
piece); assault capture (achieved if the piece’s number
times the number of spaces it moved lands it next to an
opposing piece that equals the product); ambuscade
(achieved if two pieces of a player that are on either
sides of a piece sum to equal the opponent’s piece).
There are also a number of different ways to win,
including: de corpore (players agree on a number of
pieces to be captured); de bonis (players agree on a num-
ber value target); de lite (the winner is determined by the
sum of the pieces as well as the number of digits on all
those pieces); victoria magna (if there is a common dif-
ference between the pieces a player has captured, or the
squares of three consecutive integers are captured; or
there is a difference of 2, 4, and 6 in even pieces, or 3, 5,
and 7 in odd pieces).
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river-crossing problem
A puzzle in which a variety of objects and living things,
some of them mutually incompatible, must be conveyed
in small groups from one side of a river to another with-
out any loss along the way. The earliest known examples
are in Propositiones ad Acuendos Juvenes (Propositions for
sharpening youths), which is generally attributed to
Abbott Alcuin. They are: the problem of three jealous
husbands (each of whom won’t let another man be
alone with his wife), the problem of the two adults and
two children where the children weigh half as much as
the adults (and the boat has a limited weight capacity),
and the problem of the wolf, the goat, and the cabbage.
In the last case, the difficulty is that only one item can
be ferried across at once but, if left unattended, the
sheep will eat the cabbage and the wolf will eat the
sheep. The solution, which involves a stratagem com-
mon to all these types of problems, is to bring back to
the starting bank of the river an item that has already
been taken across. In this case, the sheep must be taken
across first, followed by either the cabbage or the wolf,
but then the sheep must be brought back before the next
item is taken across to avoid the sheep becoming either
a diner or a dinner.

These medieval puzzles were considered and elabo-
rated on by Niccoló Tartaglia, Luca Pacioli, and
Claude-Gaspar Bachet, and even more so by later math-
ematicians such as Edouard Lucas and Gaston Tarry.
Ways of complicating river-crossing problems include
adding more people and objects, using a bigger boat,
and inserting an island in the river. The reader may care
to try the problem of the missionaries and the canni-
bals.

PUZZLE

Three missionaries and three cannibals must cross a

river in a boat that holds a maximum of two people. If

the cannibals outnumber the missionaries, on either

side of the river, the missionaries are in trouble. Each

missionary and each cannibal is capable of rowing the

boat. How can all six get across the river safely?

Solutions begin on page 369.

Robinson, Abraham (1918–1974)
A German-born mathematician who founded nonstan-
dard analysis and did important work in a wide diversity
of fields from aerodynamics to mathematical logic. A
modern counterpart to Gottfried Leibniz in his range of
interests and the significance of his research on infinites-
imals, Robinson (he changed his name from Robinsohn)
taught at various universities in Israel, England, Canada,
and the United States.

Rolle’s theorem
Suppose a continuous function (see continuity) crosses
the x-axis at two points a and b and is differentiable at all
points between a and b; that is, it has a tangent at all
points on the curve between a and b. Then there’s at least
one point between a and b where the derivative is 0, and
the tangent is parallel to the x-axis.

Roman numerals
A number system in which each symbol represents a
fixed value regardless of its position; this differs from
the place-value system of Arabic numerals. The earliest
form of the Roman system was, however, decimal. In
this primitive version a series of I’s represented any
number from 1 to 9, and a new symbol was introduced
for each higher power of 10: X for 10, C for 100, and M
for 1,000. The symbols V, L, and D, which stand for 5,
50, and 500, are thought to have been introduced by
the Etruscans. A common remark is that multiplication
and division using Roman numerals is so awkward that
it is totally impractical. However, an article by James G.
Kennedy in The American Mathematical Monthly in 1980
gives algorithms for these operations that are actually
more straightforward in the Roman system than in the
Arabic. In multiplication the first step is to rewrite the
numbers in a simple place-value notation. Seven
columns are set up, headed by the symbols M, D, C, L,
X, V, and I, and tallies are marked in each column cor-
responding to the number of times that symbol appears
in the multiplicand. For example, if the multiplicand is
XIII (13), one tally is marked in the X column and three
tallies are marked in the I column. The multiplier is
written in the same way. The multiplication itself is
done by forming partial products according to two sim-
ple rules. In most cases the partial product given by any
one tally in the multiplier is simply the set of tallies that
represents the multiplicand, shifted to the left an appro-
priate number of columns. If the multiplier digit is I,
the multiplicand is not shifted at all; the multiplicand is
shifted one place to the left for V, two places for X, three
places for L, and so on. The second rule is applied only
when one Etruscan character is multiplied by another.
In such cases the tallies representing the multiplicand
digit are written twice in the appropriately shifted col-
umn and an additional tally is written one column to
the right. Once a partial product has been formed for
every tally in the multiplier, the tallies in each column
are accumulated and replaced by the Roman symbol at
the head of the column, giving the final answer. Only a
slight change in the method is needed for Roman
numerals in “subtractive notation,” where 10 is written
as IX, and so on. If all this sounds not quite so simple,
the method for multiplying Arabic numbers is just as
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involved if they are written in explicit form. Further-
more, Arabic operations require a multiplication table
giving the 100 products of all the possible pairs of Ara-
bic digits. No comparable table is needed with Roman
numerals, where all arithmetical operations can be
defined in terms of shifting rules, addition, and subtrac-
tion.

rooks problem
To find the maximum number of rooks that can be
placed on an n × n chessboard such that no rook attacks

another. Since each rook attacks all squares in the rank
and file upon which it rests, this number is n: the rooks
may be placed along the main diagonal. The total num-
ber of ways of placing n nonattacking rooks is n factor-
ial (n!).

root
(1) A number used to build up another number by
repeated multiplication. For example, since 2 × 2 × 2 = 8,
two is said to be the third root or cube root of eight. (2) A
solution of an equation. For example, 3 is a root of the

rose curve © Jan Wassenaar, www.2dcurves.com
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equation x 2 = 9. A root is also called a zero of a function
because it is a value that will make the function zero (x = 3
will make the function f (x) = x 2 − 9 zero. The word comes
from the Indo-European werad, which originally meant the
roots of a plant but was later generalized to mean the ori-
gins or beginnings of something, whether it was physical
or mental.

root of unity
A solution of the equation xn = 1, where n is a positive
integer.

rope around the earth puzzle
Imagine a rope that fits snugly all the way around Earth
like a ring on a person’s finger. Now imagine the rope is
made just 1 meter longer and lifted uniformly off the sur-
face until it is once again taught. What will its height be
above the surface? This puzzle, or one very like it,
appeared in a students’ book on Euclid written in 1702 by

the English clergyman, mathematician, and natural
philosopher William Whiston (1667–1752). The answer
in the form just given is remarkable: about 16 cm. It
comes simply from the formula for the circumference of
a circle. If the extra radius of the rope is r and Earth’s
radius is R, then

2π(R + r) = 2πR + 100
so that r = 100/2π " 15.9.

Rosamund’s bower
A legendary maze, located in Woodstock Park, Oxford-
shire, whose purported site is marked today by a well
and fountain. It was supposedly intended to conceal
Rosamund Clifford, the mistress of King Henry II
(1133–1189), from the queen, Eleanor of Aquitaine.
Legend has it that about 1176, Eleanor managed to solve
the maze and confronted Rosamund with the choice of
a dagger or poison; she drank the poison and Henry

Rubik’s cube Peter Knoppers, www.buttonius.com
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never smiled again. Historically, Henry had imprisoned
Eleanor for fomenting rebellion by her sons, and Rosa-
mund was his acknowledged mistress. Rosamund proba-
bly spent her last days at a nunnery in Godstow, near
Oxford. The legend of the bower dates from the four-
teenth century and her murder is a later addition. In the
nineteenth century, many puzzle collections had a maze
called Rosamund’s bower.

rose curve
A curve that has the shape of a flower with petals; it was
named rhodonea (“rose”) by the Italian mathematician
Guido Grandi in the 1720s. It is given by the polar
equation

r = a sin (nθ).

If n is odd the rose has n petals, if n is even the rose has
2n petals, and if n = 2 the rose becomes the quadri-
folium. If n is an irrational number, then there are an
infinite number of petals.

rotation
A transformation in which a figure turns through a spe-
cific angle about a fixed point, called the center of rota-
tion. The center of rotation may be inside or outside the
figure that is being transformed. If the figure is turned
anticlockwise, the rotation is considered positive, while a
negative rotation turns the figure clockwise.

rotor
A convex figure that can be rotated inside a polygon (or
polyhedron) while always touching every side (or face).
The least area rotor in a square is the Reuleaux triangle.
The least area rotor in an equilateral triangle is a lens
with two 60° arcs of circles and a radius equal to the tri-
angle’s altitude. There exist nonspherical rotors for the
tetrahedron, octahedron, and cube, but not for the
dodecahedron and icosahedron. See also curve of con-
stant width.

roulette
(1) The curve traced by a fixed point on a closed convex
curve as that curve rolls without slipping along a second
curve. (2) A gambling game in which players bet on
which slot of a rotating disk a small ball will come to rest
in. On August 18, 1913, on an unbiased roulette wheel at
Monte Carlo, evens came up 26 times in a row. The prob-
ability of this occurring is 1 in 136,823,184.

round
In topology, the terms circle and sphere refer to topologi-
cal objects and not geometric ones, so that the surface of

an egg shape is a sphere. A round sphere is, topologically
speaking, not a tautology, but a sphere with constant cur-
vature; that is, a sphere in the sense of geometry.

rounding
Replacing a number by another number having fewer sig-
nificant digits or, for integer numbers, fewer value-
carrying (nonzero digits). For example, 386.804 may be
rounded successively to 386.80, 386.8, 387, 390, and 400.
Rounding may be carried out in two ways: by rounding
down, which is equivalent to truncation, and by rounding
up the last digit to be retained by one unit. See also
banker’s rounding.

round-off error
The error accumulated during a calculation due to round-
ing intermediate results. See also banker’s rounding.

Rubik’s cube
A 3 × 3 × 3 cube in which the 26 subcubes on the out-
side are internally hinged in such a way that rotation (by
a quarter turn in either direction or a half turn) is possi-
ble in any plane of cubes. Each of the six sides is painted
a distinct color, and the goal of the puzzle is to return
the cube to a state in which each side has a single color
after it has been randomized by repeated rotations.
Invented in 1974 by the Hungarian Ernö Rubik,
patented in 1975, and put on the market in Hungary in
1977, it went on to sell some 100 million copies world-
wide over the next decade. Since there are over 43 mil-
lion trillion different arrangements of the small cubes,
only one of which corresponds to the desired goal, to
solve Rubik’s cube in a time significantly less than the
current age of the universe (let alone the world record,
which stands at around 20 seconds) calls for some kind
of methodical approach. Algorithms exist for solving a
cube from an arbitrary initial position, but they are not
necessarily optimal (i.e., requiring a minimum number
of turns).[270, 297]

Rucker, Rudy (Rudolf von Bitter) (1946–)
An American mathematician best known for his enter-
taining popular mathematics, science, and science fiction
books, including Infinity and the Mind,[275] The Fourth
Dimension,[273] and Mind Tools.[274] Rucker has a doctorate
in mathematical logic from Rutgers and teaches at San
José State University. His great-great-great-grandfather
was the famous German philosopher Georg Hegel.

ruled surface
A surface that is built up from an infinite number of per-
fectly straight lines. A cylinder, for example, is a ruled
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surface of parallel straight lines. A cone is a ruled surface
of straight lines that meet at the apex of the cone. Also
known as scrolls, ruled surfaces have been studied for cen-
turies by geometers such as the Jesuits Roger Boscovich
and Andre Tacquet as well as by their famous students,
including Gaspar Monge and Phillippe de Lahire. Exam-
ples that stand out because of both their striking shape
and their relative ease of construction include hy-
perboloids, helicoids and Möbius bands. Most ruled 
surfaces, however, are so complicated that, before the com-
puter age, they were almost impossible to construct.

ruler-and-compass construction
See Mascheroni construction.

Russell, Bertrand Arthur William (1872–1970)
A British philosopher, mathematician, and logician who
rose to prominence with his first major work, The Princi-
ples of Mathematics (1902), in which he attempted to
remove mathematics from the realm of abstract philo-
sophical notions and to give it a precise scientific frame-
work. Russell then collaborated for eight years with the
British philosopher and mathematician Alfred North
Whitehead (1861–1947) to produce the monumental
work Principia Mathematica (3 volumes, 1910–1913). This
work showed that mathematics can be stated in terms of
the concepts of general logic, such as class and member-
ship in a class. It became a masterpiece of rational
thought. Russell and Whitehead proved that numbers
can be defined as classes of a certain type, and in the
process they developed logic concepts and a logic nota-
tion that established symbolic logic as an important spe-
cialization within the field of philosophy. In his next
major work, The Problems of Philosophy (1912), Russell bor-
rowed from the fields of sociology, psychology, physics,
and mathematics to refute the tenets of idealism, the
dominant philosophical school of the period, which held
that all objects and experiences are the product of the
intellect. Russell, a realist, believed that objects perceived
by the senses have an inherent reality independent of the
mind.

Russell condemned both sides in World War I, and for
his uncompromising stand he was fined, imprisoned, and
deprived of his teaching post at Cambridge. In prison he
wrote Introduction to Mathematical Philosophy (1919). After
the war he visited the Soviet Union, and in his book Prac-
tice and Theory of Bolshevism (1920) he expressed his disap-
pointment with the form of socialism practiced there. He
felt that the methods used to achieve a Communist sys-
tem were intolerable and that the results obtained were
not worth the price paid. Russell taught at Beijing Uni-
versity during 1921 and 1922, and in the United States

from 1938 to 1944, though he was barred from teaching
at the College of the City of New York (now City College
of the City University of New York) by the state supreme
court because of his attacks on religion and his advo-
cacy of sexual freedom. Russell returned to England in
1944 and was reinstated as a fellow of Trinity College.
Although he abandoned pacifism to support the Allied
cause in World War II, he became an ardent opponent of
nuclear weapons. Russell received the 1950 Nobel Prize
for Literature and was cited as “the champion of human-
ity and freedom of thought.” He led a movement in the
late 1950s advocating unilateral nuclear disarmament by
Britain, and at the age of 89 he was imprisoned after an
antinuclear demonstration.[276]

Russell’s paradox
A paradox uncovered by Bertrand Russell in 1901 that
forced a reformulation of set theory. One version of Rus-
sell’s paradox, known as the barber paradox, considers a
town with a male barber who, every day, shaves every
man who doesn’t shave himself, and no one else. Does
the barber shave himself? The scenario as described
requires that the barber shave himself if and only if he
does not! Russell’s paradox, in its original form considers
the set of all sets that aren’t members of themselves. Most
sets, it would seem, aren’t members of themselves—for
example, the set of elephants is not an elephant—and so
could be said to be “run-of-the-mill.” However, some
“self-swallowing” sets do contain themselves as members,
such as the set of all sets, or the set of all things except
Julius Caesar, and so on. Clearly, every set is either run-
of-the-mill or self-swallowing, and no set can be both.
But then, asked Russell, what about the set S of all sets
that aren’t members of themselves? Somehow, S is nei-
ther a member of itself nor not a member of itself. Rus-
sell discovered this strange situation while studying a
foundational work in symbolic logic by Gottlob Frege.
After he described it, set theory had to be reformulated
axiomatically in a way that avoided such problems. Rus-
sell himself, together with Alfred North Whitehead
(1861–1947), developed a comprehensive system of types
in Principia Mathematica. Although this system does
avoid troublesome paradoxes and allows for the con-
struction of all of mathematics, it never became widely
accepted. Instead, the most common version of axio-
matic set theory in use today is the Zermelo-Fraenkel set the-
ory, which avoids the notion of types and restricts the
universe of sets to those that can be built up from given
sets using certain axioms. Russell’s paradox underlies the
proof of Gödel’s incompleteness theorem as well as
Alan Turing’s proof of the undecidability of the halting
problem.
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Russian multiplication
Multiplication by repeated doubling, also known as
peasant multiplication. For example to multiply 17 by 13,
double the 17 and halve the 13 rounding down to the
next whole number where necessary; then add the dou-
bles that correspond to an odd number in the other
column.

So 17 × 13
doubled and halved 34 × 6
doubled and halved 68 × 3
doubled and halved 136 × 1
adding up the numbers in the first column that

correspond to an odd number in the second 
(17 + 68 + 136) = 221 = 17 × 13.



Saccheri, Giovanni Girolamo (1667–1733)
A Jesuit priest, philosopher, and mathematician who did
early work on non-Euclidean geometry, although he
didn’t see it as such. His Euclides ab Omni Naevo Vindica-
tus (1733) was actually an attempt to prove Euclid’s par-
allel postulate but ended up laying the groundwork for
both hyperbolic geometry and elliptical geometry.

saddle
A type of surface that is neither a peak nor a valley but
still has a zero gradient. Saddle points are situated such
that moving in one direction takes one uphill, while
moving in another direction would be downhill. A saddle
function is a function f (x, y) of two vectors x and y (which
typically lie in different vector spaces) that is concave up
in x and concave down in y. See also pseudosphere.

St. Ives problem
A well-known and simple puzzle in arithmetic set by
Mother Goose in the rhyme “As I Was Going to St. Ives”:

As I was going to St. Ives, I met a man with seven
wives. Every wife had seven sacks, and every sack
had seven cats, every cat had seven kittens. Kittens,
cats, sacks, and wives, how many were going to 
St. Ives?

The various individuals and items make up a geometric
sequence: 7 wives + 72 sacks + 73 cats + 74 kittens = 7 +

49 + 343 + 2,401. This gives a total of 2,800 (or 2,801 if
the narrator also happens to be a wife). It’s been said that
the real answer to this rhyme is 1, since “I met a man with
seven wives” means the 2,800 were going in the opposite
direction!

A similar problem, and solution, is contained in the
Rhind papyrus by Ahmose, written about 1650 B.C.
(some of which is copied from an older document of
about 1800 B.C.). Here the geometric series has one more
power of 7: 7 houses + 49 cats + 343 mice + 2,401 ears of
grain + 16,807 hekats (a measure) of grains, giving a total
of 19,607.

St. Petersburg paradox
A strange state of affairs that arises from a game proposed
by Nikolaus (I) Bernoulli (see Bernoulli family) in 1713.
It is named after the fact that a treatise on the paradox
was written by Nikolaus’ cousin, Daniel, and published

(1738) in the Commentaries of the Imperial Academy of Sci-
ence of St. Petersburg. The game goes as follows. You toss a
coin. If it shows heads, you win whatever is in the pot
and the game is over. If it shows tails, the pot is doubled
and you get to toss the coin again. If the coin shows
heads on the first toss you win $2; if it shows tails, you
toss again. If the coin now shows heads you win $4, and
so on. After n tosses you get $2n if heads appear for the
first time. The only catch is you have to pay to play the
game. How much should you be willing to pay? Classical
decision theory says that you should be willing to pay
any amount up to the expected prize, the value of which
is obtained by multiplying all the possible prizes by the
probability that they are obtained and adding the result-
ing numbers. The chance of winning $2 is 1⁄2 (heads on
the first toss); the chance of winning $4 is 1⁄4 (tails fol-
lowed by heads); the chance of winning $8 is 1⁄8 (tails fol-
lowed by tails followed by heads); and so on. Since the
expected payoff of each possible consequence is $1 ($2 ×
1⁄2, $4 × 1⁄4, etc.) and there are an infinite number of them,
the total expected payoff is an infinite sum of money. A
rational gambler would enter a game if and only if the
price of entry was less than the expected value. In the St.
Petersburg game, any finite price of entry is smaller than
the expected value of the game. Thus, the rational gam-
bler would play no matter how large the entry price was!
But there’s clearly something wrong with this. Most peo-
ple would offer between $5 and $20 on the grounds that
the chance of winning more than $4 is only 25% and the
odds of winning a fortune are very small. And therein lies
the paradox: If the expected payoff is infinite, why is no
one willing to pay a huge amount to play?

The classical solution to this mystery, provided by
Daniel Bernoulli and another Swiss mathematician,
Gabriel Cremer, goes beyond probability theory to
touch areas of psychology and economics. Bernoulli and
Cremer pointed out that a given amount of money isn’t
always of the same use to its owner. For example, to a
millionaire $1 is nothing, whereas to a beggar it can
mean not going hungry. In a similar way, the utility of $2
million is not twice the utility of $1 million. Thus, the
important quantity in the St. Petersburg game is the
expected utility of the game (the utility of the prize multi-
plied by its probability) which is far less than the expected
prize. This explanation forms the theoretical basis of the
insurance business. The existence of a utility function
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means that most people prefer, for example, having $98
in cash to gambling in a lottery where they could win
$70 or $130 each with a chance of 50%, even though the
lottery has the higher expected prize of $100. The differ-
ence of $2 is the premium most of us would be willing
to pay for insurance. That many people pay for insur-
ance to avoid any risk, yet at the same time spend
money on lottery tickets in order to take a risk of a dif-
ferent kind, is another paradox, which is still waiting to
be explained.

salient
At a salient point, two branches of a curve meet and stop,
and have different tangents. A salient angle is an outward-
pointing angle of a polygon; compare with reentrant
angle.

salinon
A figure formed from four connected semicircles. The
word salinon is Greek for “salt cellar,” which the figure
resembles. In his Book of Lemmas, Archimedes proved
that the salinon has an area equal to the circle having the
line segment joining the top and bottom points as its
diameter. See also arbelos.

Sallows, Lee C. F. (1944–)
A British electronics engineer and puzzle enthusiast at the
University of Nijmegen in the Netherlands. Among his
many accomplishments in recreational mathematics, he
devised the first self-enumerating sentence (published in
1982), introduced alphamagic squares in 1986, coined
the word golygon in 1990, invented reflexicons (minimal
self-enumerating phrases) in 1992, demonstrated the par-
allelogram theorem for 3 × 3 magic squares in 1997, and
discovered geometric magic squares in 2001.

scalar
A quantity specified by a single number or value (as
opposed to a vector, matrix, or array) that contains mul-
tiple values. Examples of scalars include mass, volume,
and temperature. A scalar field is an arrangement of scalar
values distributed in a space.

scalene triangle
A triangle whose sides are all unequal.

schizophrenic number
An informal name for an irrational number that displays
such persistent patterns in its decimal expansion, that it

salinon © Jan Wassenaar, www.2dcurves.com



has the appearance of a rational number. A schizo-
phrenic number can be obtained as follows. For any pos-
itive integer n let f ( n) denote the integer given by the
recurrence f ( n) = 10 f ( n − 1) + n with the initial value
f ( 0) = 0. Thus, f ( 1) = 1, f ( 2) = 12, f ( 3) = 123, and so on.
The square roots of f ( n) for odd integers n give rise to a
curious mixture appearing to be rational for periods, and
then disintegrating into irrationality. This is illustrated by
the first 500 digits of !f (49)":

1111111111111111111111111.1111111111111111111111 0860

555555555555555555555555555555555555555555555 2730541

66666666666666666666666666666666666666666 0296260347

2222222222222222222222222222222222222 0426563940928819

4444444444444444444444444444444 38775551250401171874

9999999999999999999999999999 808249687711486305338541

66666666666666666666666 5987185738621440638655598958

33333333333333333333 0843460407627608206940277099609374

99999999999999 0642227587555983066639430321587456597

222222222 1863492016791180833081844 . . . .

The repeating strings become progressively shorter and
the scrabbled strings become larger until eventually the
repeating strings disappear. However, by increasing n we
can forestall the disappearance of the repeating strings as
long as we like. The repeating digits are always 1, 5, 6, 2,
4, 9, 6, 3, 9, 2, . . . .

Schläfli, Ludwig (1814–1895)
A German mathematician whose work centered on
geometry, arithmetic, and the theory of functions. He
made an important contribution to non-Euclidean
geometry when he proposed that spherical three-
dimensional space could be thought of as the surface of a
hypersphere in Euclidean four-dimensional space.
Schläfli started out as a schoolteacher and amateur math-
ematician. He was also an expert linguist and spoke many
languages, including Sanskrit. In 1843 he served as a
translator for the great mathematicians Jakob Steiner,
Karl Jacobi, and Peter Dirichlet during their visit to
Rome and learned a great deal from them. Ten years later
he became professor of mathematics at Bern. However,
his true importance was only appreciated following the
publication of his magnum opus Theory of Continuous
Manifolds in 1901, several years after his death.

Schläfli symbol
A notation, devised by Ludwig Schläfli, which describes
the number of edges of each polygon meeting at a vertex
of a regular or semi-regular tessellation or solid. For a
Platonic solid, it is written {p, q}, where p is the number
of sides each face has, and q is the number of faces that
touch at each vertex.

schoolgirls problem
A problem in combinatorics posed by the Rev. Thomas
Kirkman in a letter in 1850 following a paper he wrote
on the same subject in 1847:[188] A school mistress has fif-
teen girl pupils and she wishes to take them on a daily
walk. The girls are to walk in five rows of three girls each.
It is required that no two girls should walk in the same
row more than once per week. Can this be done?

In fact, provided n is divisible by 3, we can ask the
more general question about n schoolgirls walking for 
(n − 1)/2 days so that no girl walks with any other girl in
the same triplet more than once. Solutions for n = 9, 15,
and 27 were given in 1850 and much work was done on
the problem thereafter. The general problem of how
many triads can be made out of n symbols, so that no
pair of symbols is comprised more than once among
them gave rise to the study of Steiner triple systems.
However, Jakob Steiner had little to do with them and
they should rightfully be named after Kirkman. They are
important in the modern theory of combinatorics.

Schröder’s reversible staircase
A classic example of an ambiguous figure, first drawn by
Schröder in 1858. Not to be confused with the Penrose
stairway.

Schubert, Hermann Cäsar Hannibal (1848–1911)
A German mathematician who worked mainly in enu-
merative geometry—the parts of algebraic geometry that

Schröder’s reversible staircase
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involve a finite number of solutions. He also wrote exten-
sively on recreational math.

Schuh, Frederick (1875–1966)
A Dutch mathematician who wrote many textbooks and
a number of books on recreational mathematics, includ-
ing The Master Book of Mathematical Recreations (1943), the
English edition of which appeared in 1968 (Dover Publi-
cations).[291] Schuh was professor of mathematics at the
Technische Hoogeschool at Delft (1907–1909 and
1916–1945) and professor of mathematics at Groningen
(1909–1916).

scientific notation
A number of the form a × 10n, where n is an integer, pos-
itive or negative, and a is a real number larger than or
equal to 1, but less than 10. Scientific notation provides
a compact way of writing large numbers.

scintillating grid illusion
See Hermann grid illusion.

score
A group of 20 items. The word comes from the Old
Norse skor for a heavy mark used to indicate a string of 20
smaller marks; skor, in turn, is descended from the Indo-
European sker, for “cutting” or “slicing.” From about
1400, score was also the word for a record or an amount
due—the total of the score marks on a tally. It became 
a common word for the total of a tradesman’s or inn-
keeper’s account. So, to settle the score originally meant just
to pay one’s bill. But it acquired the figurative sense of
taking revenge on somebody, and that’s usually what is
meant by the expression now. The more general meaning
of score, as a tally, is used daily when the results of sports
competitions are reported.

search space
A characterization of every possible solution to a prob-
lem instance.

secant
A straight line that meets a curve in two or more points.

second
One-sixtieth of a minute in both time and angle. Liter-
ally, the second division of the hour or the circle, the
minute being the first; from the Latin secundus. In the
System International d’Unites (SI units) one second is
defined as the duration of 9,192,631,770 periods of radi-
ation corresponding to the transition between two hyper-
fine levels of cesium-133 in a ground state at a
temperature of 0°K (Kelvin).
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secretary problem
See sultan’s dowry.

sector
Part of a circle bounded by two radii and the included
arc.

segment
Part of a circle bounded by a chord and the arc subtend-
ing the chord.

self-enumerating sentence
Also known as an autogram, a self-referential sentence
whose text consists solely of the enumeration of its letter
content. The answer to the question whether such a sen-
tence exists in English was given by Lee Sallows, and was
first published in Scientific American in January 1982:

Only the fool would take trouble to verify that his
sentence was composed of ten a’s, three b’s, four
c’s, four d’s, forty-six e’s, sixteen f ’s, four g’s, thir-
teen h’s, fifteen i’s, two k’s, nine l’s, four m’s,
twenty-five n’s, twenty-four o’s, five p’s, sixteen r’s,
forty-one s’s, thirty-seven t’s, ten u’s, eight v’s, eight
w’s, four x’s, eleven y’s, twenty-seven commas,
twenty-three apostrophes, seven hyphens and, last
but not least, a single !

This remarkable sentence counts not only its own let-
ters, but also its punctuation marks, although it fails to
enumerate three letters of the alphabet (j, q, and z). Sal-
lows went on to devise a “pangram machine”—a com-
puter purposely built to search for sentences of this type.
Among its many successes is:

This pangram lists four a’s, one b, one c, two d’s,
twenty-nine e’s, eight f ’s, three g’s, five h’s, eleven
i’s, one j, one k, three l’s, two m’s, twenty-two n’s,
fifteen o’s, two p’s, one q, seven r’s, twenty-six s’s,
nineteen t’s, four u’s, five v’s, nine w’s, two x’s, four
y’s, and one z.

self-intersecting
A self-intersecting polygon is a polygon with edges that cross
other edges. A self-intersecting polyhedron is a polyhedron
with faces that cross other faces.

self-organization
A process in a complex system whereby new emergent
structures, patterns, and properties arise without being
externally imposed on the system. Not controlled by a
centralized, hierarchical “command and control” center,
self-organization is usually distributed throughout a sys-
tem. It requires a complex, nonlinear system under



appropriate conditions, variously described as “far-from-
equilibrium,” critical values of control parameters lead-
ing to “bifurcation,” or the “edge of chaos.” First
investigated in the 1960s in physical systems by Ilya Pri-
gogine and his followers, as well as the Synergetics
School founded by Hermann Haken, self-organization is
now studied mainly through computer simulations (see
cellular automaton), Boolean networks, and other phe-
nomena of artificial life. However, self-organization is
now recognized as a crucial way of understanding emer-
gent, collective behavior in a large variety of systems
including the economy, the brain and nervous system,
the immune system, and ecosystems. The buildup of sys-
tem order via self-organization is now conceived as a pri-
mary tendency of complex systems in contrast to the
past emphasis on the degrading of order in association
with the principle of entropy (Second Law of Thermo-
dynamics). However, rather than denying entropy, self-
organization can be understood as a way that entropy
increases in complex, nonlinear systems.

self-organized criticality
A mathematical theory that describes how systems com-
posed of many interacting parts can tune themselves
toward dynamical behavior that is critical in the sense
that it is neither stable nor unstable but at a region near 
a phase transition. See also edge of chaos and self-
organization.

self-referential sentence
A sentence that refers to itself and nothing else. Here are
some examples:

This statement is short.

This sentence has five words.

The last word of this sentence is “wrong.”

“Pentasyllabic” is pentasyllabic.

How long is the answer to this question? Ten letters.

Some self-referential statements take the form of jokes.
For example:

The two rules for success are: Never tell them every-
thing you know.

There are three kinds of people in the world: those
who can count and those who can’t.

Finally, some take the form of maxims, as in this case by
Thomas Macaulay (1800–1859):

Nothing is so useless as a general maxim.

See also Hofstadter’s law.

self-similarity
The property an object has when a part of itself looks the
same or similar to the whole. Many objects in the real
world, such as coastlines, are statistically self-similar:
parts of them show the same statistical properties at
many scales. Self-similarity is a defining characteristic of
fractals.

semigroup
A set together with a method of combining elements,
such as addition or multiplication, to get new ones,
which satisfies only some of the properties required to get
a group. In particular, a semigroup need not have an
identity element and elements need not have inverses.

semi-magic square
A square array of n numbers such that sum of the n num-
bers in any row or column is a constant (known as the
magic sum). See also magic square.

semi-regular polyhedron
A polyhedron that consists of two or more types of reg-
ular polygons, all of whose vertices are identical. This
category includes the Archimedean solids, prisms and
antiprisms, and the nonconvex uniform polyhedra (see
nonconvex uniform polyhedron).

Senet
A popular two-player board game in ancient Egypt,
enjoyed by both commoners and nobility, that may be
an ancestor of modern backgammon. The rules are not
known, though about 40 sets have been found in tombs,
some in very good condition, together with paintings of
games on tomb walls, dating back to the reign of Hesy 
(c. 2686–2613 B.C.). Senet, or the “game of passing,” was
played on a rectangular board consisting of three rows of
10 squares called “houses” that represented good or bad
fortune. The board could be a grid drawn on a smooth
surface or an elaborate box of wood and other precious
materials. A perfectly preserved traveling version of Senet
was found in Tutankhamen’s tomb. The pieces, called
ibau (“dancers” in Egyptian), varied in number from five
to ten per player—five and seven being commonest.
Cone-shaped pieces were pitted against reel-shaped
pieces. The object was to get one’s pieces on the board,
then around the board in an S-shaped pattern, and finally
off again at the far end. Strategy was mixed with chance
(as it is in backgammon), introduced by the throw of
four, two-sided sticks (as depicted in the Hesy painting)
or, in later times, of knucklebones. Later depictions of
the game, in the New Kingdom period, often showed just
one player in competition—the opponent being a spirit
from the afterlife. This has been interpreted as a change
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Senet A modern version of the ancient Egyptian board game. Fundex Games Ltd.

in the significance of Senet, from a simple amusement to
a symbolic representation of the deceased’s journey
through the underworld. See also nine men’s morris.

sensitivity
The tendency of a system, which may be chaotic (see chaos)
to change dramatically with only small perturbations.

sequence
An ordered list of values that may be finite or infinite in
length. Among the different types of sequence are arith-
metic sequences, geometric sequences, and the har-
monic sequence.

series
A sum of all or some of the terms of a sequence. A series
may or may not converge to a particular value as more and
more terms are included. A series is said to be absolutely
convergent if the sum of the absolute values of the terms
converges; in this case the series converges no matter
how the terms of the sum are arranged. Series that are
conditionally convergent only converge for some arrange-
ments of the terms and, even then, converge to different
values for different arrangements.

serpentine
A curve named and studied by Isaac Newton in 1701 and
contained in his classification of cubic curves. It had
been studied earlier by de L’Hôpital and Christiaan 

Huygens in 1692. The curve is given by the Cartesian
equation

y(x) = abx/(x 2 − a 2).

set
A finite or infinite collection of objects known as ele-
ments. Sets are one of the most basic and important con-
cepts in mathematics. An example of a finite set is the set
of whole numbers from 1 to 58; an example of an infinite
set is the set of all the rational numbers. Two sets are
equal if, and only if, they contain the same objects. Stan-
dard notation uses braces around the list of elements, as
in: {red, green, blue}. If A and B are two sets and every x
in A is also contained in B, then A is said to be a subset of
B. Every set has as subsets itself, known as the improper
subset, and the empty set. The union of a collection of sets
S = {S1, S2, S3, . . .} is the set of all elements contained in
at least one of the sets S1, S2, S3, . . . . The intersection of a
collection of sets T = {T1, T2, T3, . . .} is the set of all ele-
ments contained in all of the sets. The union and inter-
section of sets, say A1 and A2, is denoted A1 ∪ A2 and
A1 ! A2, respectively. The set of all subsets of X is called
its power set and is denoted 2X or P(X). See also set the-
ory, Venn diagram, and Russell’s paradox.

set of all sets
See Russell’s paradox.



set theory
A branch of mathematics created by Georg Cantor at
the end of the nineteenth century. Initially controver-
sial, set theory has come to play a foundational role in
modern mathematics, in that it is used to justify assump-
tions made concerning the existence of mathematical
objects (such as numbers or functions) and their proper-
ties. Formal versions of set theory also figure centrally in
specifying a theoretical ideal of mathematical rigor in
proofs. Cantor’s basic discovery was that if we define
two sets A and B to have the same number of members
(the same cardinality), then there is a way of pairing off
members of A exhaustively with members of B. The
appearance around the turn of the century of set-
theoretical paradoxes, such as Russell’s paradox,
prompted the formulation in 1908 by Ernst Zermelo of
an axiomatic theory of sets. The axioms for set theory
now most often studied and used are those called the
Zermelo-Fraenkel axioms, usually together with the axiom
of choice. The Zermelo-Fraenkel axioms are commonly
abbreviated to ZF, or ZFC if the axiom of choice is
included. An important feature of ZFC is that every
object that it deals with is a set. In particular, every ele-
ment of a set is itself a set. Other familiar mathematical
objects, such as numbers, must be subsequently defined
in terms of sets.

seven
A lucky number in the eyes of many people and one that
has been given much spiritual significance. The early reli-
gious and cultural use of the seven-day week almost cer-
tainly stems from the fact that the Moon goes through its
four phases in a bit over 28 days, which divides nicely
into seven days per phase. There are seven moving
objects in the sky visible to the naked eye (the Sun,
Moon, Mercury, Venus, Mars, Jupiter, and Saturn), seven
seas, seven orders of architecture, seven deadly sins, seven
liberal arts and sciences, and seven dwarfs. The seventh
son of a seventh son is supposed to be born gifted
(Donny Osmond was such a person). In the Bible, there
were seven years of famine and seven years of plenty, and
seven years were taken to construct King Solomon’s Tem-
ple. The Pythagoreans were especially intrigued by the
number as it is the sum of three and four, which are the
number of sides of a triangle and a square—shapes of
enormous importance to the sect. These links with
Solomon’s Temple and the Pythagoreans help explain the
importance of seven in freemasonry. Seven is the smallest
positive integer whose reciprocal has a pattern of more
than one repeating digit: 1⁄7 = 0.142857142857 . . . and is
the smallest number for which the digit sequence of 1/n
is of length n − 1 (the longest such a sequence can be).
The next such numbers are 17, 19, 23, 29, 47, 59, 61, 97,
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109, 113, . . . . Other curios: the citrus soda 7-UP, created
in 1929, was so called because the original containers
were 7 ounces and “up” was the direction of the bubbles,
and seven is the maximum number of times you can fold
any sheet of paper (try it!).

seventeen
The number most often picked in response to the request
“Pick a random number from 1 to 20.” Seventeen is a Fer-
mat prime (a prime number of the form 22n + 1, where n
is a positive integer), the exponent of a Mersenne prime (a
prime p for which 2p − 1 is prime), and the only prime
that is the sum of four consecutive primes (2 + 3 + 5 + 7).
Seventeen is also the smallest number for which the sum
of the digits of its cube is equal to the number: 173 =

4913, 4 + 9 + 1 + 3 = 17, and the smallest number that can
be written as a 2 + b 3 in two different ways: 17 = 32 + 23 =

42 + 13. The pair (8, 9), whose sum is 17, is the only pair
of consecutive numbers where one is a square and the
other is a cube (a result proved by Leonhard Euler.)
There are 17 planar crystallographic groups, called wall-
paper groups. The minimum number of faces on a con-
vex polyhedron that has only one stable face is 17. (A
stable face is one that the figure can rest on without
falling over; most polygons have more than one such
face.) Seventeen is also the answer to the following prob-
lem: At a party where any two people have previously
met each other in one of three other places, what is the
least number of people who must be at the party to guar-
antee that there is at least one group of three people who
have met each other before in the same place?

sexagesimal
Of, relating to, or based on the number 60. Sexagesimal
refers especially to the number system with base 60. The
Babylonians began using such a scheme around the
beginning of the second millennium B.C. in what was the
first example of a place-value system. Our degree of 60
minutes, minute of 60 seconds (in both time and angle
measure), and hour of 60 minutes hark back to this
ancient method of numeration. Why the Babylonians
counted using sexagesimal isn’t known, but 60 certainly
has more factors than any other number of comparable
size.

Shannon, Claude Elwood (1916–2001)
An American mathematician and a pioneer of informa-
tion theory. Shannon was the first to realize that any sort
of message can be transmitted as a series of 0’s and 1’s,
regardless of whether it consists of words, numbers, pic-
tures, or sound. In his master’s thesis, he explained how
electrical switches could represent binary digits—a 1
when the switch is on and 0 when it is off. He also used

Boolean algebra to show that complex operations could
be carried out automatically on these electrical circuits,
thus manipulating the data they were storing. It was in
one of his papers, “A Mathematical Theory of Commu-
nication” published in 1948, that the word “bit” (short
for binary digit) was used for the first time. In fact the
framework and terminology for information theory he
developed remains standard today. Shannon was driven
by curiosity, and in his own words he “just wondered
how things were put together.” Among his inventions
were rocket-powered Frisbees, motorized Pogo sticks, a
device that could solve the Rubik’s cube puzzle, and a
juggling machine. (He could ride a unicycle while jug-
gling three balls.) He was involved in pioneering artificial
intelligence research, which included building the
electromechanical mouse called “Theseus” that could
navigate a metal maze using magnetic signals. Shannon
also built a chess-playing computer, many years before
IBM’s Deep Blue, that played well against the world
champion of the time, Mikhail Botvinnik (the computer
lost only after 42 moves).

shell curve
See Dürer’s shell curve.

shuffle
How many shuffles does it take to randomize a deck of
cards—in other words, to mix up the cards about as thor-
oughly as dropping them all on the table and stirring
them around for several minutes (the author’s usual
method). The answer depends on the kind of shuffle used.
The beginner’s overhand shuffle, for example, is a really bad
way to mix cards: about 2,500 such shuffles are need to
randomize a deck of 52 cards. A magician’s perfect shuffle,
on the other hand, in which the cards are cut exactly in
half and then perfectly interlaced, never produces ran-
domization (see below). One of the most effective ways to
get a random deck is the riffle shuffle in which the deck is
cut in half and imperfectly interlaced by dropping cards
one by one from either half of the deck with a probability
proportional to the current sizes of the deck splits. In
1992 Persi Diaconis (then at Harvard) and David Bayer
demonstrated that, starting with a completely ordered
deck, it takes seven riffle shuffles to produce randomiza-
tion.[27] Any more than this and there’s no significant
increase in the randomness; any less and the shuffle is far
from random. In fact, not only are five or six riffles not
enough to randomize, there are some configurations of
cards that are impossible to reach in this number of shuf-
fles! To understand this, suppose the starting order of the
cards is marked 1 to 52, top to bottom. After one shuffle,
only configurations with two or fewer rising sequences are
possible. A rising sequence is a maximal increasing



sequential ordering of cards that appear in the deck (with
other cards possibly interspersed) as it is run through from
top to bottom. For instance, in an eight-card deck,
12345678 is the ordered deck and it has one rising
sequence. After one shuffle, 16237845 is a possible con-
figuration, and there are two rising sequences (the under-
lined numerals form one, the nonunderlined numerals
form the other). Clearly the rising sequences are formed
when the deck is cut before the cards are interleaved in the
shuffle. After two shuffles, there can be at most four rising
sequences, since each of the two rising sequences from the
first shuffle has a chance of being cut in the second. This
pattern continues: the number of rising sequences can at
most double during each shuffle. After five shuffles, there
are at most 32 rising sequences. But the reversed deck,
numbered 52 down to 1, has 52 rising sequences. Thus,
this is one (of many) arrangements that are unattainable
in five riffle shuffles. Interestingly, Diaconis and other
researchers have also found that decks can undergo sud-
den changes in their degree of randomness; after six riffle
shuffles, a deck is still visibly ordered, but this order van-
ishes one shuffle later.

Perfect shuffles do the exact opposite of randomizing:
they preserve order at every stage. There are two kinds of
perfect shuffles. The out-shuffle is one in which the top
card stays on top; the in-shuffle is one in which the top
card moves to the second position of the deck. Amaz-
ingly, eight perfect out-shuffles restore the deck to its
original order! Magicians use combinations of out and in
shuffles to perform a variety of baffling tricks and to con-
trol the position of any given card in a deck. How could
you make the top card (call it position 0) go to position
n? Easy: write n in binary (base 2), read the 0’s and 1’s
from left to right, perform an out-shuffle for a 0 and an
in-shuffle for a 1, and, as if by magic, the top card will
have materialized at position n.

shunting puzzles
Railroad modelers, especially those with limited space
available for their layouts, often enjoy setting up track
that allows interesting shunting problems to be tried out
and solved. The most famous mathematical puzzle of
this type, called the railroad shunting puzzle, comes in a

number of variations, but basically the problem is that
there are two trains (A and B in the diagram) facing each
other on a single line with just one short siding, which
will only hold one item of rolling stock at a time. In order
to enable the two trains to pass each other and to con-
tinue their journey, a series of movements using the sid-
ing is required. First time around it’s quite a brain-teaser,
which probably explains why railroad companies all over
the world took the more costly but easier way out and
built passing sidings!

Siegel’s paradox
If a fixed fraction x of a given amount of money P is lost,
and then the same fraction x of the remaining amount is
gained, the result is less than the original and equal to the
final amount if a fraction x is first gained, then lost.

Sierpinski, Waclaw Franciszek (1882–1969)
A Polish mathematician who made outstanding contri-
butions to set theory, which included research on the
axiom of choice and the continuum hypothesis, num-
ber theory, and topology. Two well-known fractals, the
Sierpinski carpet and the Sierpinski gasket, are named
after him.

Sierpinski carpet
A fractal, named after Waclaw Sierpinski, that is derived
from a square by cutting it into nine equal squares with a
3 × 3 grid, removing the central piece, and then applying
the same procedure ad infinitum to the remaining eight
squares. It is one of two generalizations of the Cantor set
to two dimensions; the other is the Cantor dust. The 
carpet’s Hausdorff dimension is log 8/log 3 =

1.8928. . . .

Sierpinski gasket
A fractal, also known as the Sierpinski triangle or Sierpinski
sieve after its inventor Waclaw Sierpinski. It is produced
by the following set of rules: (1) start with any triangle in
a plane; (2) shrink the triangle by 1⁄2, make three copies,
and translate them so that each triangle touches the two
other triangles at a corner; (3) repeat step 2 ad infinitum.
The gasket can also be made by starting with Pascal’s

shunting puzzles How can two trains, traveling in opposite directions on a single track, get past each other by using a siding
that can only accommodate a single item of rolling stock at a time?
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triangle, then coloring the even numbers white and the
odd numbers black. Most curiously, it can be generated
by a game of chance. Begin with three points, labeled 1,
2, and 3, and any starting point, S. Then select randomly
1, 2, or 3, using a die or some other method. Each ran-
dom number defines a new point halfway between the
latest point and the labeled point that the random num-
ber indicates. When the game has gone on long enough

the pattern produced is the Sierpinski gasket. The gasket
has a Hausdorff dimension of log 3/log 2 = 1.585 . . . ,
which follows from the fact that it is a union of three
copies of itself, each scaled by a factor of 1⁄2. Adding
rounded corners to the defining curve gives a noninter-
secting curve that traverses the gasket from one corner to
another and which Benoit Mandelbrot called the Sier-
pinski arrowhead.

Sierpinski carpet



Sierpinski number
A positive, odd integer k such that k times 2n + 1 is never
a prime number for any value of n. In 1960 Waclaw Sier-
pinski showed that there were infinitely many such num-
bers (though he didn’t give a specific example). This is a
strange result. Why should it be that while the vast major-
ity of expressions of the form m times 2n + 1 eventually
produce a prime, some don’t? For now, mathematicians
are focused on a more manageable problem posed by
Sierpinski: What is the smallest Sierpinski number? In
1962, John Selfridge discovered the smallest known Sier-
pinski number, k = 78,557. The next largest is 271,129. Is
there a smaller Sierpinski number? No one yet knows.
However, to establish that 78,557 is really the smallest, it
would be sufficient to find a prime of the form k(2n + 1)

for every value of k less than 78,557. In early 2001, there
were only 17 candidate values of k left to check: 4,847;
5,359; 10,223; 19,249; 21,181; 22,699; 24,737; 27,653;
28,433; 33,661; 44,131; 46,157; 54,767; 55,459; 65,567;
67,607; and 69,109. In March 2002, Louis Helm of the
University of Michigan and David Norris of the Univer-
sity of Illinois started a project called “Seventeen or
Bust,” the goal of which is to harness the computing
power of a worldwide network of hundreds of personal
computers to check for primes among the remaining can-
didates. The team’s effort have so far eliminated six can-
didates—5,359; 44,131; 46,157; 54,767; 65,567; and
69,109. Despite this encouraging start, it may take as long
as a decade, with many additional participants, to check
the eleven remaining candidates.

Sierpinski gasket
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sieve of Eratosthenes
The most efficient way to find all of the smallest prime
numbers. First described by Eratosthenes of Cyrene, it
involves making a list of all the integers less than or equal
to n (and greater than one), then striking out the multi-
ples of all primes less than or equal to the square root of
n. The numbers that are left are the primes. For example,
to find all the primes less than or equal to 30, we list the
numbers from 2 to 30:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30

The first number, 2, is prime, so we keep it and strike out
all of its multiples, leaving

2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29

The next number left, 3, is prime, so again we retain it
and delete all of its multiples, leaving

2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29

Now we do the same thing for 5, another prime, to give

2, 3, 5, 7, 11, 13, 17, 19, 23, 29

The next number, 7, is larger than the square root of 30,
so all of the numbers left are primes.

significant digits
The digits that define a numerical value. The significant
digits of a given number begin with the first nonzero
integer digit or, if this number is less than unity, with the
first (zero or nonzero) decimal digit. They end with the
final (zero or nonzero) decimal digit; the final zero or
zeros of an integer may or may not be significant.

similar
Having the same shape but not necessarily the same size.
Two triangles are similar if they have equal angles and
their corresponding sides, say, a1, b1, c1 and a2, b2, c2, have
a common ratio, r: a1/a2 = b1/b2 = c1/c2. In general, a simi-
larity is a transformation under which the distance
between any corresponding pair of points changes by the
same factor.

simple group
A group that has no nontrivial proper normal sub-
groups. Simple groups are important because they can be
thought of as the blocks out of which other groups can be
built. Much activity has been expended in the classifica-
tion of all finite simple groups.

simplex
The n-dimensional generalization of the triangle and the
tetrahedron; in other words, a polytope in n dimensions
with n + 1 vertices.

simply connected
The condition of a geometrical object if it consists of
one piece and doesn’t have any holes or “handles.” For
example, a line, disk, and sphere are simply connected,
but a torus (doughnut) and teapot are not. See also 
connected.

simulation
Experimentation in the space of theories, or a combi-
nation of experimentation and theorization. Some
numerical simulations are programs that represent a
model for how nature works. Usually, the outcome of
a simulation is as much a surprise as the outcome of a
natural event, due to the richness and uncertainty of
computation.

sine
The trigonometric function of an angle of a right-angled
triangle other than the right angle that is equal to the
length of the side adjacent to the angle divided by the
length of the hypotenuse. The curve of y = sin x is called
the sine curve, or sinusoid.

Singmaster, David
A professor at the school of computing, information sys-
tems, and mathematics at South Bank University, Lon-
don, who is one of the world’s leading compilers and
historians of mathematical puzzles.

singularity
(1) A point at which the derivative does not exist for a
given function but every neighborhood of which con-
tains points for which the derivative exists. (2) A point in
space-time at which gravitational forces cause matter to
have infinite density and infinitesimal volume, and space
and time to become infinitely distorted.

six
The smallest perfect number, the number of faces of a
cube, and the number of sides of a hexagon. There are
six players on a volleyball team, six kinds of chessmen,
and six types of quark (not including antiquarks). A
touchdown in American football earns six points and a
hit across the boundary rope of a cricket field without
bouncing scores six runs. Long ago people indicated a
number by pointing to a part of their body; this is echoed
in the New Guinea word for six, which is the same as that
for “wrist.”

six circles theorem
Given a triangle and a circle inside it that touches two of
the triangle’s sides, draw a second circle touching another
two sides and touching the first circle. Draw a third circle



touching two sides and the second circle, and so on. This
chain ends with the sixth circle, which will touch the first.

sixty
See sexagesimal.

skeletal division
A long division in which most or all of the digits are
replaced by symbols (usually asterisks) to form a
cryptarithm.

skew lines
Also known as crossing lines, lines that lie in different
planes and do not intersect one another.

Skewes’ number
A famous large number, commonly given as 10101034

, that
was first derived in 1933 by the South African mathe-
matician Samuel Skewes in a proof involving prime
numbers.[299] G. H. Hardy once described Skewes’ num-
ber as “the largest number which has ever served any def-
inite purpose in mathematics,” though it has long since
lost that distinction. Skewes’ numbers—there are actually
two of them—came about from a study of the frequency
with which prime numbers occur. Gauss’s well-known
estimate of the number of prime numbers less than or
equal to n, pi(n), is the integral from u = 0 to u = n of
1/(log u); this integral is called Li(n). In 1914 the English
mathematician John Littlewood proved that pi(x) − Li(x)
assumes both positive and negative values infinitely
often. For all values of n up to 1022, which is as far as com-
putations have gone so far, Li(n) has turned out to be an
overestimate. But Littlewood’s result showed that above
some value of n it becomes an underestimate, then at an
even higher value of n it becomes an overestimate again,
and so on. This is where Skewes’ number comes in.
Skewes showed that, if the Riemann hypothesis is true,
the first crossing can’t be greater than eee79

. This is called
the first or Riemann true Skewes’ number. Converted to
base 10, the value can be approximated as 10101034

, or more
accurately as 10108.852142 × 1033

or 10108852142197543270606106100452735038.55. In
1987, the Dutch mathematician Herman te Riele[330]

reduced dramatically the upper bound of the first cross-
ing to ee27/4, or approximately 8.185 × 10370, while John
Conway and Richard Guy[68] have made the contradic-
tory claim that the lower bound is 101167. In any event,
Skewes’ number is now only of historical interest. Skewes
also defined the limit if the Riemann hypothesis is false:
1010101000

. This is known as the second Skewes’ number.

slide rule
A calculating device consisting of two sliding logarithmic
scales.

sliding-piece puzzle
A type of sequential-movement puzzle, within the larger cat-
egory of mechanical puzzles, that involves sliding one
piece at a time into a single vacant opening in order to
advance toward the solution—a certain orderly arrange-
ment of the pieces. The best known is Loyd’s Fifteen
Puzzle.

Slocum, Jerry
An American historian of and writer on mechanical puz-
zles.

slope
“Rise over run.” For a straight line in the plane, the slope
is the tangent of the angle it forms with the positive x-
axis. For a curve, the slope is, by definition, the slope of
the tangent line. Therefore, if the slope is constant, a line
is straight.

Slothouber-Graatsma puzzle
A packing puzzle in which six 1 × 2 × 2 blocks and three
1 × 1 × 1 blocks must be fitted together to make a 3 × 3 ×

3 cube. There is only one solution. A similar but much
more difficult puzzle, named after its inventor, John
Conway, calls for packing three 1 × 1 × 3 blocks, one 1 ×
2 × 2 block, one 2 × 2 × 2 block, and thirteen 1 × 2 × 4
blocks into a 5 × 5 × 5 box.

Smith number
A composite number, the sum of whose digits equals
the sum of the digits of its prime factors (its factors that
are prime numbers). The name stems from a phone call
in 1984 by the mathematician Albert Wilansky to his
brother-in-law Smith, during which Wilansky noticed
that the phone number, 493-7775, obeyed the condition
just mentioned. Specifically:

4,937,775 = 3 × 5 × 5 × 65,837
4 + 9 + 3 + 7 + 7 + 7 + 5 = 3 + 5 + 5 + 6 + 5 + 8 + 3 + 7

Trivially, all prime numbers have this property, so they
are excluded. The first few Smith numbers are: 4, 22, 27,
58, 85, 94, 121, 166, 202, 265, 274, 319, 346, . . . . In 1987,
Wayne McDaniel proved that there are infinitely many
Smiths.

smooth
(1) Infinitely differentiable; possessing infinitely many
derivatives. For example, sin(x) is a smooth function,
while |x|3 is not. More complicated mathematical objects
such as manifolds are called smooth if they are defined
or described by smooth functions. (2) Continuously dif-
ferentiable (see continuity); possessing a continuous tan-
gent or derivative.
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Smullyan, Raymond (1919–)
An American mathematical logician, puzzle-maker, and
magician, who has taught in various colleges but is best
known for his books on recreational mathematics.
Among these are What Is the Name of This Book?, The Lady
or the Tiger, The Tao is Silent, and This Book Needs No Title:
A Budget of Living Paradoxes.[304–311] Smullyan is an inven-
tive maker of logic paradoxes and a pioneer of chess
problems that involve “retrograde analysis,” in which the
object is to deduce the past history of a game from some
given present position.

snow
It is often said that no two snowflakes are alike. While
this is hard to prove, individual samples can be captured
on a chilled glass microscope slide and preserved with
artist’s spray fixative. All are six-sided and the more
ornate kind, called dendritic snowflakes, form when the air
temperature is between −12°C and −16°C (10°F and
3°F). Typical snowflakes fall at a rate of a meter or two per
second; assuming 1.5 m/s and a cloud base of 3,000 m
(roughly the height of nimbostratus clouds) gives a
descent time of 20 minutes. One of the great urban leg-
ends is that the Inuit have n words for “snow,” where n is
a large number. This story may have started in 1911 when
anthropologist Franz Boaz casually mentioned that the
Inuit—he called them “Eskimos,” using the derogatory
term of a tribe to the south of them for eaters of raw
meat—had four different words for snow. With each suc-
ceeding reference in textbooks and the popular press the
number grew to as many as 400 words. A problem with
trying to pin down exactly how many Inuit words there
are for snow and/or ice, or for anything else, is that the
various dialects of Inuit are polysynthetic, which means
that words can effectively be made up on the spot by
concatenating various particles to the root word. For
example, the suffix -tluk, for “bad,” might be added to
kaniktshaq, for “snow,” to give kaniktshartluk, “bad snow.”
This can give rise to any number of snow terms, from
akelrorak (“newly drifting snow”) to mitailak (“soft snow
over an opening in an ice floe”).

snowball prime
Also known as a right-truncatable prime, a prime number
whose digits can be chopped off, one by one, from the
right-hand side, yet still leave a prime number. This
means that even if you stop writing before you finish the
number, you will still have written a prime. The largest
snowball prime is 73,939,133 (7, 73, 739, . . . , 73,939,133
are all prime).

snowflake curve
See Koch snowflake.

soap film
See bubbles.

Soddy circle
A solution to the three-circle form of the Apollonius
problem in which each of the given circles is tangent to
(just touches) the other two.[312] There are two Soddy cir-
cles: the outer Soddy circle, which surrounds the three
given circles, and the inner Soddy circle, which is interior to
them. The inner Soddy circle is the solution to the four
coins problem.

Soddy’s formula
If four circles A, B, C, and D, of radii r1, r2, r3, and r4, are
drawn so that they do not overlap but each touches the
other three, and if we let b1 = 1/r1, etc., then

(b1 + b2 + b3 + b4)
2 = 2(b1

2 + b2
2 + b3

2 + b4
2).

solid
Of or relating to three-dimensional geometric figures or
bodies.

solid angle
An angle formed by three or more planes intersecting at a
common point. Solid angles are measured in steradians.

solid geometry
The geometry of three-dimensional space.

solidus
The slanted line in a fraction such as a/b dividing the
numerator from the denominator.

solitaire
See peg solitaire.

solitary number
A number that is not one of a pair of amicable numbers.
Examples include all prime numbers, all integer powers
or primes, and other numbers such as 9, 16, 18, 52, and
160.

soliton
A solitary wave that can travel for long distances without
changing its shape or losing energy. Mathematically, a
soliton is a solution to a partial differential equation
that is localized in some directions but not localized in
time, and which does not change its shape. The first soli-
ton to be described was a water wave seen by the engineer
and shipbuilder John Scott Russell (1808–1882) in 1834
when he was riding by the Grand Union Canal at Her-
miston, Glasgow. He observed that when a canal boat
stopped, its bow wave continued onward as a well-



defined elevation of the water at constant speed.
(Another account says Scott Russell observed it on the
Glasgow and Ardrossan Canal when a horse bolted with
a light canal boat in tow.) The phenomenon was largely
forgotten until the 1960s, when the American physicist
Martin Kruskal rediscovered it and called it a soliton
wave. On July 12, 1995, a viaduct at Hermiston was
renamed the John Scott Russell viaduct, with Kruskal
unveiling plaques and attempting to re-create a soliton
wave. A classic soliton occurs on the River Severn in En-
gland, which starts at the head of the triangular Bristol
Channel and narrows rapidly upstream. When the tide
comes in, it is greatly compressed and produces the Sev-
ern Bore, a tidal wave up to 6 feet (2 m) high which
rushes about 20 miles (32 km) up the river to Gloucester
at a speed of up to 10 mph (16 km/hr). It is strongest at
the spring tides, i.e. at full and new moons, and is now
popular with surfers and canoeists.

solution
A value that satisfies the requirements of an equation.
See also lost solutions.

Soma cube
A mathematical puzzle devised by Piet Hein in 1936 dur-
ing a lecture on quantum mechanics by Werner Heisen-
berg in which the great German physicist was describing
a space sliced into cubes. In a moment of genius, Hein
grasped that the result of combining all seven of the irreg-
ular shapes that can be made from no more than four
unit cubes joined at their faces is a single larger (3 × 3 ×

3) cube. The Soma cube was first brought to popular
attention by Martin Gardner in his “Mathematical
Games” column in Scientific American in 1958. All 240
possible solutions were first identified by John Conway
and Mickael Guy in 1961. The pieces can also be used to
make a variety of other interesting three-dimensional

Soma cube How the pieces of the cube fit together. Mr. Puzzle Australia, www.mrpuzzle.com.au
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shapes so that the Soma cube is often regarded as a three-
dimensional analog of tangrams. It is possible that the
puzzle is named after the fictitious drug “soma” in
Aldous Huxley’s novel Brave New World. See also poly-
omino.[112]

Sophie Germain prime
Any prime number p such that 2p + 1 is also prime; the
smallest examples are 2, 3, 5, 11, 23, 29, 41, 53, 83, 89,
113, and 131. Around 1825 Sophie Germain proved that
the first case of Fermat’s last theorem (FLT) is true for
such primes. Soon after, Adrien-Marie Legendre began to
generalize this by showing the first case of FLT also holds
for odd primes p such that kp + 1 is prime, k = 4, 8, 10, 14,
and 16. In 1991 Fee and Granville extended this to k <

100, where k is not a multiple of three. Many similar
results were also shown, but now that FLT has been
proven correct, they are of less interest.

soroban
See abacus.

space
(1) The three-dimensional theater in which things as we
know them can exist or in which events can take place. In
the Einsteinian worldview, space and time are united
inextricably in a space-time continuum and there is also
the possibility of higher dimensions. (See also fourth
dimension.) (2) In mathematics, there are additionally
many other types of space, most of them too abstract to
imagine or to describe accurately in a few sentences.
Generally, a mathematical space is a set of points with
additional features. In a topological space (see topology)
every point has a collection of neighborhoods to which it
belongs. In an affine space, which is a generalization of the
familiar concepts of a straight line, a plane, and ordinary
three-dimensional space, a defining feature is the ability

Soma cube One of many animals into which the cube pieces can be arranged. Mr. Puzzle Australia, www.mrpuzzle.com.au



to fix a point and a set of coordinate axes through it so
that every point in the space can be represented as a
“tuple,” or ordered set, of coordinates. Other examples of
mathematical spaces include vector spaces, measure spaces,
and metric spaces.

space-filling curve
A curve that passes through every point of a finite region
(such as a unit square or unit cube) of an n-dimensional
space, where n ≥ 2. A well-known example is the Peano
curve.

space-time
The inseparable four-dimensional manifold, or combina-
tion, which space and time are considered to form in the
special and general theories of relativity (see relativity
theory). A point in space-time is known as an event. Each
event has four coordinates (x, y, z, t). Just as the x, y, z
coordinates of a point depend on the axes being used, so
distances and time intervals, (which are invariant in New-
tonian physics) may depend (in relativistic physics) on
the reference frame of an observer; this can lead to
bizarre effects such as length contraction and time dilation. A
space-time interval between two events is the invariant
quantity analogous to distance in Euclidean space. The

space-time interval s along a curve is defined by the 
quantity

ds 2 = dx 2 + dy 2 + dz 2 − c 2dt 2,

where c is the speed of light. A basic assumption of rela-
tivity theory is that coordinate transformations leave
intervals invariant. However, note that whereas distances
are always positive, intervals may be positive, zero, or
negative. Events with a space-time interval of zero are
separated by the propagation of a light signal. Events
with a positive space-time interval are in each other’s
future or past, and the value of the interval defines the
proper time measured by an observer traveling between
them.

special function
A function, often named after the person who intro-
duced it, that has a particular use in physics or some
branch of mathematics. Examples include Bessel functions,
Lagrange polynomials, beta functions, gamma functions,
and hypergeometric functions.

special relativity
See relativity theory.

space-time Gravity seen as a curvature of the fabric of space and time.

special relativity 297
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spectrum
(1) In quantum mechanics, the set of allowable energy
levels of a particle or system. It is directly related to bright
or dark lines in a spectrum of light produced by a prism.
(2) In mathematics, the set of eigenvalues of a linear
transformation. By historical coincidence, it is equivalent
to the notion of a spectrum in quantum mechanics.

Sperner’s lemma
Take a triangle ABC, labeled counterclockwise, and sub-
divide it into lots of smaller triangles in any arbitrary way.
Then label all the new vertices as follows: (1) vertices
along AB may be labeled either A or B, but not C; (2)
vertices along BC may be labeled either B or C, but not
A; (3) vertices along CA may be labeled either C or A,
but not B; (4) vertices inside triangle ABC may be
labeled A or B or C. Now shade in every small triangle
that has three different labels. Use two different shadings
to distinguish the triangles that have been labeled coun-
terclockwise (i.e., in the same sense as triangle ABC )
from the triangles that have been labeled clockwise (i.e.,
in the sense opposite to that of triangle ABC ). Then

Sperner’s lemma A triangular lattice that can be used for demonstrating Sperner’s
lemma. To understand how, see the accompanying entry.

there will be exactly one more counterclockwise triangle
than clockwise triangles. In particular, the number of
shaded triangles will be odd. This is Sperner’s lemma,
named after its discoverer, the German mathematician
Emanuel Sperner (1905–1980). Sperner’s lemma is equiv-
alent to the Brouwer fixed-point theorem; a version of it
holds in all dimensions.

sphere
Roughly speaking, a ball-shaped object. In everyday
usage a sphere is often considered to be solid; mathe-
maticians call this the interior of the sphere. In mathe-
matics, a sphere is a quadric consisting only of a surface
and is therefore hollow. More precisely, a sphere is the set
of all points in three-dimensional Euclidean space that
lie at distance r, the radius, from a fixed point. In analyt-
ical geometry a sphere with center (x0, y0, z0) and radius r
is the set of all points (x, y, z) such that

(x − x0)
2 + ( y − y0)

2 + (z − z0)
2 = r 2.

A sphere can also be defined as the surface of revolution
formed by rotating a circle about its diameter. If the cir-



cle is replaced by an ellipse, the shape becomes a spher-
oid. The surface area of a sphere is 4πr 2 and its volume is
4πr 3/3. The sphere has the smallest surface area among
all surfaces enclosing a given volume and it encloses the
largest volume among all closed surfaces with a given sur-
face area. In nature, bubbles and water drops tend to
form spheres because surface tension always tries to min-
imize surface area. The circumscribed cylinder for a given
sphere has a volume which is 3/2 times the volume of the
sphere. If a spherical egg were cut up by an egg-slicer with
evenly spaced wires, the bands between the cuts (on the
surface of the sphere) would have exactly the same area.
Spheres can be generalized to other dimensions. For any
natural number n, an n-sphere is the set of points in 
(n + 1)-dimensional Euclidean space that lie at distance
r from a fixed point of that space. A 2-sphere is therefore
an ordinary sphere, while a 1-sphere is a circle and a 
0-sphere is a pair of points. An n-sphere for which n = 3
or more is often called a hypersphere.

sphere packing
See packing, Kepler’s conjecture, and cannonball prob-
lem.

spherical geometry
See elliptical geometry.

sphericon
A curious and mathematically delightful three-
dimensional object made from a right double-cone—two
identical, 90° cones joined base to base—and an added
twist. To create a sphericon, a right double-cone is sliced
along a plane that includes both vertices. The resulting
cross section is a square, which enables one of the halves to
be rotated through a right angle and the two halves to be
glued back together without any overlap. This final twist
enables the sphericon to roll in an unusual way. An ordi-
nary cone placed on a flat surface rolls around in circles. A
double-cone can roll in a clockwise circle or a counter-
clockwise one. A sphericon, in contrast, performs a con-
trolled wiggle, with first one conical sector in contact with
the flat surface, then the other. Two sphericons placed next
to each other can roll on each other’s surfaces. Four spheri-
cons arranged in a square block can all roll around one
another simultaneously. And eight sphericons can fit on
the surface of one sphericon so that any one of the outer
solids can roll on the surface of the central one. The spheri-
con was first found by the En-glishman Colin Roberts in
1969, while he was still in school. In 1999 he brought his
discovery to the attention of Ian Stewart who subse-
quently wrote about the new object in his “Mathematical
Recreations” column in Scientific American.[322]

spheroid
A surface in three dimensions obtained by rotating an
ellipse about one of its principal axes. If the ellipse is
rotated about its major axis, the surface is called a prolate
spheroid (similar to the shape of a rugby ball). If the minor
axis is chosen, the surface is called an oblate spheroid (sim-
ilar to the shape of Earth). The sphere is a special case of
the spheroid in which the generating ellipse is a circle. A
spheroid is a special case of an ellipsoid where two of the
three major axes are equal.

Sphinx riddle
In Greek mythology, the Sphinx sat outside Thebes and
asked this riddle of all travelers who passed by. If the trav-
eler failed to solve the riddle, then the Sphinx killed
him/her. And if the traveler answered the riddle correctly,
then the Sphinx would destroy herself. The riddle: what
goes on four legs in the morning, on two legs at noon,
and on three legs in the evening? Oedipus solved the rid-
dle, and the Sphinx destroyed herself. The solution: a
man, who crawls on all fours as a baby, walks on two legs
as an adult, and walks with a cane in old age. Of course
morning, noon, and night are metaphors for the times in
a person’s life. Such metaphors are common in riddles.
There were two Thebes; apparently the Thebes in this
myth was the one in Greece, and the Sphinx was differ-
ent from the one that stands at Giza, in Egypt.
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spider-and-fly problem
A puzzle that was originally posed in the Weekly Dispatch,
an English newspaper, on June 14, 1903, by Henry
Dudeney, and that appears as one of the problems in The
Canterbury Puzzles (1907).[87] A simple but elegant exercise
in geodesics, it is Dudeney’s best-known brain-teaser. In
a cuboidal (shoebox-shaped) room measuring 30′ × 12′ ×

12′, a spider is in the middle of one 12′ × 12′ wall, 1 foot
away from the ceiling. A fly is in the middle of the oppo-
site wall 1 foot away from the floor. If the fly remains sta-
tionary, what is the shortest total distance (the geodesic)
the spider must crawl along the walls, ceiling, and floor in
order to get to the fly? The answer, 40′, can be obtained
by flattening out the walls. Note that this distance is
shorter than the 42′ the spider would have to travel if it
first crawled along the wall to the floor, then across the
floor, then up 1′ to get to the fly. A twist to the problem
can be obtained by a spider that suspends himself from a
strand of cobweb and thus takes a shortcut by not being
forced to remain glued to a surface of the room. If the
spider attaches a strand of cobweb to the wall at his start-
ing position and lowers himself down to the floor (thus
not crawling a single inch), he can then walk across the
length of the room (30′) and ascend a single foot, thus
reaching his prey after a total crawl of 31′ (although the
total distance traveled is of course 42′). If the spider is not
proficient with fastening strands to vertical walls, he must
first ascend 1′ to the ceiling, from where it can lower him-
self to the floor, traverse the length of the room, and
climb one foot to get to the fly, for a total distance
crawled of 32′.

Dudeney and Sam Loyd offered several versions of 
the problem in a rectangular room. In 1926 Dudeney
gave a version on a cylindrical glass with the source and
the target on opposite sides.

spinor
A mathematical object similar to a vector, but which
changes sign when rotated through 360°. Spinors were
invented by Wolfgang Pauli and Paul Dirac (they were
named by Paul Ehrenfest) to represent the spin of a sub-
atomic particle. In the early 1930s, Dirac, Piet Hein, and
others at the Niels Bohr Institute created games such as
Tangloids to teach and model the calculus of spinors.

spiral
A curve that turns around some central point, getting
progressively closer to it or progressively farther from it,
depending on which way the curve is followed. Among
the best known types are the Archimedean spiral, the
logarithmic spiral, the circle involute, and the lituus.
Like their space-curve cousin the helix, all spirals are
asymmetric and each come in two forms that are mirror
reflections of one another.

spirograph curve
See roulette.

Sprague-Grundy theory
A theory of certain classes of games called impartial
games, discovered independently by Roland Percival
Sprague (in 1936) and Patrick Michael Grundy (in 1939)

Spider-and-fly problem What is the shortest route for the spider to catch its prey?



and originally applied to Nim. In simple terms, they
showed that one could take any impartial game and ana-
lyze it in terms of Nim heaps that could grow or decrease
in size. The theory was developed further by E. R.
Berlekamp, John Conway, and others, and presented
comprehensively in the books Winning Ways for Your
Mathematical Plays and On Numbers. Sprague-Grundy the-
ory has been applied to other combinatorial games,
including kayles.

Sprouts
A pencil-and-paper game invented by John Conway and
Michael S. Paterson at Cambridge University in 1967.
Sprouts is played by two players, starting with a few dots
(called spots) drawn on a sheet of paper. To make a move,
a player draws a curve between two spots or a loop from
a spot to itself; the curve may not cross any other curve.
The player marks a new spot on the curve, dividing it in
two. Each spot can have at most three curves connected
to it. The player who makes the last move wins. Sprouts
has been studied from the perspectives of graph theory
and of topology. It can be proven that a game started
with n spots will last at least 2n moves and at most 3n − 1
moves. By enumerating all possible moves, one can show
that the first player is guaranteed a win in games involv-
ing three, four, or five spots, while the second player can
always win a game that starts with one, two, or six spots.
Following a 1990 computer analysis of the game at Bell
Labs out to 11 spots, David Applegate, Guy Jacobsen,
and Daniel Sleator conjectured that the first player has a
winning strategy when the number of spots divided by
six leaves a remainder of three, four, or five. Sprouts was
featured in the plot of the first part of the science fiction
novel Macroscope by Piers Anthony.

square
(1) A quadrilateral with four equal sides that meet at
right angles. (2) To square something is to multiply it by
itself. To take the square root is the reverse process. A
square number is the square of a whole number (see also
figurate number). A well-known formula for the differ-
ence of squares is a 2 − b 2 = (a + b)(a − b). This formula
enables some otherwise difficult calculations to be done
easily in the head. For example, 43 × 37 = (40 + 3)(40 −

3) = 402 − 32 = 1600 − 9 = 1591.

square free
An integer that is not divisible by a perfect square, n 2, for
n > 1.

square pyramid problem
See cannonball problem.

square root of 2 (!2")
The first number shown to be what is now known as an
irrational number (a number that can’t be written in the
form a/b, where both a and b are integers). This discovery
was made by Pythagoras or, at any rate, by the Pytha-
gorean group that he founded. The square root of 2 is the
length of the hypotenuse (longest side) of a right triangle
whose other two sides are each one unit long. A reductio
ad absurdum proof that !2" is irrational is straightfor-
ward. Suppose that !2" is rational, in other words that
!2" = a/b, where a and b are coprime integers (that is,
they have no common factors other than 1) and b > 0. It
follows that a 2/b 2 = 2, so that a 2 = 2b 2. Since a 2 is even
(because it has a factor of 2), a must be even, so that a =

2c, say. Therefore, (2c)2 = 2b 2, or 2c 2 = b 2, so b must also
be even. Thus, in a/b, both a and b are even. But we
started out by assuming that we’d reduced the fraction to
its lowest terms. So there is a contradiction and therefore
!2" must not be irrational. This type of proof can be gen-
eralized to show that any root of any natural number is
either a natural number or irrational.

As a continued fraction, !2" can be written 1 + 1/(2 +

1/(2 + 1/(2 + . . . ))), which yields the series of rational
approximations: 1/1, 3/2, 7/5, 17/12, 41/29, 99/70,
239/169, . . . . Multiplying each numerator (number on
the top) by its denominator (number on the bottom)
gives the series 1; 6; 35; 204; 1,189; 6,930; 40,391;
235,416; . . . which follows the pattern: An = 6An − 1 −

An − 2. Squaring each of these numbers gives 1; 36; 1,225;
41,616; 1,413,721; 48,024,900; 1,631,432,881; . . . each
of which is also a triangular number. The numbers in
this sequence are the only numbers that are both square
and triangular.

squarefull number
See powerful number.

squaring the circle
The problem to find a construction (see constructible),
using only a straightedge and compass, that would give a
square of the same area as a given circle. It is now known
that this is impossible because, as the German mathe-
matician Ferdinand von Lindemann showed in 1882, it
would amount to finding a polynomial expression for pi,
which can’t be done as π is a transcendental number.
(All the coordinates of all points that can be constructed
with ruler and compass are algebraic numbers.) This
minor inconvenience, however, hasn’t prevented some
amateur mathematicians from continuing to claim they
have found proofs that the circle can be squared. Some
of the most bizarre attempts have involved proposing a
different and rational value for π. In 1897, the Indiana
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State Legislature came within a hair’s breadth of intro-
ducing a bill to set the value of π equal to 3.2! In fact,
long before π was finally proved to be transcendental,
most learned societies had conjectured that a proof was
impossible and had stopped considering circle-squaring
arguments sent to them.

squaring the square
The problem of how to tile a square with integral squares
(squares of integral side-length). Of course squaring the
square is a trivial task unless additional conditions are set.
The most studied restriction is the perfect squared square: a
square such that each of the smaller squares has a differ-
ent size. The name was coined in humorous analogy with
squaring the circle and is first recorded as being studied
by R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T.
Tutte at Cambridge University. The first perfect squared
square was found by Roland Sprague in 1939. If such a
tiling is enlarged so that the formerly smallest tile
becomes as big as the original square, it becomes clear
that the whole plane can be tiled with integral squares,
each having a different size. It is still an unsolved prob-
lem, however, whether the plane can be tiled with a set of
integral square tiles such that each natural number is used
exactly once as the size of a tile. A simple squared square is
one where no subset of the squares forms a rectangle. The
smallest simple perfect squared square was discovered by
A. J. W. Duijvestin using a computer search. His tiling
uses 21 squares, and has been proved to be minimal.
Other possible conditions that lead to interesting results
are nowhere-neat squared squares and no-touch squared
squares. Developments leading to squaring the square
can be traced back to 1902 and the first appearance of
Henry Dudeney’s Lady Isabel’s casket, later published as
problem #40 in The Canterbury Puzzles.[87]

standard deviation
A measure of the spread of a set of data. For a Gaussian
distribution, the standard deviation hints at the width of
the tails of the distribution function.

Stanhope, Earl
A line of English earls, several of whom were notable
mathematicians and polymaths. The third earl, Charles
Stanhope (1753–1816), invented the process of stereo-
typing and, in 1777, devised the first mechanical logical
calculator. The fourth earl, Philip Henry Stanhope
(1781–1855) was a mathematician who applied his knowl-
edge to mapmaking and maze design. From 1818 to 1830
he planted a maze according to a basic plan laid down by
the second earl (1714–1786) that was probably the first to
incorporate islands that defeat the familiar “hand-on-

wall” method. (There are islands in the famous Hampton
Court maze, yet the hand-on-wall method solves it.) His
designs often had a number of islands, or just isolated
lengths of hedge.

Star of David
Also known as a hexagram, the six-pointed star obtained
by extending the sides of a regular hexagon to the points
of intersection.

star of Lakshmi
An eight-pointed star design often used in architecture,
particularly as a tiling or other decoration on the floor of
a room that has four- or eight-fold symmetry. A notable
example is in the octagonal central lobby in the Houses
of Parliament in London. It was used by Hindus to sym-
bolize Ashtalakshmi, the eight forms of wealth.

state space
See phase space.

stationary point
A point on the graph of a function where the tangent to
the graph is parallel to the x-axis or, equivalently, where
the derivative of the function is 0. There are four kinds
of stationary points: (1) a local minimum, where the deriv-
ative of the function changes from negative to positive;
(2) a local maximum, where the derivative changes from
positive to negative; (3) a rising point of inflection, where
the derivative is positive on both sides of the stationary
point; and (4) a falling point of inflection, where the deriva-
tive is negative on both sides of the stationary point.

statistical mechanics
The study of statistical and thermal properties of physical
materials and their idealized mathematical models.

statistics
The study of ways that lots of data can be represented
using a few numbers and the study of how such numbers
can be chosen and used to draw reasonable conclusions
about the data. The word statistics comes from the Latin
statis for “political state”; one of the main tasks of the
subject involves analyzing facts and figures about gov-
ernments, resources, and populations. Although a power-
ful tool, statistics is open to abuse, both intentional and
unintentional. Benjamin Disraeli (1804–1881) may have
gone a little over the top when he said, “There are lies,
damned lies, and statistics,” but Scottish author Andrew
Lang (1844–1912) could have been describing many a
politician when he remarked, “He uses statistics as a
drunken man uses lamp posts—for support rather than



illumination.” The branch of statistics most commonly
used in recreational mathematics is probability theory.

Steiner, Jakob (1796–1863)
A Swiss mathematician, considered by many to be the
greatest geometer since Apollonius of Perga. Largely self-
taught, he became a professor at the University of Berlin,
and was a pioneer in the field of projective geometry. He
had an important influence on his students, including
Bernhard Riemann.

Steiner-Lehmus theorem
Any triangle that has two equal angle bisectors (each
measured from a vertex to the opposite sides) is an
isosceles triangle. In 1840, a Berlin professor Ludolph
Lehmus wondered if this statement is true, given that it is
the inverse of the already proven rule: If a triangle is
isosceles then two of its internal bisectors are equal. He
put the problem to Jakob Steiner who was quickly able
to show its validity. Shortly after, Lehmus himself found
a neater proof and it is has since become a favorite pas-

time of geometry hobbyists to search for still simpler
proofs of the theorem.

Steinhaus, Hugo Dyonizy (1887–1972)
A Polish mathematician who was an influential member
of the Lvov school, based at the Jan Kazimierz University
in Lvov, which also included Stefan Banach and which
focused on problems in functional analysis, real func-
tions, and probability in the 1920s and ’30s. Early on,
Steinhaus’s work revolved around applications of the
Lebesque measure and integral. In 1923 he published
the first rigorous account of the theory of tossing coins
based on measure theory, and in 1925 was the first to
define and discuss the concept of strategy in game the-
ory. During World War II, as a Jew he was compelled to
hide from persecution by the Nazis, yet continued his
mathematical work despite great hardship. In 1944,
Steinhaus proposed the problem of dividing a cake into
n pieces so that it is proportional and envy free (see cake-
cutting). He is also well known as the author of the
widely read Mathematical Snapshots.[316]
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stellation
(1) The process of constructing a new polyhedron by
extending the face planes of a given polyhedron past
their edges. (2) The new polyhedron thus obtained. Start-
ing with the icosahedron, for example, there are 59 pos-
sible stellations, including the great icosahedron, which is
one of the Kepler-Poinsot solids.

steradian
The international (SI) unit in which solid angles are mea-
sured. The steradian (sr) is a solid angle with its vertex in
the center of a sphere and which cuts off from the spher-
ical surface an area equal to the square of the radius of
the sphere. The full sphere represents a spherical angle of
4π steradians.

Stewart, Ian (1945–)
A British mathematician at Warwick University who has
written many books and articles on recreational math

and popular science. From 1990 to 2001 he wrote the
“Mathematical Recreations” column in Scientific Ameri-
can. His books include Flatterland: Like Flatland Only More
So (a modern version of Edwin Abbott’s classic Flatland:
A Romance of Many Dimensions); Does God Play Dice: The
New Mathematics of Chaos, and Evolving the Alien (with
Jack Cohen).[317, 318, 321, 323]

Stewart toroid
A polygon with a hole through it that meets some or all
of the criteria specified by Bonnie Madison Stewart in his
1980 book Adventures among the Toroids. These criteria are
as follows: all faces must be regular; faces that meet
mustn’t lie in the same plane; the polygon must be quasi-
convex; the hole through the polygon must change its
genus; and, the faces aren’t allowed to intersect with
themselves or each other. Stewart toroids, pierced rela-
tives of the familiar Platonic solids, combine dazzling
complexity with attractive symmetry.

stellation The final stellation of the icosahedron. Robert Webb, www.software3d.com; created using Webb’s Stella program



stochastic
Something that is random.

stochastic process
A dynamical system with random fluctuations at each
iteration or that is influenced by random noise. A ran-
dom variable that, at each stage in time, depends on its
previous values and on further random choices. For
example, the price of a stock is often modeled as a sto-
chastic process.

Stomachion
See Loculus of Archimedes.

straight
Having no deviations. A straight line is usually simply
called a line. A straight angle, or flat angle, is exactly 180°.

strange attractor
See chaotic attractor.

strange loop
A phenomenon in which, whenever movement is made
upward or downward through the levels of some hierar-
chical system, the system unexpectedly arrives back
where it started. Douglas Hofstadter has used the strange
loop as a paradigm in which to interpret paradoxes in
logic, such as Grelling’s paradox and Russell’s paradox,
and has called a system in which a strange loop appears a
tangled hierarchy.

strategy
In game theory, a policy for playing a game. A strategy is
a complete recipe for how a player should act in a game
under all circumstances. A policy may employ random-
ness, in which case it is referred to as a mixed strategy.
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string
Any sequence of letters, numbers, digits, bits, or sym-
bols.

string puzzle
The origins of puzzles using string, a form of disentangle-
ment puzzle, are lost in antiquity but one of the earliest
stories involving this type of problem is that of the Gor-
dian knot. Today many kinds of string puzzles are avail-
able, most of which involve removing a ring from loops
of string that are threaded through a solid (typically
wooden) body. See also mechanical puzzles and knot.

string theory
An important theory in modern physics in which the
fundamental particles in nature are thought of as the
“musical notes” or excitation modes of vibrating ele-
mentary strings. These strings have the shortest mean-
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ingful physical length, the so-called Planck length (equal
to about 10−33 cm), and no thickness. Even more bizarre,
for the theory to make sense, the universe must have
nine space dimensions and one time dimension, for a
total of 10 dimensions. This idea of a 10-dimensional
universe first appeared in the Kaluza-Klein theory.
We’re familiar with time and three of the space dimen-
sions: the other six together are known as Calabi-Yau
spaces. In string theory, as in the case of a stringed
instrument, the string must be stretched under tension
in order to vibrate. This tension is fantastically high—
equivalent to a weight of about 1039 tons. String theories
are classified according to whether or not the strings are
required to be closed loops, and whether or not the par-
ticle spectrum includes fermions. In order to include
fermions in string theory, there must be a special kind of
symmetry called supersymmetry, which means that for
every boson (a particle, of integral spin, that transmits a

Stewart toroid A drilled truncated dodecahedron. Robert Webb, www.software3d.com; created using Webb’s Stella program



force) there is a corresponding fermion (a particle, of
half-integral spin, that makes up matter). So supersym-
metry relates the particles that transmit forces to the par-
ticles that make up matter. Supersymmetric partners to
currently known particles have not been observed in par-
ticle experiments, but theorists believe this is because
supersymmetric particles are too massive to be produced
by present-day high-energy accelerators. Particle acceler-
ators could be on the verge of finding evidence for high
energy supersymmetry in the next decade. Evidence for
supersymmetry at high energy would be compelling evi-
dence that string theory was a good mathematical model
for nature at the smallest distance scales. In string the-
ory, all of the properties of elementary particles—charge,
mass, spin, and so forth—come from the vibration of the
string. The easiest of these to understand is mass. The
more frantic the vibration, the more energy; and since
mass and energy are the same thing, higher mass comes
from faster vibration.

strobogrammatic prime
A prime number that remains unchanged when rotated
through 180°. An example is 619, which looks the same
when read upside-down. To be strobogrammatic, a prime
cannot contain digits other than 0, 1, and 8, which have
a horizontal line of symmetry (ignoring font variations),
and 6 and 9, which are vertical reflections of each other.
An invertible prime is one that yields a different prime
when the digits are inverted. Of course, these definitions
are not taken seriously by mathematicians!

strophoid
A looping curve, first studied in 1670 by Isaac Barrow
(1630–1677), the first Lucasian Professor of Mathematics
at Cambridge and the immediate predecessor of Isaac
Newton in this job. The strophoid, which is a special case
of the general cissoid, was named by Enrico Montucci in
1846 from the Latin for “twisted belt shape.” The elabo-
rate rules for drawing a strophoid are as follows. Let C be
a curve, let O be a fixed point called the pole, and let O′

be a second fixed point. Let P and P ′ be points on a line
through O meeting C at Q such that P ′Q = QP = QO′. The
locus of P and P ′ is the strophoid of C with respect to the
pole O and fixed point O′. If the curve C is a straight line,
the pole P is not on C, and the second point O′ is on C,
the resulting strophoid is called an oblique strophoid. If
these same conditions apply except that O′ is the point
where the perpendicular from O to C cuts C, then the
strophoid produced is called a right strophoid. On the
other hand if C is a circle, O is the center of the circle,
and O′ a point on its circumference, then the strophoid
that results is known as Freeth’s nephroid. The French
mathematician Gilles Roberval (1602–1675) found the

strophoid in a different way—as the result of planes cut-
ting a cone. When the plane rotates (about the tangent at
its vertex) the collection of foci of the obtained conics
gives the strophoid.

subgroup
A subset of a group that is a group under the same oper-
ation.

sublime number
A number such that both the sum of its divisors and the
number of its divisors are perfect numbers. The smallest
sublime number is 12. There are 6 divisors of 12—1, 2, 3,
4, 6, and 12—the sum of which is 28. Both 6 and 28 are
perfect. The second sublime number begins 60,865 . . . ,
ends . . . 91,264, and has a total of 76 digits! It is not
known if there are larger even sublime numbers, nor if
there are any odd sublime numbers.

subset
A set whose members are members of another set; a set
contained within another set.

substitution cipher
A cipher that replaces each plaintext (original message)
symbol with a ciphertext (coded text) symbol. The
receiver decodes using the inverse substitution. A simple
example is the Caesar cipher.

subtraction
The binary operation of finding the difference between
two quantities or numbers.

sultan’s dowry
A sticky problem in probability that first came to light in
Martin Gardner’s “Mathematical Recreations” column
in the February 1960 issue of Scientific American. Gard-
ner’s original version has become known as the secretary
problem. In the exactly equivalent form called the sul-
tan’s dowry problem, a sultan has granted a commoner
the chance to marry one of his hundred daughters. The
commoner will be shown the daughters one at a time and
will be told each daughter’s dowry. The commoner has
only one chance to accept or reject each daughter; he
can’t go back and choose one that he has previously
rejected. The sultan’s catch is that the commoner may
only marry the daughter with the highest dowry. What is
the commoner’s best strategy, assuming that he knows
nothing in advance about the way the dowries are dis-
tributed?

Many mathematicians have tackled this question and
numerous papers have been written on the subject. It has
even spawned its own area of study within the field of

sultan’s dowry 307



management science. The consensus among those who
have worked on the problem is that the commoner’s best
strategy is to let a certain fraction of the daughters pass
and then choose the next one who has a dowry higher
than any of the ones seen up to that point. The exact
number to skip is determined by the condition that the
odds that the highest dowry has already been seen is just
greater than the odds that it remains to be seen and that if
it is seen it will be picked. This amounts to finding the small-
est x such that:

x/n > x/n × [1/(x + 1) + . . . + 1/(n − 1)]

Substituting n = 100 leads to the conclusion that the
commoner should wait until he has seen 37 of the daugh-
ters, then pick the first daughter with a dowry that is big-
ger than any that have already been revealed. With this
strategy, his odds of choosing the daughter with the high-
est dowry are surprisingly high: about 37%.[224]

supercomputer
A computer that, in its day, is faster than any contempo-
rary conventional computer. Supercomputers are typi-
cally used for enormous number-crunching tasks such as
weather-forecasting, simulations of fusion experiments or
galaxy evolution, design of cars and planes, and code-
cracking. At the start of 2004, the world’s most powerful
computer, by a long way, is the Earth Simulator in Japan,
which is capable of a maximum of 40,960 gigaflops, that
is, 40.96 trillion “floating point operations” per second.
The top 500 supercomputers are listed at the following
Web site: http://www.top500.org.

superegg
The surface of revolution of a superellipse given by the
formula |x/a|2.5 + | y/b|2.5 = 1, where a/b = 4/3. The super-
egg was named by Piet Hein and singled out by him
because of an unusual property: stood on either end it
has a peculiar and surprising stability. Supereggs, made of
metal, wood, and other materials, were sold as novelties
in the 1960s; small, solid-steel ones were marketed as an
“executive toy.” The world’s largest superegg, made of
steel and aluminum and weighing 1 ton, was placed out-
side Kelvin Hall in Glasgow in 1971 to honor Hein’s
appearance there as a speaker.

superellipse
A Lamé curve, described by the formula |x/a|n + | y/b|n =

1, for which n > 2. Superellipses have a form partway
between an ellipse and a rounded rectangle (or, if a = b,
partway between a circle and a rounded square). The
Danish poet and architect Piet Hein decided that the
superellipse with n = 5/2 and a/b = 6/5 is the most pleas-
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ing to the eye. This so-called Piet Hein ellipse was quickly
adopted as the basic motif for planning an open space at
the center of Stockholm and was also incorporated into
Scandinavian designs for office tables, desks, beds, and
even roundabouts in roads. The surface of revolution of
a superellipse is a superellipsoid, one special form of which
has been nicknamed the superegg.

superfactorial
A function based on the factorial that produces large
numbers very quickly. It is a recent creation that has not
yet entered the mathematical mainstream, and has been
defined in a couple of different ways. In 1995, in his
book Keys to Infinity, Clifford Pickover gave the superfac-
torial as

n$ = n!n!⋅⋅
⋅n!

n! terms

In the same year, Sloane and Plouffe offered an alterna-
tive definition:

n$ =
n

∏
i

i!

Pickover’s superfactorial grows with extraordinary speed.
The first two terms are 1 and 4, but the third term 3$,
already has more digits than could be written down on
this page. Sloan and Plouffe’s factorial grows sedately by
comparison—the first few values are 1, 1, 2, 12, 288, and
345,690—and is related to Bell numbers.

#

superegg



supersymmetry
A theory in physics that postulates a counterintuitive
symmetric relationship between fermions, which are par-
ticles such as electrons that obey the Pauli exclusion
principle and thus cannot occupy the same quantum
state, and bosons, which are particles such as photons
that can coexist in the same state.

supertetrahedral number
A type of figurate number in four dimensions (see
fourth dimension). Supertetrahedral numbers are
obtained by piling up the tetrahedral numbers 1, 4, 10,
20, 35, etc., as in:

1 = 1

1 + 4 = 5

1 + 4 + 10 = 15

1 + 4 + 10 + 20 = 35

1 + 4 + 10 + 20 + 35 = 70

etc.

supplementary angles
Two angles that add up to 180°.

surd
A radical that expresses an irrational number. Surds
may be quadratic (e.g., !2"), cubic (e.g., 3!2"), quartic (e.g.,
4!2"), and so on. (The term is sometimes used as a syn-
onym for irrational number.) A pure surd, or entire surd,
contains no rational number; that, is, all its factors or
terms are surds (e.g., !2" + !3"). A mixed surd contains at
least one rational number (e.g., 2 + !3" or 3!2").

surface
In mathematics, any object that locally (if you zoom in
close enough to it) looks like a piece of a flat plane. A
sphere, a torus, a pseudosphere, and a Klein bottle are
examples of different types of surfaces.

surface of revolution
A surface produced by rotating a line or a curve about
some axis. For example, a sphere is the surface of revolu-
tion generated when a circle spins about its diameter.

surreal number
A member of a mind-boggling vast class of numbers that
includes all of the real numbers, all of Georg Cantor’s
infinite ordinal numbers (different kinds of infinity), a
set of infinitesimals (infinitely small numbers) produced
from these ordinals, and strange numbers that previously
lived outside the known realm of mathematics. Each real

number, it turns out, is surrounded by a “cloud” of surre-
als that lie closer to it than do any other real numbers.
One of these surreal clouds occupies the curious space
between zero and the smallest real number greater than
zero and is made up of the infinitesimals.

Surreal numbers were invented or discovered (depend-
ing on your philosophy) by John Conway to help with
his analysis of certain kinds of games. The idea came to
him after watching the British Go champion playing in
the mathematics department at Cambridge. Conway
noticed that endgames in Go tend to break up into a sum
of games, and that some positions behave like numbers.
He then found that, in the case of infinite games, some
positions behaved like a new kind of number—the surre-
als. The name “surreal” was introduced by Donald Knuth
in his 1974 book Surreal Numbers: How Two Ex-Students
Turned on to Pure Mathematics and Found Total Happi-
ness.[191] This novelette is notable as being the only
instance where a major mathematical idea has been first
presented in a work of fiction. Conway went on to
describe the surreal numbers and their use in analyzing
games in his 1976 book On Numbers and Games.[67] The
surreals are similar to the hyperreal numbers, but they
are constructed in a very different way and the class of
surreals is larger and contains the hyperreals as a subset.

swastika
An ancient ideogram, signs of which have been found in
the Euphrates-Tigris Valley, and in some areas of the Indus
Valley, dating back 3,000 years; it became commonly used
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around 1000 B.C., possibly first in ancient Troy, in the
northwest of modern Turkey. The swastika is an irregular
icosagon (a 20-sided polygon), which in Arabic and
Indian culture originally represented good luck. Of
course, in more recent times, it was adopted as the sym-
bol of the Nazi Party in Hitler’s Germany and thus came
to stand for anti-Semitism.

syllogism
An argument composed of three parts—a major premise,
a minor premise, and a conclusion. For example: All men
are mortal (major premise). Socrates is a man (minor
premise). Therefore, Socrates is mortal (conclusion). The
syllogism forms the basis of Aristotle’s system of logic,
which went unchallenged for over 2,000 years. Aristotle
believed that by setting out any argument in syllogistic
form, it should be possible to avoid fallacies. However,
Bertrand Russell discovered several formal errors in the
doctrine of syllogism.

Sylvester, James Joseph (1814–1897)
An English mathematician and lawyer who, in 1850, first
used the term matrix in mathematics and gave it its pre-
sent meaning of a rectangular array of numbers from
which determinants may be formed. Together with
Arthur Cayley, he founded the theory of invariants. Hot-
headed and vociferous in opposition of anti-Semitism,
he was thrown out of the University of London for
threatening another student with a table knife. Later he
studied at Cambridge, emerging as Second Wrangler but
without a degree (though in 1871 he earned an MA)
because, as a Jew, he refused to accept the articles of the
Church of England. After a spell working as an actuary
and a barrister, and also taking private pupils (one of
whom was Flor-ence Nightingale), he met Cayley, with
whom he forged a lifelong friendship and collaboration,
and returned to mathematics. He became professor of
mathematics at the Royal Military Academy at Woolwich
(1855–1870) and at the newly established Johns Hopkins
University at Baltimore (1877–1883), founding the Amer-
ican Journal of Mathematics, before accepting the Savilian
chair at Oxford (1883–1894). Remarkably, especially in
the field of mathematics, he produced an extraordinary
flood of ideas well into his old age. At 82, he worked out
the theory of compound partitions. He also published on
the roots of quintic equations and on number theory.
His partnership with Cayley worked perfectly, since Cay-
ley supplied the rigor which the brilliantly creative
Sylvester lacked.

Sylvester’s problem of collinear points
A problem posed in 1893 by James Sylvester who wrote:
“Prove that it is not possible to arrange any finite number

of real points so that a right line through every two of
them shall pass through a third, unless they all lie in the
same right line.” No correct proof was forthcoming at the
time, but the problem was revived by Paul Erdös in 1943
and correctly solved by T. Grünwald in 1944.

symmedian
Reflection of a median of a triangle about the corre-
sponding angle bisector.

symmetric group
The group of all permutations of a finite set. The sym-
metric group of a set of size n is denoted Sn and has n! ele-
ments.

symmetry
An intrinsic property of a mathematical object that
allows it to remain unchanged under certain types of
transformation, such as rotation, reflection, or more
abstract operations. The mathematical study of symme-
try is systematized and formalized in the extremely pow-
erful subject known as group theory. Symmetries and
apparent symmetries in the laws of nature have played a
part in the construction of physical theories since the
time of Galileo and Newton. The most familiar symme-
tries are spatial or geometric ones. In a snowflake, for
example, the presence of a symmetrical pattern can be
detected at a glance. One of the most remarkable devel-
opments of the past half century has been the emergence
of symmetry as a central theme of subatomic physics.
This came about through a series of subtle evolutions in
the concept of symmetry itself. Many researchers believe
that this evolutionary process has not come to an end,
and that further meaning of the concept of symmetry,
with perhaps new mathematical structures, will develop
in the coming years.

symmetry group
The group formed by the set of all rigid motions (trans-
lations, rotations, reflections, etc.) of Euclidean space
that map all points of a subset F into F.

system
Something that can be studied as a whole. Systems may
consist of subsystems that are interesting in their own
right. Or they may exist in an environment that consists
of other similar systems. Systems are generally under-
stood to have an internal state, inputs from an environ-
ment, and methods for manipulating the environment or
themselves. Since cause and effect can flow in both direc-
tions of a system and environment, interesting systems
often possess feedback, which is self-referential in the
strongest case.
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Szilassi polyhedron
A toroidal heptahedron (seven-sided polyhedron) first
described in 1977 by the Hungarian mathematician Lajos
Szilassi. It has 7 faces, 14 vertices, 21 edges, and 1 hole.
The Szilassi polyhedron is the dual of the Császár poly-
hedron and, like it, shares with the tetrahedron the

property that each of its faces touches all the other faces.
Whereas a tetrahedron demonstrates that four colors are
necessary for a map on a surface topologically equivalent
to a sphere, the Szilassi and Császár polyhedra show that
seven colors are necessary for a map on a surface topo-
logically equivalent to a torus.



tachyon
A hypothetical particle that travels faster than the speed
of light. Tachyons were first proposed in prerelativistic
times by the physicist Arnold Sommerfeld and named in
the 1960s by Gerald Feinberg from the Greek tachys
meaning “swift.” By extension of this terminology, parti-
cles that travel slower than light are called tardyons (or
bradyons in more modern usage) and particles, such as
photons, that travel exactly at the speed of light are called
luxons. The existence of tachyons is allowed by the math-
ematics of special relativity theory, one of the basic
equations of which is

E = m/!(1 − v 2"/c 2)"

where E is the mass-energy of a particle, m its rest mass,
v its velocity, and c the speed of light. This shows that
for tardyons (particles of ordinary matter), E increases
as v increases and becomes infinite when v = c, thus pre-
venting an initially slower-than-light particle from being
accelerated up to the speed of light and beyond. What
about a particle for which v is always greater than c? In
this case, v 2/c 2

> 1, so that the denominator in the equa-
tion above is an imaginary number—the square root of
a negative real number. If m has a real value, E is imagi-
nary, which is hard for physicists to swallow because E
is a measurable quantity. If m takes an imaginary value,
however (because one imaginary number divided by
another is real), then E is real. Tachyons are allowed,
therefore, providing (a) they never cross from one side
of the light-barrier to the other, and (b) they have an
imaginary rest mass (which is physically more accept-
able, since the rest mass of an object that never stops
isn’t directly measurable). Tachyons would slow down if
they lost energy, and accelerate if they gained energy.
This leads to a problem in the case of charged tachyons
because charged particles that move faster than the
speed of light in the surrounding medium give off
energy in the form of Cherenkov radiation. Charged
tachyons would continuously lose energy, even in a vac-
uum, through Cherenkov emission. This would cause
them to gain speed, thus lose energy at an even greater
rate, thus accelerate even more, and so on, leading to a
runaway reaction and the release of an arbitrarily large
amount of energy.

More worrisome, as the physicist Gregory Benford
and his colleagues first pointed out in their 1970 paper

“The Tachyonic Antitelephone,” tachyons seem to lead
to a time travel paradox because of their ability to send
messages into the past. Suppose Alice on Earth and
Boole on a planet circling around Sirius can communi-
cate using what has been called a tachyon “antitele-
phone.” They agree in advance that when Boole receives
a message from Alice, he will reply immediately. Alice
promises to send a message to Boole at noon her time, if
and only if she has not received a message from Boole
by 10 A.M. The snag is that both messages, being super-
luminal, travel back in time. If Alice sends her message
at noon, Boole’s reply could reach her before 10 A.M.
“Then,” as Benford and colleagues wrote, “the exchange
of messages will take place if and only if it does not take
place. . . .” Perhaps not surprisingly, despite numerous
searches, no tachyon detection has so far been con-
firmed. The same is true of another hypothetical faster-
than-light particle called a dybbuk (Hebrew for a “roving
spirit”), which would have imaginary mass, energy, and
momentum. Dybbuks, proposed by Raymond Fox of
the Israel Institute of Technology, have properties even
stranger than those of tachyons yet, interestingly, they
avoid the causality problem that affects their superlumi-
nal cousins.

TacTix
A two-player game of strategy, devised by Piet Hein, that
is essentially a two-dimensional version of Nim. Though
the game is nontrivial, the first player can always win, at
least in the 5 × 5 matrix version by choosing the center
piece and symmetrically mirroring the second player’s
moves. On a 5 × 5 grid, players alternate taking away as
many contiguous pieces as desired from a single row or
column.

Tafl game
A type of board game in which the contest is between
two forces of unequal number or strength. The earliest
form of Tafl (old Norse for “table”), known as Hnefa-
Tafl (“king’s table”), originated in Scandinavia before
A.D. 400 and was then exported by the Vikings to Green-
land, Iceland (where it is mentioned in the Grettis Saga
dating back to A.D. 1300), Ireland, England, Wales, and
as far east as the Ukraine. Several boards unearthed 
in both Viking and Anglo-Saxon contexts, including 
the board found at the Gokstad ship burial, have had

T
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Hnefa-Tafl on one side and nine men’s morris on the
other. Later variants of Tafl include Tabula (the medi-
eval ancestor of backgammon, introduced from the
French as Quatre and thus Kvatru-Tafl ), fox and geese
(Ref-Skak, “fox chess”, Hala-Tafl or Freys-Tafl ), three
men’s morris (Hrœ-Tafl, “Quick-Tafl”), and nine men’s
morris.

Tait, Peter Guthrie (1831–1901)
A Scottish scientist and mathematician who carried out
the world’s first systematic investigation of knot theory.
Early in his career he formed a friendship with William
Hamilton and became fascinated in the application of
Hamilton’s quaternions to problems in physics. In
1857, he also took an interest in Hermann Helmholtz’s
theories on the behavior of vortex rings, and began
experimenting with smoke rings and their interactions.
These experiments greatly impressed William Thomson
(Lord Kelvin) who saw in them a possible way (wrong,
as we now know) to explain atomic structure and the
buildup of different elements. This idea, in turn, led
Tait, Thomson, and James Maxwell to do seminal work
on knot theory, since the basic building blocks in
Thomson’s vortex atom model were rings knotted in
three dimensions. Without any rigorous theory, which
would have been well beyond nineteenth-century math-
ematics, Tait began to classify knots using his geometric
intuition. By 1877 he had classified all knots with seven
crossings. He then went on to consider the coloring of
graphs and put forward a hypothesis (see Tait’s conjec-
ture) that, if true (which it wasn’t), would have proved
the four-color map problem. Among his many other
accomplishments, Tait wrote a classic paper on the tra-
jectory of golf balls (1896). This was a subject close to
his heart because the third of his four sons was Freder-
ick Gutherie Tait, the leading amateur golfer in 1893
and winner of the Open Golf Championship in 1896
and 1898.

Tait’s conjecture
A hypothesis put forward by Peter Tait in 1884, which
says that every polyhedron has a Hamilton circuit
through its vertices. In other words, it is possible to travel
around all the edges of a polyhedron, passing through
each vertex (corner) exactly once and arriving back at 
the starting point. If true, Tait’s conjecture would have
provided an immediate proof of the four color map
problem. However, in 1946, the British mathematician
William Tutte (1917–2002), whose work at Bletchley Park
on cracking the German FISH cipher played an important
role in World War II, found a counterexample to the con-
jecture in the form of a polygon with 25 faces, 69 edges,
and 46 vertices.

tally
To count or keep score. In the past this was often done by
making marks on a stick; the word comes from the Latin
talea meaning “one who cuts,” which is also the root of
tailor. The oldest known tally stick is thought to be the
Lebombo bone dating back about 37,000 years. Until
around 1828 British tax records were kept on wooden
tally sticks. When the system was finally abandoned, the
government was left with a mountain of wood which, in
1834, it decided to dispose of by having a giant bonfire.
So successful was that blaze that it also burned down the
parliament buildings. What Guy Fawkes had failed to do
with dynamite, the Exchequer did with tally sticks!

tangent
(1) A straight line that touches a given curve exactly once,
at a given point. (2) In a right triangle, if one of the angles
is θ, then the tangent of θ is the ratio of lengths of the
side opposite θ to the side next to θ. See also trigono-
metric function.

tangle
A system in which a strange loop appears.

tangled graph
A graph in 3-dimensional space; equivalently, a graph
drawn in the plane so that when edges cross, one edge
goes over the other.

Tangloids
A mathematical game for two players devised by Piet Hein
to model the calculus of spinors. Two flat blocks of wood
each pierced with three tiny holes are joined with three
parallel strings. Each player holds one of the blocks of
wood. The first player holds one block of wood still, while
the other player rotates the other block of wood around
any axis for 4π radians (two full revolutions). Then the first
player tries to untangle the strings without rotating either
piece of wood. Only translations (sliding the pieces) are
allowed. Afterward, the players reverse roles; whoever can
untangle the strings fastest is the winner.

tangrams
A puzzle of Chinese origin, the objective of which is to
form given shapes using a set of seven pieces (five trian-
gles of various sizes, one square, and one parallelogram)
that come from slicing up a square. The produced shape
has to contain all the pieces, which mustn’t overlap. Tan-
grams became popular in England around the middle of
the nineteenth century, having been brought back by
sailors from Hong Kong. It received a further boost when
Lewis Carroll used the pieces to create illustrations of the
characters in the Alice books. The origin of the name
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tangrams The seven tangrams. Kadon Enterprises, Inc., www.gamepuzzles.com

tangrams A tangram menagerie built up from the seven simple shapes.
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isn’t certain. One theory is that it comes from the Can-
tonese word for chin. A second is that it stems from a
mispronunciation of a Chinese term that the sailors used
for the ladies of the night from whom they learned the
game! A third suggestion is that it is from the archaic
Chinese root for seven, which still persists in the Tan-
abata festival held on July 7 in Japan. The first definitive
appearance of tangrams in the Far East seems to be in
Japan in the early eighteenth century; by around 1805 it
had become a fad in both China and Europe. The locu-
lus of Archimedes is a similar game and it has been sug-
gested, though without evidence, that this was a direct
precursor of tangrams, having been transmitted to the
East via Arab sources.[93, 265]

Tarry, Gaston (1843–1913)
A French civil servant and amateur mathematician who
spent the whole of his working career in Algeria. He pub-
lished numerous articles on geometry, number theory,
and magic squares from 1882 until his death, and is best
known for his contribution to Euler’s thirty-six officers
problem. He also published an algorithm for exploring
mazes that is named after him.

Tarski, Alfred (1902–1983)
A Polish-American mathematician who, along with Aris-
totle, Friedrich Frege, and Kurt Gödel is considered one
of the greatest logicians of all time and certainly the
most prolific: his collected works, excluding books, runs
to 2,500 pages. Tarski made important contributions in
many areas of mathematics, including set theory, topol-
ogy, algebraic logic, and metamathematics. His most
important contribution to logic is the semantic method—a
technique that allows a more exacting study of formal
scientific languages.

Tartaglia, Niccoló Fontana (1499–1557)
An Italian mathematician who, along with Girolamo
Cardano, discovered the algebraic solution of the cubic.
He was also a well-known inventor of mathematical
recreations. He devised many arithmetical problems, and
contributed especially to measuring and weighing puz-
zles and to river-crossing problems. Although his real
name was Niccoló Fontana, he is always referred to as
Tartaglia, “the stammerer.”

tautochrone problem
Find the curve down which an object can slide from any
point to the bottom (accelerated by gravity and ignoring
friction), always in the same length of time. Tautochrone
comes from the Greek tauto for “the same” (which also
gives us tautology) and chronos for “time.” The solution,
first found by Christiaan Huygens and published in his

Horologium oscillatorium (1673), is a cycloid. Thus, if you
were to upturn a cycloid, in the manner of an inverted
arch, and then release a marble from any point on it, it
would take exactly the same time to reach the bottom, no
matter where on the curve you started. Huygens used his
discovery to design a more accurate pendulum—one with
curved jaws from the point of support that forced the
string to follow the right curve no matter how large or
small the swing. The cycloid’s unique property is men-
tioned in the following passage from Herman Melville’s
Moby Dick: “[The try-pot] is also a place for profound
mathematical meditation. It was in the left-hand try-pot
of the Pequod, with the soapstone diligently circling
round me, that I was first indirectly struck by the remark-
able fact, that in geometry all bodies gliding along a
cycloid, my soapstone, for example, will descend from
any point in precisely the same time.” The cycloid is also
the curve that answers the brachistochrone problem.

tautology
In mathematics, a logical statement in which the conclu-
sion is equivalent to the premise. According to the school
of thought known as logicism, all of mathematics is
derived from logic and is thus inherently tautological.
Tautology is also the needless, pointless, meaningless,
and unwarranted repetition of words and phrases that
mean the same thing. Examples are to be found in the
previous sentence and the next one. Have a slice of pizza
(pizza is Italian for “slice”) and spin the roulette wheel
(roulette is French for “little wheel”).

ten
The base of our familiar number system, which stems
directly from the fact that we have 10 fingers on which to
count. Ten is the only triangular number that is a sum of
consecutive odd squares (10 = 12

+ 32) and the only com-
posite integer such that all of its positive integer divisors
other than 1 are of the form x 2

+ 1 (2 = 12
+ 1, 5 = 22

+ 1,
10 = 32

+ 1). Strange but true: the life span of a taste bud
is 10 days.

tensor
A generalization of the concept of a vector. A scalar is a
tensor of rank zero and a vector is a tensor of rank one.
There are tensors of rank two, three, and so on, used
mainly in manipulating and transforming sets of equa-
tions within and between different coordinate systems. A
tensor of order n has n 2 components and is often best
thought of as an array of values that can be manipulated
like a matrix. To illustrate a tensor of rank two, imagine a
plane surface area with a force acting on it. The total effect
depends on two things: the magnitude and direction of
the force, and the size of the area and its orientation. In
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fact this latter property can be represented uniquely by a
vector of magnitude proportional to the size of the area,
and in a direction normal to the area. So the effect of the
force upon the surface depends on two vectors and is
equivalent to a tensor of rank two. Tensors were used by
Einstein in deriving his law of gravitation in general rela-
tivity theory.

tera-
Prefix for 1015, from the Greek pentakis for “five times.”

terminating decimal
A decimal fraction that comes to an end, as in 0.3 or
0.7194. All terminating decimals are rational numbers,
but not all rational numbers have terminating decimal
expansions. For example, 1⁄3 is rational, but its decimal
expansion goes on forever.

ternary
(1) Having the base three. (2) Involving three variables.
From the Latin ternarius (“three each”).

tessellation
See tiling.

tesseract
The four-dimensional analogue of a cube, also known as
a 4-space hypercube or an 8-cell. The name, possibly
coined by Charles Hinton, comes from tesser, meaning
“four,” and aktis, meaning “ray,” thus “four rays.” Just as
a cube is obtained by “thickening” a square in the third
dimension, which can be imagined as stacking infinitely
many infinitely thin sheets of paper, a tesseract is a cube
thickened in the fourth dimension. We can’t imagine
this because we can’t think four dimensionally but it is
possible to appreciate that just as perspectives of cubes
can be drawn on a 2-d surface, so real cubes can serve as
perspectives of tesseracts. A square drawn inside a larger
square with the vertices connected by lines is one way to
provide a perspective of a cube. Similarly, a hypercube is
sometimes portrayed as a small cube within a larger cube
with lines drawn from the vertices of the smaller cube to
the vertices of the larger cube. This kind of representa-
tion is a bit misleading, however, and reveals very little
of the nature of a tesseract. It doesn’t show, for instance,
how a tesseract can be subdivided into smaller 4-d blocks
in the same way that a cube can be divided into smaller
cubes, or a square into smaller squares. A more useful
way to think of a tesseract is as a folding, in the fourth
dimension, of a 3-d net of eight cubes, just as a cube is a
folding in the third dimension of a 2-d net of six squares.
Start with a stack of four cubes, with four more cubes

arranged in a cross around the second cube from the
top. A tesseract is made by folding (in the fourth dimen-
sion) so that the top face of the cube at the top of the
stack merges with the bottom face of the bottom cube,
and so that the adjacent edges of the cubes in the cross
join. (See table, “A Comparison of the Square, Cube,
and Tesseract.”)

A Comparison of the Square, Cube, and Tesseract

Vertices Edges Squares Cubes

Square 4 4 1 —

Cube 8 12 6 1

Tesseract 16 32 24 8

A tesseract is bounded by eight hyperplanes, each of
which intersects it to form a cube. Two cubes, and so
three squares, intersect at each edge. There are three
cubes meeting at every vertex, the vertex polyhedron of
which is a regular tetrahedron, leading to the Schläfli
symbol {4,3,3}. The distance between opposite corners
of a hypercube is twice the length of a side—much tidier
than the corresponding values of !2" for a square and
!3" for a cube.

If a cube is hung from one of its vertices and sliced
horizontally through its center, the result is a hexagon.
What if the same is done to a tesseract? The slice will
yield a 3-dimensional object—but what kind? The answer
is an octahedron. By analogy with the slice of the 3-cube,
the slice of the 4-cube must cut every “face.” The number
of faces of a 4-cube is eight and the only regular eight-
sided solid is an octahedron.

Tesseracts turn up in both art and literature. Salvador
Dali’s Christus Hypercubus shows Christ being crucified 
on a tesseract. In Robert Heinlein’s short story “And He
Built a Crooked House” (1940), a house built as a three-
dimensional projection of a tesseract collapses, or folds
up, to become a real tesseract—with unusual consequences
for the person trapped inside. The tesseract is also men-
tioned in Madeleine l’Engles children’s fantasy A Wrinkle
in Time as a way of introducing the concept of higher
dimensions.[161, 338]

tetragon
The less familiar name for what’s normally called a
quadrilateral.

tetrahedral number
A number that can be made by considering a tetrahedral
pattern of beads in three dimensions. For example, if a tri-
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angle of beads is made with three beads to a side, and on
top of this is placed a triangle with two beads to a side,
and on top of that a triangle with one bead to a side, the
result is a tetrahedron of beads. In this case the total num-
ber of beads is (third triangular number) + (second trian-
gular number) + (first triangular number) = 6 + 3 + 1 = 10.
In general the nth tetrahedral number is equal to the sum
of the first n triangular numbers. This is the same as the
fourth number from the left in the (n + 3)th row of Pas-
cal’s triangle. We can use the binomial formula for num-
bers in Pascal’s triangle to show that the nth tetrahedral
number is n + 2C3, or (n + 2)(n + 1)n/6. The only numbers
that are both tetrahedral and square are 4 (= 22

= T2) and
19,600 (= 1402

= T48).

tetrahedron
A four-sided polyhedron. A regular tetrahedron, one of
the Platonic solids, is a regular three-sided pyramid in
which the base-edges and side-edges are of equal length.
The projection of a regular tetrahedron can be an equi-
lateral triangle or a square. The centers of the faces of a
tetrahedron form another tetrahedron.

tetraktys
The sum 1 + 2 + 3 + 4 = 10 (the fourth triangular number),
held in reverence by the Pythagoreans (see Pythagoras of
Samos). The tetraktus, or “holy fourfoldness,” was taken
to represent the four elements: fire, water, air, and earth.

Tetris
A video and computer game, invented in 1985 by the
Russian Alexey Pajitnov, that has become one of the most
widely played games of all time. In 2002, computer scien-
tists Erik Demaine, Susan Hohenberger, and David Liben-
Nowell of the Massachusetts Institute of Technology
(MIT) analyzed the game to determine its computational
complexity and found it to be an NP-hard problem (one
that is immune to simple solution and instead demands
exhaustive analysis to work out the best way to be com-
pleted). Many people first played Tetris on the Nintendo
Gameboy handheld console but it has since become avail-
able for virtually every personal computer–based device.
The game gives the player the task of creating complete
lines from a series of regularly shaped blocks—tetrominos,
which are a type of polyomino—that advance steadily

tetrahedron Rosie’s pyramid puzzle, a vintage game that calls for four pieces to be assembled into a tetrahedron. Sue & Brian

Young/Mr. Puzzle Australia, www.mrpuzzle.com.au
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down a narrow grid. The blocks can be spun to make them
fit together better and complete lines. The game gets faster
as levels are completed, making it harder to spin and fit
blocks together fast enough to form lines. The MIT team
found that, subject to certain conditions, Tetris has much
in common with some of the knottiest mathematical
conundrums, including the traveling salesman problem.
Because Tetris is NP-hard, there is no easy way to maxi-
mize a score for the game, even when the sequence of
blocks is known in advance.

tetromino
A four-square polyomino.

theorem
A major mathematical proposition that has been proved
correct. More precisely, a statement in a formal system for
which there exists a proof. See also conjecture and lemma.

theory of everything
A unified theory of all fundamental forces and interac-
tions in nature; a grand unified theory that also includes
gravity or general relativity (see relativity theory).

Thiery figure
A classic ambiguous figure devised by the psychologist
A. Thiery in the late nineteenth century.

thirteen
The unluckiest of numbers if you happen to be supersti-
tious. This belief has a couple of historical roots. Accord-
ing to biblical tradition, there were 13 people at Christ’s
Last Supper, and Christ was crucified on a Friday the thir-
teenth. Further back in time, Alexander the Great decided
he wanted to be the thirteenth god alongside the 12 that
already stood for each month of the year, so he had a thir-
teenth statue built on the place of his capital. His death

Thiery figure
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shortly after gave the number a bad name. Many build-
ings don’t have a floor labeled 13 and many hotels will
have a room numbered 12A instead of 13. There is even a
name for a morbid fear of 13: triskaidekaphobia.

Fresh disasters involving the number hardly help
triskaidekaphobics overcome their affliction. The most
notorious of these involved the Apollo 13 Moon mis-
sion, which was launched on April 11, 1970 (the sum of
4, 11, and 70 equals 85, the digital sum of which is 13),
from Pad 39 (3 × 13) at 13:13 local time, and suffered an
explosion on April 13. (The astronauts did, however,
make it home safely, which could be considered good
luck.) There is always at least one Friday the thirteenth in
each year; in some years there are two, and rarely three
(e.g., 1998 and 2009). There were 13 original U.S.
colonies (hence the 13 stripes on the American flag) and
13 signers of the Declaration of Independence. In Japan,
the numbers 4 and 9 are considered unlucky, not because
13 can be represented as sum of these two perfect squares
but because of their pronunciation. In Japanese, four is
shi, which is pronounced the same as the word for death;
nine is ku, which sounds like the word for torture. And
speaking of torture, it was not unusual in times past for
bakers to come in for stiff punishment if they short-
changed their customers. In ancient Egypt, someone
found selling light loaves might end up with his ear
nailed to a doorpost, while in medieval Britain the pun-
ishment was likely to be a spell in the pillory. This led to
the custom of adding a thirteenth loaf to every batch of
12 to be on the safe side, and hence the expression “a
baker’s dozen.”

Mathematically, the reverse of the square of 13 is the
same as the square of the reverse of 13: 132

= 169; the
reverse of 169 is 961 and the reverse of 13 is 31; 312

=

961. Thirteen is the smallest prime number that can be
expressed as the sum of the squares of two prime num-
bers: 13 = 22

+ 32. Also the sum of all prime numbers up
to 13 (2 + 3 + 5 + 7 + 11 + 13) is equal to the thirteenth
prime number (41), and this is the largest such number.
On the anagrammatical front is this nice equation:

ELEVEN + TWO = TWELVE + ONE

See also dollar.

thirty colored cubes puzzle
A game devised in 1921 by Percy MacMahon, which
was marketed under the name “Mayblox.” It is played
with 30 cubes that have all possible permutations of six
different colors on their faces. A number of different
games can be played with the blocks. One is to choose
a cube at random and then choose seven other cubes to
make a 2 × 2 × 2 cube with the same arrangement of col-
ors for its faces as the first chosen cube. Each face of the

2 × 2 × 2 cube has to be a single color and the interior
faces have to match in color. After building one such
cube, only one other with the same properties can by
made from the remaining 22 cubes—the mirror image of
the first.

thirty-six officers problem
Arrange 36 officers in a 6 × 6 square so that one officer
from each of six regiments appears in each row and one
from each of six ranks appears in each column. This prob-
lem, first posed by Leonhard Euler in 1779, is equivalent
to finding two mutually orthogonal Latin squares of
order six. Euler correctly conjectured that there was no
solution; the search for a proof led to important devel-
opments in combinatorics.

Thompson, D’Arcy Wentworth (1860–1948)
A Scottish naturalist and polymath. Thompson held a
professorial chair at St. Andrews and Dundee, Scotland,
for the amazing period of 64 years, a record for tenure
unlikely ever to be broken. Although he wrote more than
300 scientific articles and books, his reputation is based
primarily on his efforts to reduce biological phenomena
to mathematics in his magnum opus On Growth and Form
(1917).[332] In this book, full of marvelous sketches of
such things as nautilus shells and honeycombs, Thomp-
son claimed that much about animals and plants could
be understood by the laws of physics, as mirrored in the

Thompson, D’Arcy Wentworth An illustration from Thomp-
son’s On Growth and Form: the shell of the radiolarian 
Aulastrum triceros.
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structures and patterns of mathematics. His most novel
idea was to show how mathematical functions could be
applied to the shape of one organism to continuously
transform it into other, physically similar organisms. One
memorable example is the squeezing and stretching of a
rectangular Cartesian grid that transforms the fish species
Scarus sp. to the species Pomacanthus. Thompson used the
same principle to transform skulls of baboons into those
of other primates, and to show how corresponding bones
like the shoulder blade are related in different species.
Doubtless, if he were alive today, he would be heavily
into “morphing”—the digital technique that allows a
computer to do exactly the same kind of transformation
of one object to another, but vastly more efficiently.
Thompson acquired a local reputation as a mild eccen-
tric; indeed, older inhabitants of St. Andrews still recall
seeing him strolling about town with a parrot on his
shoulder.

thousand
A number that, linguistically, comes from an extension
of “hundred” and has roots in the Germanic teue and
hundt. Teue refers to a thickening or swelling, and hundt is
the source of our present-day hundred. A thousand,
then, literally means a swollen or large hundred. The root
teue is the basis of such common words today as thigh,
thumb, tumor, and tuber. One thousand is the answer to
the question: If you were to spell out numbers, how far
would you have to go until you would find the letter “A”?
While Americans may say “Thanks a million” to express
gratitude, Norwegians offer “Thanks a thousand” (“tusen
takk”).

three

1 + 1 = 3, for large values of 1.
—Anonymous

The number of dimensions of space in which we live; three
is also the smallest odd prime number, the second trian-
gular number, and member of the Fibonacci sequence.
Three is often the number of repetitions in jokes and
children’s stories (for example, the tale of the Three Little
Pigs and of the number of chairs, beds, and porridge-
eating bears in Goldilocks), because it is the minimum
number needed to establish a pattern (such as a regular
tempo) or to convey the impression of an ongoing
sequence or succession. In the Christian tradition, three
plays a crucial role: Christ represents one third of the
Trinity (the Father, Son, and Holy Spirit), was visited by
the three wise men and, 33 years later, when Peter dis-
owned him three times, rose on the third day after the
crucifixion, having died at 3 P.M. Other things that come

in threes: musketeers, primary colors, wishes, blind mice,
bad luck, and London buses. See also Triangular Lodge
and tinner’s rabbits.

three-hat problem
See hat problem.

three men’s morris
An old game played on a 3 × 3 board that is thought to
be a direct ancestor of tic-tac-toe; it is known by many
other names, including nine holes, and is related to six
men’s morris and nine men’s morris. The game involves
two differently colored sets of four pieces (one set for
each player). Players take turns placing pieces on inter-
section points, and the first person to place three along a
line wins the game. The earliest known board for three
men’s morris was found on the roof of the temple in
Kurna, Egypt, dating back almost three and a half thou-
sand years. Its earliest known appearance in literature is
in Ovid’s Ars Amatoria. The Chinese are believed to have
played it under the name Luk tsut K’i during the time of
Confucius (c. 500 B.C.). Boards for three men’s morris
dating back to the thirteenth century can be found
carved into the cloister seats at the cathedrals at Canter-
bury, Gloucester, Norwich, and Salisbury, and at West-
minster Abbey.

three-body problem
The problem of determining the future positions and
velocities of three gravitational bodies. The problem was
proved unsolvable in the general case by Henri Poincaré,
which foreshadowed the importance of chaos. Although
no analytical solutions are possible in the worst case, a
numerical solution is sometimes sufficient for many tasks.

Thue-Morse constant
Also known as the parity constant, the number defined as
follows: Take a string of 1’s and 0’s and follow it by its
complement (the same string with 1’s switched to 0’s and
vice versa) to give a string twice as long. Repeat this
process forever (starting with 0 as the initial string) to get
the sequence 011010011001011010010110 . . . . Make
this a binary fraction, 0.0110100110010110 . . . 2, and re-
write it in base 10. The resulting transcendental number,
0.41245403364 . . . , is the Thue-Morse constant.

tic-tac-toe
Also known as noughts and crosses, and spelled in a vari-
ety of ways (such as ticktacktoe), this well-known pas-
time is not as ancient as popularly believed, though it
certainly has roots in older games. The earliest clear
description of the rules, but without a name, comes
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physics department, Thomas Fink and Yong Mao, de-
cided to see how many tie knots were actually possible.
To this end, they applied random walk theory—a tech-
nique useful for describing movement which, although
unpredictable in detail, reveals large-scale patterns. Such
patterns, the researchers realized, were essential to a suc-
cessfully accomplished tie-knot. For example, if the end
of the tie is moved to the right, its next move can’t be to
the right again—it has to be either to the left or to the cen-
ter. This means that each move made in tying a tie can
only be followed by one of two alternatives. Fink and
Mao found that the simplest possible knot involves just
three moves. They went on to discover 85 possible tie-
knots, including the four popular knots, six new knots
that they consider aesthetically pleasing, and two com-
plicated nine-move knots.[100]

tiling
Also called a tesselation, a collection of smaller shapes that
precisely covers a larger shape, without any gaps or over-
laps. Usually, the shape to be tiled is a flat plane but other
shapes and three-dimensional objects can be tiled, too. In
a game that involves tiling, certain conditions are applied;
for example, all the tiles may have to be identical, or they
may all have to be squares but every one of a different
size. It’s been known for some time that all simple regular
tilings in the plane belong to one of the 17 plane symme-
try groups known as wallpaper groups. All 17 of these
patterns are known to exist in the Alhambra palace. This
doesn’t exhaust the apparently simple problem of tiling
the plane: adding extra constraints or removing the
requirement for regularity leads to a large number of inter-
esting problems. These include alternating tilings, for exam-
ples of squares or dominoes, such that two tiles have a
side or a part of a side in common, or colored tilings, in
which no two adjacent tiles have the same color. Colored
tilings are also called colored maps. The most famous prob-
lem relating to colored tilings is the four-color map prob-
lem, which has been solved. Other problems involve
n-tesselations, in which each tile has an integral area and
for each natural number n there is exactly one tile with
area n. See also Penrose tiling, rep-tile, rectangle, squar-
ing the square, dissection, and packing.

time

Time is a great teacher. Unfortunately, it kills all its
pupils.

—Hector Berlioz (1803–1869)

One of the most familiar and yet mysterious proper-
ties of the universe. The “flow” of time is one of the
strongest impressions we have, yet it may simply be 

from Charles Babbage around 1820. Later on, Babbage
started to call the game tit tat to and by slight variants on
this, gave the first detailed analysis of it, and designed
the first robot to play it! He speculated that “[T]he
machine might consist of the figures of two children
playing against each other, accompanied by a lamb and
a cock. That the child who won the game might clap his
hands whilst the cock was crowing, after which, that the
child who was beaten might cry and wring his hands
whilst the lamb was bleating.”

His plan was to exhibit the machine in London to raise
money for his more serious projects, including the fabu-
lous Analytical Engine. However, on hearing that similar
devices, such as a mechanical composer of Latin verse,
had flopped financially he abandoned the scheme.

Two expert players of tic-tac-toe will always draw. In
other words, there is no winning strategy against an oppo-
nent who knows the game well. Nor is it difficult to
become unbeatable. Despite the fact that there are 9 × 8 ×

7 × 6 × 5 (= 15,120) possible layouts of noughts and
crosses for the first five moves alone, these reduce to just
a few basic patterns of play and counterplay that ensure
the canny contestant never loses. The game is only inter-
esting when at least one novice is involved. The strongest
opening play is in a corner because an unwary opponent
will be trapped unless her countermove is in the center.
By the same token, a center opening must be countered
by a corner response or the first player has an easy win. Of
course, a master player will not only never lose but will
learn his opponent’s weaknesses and exploit them in the
most devastating way.

The game also becomes more interesting when played
on a larger board and/or in more dimensions. An excep-
tion to this is the 3 × 3 × 3 cube which gives an easy win
to the first player; in fact, it cannot end in a draw because
the first player has 14 plays and it is impossible to make
all of these without scoring. The 4 × 4 × 4 cube is much
more interesting and is sold commercially as the well-
known Score Four game. For the ambitious, tic-tac-toe
can be played in four dimensions on a tesseract by sec-
tioning it into two-dimensional squares. Older, similar,
and mathematically more interesting relatives of tic-tac-
toe include nine men’s morris and Ovid’s game.

tie knots
How many ways can you tie a tie? For many years there
were just three styles of knot: the Four-in-Hand, the
Windsor, and the Half-Windsor. Then the Pratt was intro-
duced to the world on the cover of the New York Times in
1989. Intrigued that only one new knot had been added
to the tie-tying repertoire in more than half a century,
two researchers from the University of Cambridge’s
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an illusion or a product of the conscious mind. The 
very notion that time somehow moves leads to a logical
paradox because, as the Australian philosopher J. J. C.
Smart asked: “In what units is the rate of time flow to be
measured? Seconds per ?” John Dunne in his clas-
sic book An Experiment with Time, argued that the
human mind has the ability to rove back and forth
along the time line so that precognition is a physical
possibility. However his theory involves an infinite
regress of time and of the observer that is philosophi-
cally hard to swallow. All the same, it may be that the
apparent movement from past to present to future has
less to do with the universe at large than it has to do
with our individual subjective experience. In some way,
still to be fathomed, time, consciousness, free will, and
the individual are intimately entwined. In physics, by
contrast, time is treated no differently (with one impor-
tant exception, noted below) than space. It is simply
another dimension—another axis, or extension, of phys-
ical reality. Just as the various spatial dimensions pre-

vent everything from happening at a single point, so
time prevents everything from happening all at once. 
As one wag put it, “Time is just one damned thing 
after another!” In Einstein’s relativity theory, time is
effectively “spatialized” so that, instead of speaking 
of an absolute three-dimensional space and a separate
one-dimensional time, there is a four-dimensional
space-time continuum. So closely related are time and
space in relativity theory that time can be converted
into space and vice versa. In particular, different
observers may not agree on the distance or the duration
between any two events in space-time, but they will
always agree on the space-time interval. If the two points
events occur at (t, x, y, z) and (t + dt, x + dx, y + dy, z + dz),
then the (constant) space-time interval between them is
given by

s 2
= c 2(t2

2
− t1

2) − (x2
2

− x1
2) − (y2

2
− y1

2) − (z2
2

− z1
2).

But the time of relativity, like that of classical physics,
remains reversible.

tie knots The “St. Andrew”: one of several new tie knots recently discovered. Thomas Fink
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time complexity
A function that describes the amount of time required
for a program to run on a computer to perform a partic-
ular task. The function is parameterized by the length of
the program’s input.

time dilation
See relativity theory.

time-reversible
A property of dynamical systems that can be run unam-
biguously both forward and backward in time. The
Lorenz system, for example, is time-reversible.

time travel
Can we travel through time? Of course, we do it all the
time! But can we do it at a different rate than normal?
Again, the answer is “yes” because of the phenomenon
known as time dilation in Einstein’s relativity theory.
However, time dilation enables, even in principle, only
a limited kind of leap into the future—one from which
we cannot return to the present. Genuine time travel is

the ability to jump forward or backward through time at
a rate other than that of the ordinary progression of
events or that enabled by the relativistic time dilation
effect.

The possibility of traveling through time poses such a
threat to causality and opens the door to so many disturb-
ing paradoxes that many scientists feel inclined to dismiss
it out of hand. However, it has been a favorite theme of sci-
ence fiction since the 1880s. In The Time Machine (1895),
H. G. Wells gives a pleasant preamble about the nature of
the fourth dimension before whisking his hero 802,000
years into the future. Says the Time Traveller (we never
learn his real name), “[A]ny real body must have extension
in four directions: it must have Length, Breadth, Thick-
ness, and—Duration. There are really four dimensions,
three of which we call the three planes of Space, and a
fourth, Time. There is, however, a tendency to draw an
unreal distinction between the former three dimensions
and the latter, because it happens that our consciousness
moves intermittently in one direction along the latter from
the beginning to the end of our lives.”

Unfortunately for would-be chrononauts (an early ver-
sion of The Time Machine was called The Chronic Astro-
nauts), Wells is not specific about how his time traveling

time travel The game of Chrononauts, in which players must
resolve a series of paradoxes that threaten the time line. Looney

Labs, www.LooneyLabs.com

tiling A computer-generated periodic tiling. Jos Leys,

www.josleys.com
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device works, though we know that “Parts were of nickel,
parts of ivory, parts had certainly been filed or sawn out of
rock crystal.” In more recent times, physicists, speculating
on some of the more esoteric byways of relativity and
quantum mechanics, have been a little more forthcom-
ing about how time travel might be achieved in practice.
These speculations have variously involved wormholes
(shortcuts outside of normal space and time), faster-than-
light particles known as tachyons, and unusual cosmolog-
ical models, such as the Gödel universe, which allow
movement to any point in the future or the past. Let us
leave aside the practical aspects, however, and focus on
the logic of breaking the time barrier.

The various time travel possibilities dealt with in sci-
ence fiction fall into two broad categories. In the first the
timeline, from deepest past to darkest future, is frozen
and immutable, like a filmstrip. Any time traveling that
takes place is constrained by this preordained structure—
effectively, already written into the narrative of the
world (the “block universe” of Einsteinian physics)—and
is thus prevented from leading to paradoxes. In one vari-
ant of this scenario, the Novikov self-consistency principle
applies. Named after Igor Novikov, an astrophysicist at
Copenhagen University, this asserts that any attempt at
time travel that would lead to a paradox, such as the
grandfather paradox, is bound to fail even if the cause
of failure is an extremely improbable event. In other
words, try as you might to introduce a contradiction
into the timeline, like killing yourself or one of your
ancestors in the past, circumstances will always conspire
to prevent you. An excellent example of this type of uni-
verse is found in Robert L. Forward’s novel Timemaster.
Another variant on the fixed timeline concept is that any
event that appears to have caused a paradox has, in fact,
created a new timeline. The old timeline remains unal-
tered, and the time traveler becomes part of a new tem-
poral branch line. One difficulty with this arrangement
is that it might violate the principle of conservation of
mass-energy, unless the mechanics of time travel
demand that mass-energy be exchanged in precise bal-
ance between past and future at the moment of travel.
However, the concept of branching universes and alter-
native histories is not outrageous in physics where the
many worlds hypothesis and of Feynmann’s sum-over-
histories are routinely debated.

The second main type of time travel entertained in sci-
ence fiction assumes that the timeline is flexible and
changeable. This can lead to all sorts of mind-boggling
difficulties and contradictions. A way to offset some of
these problems is to stipulate that the timeline is very
resistant to change. In the extreme case, as writer Larry
Niven has argued, it may be a fundamental rule that in

any universe where time travel is allowed, no actual time
machine is ever invented. The English physicist and
mathematician Stephen Hawking put this idea on a more
formal footing with his chronology protection conjecture. On
the other hand if the timeline is presumed to be easily
changed, paradoxes threaten to spring up at every turn.
One of the most remarkable of these is the closed causal
curve paradox in which, it seems, something can be gotten
for nothing. Samuel Mines summarized the plot of his
1946 short story as follows:

A scientist builds a time machine, goes 500 years
into the future. He finds a statue of himself com-
memorating the first time traveler. He brings it back
to his own time and it is subsequently set up in his
honor. You see the catch here? It had to be set up in
his own time so that it would be there waiting for
him when he went into the future to find it. He had
to go into the future to bring it back so it could be
set up in his own time. Somewhere a piece of the
cycle is missing. When was the statue made?

Closed loops in time can also conjure knowledge out
of thin air. A man builds a time machine and travels into
the past to give the plans for the device to his younger
self who then builds the machine, travels into the past,
and so on. Where did the plans originate? A curious
thing about time loops is that they have no easily dis-
cernible future or past because all the events taking place
in them affect one another in a circular way. Time loops
also put a question mark over free will. What happens if
the younger man, given the time machine plans by his
older self, decides not to build the device? Can he make
that choice given that, in some sense, he has already built
it? Perhaps the apparent absence of time travelers and
time machines in the real world is a sign that we do not
have to worry about such issues—at least, for the present.

tinner’s rabbits
A name that has emerged recently to describe a pattern of
three rabbits or hares that has been found in many parts
of the world, including England and Wales, mainland
Europe, China, and Russia. It occurs, for example, on the
medieval roof bosses of some churches in Devon and
Cornwall and is thought to be connected with the local
tin-mining industry. One theory suggests the following
link: Tin is alloyed with copper to make bronze, copper
came from Cyprus (the words Cyprus and copper have the
same root), Cyprus is the island of the goddess Venus or
Aphrodite (she was born there), rabbits are symbols of
Venus. Three intertwined fishes are a common Christian
symbol, so the three rabbits may also have stood for the
Trinity.
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Tippee Top
Also known as a Tippy Top, a type of top, patented in
Britain in 1953, that consists of a peg with a ball-shaped
body. If the top is spun quickly on the rounded body,
with the peg pointing upward, it flips itself over and spins
on its peg. Crucial to this counterintuitive behavior is the
shape of the body, which is smooth and spheroidal with
no sharp point. After release, the top, like tops of every
description, begins to show precession, that is, its axis of
rotation moves in a small circle. After a while, the contact
point of the top with the table no longer coincides with
the rotation axis but instead moves to other points of the
top’s head. Due to frictional forces and precession, the
top seeks a more stable position, which it finds by flip-
ping on to its stalk. See also celt.

Titchener illusion
Also known as the Ebbinghaus size illusion, a well-known
distortion illusion. Two circles are surrounded by either
six big circles or six small circles. Despite appearances,
the two center circles are exactly the same size.

Toeplitz matrix
A matrix in which all the elements are the same along
any diagonal that slopes from northwest to southeast.

topological group
Also called a continuous group, a set that has both the
structure of a group and of a topological space in such a
way that the operations defining the group structure give
continuous maps in the topological structure. Many
groups of matrices (see matrix) give topological groups.

topological dimension
An integer that defines the number of coordinates
needed to specify a given point of an object of set X. A
single point, therefore, has a topological dimension equal
to zero; a curve has dimension one, a surface has dimen-
sion two, and so on.

topological space
A type of generalized mathematical space in which the
idea of closeness, or limits, is described in terms of rela-
tionships between sets rather than in terms of distance.
Every topological space consists of: (1) a set of points; (2)
a class of subsets defined axiomatically as open sets; and
(3) the set operations of union and intersection.

topology
The study of those properties of mathematical objects
that remain unaffected by smooth deformations, such as
stretching and squeezing, but that don’t involve tearing.

The word comes from the Greek topos for “place,” and
was introduced into English by Solomon Lefschetz in the
late 1920s. A topologist has been described as someone
who doesn’t know the difference between a doughnut
and a coffee cup. Substitute “care about” for “know” and
this becomes more accurate. Imagine a donut made of
soft clay. A potter can easily shape this into a cup with a
handle without removing or creating any new holes.
Both shapes, in topology, are said to be genus 1—objects
with a single hole. A sphere, by contrast, is genus 0 (no
holes), while an eyeglass frame, with the lenses removed,
is genus 2. For more on topologically intriguing struc-
tures, see Möbius band and Klein bottle.

Titchener illusion The center circles are the same size.
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torus
A doughnut, bagel, or inner-tube shape; the word comes
from the Latin for “bulge” and was first used to describe
the molding around the base of a column. One way to
think of a torus is as a surface of revolution obtained by
rotating a circle around an axis that lies in the plane of
the circle but doesn’t intersect the circle. In the general
case, where the shape being so rotated is any closed plane
curve, the resulting surface is called a toroid. Although the
usual torus in three-dimensional space is shaped like a
doughnut, the concept of the torus is extremely useful in
higher dimensional space as well.

tour
A sequence of moves by a chess piece on a chessboard in
which each square of the board is visited exactly once.
See also knight’s tour and magic tour.

Tower of Brahma
A romantic legend manufactured by Edouard Lucas as
an accompaniment to the popular game he invented, the
Tower of Hanoi. According to the tale of the Tower of
Brahma, in the Indian city of Benares, beneath a dome
that marked the center of the world, is to be found a brass
plate in which are set three diamond needles, “each a
cubit high and as thick as the body of a bee.” Brahma
placed 64 disks of pure gold on one of these needles at
the time of Creation. Each disk is a different size, and
each is placed so that it rests on top of another disk of
greater size, with the largest resting on the brass plate at
the bottom and the smallest at the top. Within the tem-
ple are priests whose job it is to transfer all the gold disks
from their original needle to one of the others, without
ever moving more than one disk at a time. No priest can
ever place any disk on top of a smaller one, or anywhere

torus Inside the torus of an experimental nuclear fusion reactor. Joint European Torus
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else except on one of the needles. When the task is done,
and all 64 disks have been successfully transferred to
another needle, “tower, temple, and Brahmins alike will
crumble into dust, and with a thunder-clap the world will
vanish.” The prediction (thunder-clap aside) seems fairly
safe given that the number of steps required to transfer all
the disks is 264

− 1, which is approximately 1.8447 × 1019.
Assuming one second per move, this would take about
five times longer than the current age of the universe!
Interestingly, 264

− 1 is also the answer to the wheat and
chessboard problem.

Tower of Hanoi
A game invented by Edouard Lucas and sold as a toy in
1883. Early versions of it carried the name “Prof. Claus”
of the College of “Li-Sou-Stain,” but these were quickly
discovered to be anagrams for “Prof. Lucas” of the Col-
lege of “Saint Louis.” The game, in its usual form, con-
sists of three pegs on one of which are eight disks, stacked
from largest to smallest. The problem is to transfer the
tower to either of the vacant pegs in the fewest possible
moves, by moving one disk at a time and never placing

any disk on top of a smaller one. The minimum number
of moves turns out to be 2n

− 1, where n is the number of
disks; this equals 255 in the case of eight disks. The orig-
inal toy came with a description saying that it was a small
version of the great Tower of Brahma.[257]

T-puzzle
A surprisingly difficult puzzle, given that there are only
four pieces; it dates back to the start of the twentieth cen-
tury. Photocopy and cut out the four pieces shown in the
figure on the following page, and then try to arrange
them to make the symmetric capital T. You are allowed to
rotate the pieces as you wish and even turn them over,
but they mustn’t overlap in the final letter. In fact two dif-
ferent symmetric capital T letters can be made from the
pieces. Also, two other symmetric shapes can be formed
from the set, including an isosceles trapezoid. Can you
find all of these?

trace
The sum of the terms along the main diagonal of a
matrix.

Tower of Hanoi A vintage version of the  game called Pyramids, manufactured by Knapp Electric, Inc., of New York. Sue & Brian

Young/Mr. Puzzle Australia, www.mrpuzzle.com.au
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tractrix
A curve, sometimes called the trajectory curve or equitan-
gential curve, that is the answer to a question asked by the
Frenchman Claude Perrault (1613–1688). Perrault is not a
giant in the annals of mathematics; in fact, he trained as
a doctor and gained a minor reputation as an architect
and an anatomist before dying in unusual style as a result
of an infection he caught while dissecting a camel. His
greatest claim to fame, aside from his connection with

the tractrix, is that he was the brother of the author of
“Cinderella” and “Puss-in-Boots.”

In 1676, at about the time Gottfried Leibniz was doing
groundbreaking work on the calculus, Perrault placed his
pocket watch on the middle of a table, pulled the end of
its chain along the edge of the table, and asked: What is
the shape of the curve traced by the watch? The first
known solution was given in a letter to a friend in 1693
by Christiaan Huygens, who also coined the name “trac-
trix” from the Latin tractus for something that is pulled
along. (The corresponding German name is hundkurve, or
“hound curve,” which makes sense if you imagine the
path a dog might follow on its leash as its master walks
away.) The tractrix can also be found by taking the invo-
lute of a catenary. (Imagine a horizontal bar held at the
vertex of the catenary and the point of contact marked as
P. When the bar is rolled against the catenary without
slipping, the path of P is a tractrix.) It is described by the
parametric equations: x = 1/cosh(t), y = t − tanh(t). The
surface of revolution of the tractrix is the pseudo-
sphere, which is the classic model for hyperbolic geom-
etry and one possible three-dimensional analog for the
shape of the four-dimensional space-time in which we
live.

T-puzzle The pieces of the T-puzzle. Kadon Enterprises, Inc., www.puzzlegames.com

tractrix © Jan Wassenaar, www.2dcurves.com
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trajectory
(1) The path of a projectile or other moving body
through space. (2) A curve that intersects all curves of a
given family at the same angles; if the intersection is at a
right angle, this is an orthogonal trajectory. (3) The path
through phase space taken by a system.

transcendental number
A number that can’t be expressed as the root of a poly-
nomial equation with integer coefficients. Transcenden-
tal numbers are one of the two types of irrational
number, the other being algebraic numbers. Their exis-
tence was proved in 1844 by the French mathematician
Joseph Liouville (1809–1882). Although transcenden-
tals make up the vast majority of real numbers, it is
often surprisingly hard, and may even be impossible, to
tell whether a certain number is transcendental or alge-
braic. For example it is known that both pi (π) and e are
transcendental and also that at least one of π + e and π

× e must be transcendental, but it is not known which.
It is also known that eπ is transcendental. This follows
from the Gelfond-Schneider theorem, which says that if a
and b are algebraic, a is not 0 or 1, and b is not rational,
then ab is transcendental. Using Euler’s formula, eiπ

= −

1, and taking both sides to the power −i gives (−1)−i
=

(eiπ)−i
= eπ. Since the theorem tells us that the left-hand

side is transcendental, it follows that the right-hand side
is too. (It also follows that e × π and e + π are not both
algebraic, because if they were, then the equation x 2

+

x(e + π) + eπ = 0 would have roots e and π, making both
numbers algebraic.) But although it is known that eπ is
transcendental, the status of ee, π

e, and ππ remains uncer-
tain.

transfinite number
Any of the infinite ordinal numbers first described by
Georg Cantor.

transformation
In geometry, a change to an object due to a process such
as rotation, reflection, enlargement, or translation. In
algebra, a transformation is the action of a function; in
other words, what happens when there is a one-to-one
mapping between sets of objects.

translation
Any transformation that takes the form of a constant
offset with no rotation or distortion.

transpose
An operation that flips a matrix about the main diagonal.

transposition cipher
A cipher that encodes a message by reordering the
plaintext. The receiver decodes the message using the
inverse transposition. A simple kind of transposition
cipher writes the message in a rectangle by rows, for
example:

Asimplekin

doftranspo

sitionciph

erwritesth

emessagein

toarectang

lebyrowsan

dreadsitou

tbycolumns

and reads it by columns: 

Adsee tldts oirmo erbif tweab eymti rsrya cproi
serdo lanta cosle ncegt wiuks iseas tmipp tinao
nnohh ngnus.

This type of cipher can be made more difficult to crack
by permuting the rows and columns. See also substitu-
tion cipher.

transversal
A line that cuts across parallel lines, intersecting each of
them.

trapezoid
A quadrilateral with one pair of parallel sides; in Britain
this shape is known as a trapezium. If the parallel sides
are of length a and b, and h is the perpendicular distance
between them, then the area of the trapezoid is given by
A = 1⁄2(a + b)h.

trapezium
The American definition of a trapezium is a quadrilat-
eral with no parallel sides. The British definition is equiv-
alent to that of a trapezoid.

traveling salesman problem
Given a number n of cities, along with the cost of travel
between each pair of them, find the cheapest way of visit-
ing all the cities and returning to the starting point. This is
equivalent to finding the Hamilton circuit of minimum
weight in a weighted complete graph. Mathematical
problems related to the traveling salesman problem (TSP)
were treated in the nineteenth century by William Hamil-
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ton, for example in his Icosian game, and by Thomas
Kirkman. The general form of the TSP appears to be have
been first studied by mathematicians in the 1930s,
notably by Karl Menger in Vienna and Harvard, and later
promoted by Hassler Whitney and Merrill Flood at
Princeton. It has become a classic challenge to computer
scientists seeking fast algorithms to complex problems.
An approximate solution to the TSP for 15,112 cities,
towns, and villages in Germany was found in 2001 by
Princeton researchers using 110 computer processors and
the equivalent of more than five years computer time on
a 2 GHz machine.

tree
A graph with the property that there is a unique path
from any vertex to any other vertex traveling along the
edges.

trefoil curve
The plane curve given by the equation

x 4
+ x 2y 2

+ y 4
= x(x 2

− y 2).

triangle
A three-sided polygon. The sum of the interior angles of
a triangle is always 180°, unless the triangle is drawn in a
non-Euclidean geometry. Triangles can be classified
either by their angles, as acute, obtuse, or right; or by
their sides, as scalene (all different), isosceles (two the
same), or equilateral (all equal).

Triangular Lodge
One of the few triangular buildings in England; it was
built by Sir Thomas Tresham in about 1595 at Rushton,
Northamptonshire. Tresham was a Catholic (spending
some 15 years in prison because of this) and also a mys-
tic numerologist. The whole design of the Lodge is
based on the number three, which Tresham saw con-
nected with his own surname and as an expression of
his faith in the Christian Trinity. The Lodge’s ground
plan is a perfect equilateral triangle, each side 33 feet
long—by tradition, the age of Christ at his death. The
building has three floors, each floor has three windows,
and each window is a three-fold trefoil. There are three
gables and three gargoyles on each side. Even the cen-
tral chimney is three-sided. The inscriptions all have 33
letters. Other buildings with a three-sided equilateral
theme in Europe include a triangular castle at Grip-
sholm in Sweden and part of the Chateau de Chantilly
in France, which is based on an equilateral plan of
gigantic scale.

triangular number
Any number that can be represented by a triangular
array of dots: 1, 3, 6, 10, . . . . The nth triangular num-
ber is n(n + 1)/2. Every integer is the sum of at most
three triangular numbers. Every triangular number is a
perfect number. If T is a triangular number, 8T + 1 is
a perfect square and 9T + 1 is another triangular num-
ber. The square of the nth triangular number is equal to
the sum of the first n cubes. Certain triangular numbers

trefoil curve
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are also squares, but no triangular number can be a
third, fourth, or fifth power, nor can one end in 2, 4, 7,
or 9.

triangulation
A tiling of some object such as a manifold by simplices
(see simplex).

tribar illusion
See Penrose triangle.

tricuspoid
See deltoid.

trident of Newton
A curve investigated and named “trident” by Isaac New-
ton as part of his systematic study of cubic equations.
René Descartes also studied it and it is sometimes called
the parabola of Descartes, although it isn’t a parabola. It
has the Cartesian equation

xy = cx3
+ dx2

+ ex + f.

trifolium
See rose curve.

trigonometric curve
Any of the curves produced when a trigonometric func-
tion is graphed.

trigonometric function
Any of the functions sine (sin), cosine (cos), tangent (tan),
secant (sec), cosecant (cosec), or cotangent (cot), or their
inverses, sin−1, etc, which deal with certain proportions in
right triangles. For example, the sine of an angle θ, sin θ,
in a right triangle, is equal to the side opposite the angle
divided by the hypotenuse (the longest side). Similarly cos
is adjacent over hypotenuse and tan is opposite over adja-
cent. Sec, cosec, and cot are the multiplicative inverses of
cos, sin, and tan, respectively: sec θ = 1/cos θ, and so forth.
These are not the same as the inverse functions cos−1, sin−1,
and tan−1, which are also known as arccos, arcsin, and arc-
tan. Graphs of trigonometric functions produce trigono-
metric curves.

trigonometry
The branch of mathematics that deals with the relation-
ships between the sides and the angles of triangles and
the calculations based on them, particularly the trigono-
metric functions. Sherlock Holmes relies on a little
trigonometry to solve a 250-year-old mystery known as
the Musgrave Ritual (in a short story of the same name)—
an enigmatic series of clues that refers to the shadow of

an elm tree when the sun is just visible at the top of a
nearby oak to point toward buried treasure. The great
detective recalls to Watson his conversation with Regi-
nald Musgrave:

“Have you any old elms?” . . .
“There used to be a very old one over yonder, but

it was struck by lightening ten years ago, and we cut
down the stump.”

“You can see where it used to be?”
“Oh, yes.” . . .
“I suppose it is impossible to find out how high

the elm was?”
“I can give it to you at once. It was sixty-four

feet. . . . When my old tutor used to give me an exer-
cise in trigonometry, it always took the shape of
measuring heights.” . . .

I went with Musgrave to his study and whittled
myself this peg, to which I tied this long string with
a knot at each yard. Then I took two lengths of a
fishing-rod, which came to just six feet. . . . The sun
was just grazing the top of the oak. I fastened the rod
on end, marked out the direction of the shadow. . . .
It was nine feet in length. Of course, the calculation
was now a simple one. If a rod of six feet threw a
shadow of nine, a tree of sixty-four feet would throw
one of ninety-six. . . . I measured out the distance . . .
and I thrust a peg into the spot.

trillion
In American and general usage, a million million—
1,000,000,000,000 or 1012. A European trillion is a mil-
lion times larger than this, or 1018. Counting one number
every second, 24 hours a day, it would take 31,688 years
to reach one (American) trillion. The first trillion-dollar
lawsuit ($116 trillion) was filed in August 2002 by 600
family members against a company run by Osama bin
Laden’s family, Saudi Arabian princes, and Sudan. See
also large number.

trimorphic number
See automorphic number.

trinomial
An algebraic expression consisting of three terms.

triomino
Also called a tromino, a three-square polyomino.

triple
A multiple of three. A triple integral is one in which the
integrand is integrated three times. See also Pythagorean
triplet.
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trisecting an angle
Whereas bisecting an angle could hardly be simpler,
splitting an angle in three equal parts with compass and
straightedge alone is impossible, except in a few special
cases such as when the angle happens to be 90°. Tri-
secting an arbitrary angle can be done if you cheat by
using a measuring ruler instead of a plain straightedge,
or even if you draw just two marks on the straightedge,
but not if you play by the rules and the straightedge is
completely blank. The Greeks put a huge effort into the
problem but couldn’t crack it. In fact, the question of
whether trisection could ever be done in the general
case remained open until 1837, when it was finally
shown to be impossible by Pierre Wantzel, a 23-year-old
French mathematician. Why is it impossible? Wantzel
showed that the two problems of trisecting an angle
and of solving a cubic equation are equivalent. More-
over, he showed that only a very few cubic equations
can be solved using the straightedge-and-compass
method. He thus deduced that most angles cannot be
trisected.

trisector theorem
See Morley’s miracle.

trisectrix
A general name for curves that can be used in trisect-
ing an angle. The name “trisectrix,” on its own, is often
applied specifically to the limaçon of Pascal. Other fa-
mous trisectrix curves include the Maclaurin trisectrix
and the conchoid of Nicomedes.

triskaidekaphobia
See thirteen.

trochoid
The curve formed by the path of a point on the extension
of a radius of a circle as it rolls along a curve or line. It is
also the curve formed by the path of a point on a per-
pendicular to a straight line as the straight line rolls along
the convex side of a base curve. By the first definition,
the trochoid is derived from the cycloid; by the second
definition it is derived from the involute. See also
roulette.

truel
A three-cornered gunfight or its logical equivalent. Imag-
ine a truel between Arnie, Bullseye, and Clint, who are
standing at the corners of an equilateral triangle. All
know that Arnie’s chance of hitting a target is 0.3 and
Clint’s is 0.5, while Bullseye never misses. They have to
fire at their choice of target in the order Arnie then Bulls-

eye then Clint until only one man is left. A man who’s
been hit is out of the fight and can no longer be shot at.
What should Arnie’s strategy be?

Truels, like this one, have become a significant topic in
game theory because they’re analogs of various real-life
situations, from rivalry among animals to competition
between television networks. Small changes in the rules
can lead to strikingly different, sometimes counterintu-
itive outcomes. Different firing rules are possible: se-
quential in fixed order (players fire one at a time in a
predetermined, repeating sequence), sequential in ran-
dom order (the first player to fire and each subsequent
player is chosen at random from among the survivors), or
simultaneous (all surviving players fire at the same time
in every round). In certain truels, a participant is allowed
to shoot at the ground rather than try to eliminate an
opponent (an optimal strategy if the firing order is fixed
and each player has only one bullet and is a perfect shot).
If the first shooter misses on purpose, he eliminates him-
self as a threat, and the other two fight it out, leaving two
survivors in the end. Any other course of action would
lead to the first shooter’s own demise, with only one sur-
vivor. Even if the players have an unlimited supply of
bullets, the truel may still end with more than one sur-
vivor because no player wants to be the first to shoot.
Indeed, under the fixed firing order rule, no player has an
incentive to eliminate another player. Only in the case of
simultaneous firing is there a chance that nobody will
survive.

Most of the mathematical research on truels con-
cerns the relationship between a player’s marksmanship
(probability of hitting a target) and his or her survival
probability. It’s possible to show, for example, that bet-
ter marksmanship can hurt in many situations. In a
sequential truel in which contendors aren’t allowed to
shoot in the air, a player maximizes his probability of
survival by firing at the opponent against whom he’d
less prefer to fight in a duel—regardless of what the other
players do. If his shot misses, it makes no difference
who the target was. If the shot hits the target, the
shooter is better off because his opponent in the next
duel is weaker. Thus, the first shooter fires at the oppo-
nent who’s the better marksman. In general, depending
on the marksmanship values, the survival probabilities
of the truelists could end up in any order, including one
that is the reverse order of shooting skill. Optimal play
can be very sensitive to slight changes in the rules, such
as the number of rounds of play allowed. On the other
hand, some factors are fairly constant: the disadvantage
of being the best marksman, the weakness of pacts, the
possibility that an endless supply of ammunition may
stabilize rather than undermine cooperation, and the
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deterrent effect of an indefinite number of rounds of
play (which can prevent players from trying to get the
last shot). Some of these findings are counterintuitive,
even paradoxical. An understanding of them might well
dampen the desire of aggressive players to score quick
but temporary wins, rendering them more cautious. In
particular, contemplating the consequences of a long,
drawn-out conflict, truelists may come to realize that
their own actions, while immediately beneficial, may
trigger forces that ultimately lead to their own destruc-
tion.

truncate
To slice off a corner of a polyhedron around a vertex.

truncatable prime
A prime number n that remains a prime when digits are
deleted from it one at a time. For example 410,256,793
is a truncatable prime because each number created by
the removal of the digit underlined produces a new
prime: 410,256,793; 41,256,793; 4,125,673; 415,673;
45,673; 4,567; 467; 67; 7. It is conjectured that there are
infinitely many of these primes. If the digits from a
prime can be deleted only from the right, to leave a
prime, then n is called a right truncatable prime. If they
can be deleted only from the left, to leave a prime, then
n is a left truncatable prime. The list of primes from which
any digit can be deleted at each step to leave a prime is
very short indeed, because it demands that each digit be
a prime and also that no digit occurs twice. Only these
numbers satisfy this requirement: 2, 3, 5, 7, 23, 37, 53,
and 73.

Tschirnhaus’s cubic
A curve with the Cartesian equation 3ay2

= x(x − a)2.

Turing, Alan Mathison (1912–1954)
An English mathematician considered to be one of the
fathers of modern digital computing. At an early age, 
Turing showed signs of the genius and eccentricity that
became hallmarks of his adult personality. He taught
himself to read in three weeks and made a habit of stop-
ping at street corners to read the serial numbers of traffic
lights. Later, he became a near-Olympic-class runner and
ran long distances with an alarm clock tied to his waist to
time himself.

At Cambridge, Turing studied under G. H. Hardy
and got involved with problems that David Hilbert and
Kurt Gödel had proposed to do with completeness and
decidability in mathematics. In 1936, he introduced the
idea of what became known as Turing machines—for-
mal devices capable of solving any conceivable mathe-

matical problem that could be represented by an algo-
rithm. However, the Turing machine was only a theo-
retical possibility at that time and not a working
implementation. It would remain for later researchers to
solve the various practical difficulties required to make
the computer a reality. Turing also showed that there
were mathematical problems that a Turing machine
could never solve. One of these is the halting problem.
While his proof was published after that of Alonzo
Church, Turing’s work is more accessible and intuitive.
During World War II, Turing was a major player at
Bletchley Park, near present-day Milton-Keynes (a town
built after the war), in the successful efforts to crack the
Nazi Enigma ciphers. While serving at Bletchley Park
(1939–1944), he stayed at the Crown Inn, Shenley
Brook End, and somewhere near here he buried two sil-
ver bars, carefully recording the site with respect to local
landmarks. When he returned to recover them, the area
had been rebuilt and all his landmarks were gone.
Despite several attempts with metal detectors, he never
recovered them and no one else is known to have found
them. The Crown is now a private house and the area
where he buried the bars is a housing estate.

Turing’s interest in computing continued after the war,
when he worked at the National Physical Laboratory on
the development of a stored-program computer (the
ACE or Automatic Computing Engine). In 1948 he
moved to the University of Manchester, where the first
stored-program digital computer ran later that year (see

Turing, Alan Mathison
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Babbage, Charles for a photo of this machine). In 1950,
in the article “Computing Machinery and Intelligence,”
Turing tackled the problem of artificial intelligence, and
proposed an experiment now known as the Turing test.

In 1952 his lover helped a compatriot to break into Tur-
ing’s house and commit larceny. Turing went to the police
to report the crime. As a result of the police investigation,
he was charged with homosexuality (formerly a crime),
offered no defense, and was convicted. Following the well-
publicized trial, he was given a choice between incarcera-
tion and libido-reducing hormone injections. He chose
the latter, which lasted for a year and had side effects
including the development of breasts during that period.
In 1954 he died of poisoning after eating a cyanide-laced
apple. Most (though not his mother) believed that his
death was intentional, and the death was ruled a suicide.
According to one urban legend the Apple company’s logo
is symbolic of this event: an apple with two bites (or pos-
sibly bytes) out of it and rainbow colors that code for
homosexuality. See also Church-Turing thesis.[168]

Turing machine
An abstract model of computer execution and storage
introduced in 1936 by Alan Turing to give a mathemat-
ically precise definition of algorithm. A Turing machine
can be thought of as a black box that carries out a calcu-
lation of some kind on an input number. If the calcula-
tion reaches a conclusion, or halts, then an output
number is returned. Otherwise, the machine theoreti-
cally carries on forever (see halting problem). There are
an infinite number of Turing machines, as there are an
infinite number of calculations that can be done with a
finite list of rules. A Turing machine that can simulate
any other Turing machine is called a universal Turing
machine or a universal computer. The concept of Turing
machines is still widely used in theoretical computer sci-
ence, especially in complexity theory and the theory of
computation.

Turing test
A proposed way of deciding if a machine has human-
level intelligence. First described by Alan Turing in 1950,
it goes like this: A human judge engages in a natural lan-
guage conversation with other parties; if the judge can’t
reliably tell whether the other party is human or ma-
chine, then the machine is said to pass the test. It is
assumed that both the human and the machine try to
appear human. The origin of the test is a party game in
which guests try to guess the gender of a person in
another room by writing a series of questions on notes
and reading the answers sent back. In Turing’s original
proposal, the human participants had to pretend to be

the other gender, and the test was limited to a 5-minute
conversation. These features are nowadays not consid-
ered to be essential and are generally not included in the
specification of the Turing test. Turing proposed the test
in order to replace the emotionally charged and, for him,
meaningless question “Can machines think?” with a
more well-defined one. Turing predicted that machines
would eventually be able to pass the test. In fact, he esti-
mated that by the year 2000, machines with 109 bits
(about 119MB) of memory would be able to fool 30% of
human judges during a 5-minute test. He also predicted
that people would then no longer consider the phrase
“thinking machine” contradictory.

It has been argued that the Turing test can’t serve as a
valid definition of artificial intelligence for at least two
reasons: (1) A machine passing the Turing test might be
able to simulate human conversational behavior, but this
could be much weaker than true intelligence. The ma-
chine might just follow some cleverly devised rules. (2) A
machine might well be intelligent without being able to
chat like a human. Simple conversational programs, such
as ELIZA, have fooled people into believing they are
talking to another human being; however, such limited
successes don’t amount to passing the Turing test. Most
obviously, the human party in the conversation has no
reason to suspect he is talking to anything other than a
human, whereas in a real Turing test the questioner is
actively trying to determine the nature of the entity he is
chatting with. The Loebner Prize is an annual competi-
tion to determine the best Turing test competitors. See
also Chinese room.

twelve
A number heavily used for grouping things (inches,
hours, 12-packs), partly because it can be divided evenly
in several different ways (by 2, 3, 4, and 6) and partly
because there are roughly 12 cycles of the Moon
for every one of the Sun. The Latin duodecim (two +

ten) for 12 forms the root of dodecagon (originally
duodecagon), meaning a 12-sided shape, and duode-
num, the first part of the intestine that is about 12
inches long. Contracted and modified over the years,
duodecim became “dozen.” Multiples of 12 have also
been used by many cultures for various units and mea-
sures. A “shock” was 60 or five dozen (a dozen for each
finger on one hand), and many cultures had a “great
hundred” of 120 or 10 dozen (a dozen for each finger
on both hands). The Romans used a fraction system
based on 12 and the smallest part, an uncil, became our
word for “ounce.” The French emperor Charlemagne
established a monetary system that had a base of 12 and
20, the remnants of which persist. Until 1970, the En-
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glish pound sterling consisted of 20 shillings, and each
shilling contained 12 pence. In 1944, The Duodecimal
Society was formed in New York with the purpose of
proposing a switch to base 12 for all scientific work.
There are 12 signs of the zodiac and there were 12
apostles of Christ. Twelve is the smallest abundant
number, a Harshad number, and a semiperfect num-
ber (because 12 = 1 + 2 + 3 + 6; see perfect number).
See also gross.

twelve-color map problem
If on a plane or sphere each country has at the most one
colony, requiring the same color as its parent country, at
most 12 different colors are needed to distinguish the
political regions on a map. The problem of determining
if this is true or not remains open. See also four-color
map problem.

twenty
Many early cultures, including some in Europe; the
Mayans of Central America; and the Ainu, the indige-
nous people of the Japanese islands, used a base of 20 for
counting. The base 20 system was retained until about
1970 in the British monetary system, in which there were
20 shillings to the pound. A group of 20 is often called a
score. Two of the five Platonic solids involve 20: the
icosahedron has 20 triangular faces and the dodecahe-
dron has 20 vertices. Twenty is a Harshad number, a
semiperfect number (see perfect number), and a practi-
cal number. It is also a tetratrahedral number—the sum
of consecutive triangular numbers (1 + 3 + 6 + 10).

twin primes
Pairs of prime numbers that differ by two, the first of
which are 3 and 5, 5 and 7, 11 and 13, and 17 and 19. The
largest example known, as of February 2003, is a pair of
51,090-digit primes discovered by Yves Gallot and Daniel
Papp, with the value 33,218,925 × 2169690

!1. Other than
the first, all twin primes have the form {6n − 1, 6n + 1};
also, the integers n and n + 2 form twin primes if and only
if 4[(n − 1)! + 1] = −n (mod n(n + 2)). In 1919 the Nor-
wegian mathematician Viggo Brun (1885–1978) showed
that the sum of the reciprocals of the twin primes con-
verges to a sum now known as Brun’s constant:

(1/3 + 1/5) + (1/5 + 1/7) + (1/11 + 1/13) +

(1/17 + 1/19) + . . .

In 1994, by calculating the twin primes up to 1014 (and
discovering the infamous Pentium bug in the process),
Thomas Nicely of Lynchburg College estimated Brun’s
constant to be 1.902160578. According to the (un-
solved) twin-prime conjecture there are infinitely many

twin primes. The twin-prime conjecture generalizes to
prime pairs that differ by any even number n, and
generalizes even further to certain finite patterns of
numbers separated by specified even differences. For ex-
ample, the following triplets of primes all fit the pattern
k, k + 2, and k + 6: 5, 7, and 11; 11, 13, and 17; 17, 19,
and 23; 41, 43, and 47. It is believed that for any such
pattern not outlawed by divisibility considerations
there are infinitely many examples. (The pattern k, k +

2, and k + 4 has only one solution in primes, 3, 5, and 7,
because any larger such triplet would contain a number
divisible by 3.) Quartets of the form k, k + 2, k + 6, and
k + 8 (the smallest example is 5, 7, 11, and 13) are
thought to be infinite. For some patterns no example is
known, or only one.

twins paradox
See relativity theory.

twisted cubic
A curve in three-dimensional space or projective space
whose points are given by (x(t), y(t), z(t)) for a parameter
t and where x, y, z are polynomials of at most degree 3.

two
The first even number and the only even prime number.
The word comes from the Greek dyo and the Latin duo
through the Old English twa. Early languages often had
both feminine and masculine forms for two and so there
are a lot of diverse roots related to “two-ness.” Many
“two” words use the Greek root bi such as biannual,
binary, biscuit, and biceps. Others come from the Old
English twa, such as between, twilight, twist, and twin.
From duo we get dual, duet, dubious (of two minds),
duplex (two layers), and double. The Latin di gives us
diploma (two papers) and dihedral. The earlier Greek dyo
produces dyad, composed of two parts. Two is the only
positive real number that gives the same result when
added to itself as when multiplied by itself. It is conjec-
tured that 2 is the only even integer that cannot be writ-
ten as the sum of two primes (see Goldbach conjecture)
and it has recently been proven that 2 is the largest value
of n for which the equation xn

+ yn
= zn has nonzero inte-

ger solutions (see Fermat’s last theorem). Two is the base
of the binary number system.

two-dimensional world
Life in three dimensions is familiar and there is a huge
body of literature on the fourth dimension. But what
would a universe of just two dimensions be like? The first
and the most charming book on the subject is Ed-
win Abbott’s Flatland: A Romance of Many Dimensions
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(1884).[1] This was followed by Charles Hinton’s length-
ier An Episode of Flatland (1907)[272] in which the 2-d world
is not a plane, as in Abbott’s yarn, but the rim of a large
circular world called Astria. Hinton was the first to
explore in some depth what science and technology

might be like in two dimensions; in fact, an earlier pam-
phlet of his called “A Plane World,” (reprinted in Scientific
Romances in 1884) may have helped inspire Abbott’s
novel. Hinton’s speculations were taken much further by
Alexander Dewdney in Planiverse (1984).[81]



Ulam, Stanislaw Marcin (1909–1984)
A Polish-born American mathematician and physicist
who solved the problem of how to initiate fusion in the
hydrogen bomb and also devised the Monte Carlo
method of solving mathematical problems using statisti-
cal sampling. He first came to the United States in 1935
following an invitation from John von Neumann. One
morning in 1946 an event happened that changed
Ulam’s life, as colleague Gian-Carlo Rota recalled:

Ulam, a newly appointed professor at the University
of Southern California, awoke to find himself
unable to speak. A few hours later, he underwent a
dangerous surgical operation after the diagnosis of
encephalitis. . . . In time, however, some changes in
his personality became obvious to those who knew
him . . . [H]is ideas, which he spouted out at odd
intervals, were fascinating beyond anything I have
witnessed before or since. However, he seemed to

studiously avoid going into details . . . . [H]e came
to lean on his unimpaired imagination for his ideas,
and on . . . others for technical support . . . . A crip-
pling technical weakness coupled with an extraordi-
narily creative imagination is the drama of Stan
Ulam.

Ulam spiral
A remarkable geometric pattern accidentally found
among the prime numbers by Stanislaw Ulam;[314] it is
also known as the Prime Spiral. During a boring meeting
one day in 1963, Ulam drew a square, marked the num-
ber 1 at the center, and then wrote the increasing whole
numbers as a spiral that wound its way out to the edge of
the paper. He then circled all the prime numbers and was
immediately struck by how they tended to fall on diago-
nal lines radiating from the central 1. In Ulam’s words
the arrangement of primes “appears to exhibit a strongly
nonrandom appearance.” Ulam rushed home and

U
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Ulam spiral Patterns amid the primes.
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expanded the spiral to cover a much larger portion of the
number sequence. The strange pattern persisted. Primes
had a tendency to occur in clusters and all clusters tended
to make a beautiful image that couldn’t be predicted.
With the help of computers this pattern can now be
explored almost indefinitely and it reveals a wonderfully
rich combination of symmetry and surprise—very remi-
niscent of some fractals.

The Ulam spiral should perhaps be known as the
“Clarke spiral” in view of the fact that Arthur C. Clarke
described the phenomenon in his novel The City and the
Stars (1956, ch. 6, p. 54),[63] predating Ulam’s discovery
by several years. Clarke wrote:

Jeserac sat motionless within a whirlpool of num-
bers. The first thousand primes. . . . Jeserac was no
mathematician, though sometimes he liked to
believe he was. All he could do was to search among
the infinite array of primes for special relationships
and rules which more talented men might incorpo-
rate in general laws. He could find how numbers
behaved, but he could not explain why. It was his
pleasure to hack his way through the arithmetical
jungle, and sometimes he discovered wonders that
more skillful explorers had missed. He set up the
matrix of all possible integers, and started his com-
puter stringing the primes across its surface as beads
might be arranged at the intersections of a mesh.

Ulam’s conjecture
See Collatz problem.

uncountable set
A set of numbers that can’t be put in a definite order
from smallest to largest and so can’t be counted. All
uncountable sets are infinite, but not all infinite sets are
uncountable. The best known uncountable set is the set
of all real numbers. By contrast the set of all natural
numbers, which represents the “smallest” type of infin-
ity, is countable.

undulating number
An integer whose digits, in a given base, alternate—that is,
one written in the form ababab . . . , where a and b are
digits. For example, 434,343 and 101,010,101 are undu-
lating numbers.

unduloid
A member of a family curves that is formed by films or
liquid drops suspended between certain boundaries.
Examples of unduloids are seen on a spider web when
viewed through a microscope. They consist of blobs of
viscous liquid that make up the sticky part of the web and

are mostly gathered into a lemon shape. The family of
unduloids includes shapes ranging from very thin to
almost spherical, depending on the diameter of the
thread and the volume of liquid in the blob. The shape of
the curve is a result of the equality of pressure through-
out the blob, which means that the total curvature at all
points on the surface must be the same. The total curva-
ture is the sum as the curvatures in two planes at right
angles, and so varies from one blob to the next. A com-
mon property of all unduloids, however, is that they have
a constant nonzero main curvature.

unexpected hanging
A remarkable logical paradox that appears to have
begun circulating by word of mouth in the 1940s, often
in the form of a puzzle about a man condemned to be
hanged. A judge, with a reputation for reliability, tells a
prisoner on Saturday that he will be hung on one of the
next seven days but that he will not know which day
until he is informed on the morning of the execution.
Back in his cell, the prisoner reasons that the judge must
be wrong. The hanging cannot be left until Saturday,
because the prisoner would certainly know, if this day
dawned, that it was his last. But if Saturday is eliminated,
the hanging cannot take place on Friday either, because
if the prisoner survived Thursday he would know that
the hanging was scheduled for the next day. By the same
argument, Thursday can be crossed off, then Wednes-
day, and so forth, all the way back to Sunday. But with
every other day ruled out for a possible unexpected
hanging, the hangman cannot arrive on Sunday without
the prisoner knowing in advance. Thus, the condemned
man reasons, the sentence can’t be carried out as the
judged decreed. But then Wednesday morning comes
around and, with it, the hangman—unexpectedly! The
judge was right after all and something was awry with the
prisoner’s seemingly impeccable logic. But what? More
than half a century of attack by numerous logicians and
mathematicians has failed to produce a resolution that is
universally accepted. The paradox seems to stem from
the fact that whereas the judge knows beyond doubt that
his words are true (the hanging will occur on a day
unknown in advance to the prisoner), the prisoner does
not have this same degree of certainty. Even if the pris-
oner is alive on Saturday morning, can he be certain that
the hangman will arrive?[61, 260]

uniform polyhedron
A polyhedron in which each face is regular and each ver-
tex is equivalently arranged. Uniform polyhedra include
the Platonic solids, the Archimedean solids, the prisms
and antiprisms, and the nonconvex uniform polyhedra
(see nonconvex uniform polyhedron).
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unilluminable room problem
Imagine an L-shaped room in which Amy is standing
near one corner holding a match. If Bob stands round the
corner, he can see light from the match because a light
ray can bounce off the two opposite walls. This is true
wherever Bob stands in the room: the whole room is illu-
minated by the one match. Would this be true for a room
of any shape, or is there at least one room that is so com-
plicated that there’s somewhere inside it that light from
the match never reaches. This problem was first asked by
Ernst Strauss in the 1950s. Nobody knew the answer
until 1995, when George Tokarsky of the University of
Alberta showed that the answer is “yes,” there is a room
that is not completely illuminable. His published floor
plan showed a room with 26 sides—the smallest such
room currently known. But a mystery remains. The room
Tokarsky found contains one particular place where the
match can be held which leaves part of the room dark.
But if the match is moved slightly, the whole room is lit

up again. Is there a room so fiendishly complicated that
wherever the match is held there are some places that its
light can never reach? For the moment we remain in the
dark.[320, 334]

unique number
The constant Un that results if a number An consisting of
n consecutive digits, in ascending order, is subtracted
from the number An′ obtained by reversing the digits of
An. For example, a three-digit number 345, if subtracted
from its reverse 543, yields a difference of 198. Any other
three-digit number subtracted from its reverse gives the
same difference. Thus U3 = 198. Similarly for a number
with four consecutive digits, the unique number U4 =

3,087. The first ten unique numbers are: U1 = 0, U2 = 9,
U3 = 198, U4 = 3,087, U5 = 41,976, U6 = 530,865, U7 =

6,419,754, U8 = 75,308,643, U9 = 864,197,532, and U10 =

9,753,086,421. Unique numbers are related to Kaprekar
numbers, Kn, by the formula

uniform polyhedron The great icosicosidodecahedron, a uniform polyhedron. Robert Webb, www.software3d.com; created using Webb’s

Stella program
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Un + U ′n = Kn + K ′n.

For example, when n = 4, K4 = 6,174, K 4′ = 4,716, U4 =

3,087, U4′= 7,803, and

3,087 + 7,803 = 10,890 = 6,174 + 4,716.

unimodal sequence
A sequence that first increases and then decreases.

unimodular matrix
A square matrix whose determinant is 1.

union
The set of all elements that belong to at least one of two
or more given sets. It is denoted by the symbol !.

unit circle
A circle with radius 1.

unit cube
A cube with edge length 1. A unit square has a side length
of 1.

unit fraction
A fraction whose numerator (number on top) is 1.

universal approximation
Having the ability to approximate any function to an
arbitrary degree of accuracy. Neural networks are univer-
sal approximators.

universal computation
Capable of computing anything that can in principle be
computed; being equivalent in computing power to a
Turing machine or the lambda calculus.

universal computer
A computer that is capable of universal computation,
which means that given a description of any other com-
puter or program and some data, it can perfectly emulate
this second computer or program. Strictly speaking,
home PCs are not universal computers because they have
only a finite amount of memory. However, in practice,
this is usually ignored.

Universal Library
A library that contains not just one copy of every book
that has ever been printed but one copy of every book
that it is possible to print. A version of such a fantastic
place is described by Jorge Luis Borges in his melan-
cholic short story “Library of Babel” from The Garden of
Forking Paths (1941). It begins: “The universe (which oth-
ers call the Library) is composed of an indefinite, perhaps
infinite number of hexagonal galleries.” Each gallery is
identical to all the others and contains 800 books identi-
cal in format. “[E]ach book contains four hundred ten
pages; each page, forty lines, each line, approximately
eighty black letters. . . .” There are 25 symbols—22 letters,
the comma, the period, and the space. Because the
library contains every possible combination of these

unilluminable room problem No single light source can
light up every corner of a room with this shape.
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symbols it contains, in addition to vast tracts of gibber-
ish, every truth, falsehood, idea, novel, thought, and
description of events, past and future, that are possible. It
contains, writes Borges,

All—the detailed history of the future, the autobi-
ographies of the archangels, the faithful catalog of
the Library, thousands and thousands of false cata-
logs, the proof of the falsity of those catalogs, a
proof of the falsity of the true catalog, the gnostic
gospel of Basilides, the commentary upon that
gospel, the commentary on the commentary of
that gospel, the true story of your death, the trans-
lation of every book into every language, the inter-
polations of every book into all books, the treatise
Bede could have written (but did not) on the
mythology of the Saxon people, the lost books of
Tacitus.

The name “Universal Library” was first used by the
German philosopher and science fiction writer Kurt
Lasswitz (1848–1910) as the title of a short story pub-
lished in 1901. He, in turn, borrowed the concept from
the German psychologist Theodor Fechner. But to get
to the root of speculation about listing all possible com-
binations of words and meanings, we have to go back
much further, to Ramon Lully (1235–1315), a Spaniard
who was a missionary and a mystic philosopher and who
had an idea that later became known as Lully’s Great
Art. His idea was simply this: if one property of a thing
is chosen, say the color of blood, and all the possibilities
for that property are listed—blood is green, blood is yel-
low, etc.—then one of them must be true. One list alone
might not be enough to point out the truth. However,
other lists could be made that would eliminate some of

the possible colors. Done in the right way, the one and
only true answer should emerge. Lully even tried to
build a device that used a series of concentric rings to
bring different combinations of words into alignment.
Eventually, the idea came down to Fechner who rumi-
nated on the idea of permuting all combinations of let-
ters to express all possible statements and concepts.
There are, however, two barriers to this dream of ulti-
mate truth. The first is that there isn’t enough matter or
space in the universe to represent all the different ways
that book-length sequences of letters can expressed. Sec-
ond, even if there were, it would take an all-seeing, all-
knowing intelligence to sort the rare grain of meaningful
wheat from the vast quantities of vapid chaff. See also
monkeys and typewriters.

universal set
The set that contains all elements capable of being
accepted to the problem. Also known as the universe, as
in the universe of discourse, it is usually denoted U.

universe of discourse
The part of the world under discussion; more precisely,
the set of all objects presumed or hypothesized to exist
for some specific purpose. Objects may be concrete (e.g.,
a specific carbon atom, Confucius, the Sun) or abstract
(e.g., the number 2, the set of all integers, the concept of
justice). Objects may be primitive or composite (e.g., a
circuit that consists of many subcircuits). Objects may
even be fictional (e.g., a unicorn, Sherlock Holmes). The
universe of discourse is a familiar concept in logic, lin-
guistics, and mathematics.

unknown
A quantity, denoted by a letter, that is to be found by
solving one or more equations.

untouchable number
A number that is not the sum of the aliquot parts of any
other number. The first few untouchable numbers are 2,
5, 52, 88.

up-arrow notation
See Knuth’s up-arrow notation.

upside-down picture
A picture (or figure) that, when inverted, looks the same
or changes into the picture of a different subject. Possibly
the most remarkable examples of upside-down art were
the cartoons drawn by Gustave Verbeek for the Sunday
New York Herald in the early 1900s. The first part of the
cartoon is read normally; then the newspaper is turned

Universal Library Inside the library that goes on forever.
Joseph Formoso
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through 180° and the second part read from the same
boxes in reverse order. As if by magic, Little Lady
Lovekins transforms into Old Man Muffaroo, a giant fish

becomes a giant bird, and a pouncing tiger turns into a
tiger buried under a pile of stones.

Ussher, James (1581–1656)
An Irish clergyman, born in Fishamble Street, Dublin,
who studied at Trinity College, Dublin, and later became
a fellow there. He entered the Church and eventually
became Archbishop of Armagh. In 1650 he published his
famous assertion that the Creation had taken place
“upon the entrance of the night preceding” Sunday,
October 23, 4004 B.C.

utility function
The lesson of the St. Petersburg paradox is that people
do not play games as if they are maximizing the
expected monetary value they receive. However, certain
rationality assumptions about the way people behave,
known as the von Neumann and Morganstern axioms,
imply that people do act as though they are maximizing
something. This “something” is often referred to as a util-
ity function.

upside-down picture An upside-down figure from China. 
Sue & Brian Young/Mr. Puzzle Australia, www.mrpuzzle.com.au



vampire number
A natural number x that can be factorized as y × z in such
a way that the number of occurrences of a particular digit
in the representation of x in a given base (say 10) appears
the same number of times in the representations in that
same base of y and z together. For example, 2,187 is a
vampire number since 2,187 = 21 × 87; similarly 136,948
is a vampire because 136,948 = 146 × 938. Vampire num-
bers are a whimsical idea that was introduced by Clifford
Pickover in 1995.[253]

van der Pol, Balthazar (1889–1959)
A Dutch electrical engineer who began the modern exper-
imental study of dynamical systems in the 1920s and ’30s.
Van der Pol discovered that electrical circuits employing
vacuum tubes display stable oscillations, now called limit
cycles, but that when these circuits are driven with a signal
whose frequency is near that of the limit cycle, the periodic
response shifts its frequency to that of the driving signal.
The resulting waveform, however, can be quite compli-
cated and contain a rich structure of harmonics and sub-
harmonics. In 1927, van der Pol and his colleague van der
Mark reported that an “irregular noise” was heard at certain
driving frequencies between the natural entrainment fre-
quencies. It’s now clear that, without realizing it, they had
described one of the first experimental instances of chaos.

vanishment puzzle
A mechanical puzzle in which the total area of a collec-
tion of pieces, or the number of items in a picture, appear
to change following some manipulation. A well-known
puzzle, first seen in 1868, involves an 8 × 8 square that is
divided up into two triangles and two trapezoids. The
pieces are reassembled into an oblong shape that mea-
sures 5 × 13. Where did the extra bit of area come from?
The answer is that final shape is not perfectly rectangular
but instead has a narrow gap that runs the length of one
of the diagonals. Most famous of all vanishment puzzles
is Get off the Earth.

variable
An unknown that has no fixed quantitative value.

vector
A quantity that is specified by a number, indicating size
or “magnitude,” and a direction; for example, “80 kilo-

meters per hour, heading due south.” More generally, a
vector is any element of a vector space and is also a type
of tensor. A vector is usually shown in a graph or other
diagram as an arrow whose length and direction represent
the vector’s magnitude and direction, respectively. In 
n-dimensional space, it is easy to deal with vectors alge-
braically in the form of n-tuples, which are ordered lists
(one-dimensional arrays) of n components.

vector space
Also known as a linear space, the most fundamental con-
cept in linear algebra. It is a generalization of the set of
all geometric vectors and is used throughout modern
mathematics. Like the concepts of group, ring, and field,
that of a vector space is entirely abstract.

Venn diagram
A simple way of representing sets and subsets, which
makes use of overlapping circles. Venn diagrams are
named after the Englishman John Venn (1834–1923), a
fellow of Cambridge University. Venn was a cleric in the
Anglican Church, an authority on what was then called
“moral science,” the compiler of a massive index of all
Cambridge alumni, and a rather mundane mathemati-
cian who worked in logic and probability theory. The dia-
grams he used for representing syllogisms appear to have
been first called “Venn diagrams” by Clarence Irving in
his book A Survey of Symbolic Logic in 1918. However,
Venn was lucky to be so immortalized. Both Gottfried
Leibniz and Leonhard Euler used very similar forms of
representation many years earlier.

vertex
The point where two sides of a closed figure, or two sides
of an angle, meet; otherwise known as a corner. A cube,
for example, has eight vertices.

vertex figure
The polygon that appears if a polyhedron is truncated at
a vertex. The vertex figure of a cube, for example, is an
equilateral triangle. To ensure consistency, the truncation
may be done at the midpoints of the edges.

vertical-horizontal illusion
Vertical lines looks considerably longer than horizontal
ones of the same length. For centuries, it has been known
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that the height of trees and buildings is perceived to be
greater than the horizontal distance between them. This
may be because we live in gravity. Rotate the book and
you will see that the vertical line in the diagram appears
to shrink in relation to what was originally the horizontal
line. See also distortion illusion.

Vesica Piscis
Literally “fish’s bladder,” the almond shape formed when
two identical circles overlap so that the outside edge of
each just touches the center of the other. The Vesica Piscis
appears as the Christian fish symbol and also frequently
in medieval art and architecture. Most significantly, it pro-
vides the template for the pointed Gothic arch.

Vickrey auction
A silent auction in which the object being sold goes to
the second-highest bidder. In a normal silent auction pro-
spective buyers place their bids in sealed envelopes and
the highest bid wins. This makes it risky for the seller
because if the object is highly valuable and all buyers
think they are the only ones who recognize this fact, they
may offer much less than they think the object is actually
worth. However, a Vickrey auction induces people to bid
truthfully. Why? Because when all other bids are fixed
and unknown to a given bidder, that bidder’s optimal
strategy is to bid what she thinks the object is worth. Sup-
pose Alice places a bid for an antique vase. Let V be the
amount that Alice thinks the vase is actually worth, and

B the bid that she actually makes. Let M be the maxi-
mum of all other bids. If M is more than V, then Alice
should set her bid B less than or equal to V, so that she
does not get the vase for more than she thinks it is worth.
If M is less than V, then Alice should set B = V, because if
she bids any less, she will not get the vase any cheaper,
and she may lose it altogether.

vigesimal
Of, relating to, or based on the number 20; the term
comes from the Latin vigesimus for “twentieth.” Mayan
arithmetic, which took account of all the toes as well as
the fingers, used a vigesimal system. In place of the mul-
tiples of 10 used in the decimal system: 1; 10; 100; 1,000;
10,000, . . . , the Mayans dealt in multiples of 20: 1; 20;
400; 8,000; 160,000; . . . .

vinculum
The bar that is placed over repeating decimal fractions to
indicate the portion of the pattern that repeats. In the
original Latin, vinculum referred to a small cord for bind-
ing the hands or feet. The symbol was once used in the
same way that parentheses and brackets are now used to
bind together a group of numbers or symbols. Originally
the line was placed under the items to be grouped. What
today might be written 7(3x + 4) the early users of the
vinculum would write 3x + 4 7. Sometimes the horizon-
tal fraction bar is called a vinculum as it binds the numer-
ator and denominator into a single value.

Vinogradov’s theorem
Every sufficiently large odd number can be expressed as
the sum of three prime numbers. The theorem was
named after the Russian mathematician Ivan Vinogradov
(1891–1983) who proved it in 1937. This is a partial solu-
tion of the Goldbach conjecture and is related to War-
ing’s conjecture.

Viviani’s curve
The space curve that marks the intersection of the cylin-
der (x − a)2

+ y 2
= a 2 and the sphere x 2

+ y 2
+ z2

= a 2. It is
given by the parametric equations:

x = a(1 + cos t)
y = a sin t

z = 2a sin(1⁄2 t)

Viviani’s theorem
For a given point inside an equilateral triangle, the sum
of the perpendicular distances from the point to the
sides is equal to the height of the triangle. If the point is
outside the triangle, the relationship still holds if one or
more of the perpendiculars is treated as a negative value.

vertical-horizontal illusion
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Viviani’s theorem generalizes to a regular n-sided poly-
gon: the sum of the perpendicular distances from an
interior point to the n sides being n times the apothem
of the figure. The theorem is named for Vincenzo
Viviani (1622–1703), a pupil of Galileo and Torricelli,
who is also remembered for a reconstruction of a book
on the conic sections of Apollonius and for finding a
way of trisecting an angle through the use of an equi-
lateral hyperbola.

volume
The measure of space occupied by a solid body.

Volvox fractal
A fractal that is similar in appearance to Volvox—a uni-
cellular life form that lives in spherical colonies with
thousands of members.

von Neumann, John (1903–1957)

Young man, in mathematics you don’t understand
things, you just get used to them.

A Hungarian-American mathematician who made impor-
tant contributions to set theory, computer science, eco-
nomics, and quantum mechanics. He received a Ph.D. in
mathematics from the University of Budapest and later he
worked at the Institute for Advanced Study in Princeton.
Theory of Games and Economic Behavior,[230] which he co-
authored with Oskar Morgenstern in 1944, is considered
a seminal work in the field of game theory. Von Neu-
mann devised the von Neumann architecture used in all
modern computers and studied cellular automata (see cel-
lular automaton) in order to construct the first examples
of self-replicating automata, now known as von Neu-
mann machines. Von Neumann had a mind of great 

Volvox fractal Jos Leys, www.josleys.com
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Voronoi diagram Top (left to right): Start from a grid of points. Draw lines that limit areas closest to the points of the grid. 
Bottom (left to right): Color the areas in some fashion. An infinite variety of patterns is possible. Jos Leys, www.josleys.com

ingenuity, nearly total recall of what he’d learned, immense
arrogance, and a great love of jokes and humor.[259]

von Neumann machine
(1) A model for a computing machine that uses a single
storage structure to hold both the set of instructions 
on how to perform the computation and the data

required or generated by the computation. John von
Neumann helped to create the model as an example of 
a general-purpose computing machine. By treating the
instructions in the same way as the data, the machine
could easily change the instructions. In other words the
machine was reprogrammable. (2) A self-replicating
machine. In principle, if a machine (e.g., an industrial
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robot) could be given enough capability, raw material,
and instructions, then that robot could make an exact
physical copy of itself. The copy would need to be pro-
grammed in order to do anything. If both robots were
reprogrammable, then the original robot could be
instructed to copy its program to the new robot. Both
robots would now have the capability of building copies
of themselves. Since such a machine is capable of repro-
duction, it could arguably qualify as a simple form of life.

Voronoi diagram
Also known as a Dirichlet tesselation, a partitioning of
space into cells, each of which consists of the points
closer to one particular object than to any others. More
specifically, in two dimensions a Voronoi diagram con-

sists of breaking up a plane containing n points into n
convex polygons in such a way that each polygon con-
tains exactly one point and every point in a given poly-
gon is closer to its central point than to any other.
Voronoi diagrams, their boundaries (known as medial
axes), and their duals (called Delaunay triangulations) have
been reinvented, given different names, generalized,
studied, and applied many times over in many different
fields. Voronoi diagrams tend to be involved in situations
where a space should be partitioned into “spheres of
influence”; examples include models of crystal and cell
growth and protein molecule volume analysis.

vulgar fraction
See common fraction.



walking in the rain problem
The question is whether you get wetter by walking or run-
ning a given distance through rain that is falling at a con-
stant rate. An early appearance of this problem was in
Bagley’s Paradox Pie (1944). A simple answer is that mov-
ing faster is better. If the rain falls vertically and the den-
sity of water in the air is assumed constant, then, no
matter what your speed, you’ll sweep out the same vol-
ume and will always get the same amount of water hitting
your front. However, running rather than walking will
reduce the amount of water landing on your head.

Wallis, John (1616–1703)
The most influential English mathematician before Isaac
Newton and an important contributor to the origins of
calculus. He was a skilled linguist, was one of the first to
proclaim in public Harvey’s discovery of the circulation
of the blood, and had an extraordinary memory for 
figures. His Arithmetica Infinitorum was described as “the
most stimulating mathematical work so far published in
England” and introduced the symbol ∞ for infinity (see
also aleph). It contained the germs of the differential cal-
culus, and it suggested to Newton, who was delighted by
it, the binomial theorem.

Wallis formula
See pi.

wallpaper group
Also known as a crystallographic group, a distinct way to
tile the plane that repeats indefinitely in two dimen-
sions; that is, a collection of two-dimensional symmetric
patterns on a plane surface, containing two nonparal-
lel translations (see periodic tiling). There are only 17
kinds of these patterns, known as isometries (see isome-
try), each uniquely identified by its translation and rota-
tion symmetries, as discovered in the late nineteenth
century by E. S. Fedorov and, independently, by the
German A. M. Schoenflies and the Englishman William
Barlow. Thirteen of the isometries include some kind of
rotational symmetry, while four do not; twelve show rec-
tangular symmetries, while five involve hexagonal sym-
metries. Every two-dimensional repetitive pattern in
wallpaper, textiles, brickwork, or the arrangement of
atoms in a plane of a crystal is just a minor variation on
one of these 17 patterns.

Wari
See Mancala.

Waring’s conjecture
A hypothesis given, without proof, by the English math-
ematician Edward Waring (1734–1798) in his Medita-
tiones algebraicae (1770). It states that for every number k,
there is another number s such that every natural number
can be represented as the sum of s kth powers. For exam-
ple, every natural number can be written as a sum of 4
squares, 9 cubes and so on. Waring’s conjecture was first
proven in full by David Hilbert in 1909.

weak inequality
An inequality that permits the equality case. For exam-
ple, a is less than or equal to (≤) b.

Weierstrass, Karl Wilhelm Theodor (1815–1897)
A German mathematician who is considered the father of
modern analysis. Compelled by his father to study law, he
instead spent four years at the University of Bonn, fencing,
drinking, and reading math. He left under a cloud and

W
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wallpaper group A pattern made from one of the wallpaper
groups. Jos Leys, www.josleys.com
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ended up teaching in secondary schools for many years. In
1854 he published a paper, written 14 years earlier when 
he was fresh out of college, in Crelle’s Journal, on Abelian
functions which completed work that Niels Abel and Karl
Jacobi had begun. Its importance was immediately recog-
nized and Weierstrass was appointed a professor at the
Royal Polytechnic School and a lecturer at the University
of Berlin. He went on to give the first rigorous definitions
of limit, derivative, differentiability, and convergence,
and investigated under what conditions a power series will
converge.

Weierstrass’s nondifferentiable function
The earliest known example of a pathological function—a
function that gives rise to a pathological curve. It was
investigated by Karl Weierstrass, but had been first dis-
covered by Bernhard Riemann, and is defined as:

f (x) = !
∞

k = 1

The Weierstrass function is everywhere continuous (see
continuity) but nowhere differentiable; in other words,
no tangent exists to its curve at any point. Constructed
from an infinite sum of trigonometric functions, it is the
densely nested oscillating structure that makes the defin-
ition of a tangent line impossible.

weighing puzzles
See measuring and weighing puzzles.

weird number
See abundant number.

Wessel, Caspar (1745–1818)
A Norwegian surveyor whose mathematical fame rests on
a single paper, published in 1799, that gave the first geo-
metrical interpretation of complex numbers. His prior-
ity in this discovery, however, went unrecognized for
many years. Thus what should really be called a Wessel
diagram is known instead as an Argand diagram after the
man whose work on the same subject, published in 1806,
first came to the attention of the mathematical world.
Wessel’s paper, by contrast, wasn’t noticed by the mathe-
matical community until 1895 when the Danish mathe-
matician Sophus Juel drew attention to it and, in the
same year, Sophus Lie republished Wessel’s paper. Aston-
ishingly, Wessel’s remarkable work was not translated
into English until 1999—its bicentenary!

Weyl, Hermann Klaus Hugo (1885–1955)
A German mathematician (known as “Peter” to his close
friends) whose work involved symmetry theory, topology,
and non-Euclidean geometry. Weyl studied under David

sin (πk 2x)
!!

πk 2

Hilbert at Göttingen. Then, as a colleague of Albert Ein-
stein at Zurich 1913, he got involved with relativity theory
and came to believe (erroneously) that he had found a way
to unite gravity and electromagnetism. From 1923 to 1938
he concentrated on group theory and made some impor-
tant contributions to quantum mechanics. As the Nazi
tide swept over Europe, Weyl came to the United States
and spent the rest of his career at the Institute for
Advanced Studies at Princeton. He said: “My work always
tried to unite the truth with the beautiful, but when I had
to choose one or the other, I usually chose the beautiful.”
See also beauty and mathematics.

wff
A well-formed formula.

what color was the bear?
A hunter walks one mile due south, then one mile due
east, then one mile north and arrives back at his starting
point. He shoots a bear. What color was it? Such a trip is
possible if the hunter starts from one of the geographical
poles, then circumnavigates the sides of a spherical trian-
gle (see elliptical geometry). Since there are no bears in
Antarctica, the trip is assumed to have taken place in the
Arctic where there are polar bears and thus the answer is
“white.” Versions of this problem began to appear in the
1940s. A closer examination reveals that there are many
more points on the globe, other than an exact pole, from
which the hunter could have begun his trek. One exam-
ple is any point (of which there are an infinite number)
on a circle drawn at a distance of slightly more than 1 +
1⁄2π mile (about 1.16 miles) from a pole—“slightly more”
because of Earth’s curvature. But this is not all. The
hunter could also satisfy the conditions by starting at
points closer to the pole, so that the walk east would
carry him exactly twice around the pole, or three times,
and so on. Of course, the bear would still be white
(except that polar bears don’t live that far north!).

wheat and chessboard problem
According to one myth, chess was invented by Grand
Vizier Sissa Ben Dahir and then given to King Shirham of
India. The king was so pleased that he offered his subject
a great reward in gold, but the wily vizier said that he
would be happy merely to have some wheat: one grain for
the first square of the chessboard, two grains for the sec-
ond square, four for the third, and so on, doubling each
time. The king thought this was a very modest request,
granted it, and asked for a bag of wheat to be brought in.
However the bag was emptied by the twentieth square.
The king asked for another bag, but then realized that this
entire bag was needed for the next square. In 20 more
squares, as many bags would have been exhausted as there
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were grains in the first bag! The number of grains on the
sixty-fourth square would have been 263, and the total for
the whole board 264

− 1 = 18,446,744,073,709,551,615.
This is more wheat than in the entire whole world; in fact,
it would fill a building 40 km long, 40 km wide, and 300
meters tall. See also Tower of Brahma.

Whitney’s umbrella
A strange-looking, whimsically named geometrical object
first studied by Hassler Whitney in the 1940s. It can be
pictured as a self-intersecting rectangle in three dimen-
sions. A pinch point, also known as a Whitney singularity or
a branch point occurs at the top endpoint of the segment
of self-intersection: every neighborhood of the pinch
point intersects itself.

Wiener, Norbert (1894–1964)
An American mathematician who established the sub-
ject of cybernetics. As a precocious youngster, Wiener
hopped from subject to subject at college, finally earn-
ing a Ph.D. in mathematics from Harvard at 19, before
embarking on an even more erratic early career that took
him into a variety of activities, including journalism.
Having settled upon mathematical research, obtaining 
a post at the Massachusetts Institute of Technology in
1919, he nevertheless continued to range across fields,
from random processes, including ergodic theory (con-
cerned with the onset of chaos in a system), to integral
equations, quantum mechanics, and potential theory.
Wartime work that involved applying statistical methods
to control and communication engineering, led to him
extending these studies into control and communication
in complex electronic systems and in animals, especially
humans—the science of cybernetics.

Wiles, Andrew (1953–)
The English mathematician who, in 1994, finally proved
Fermat’s last theorem. Wiles studied at Oxford (B.A.
1974) and Cambridge (Ph.D. 1977) and has held posts at
Cambridge, Oxford, and Princeton. From the mid-1980s
his work was focused on proving a proposition known as
the Shimura-Taniyama conjecture, since from this, it had
been shown, Fermat’s last theorem would follow. In 1993
he gave a series of lectures at Cambridge University end-
ing on June 23, 1993. At the end of the final lecture he
announced he had a proof of Fermat’s last theorem.
However, when the results were written up for publica-
tion, a subtle error was found. Wiles worked hard for
about a year, helped in particular by a colleague, R. Tay-
lor, and by September 19, 1994, having almost given up,
he decided to have one last try. As he recalled, “suddenly,
totally unexpectedly, I had this incredible revelation. It
was the most important moment of my working life. . . .
[I]t was so indescribably beautiful, it was so simple and
so elegant . . . [that] I just stared in disbelief for twenty
minutes, then during the day I walked round the depart-
ment. I’d keep coming back to my desk to see it was still
there—it was still there.”

In 1994 Wiles was appointed Eugene Higgins Professor
of Mathematics at Princeton. His paper that proves Fer-
mat’s last theorem is called “Modular elliptic curves and
Fermat’s Last Theorem” and appeared in the Annals of
Mathematics in 1995.[296]

Wilson’s theorem
Any number p is a prime number if, and only if, (p − 1)!
+ 1 is divisible by p. We can easily check this for some
small numbers: (2 − 1)! + 1 = 2, which is divisible by 2; 
(5 − 1)! + 1 = 25, which is divisible by 5; (9 − 1)! + 1 =

40,321, which is not divisible by 9. The theorem is
named for Sir John Wilson (1741–1793), who came
across it (but left no formal proof) while he was a student
at Peterhouse College, Cambridge. Wilson went on to
become a judge and seems to have done little else in
mathematics. The theorem was first published and
named after Wilson by Edward Waring (1734–1798)
around 1770. However, it is now clear that the result was
known to Gottfried Leibniz and perhaps, much earlier to
Ibn al-Haytham (965–1040). The first known proof was
provided by Joseph Lagrange.

winding number
The number of times a closed curve in the plane passes
around a given point in the counterclockwise direction.

wine
The creation of a fine wine may be a complex business, but
it is not mathematically intractable according to a Cali-

Whitney’s umbrella Takashi Nishimura
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fornian winemaker and businessman, Leo McCloskey,
who runs a consulting firm. McCloskey’s formula takes
into account color, fragrance, and flavor and attempts to
predict wine quality two to three years in advance. The for-
mula stems from a comparison of key chemical character-
istics for a range of wines with what experts made of the
final product. Putting this information into a database,
McCloskey has claimed, enables the math of wine flavor
to be derived. More than 50,000 wines were analyzed for
the database but, in each case, only a handful of the 400 to
500 constituent chemicals were considered crucial flags to
future color, taste, and bouquet. The proportion of tan-
nins and phenols is particularly crucial in determining a
wine’s future, thus reducing the number of essential flags
for an accurate mathematical model to just 10 or 20. With
this system, McCloskey believes, he can predict what a
wine will be like before it is bottled, giving winemakers the
opportunity to modify the flavor if necessary. However,
whether any wine formula can effectively take into ac-
count the subjective impressions of the end user remains
to be seen. See also bottle sizes.

Witch of Agnesi curve
See Agnesi.

word puzzles

1. What positive integer, when spelled out, has a

Scrabble score equal to that integer?

2. What is the only English word that ends in “mt?”

3. Only four words in the English language end in 

“-dous.” What are they?

4. What is the shortest complete sentence in the

English language?

5. Name the only word (not including proper

names) in the English language that has two “i” ’s

together.

6. Name a one-syllable word that becomes a three-

syllable word by adding one letter to the end of it.

7. What word begins and ends with “und?”

Solutions begin on page 369.

word trivia

• The hardest word to define briefly is thought to be the
word mamihlapinatopai from the Fuegian language spo-
ken by the natives of the Andaman Islands. Its simplest
definition is “two people looking at each other without
speaking hoping that the other will offer to do some-
thing which both parties desire but neither are willing
to do.”

• No word in the English language rhymes with orange,
silver, purple, or month.

• The only 15-letter word that can be written without
repeating a letter is uncopyrightable.

• The combination “ough” can be pronounced in nine
different ways. The following sentence contains them
all: “A rough-coated, dough-faced, thoughtful plough-
man strode through the streets of Scarborough; after
falling into a slough, he coughed and hiccoughed.”

• Facetious and abstemious contain all the vowels in the
correct order, as does arsenious, meaning “containing
arsenic.”

• The longest word in the English language, according to
the Oxford English Dictionary, is pneumonoultramicro-
scopicsilicovolcanoconiosis. The only other word with the
same amount of letters is its plural: pneumonoultrami-
croscopicsilicovolcanoconioses. It means an infection of
the lungs.

• The longest English word with one vowel is strengths.

• The “sixth sick sheik’s sixth sheep’s sick” is said to be
the toughest tongue twister in the English language.

• Richard Millhouse Nixon was the first U.S. president
whose name contains all the letters from the word
criminal.

• In Scotland, a new game was invented. It was called
Gentlemen Only Ladies Forbidden and thus the word
GOLF entered the vocabulary.

• The longest English words that don’t use any of vowels
a, e, i, o, or u are “rhythm” and “syzygy.”

• The verb cleave is one of many English words with two
synonyms which are antonyms of each other: adhere
and separate.

• There is a seven letter word in the English language
that contains ten words without rearranging any of its
letters, therein: the, there, he, in, rein, her, here, ere,
therein, herein.

• The longest English word that consists entirely of con-
sonants is crwth, which is from the fourteenth century
and means crowd.

• The word trivia comes from the Latin tri- + via, and
means “three streets.” This is because in ancient times,
at an intersection of three streets in Rome, they would
have a type of kiosk where ancillary information was
listed. You might be interested in it, you might not,
hence they were bits of “trivia.”

worldline
The path of an object through space-time. On a Minkow-
ski diagram, in which the three dimensions of space 
are represented by the horizontal axis and time is rep-
resented by the vertical axis, worldlines appear as wig-
gly curves extending from the past into the future. My
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Worldline is the title of the autobiography of George
Gamow, the Ukrainian-American physicist.

Wundt illusion
A distortion illusion devised by the German “father of
experimental psychology,” and one-time assistant to the
physicist Hermann von Helmholtz at Heidelberg, Wil-
helm Wundt (1832–1920). In the figure, two horizontal
lines are both straight, although they look as if they bow
in at the middle. The distortion is induced by crooked

lines on the background, as in Orbison’s illusion. The
simplest of all distortion illusions—the vertical-horizontal
illusion—was also discovered by Wundt.

Wythoff’s game
A variation on the game of Nim suggested by W. A.
Wythoff in 1907. It is played with two heaps of counters
in which a player may take any number from either heap
or the same number from both. The player who takes the
last counter wins.



x

The most frequently used symbol for an unknown in an
expression or equation.

x-axis
The horizontal axis of a two-dimensional plot in Carte-
sian coordinates.

X-pentomino
A pentomino, a five-square polyomino, in the shape of
the letter X.

X
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yard
A unit of distance equal to 3 feet (36 inches) or 0.9144
meters. The name originates with the old German word
gazdaz for a staff or stick, which could be used for mea-
surement. This changed to gierd in Old English and even-
tually to yard. The yard-arm of a sailing ship—a tapered
spar used to support a square sail—harkens back to the
earlier meaning. In France, the equivalent of the yard
measure is called a “verge,” from the Latin virga for a stick
or rod.

y-axis
The vertical axis of a two-dimensional plot in Cartesian

coordinates.

yin-yang symbol
See Great Monad.

yocto-/yotta-
The prefix yocto-, for 10−24, derives from the Greek oktakis
(“eight times”). The prefix yotta-, for 1024, comes from
the same source.

Y
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Zeller’s formula
A formula invented by the German clergyman Christian
Zeller (1824–1899) for figuring out the day of the week of
a given date, without the need of tables. Let

J be the century-number,

K the last two digits in the year,

e the residue, which remains when J is divided by 4,

m the number of the month,

q the day of the month,

h the number of the day of the week.

Then h is the remainder that results when

h = q + 26(m + 1)/10 + K + K/4 − 2e

is divided by 7. For the formula to work, January and Feb-
ruary have to be taken as months 13 and 14 of the pre-
ceding year. For example, Frederick the Great was born
on 24 January 1712, so J = 17, e = 1, K = 11 (not 12
because of the special way of numbering the months), 
m = 13, and q = 24. Plugging these values into the formula,
we get

24 + 26(13 + 1)/10 + 11 + 11/4 − 2 × 1
= 71 = 70 × 1 + 1.

The remainder h is 1, so Frederick the Great was born on
the first day of the week, Sunday.

Zenodorus (c. 180 B.C.)
The Greek mathematician and philosopher who pro-
posed in On Isometric Figures that the circle has the maxi-
mum area of all isoperimetric figures in a plane, and that
the sphere has the maximum volume of all bodies with
equal surface.

Zeno’s paradoxes
A series of paradoxes posed by the philosopher Zeno of
Elea (c. 490–c. 425 B.C.). Little is known about Zeno’s
life. He was born in Elea (now Lucania) in southern Italy
and was a friend and student of Parmenides. None of his
writings survive but he is known to have written a book,
which Proclus says contained 40 paradoxes. Four of
these, which all concern motion, have had a profound
influence on the development of mathematics. They are
described in Aristotle’s great work Physics and are called

the Dichotomy, Achilles (and the Tortoise), the Arrow,
and the Stadium.

The Dichotomy argues that “there is no motion
because that which is moved must arrive at the middle of
its course before it arrives at the end.” In order to traverse
a line segment it’s necessary to reach the halfway point,
but this requires first reaching the quarter-way point,
which first requires reaching the eighth-way point, and so
on without end. Hence motion can never begin. This
problem isn’t alleviated by the well-known infinite sum
1⁄2 +

1⁄4 +
1⁄8 + . . . = 1 because Zeno is effectively insisting

that the sum be tackled in the reverse direction. What is
the first term in such a series?

Zeno’s paradox of Achilles is told by Aristotle in this
way: “The slower when running will never be overtaken
by the quicker; for that which is pursuing must first reach
the point from which that which is fleeing started, so that
the slower must necessarily always be some distance
ahead.” Thus, Achilles, however fast he runs, will never
catch the plodding Tortoise who started first. And yet, of
course, in the real world, faster things do overtake slower
ones. So how is the paradox to be solved? The German
set theorist Adolf Frankel (1891–1965) is one of many
modern mathematicians (Bertrand Russell is another)
who have pointed out that 2,000 years of attempted
explanations have not cleared away the mysteries of
Zeno’s paradoxes: “Although they have often been dis-
missed as logical nonsense, many attempts have also
been made to dispose of them by means of mathematical
theorems, such as the theory of convergent series or the
theory of sets. In the end, however, the difficulties inher-
ent in his arguments have always come back with a ven-
geance, for the human mind is so constructed that it can
look at a continuum in two ways that are not quite rec-
oncilable.”

zepto-/zetta-
The prefix zepto-, for 10−21, derives from the Greek hep-
takis (“seven times”). The prefix zetta-, for 1021, comes
from the same source.

zero
The integer, denoted 0, which, when used as a counting
number, indicates that no objects are present. It is the
only integer that is neither negative nor positive. Zero is
both a number and a numeral. The number zero is the

Z
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size of the empty set but it is not the empty set itself,
nor is it the same thing as nothing. The numeral or digit
zero is used in positional number systems, where the
position of a digit signifies its value, with successive
positions having higher values, and the digit zero is used
to skip a position. The earliest roots of the numeral 
zero stretch back 5,000 years to the Sumerians in
Mesopotamia, who inserted a slanted double wedge
between cuneiform characters for numbers, written posi-
tionally, to indicate a number’s absence. The symbol
changed over time as positional notation made its way to
India, via the Greeks (in whose own culture zero made a
late and only occasional appearance). Our word zero

derives from the Hindi sunya for “void” or “emptiness,”
through the Arabic sifr (which also gives us cipher), and
the Italian zevero. As a number in its own right, aside
from its use as a position marker, zero took a much
longer time to become established, and even now is not
equal in status to other numbers: division by zero is not
allowed.

zero divisors
Nonzero elements of a ring whose product is 0.

zero of a function
See root.

Zöllner illusion
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zero-sum game
In game theory, a game in which a win for one player
results in an equal but opposite loss for the other players.

zeta function
A function that has certain properties and is calculated as
an infinite sum of negative powers. The most commonly
encountered zeta function is the Riemann zeta function.

zigzag
A general word for a type of curve that consists of several
straight lines joined at points. A zigzag usually goes alter-
nately from side to side.

Zöllner illusion
A line distortion illusion first published by the as-
tronomer Johann Zöllner in 1860. The diagonal lines,
although parallel, appear not to be. The illusion was one
of a series specifically designed to cause errors in optical

equipment of that time. They did cause errors, and also
great concern among scientists over the validity of all
human observations. See also Poggendorff illusion.

zombie
A hypothetical being that behaves like us and may share
our functional organization and even, perhaps, our neu-
rophysiological makeup, but lacks consciousness or any
form of subjective awareness. The concept is used in dis-
cussions of artificial intelligence.

zone
The portion of a sphere between two parallel planes.

zonohedron
A polyhedron in which the faces are all parallelograms
or parallel-sided. The faces of a zonohedron can be
grouped into zones—encircling bands of faces which share
a common edge direction (and length).
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abracadabra
To solve this problem, redraw the diamond and replace
every letter on the outside top half of the diamond with
a 1 and every other point in the diamond with a dot. This
gives

1
1   1

1   .   1
1   .   .   1

1   .   .   .   1
1   .   .   .   .   1

.   .   .   .   .
.   .   .   .
.   .   .
.   .
.

Next, replace each of the dots, starting at the top, with
the sum of the two numbers in the northwest and north-
east positions, so that the pyramid now starts

1
1   1

1   2   1
1   3   3   1

After you have worked your way down to the very bot-
tom, the bottom number in the diamond is the answer to
Polya’s problem: 252.

age puzzles and tricks

1. 18.

2. 161⁄2 (Mary is 271⁄2).

alphametic

1. 67432 (EARTH)
704 (AIR)

8046 (FIRE)
+ 97364 (WATER)
——————————————
173546 (NATURE)

A = 7, E = 6, F = 8, H = 2, I = 0, R = 4, T = 3, W = 9

2. 127503 (SATURN)
502351 (URANUS)

3947539 (NEPTUNE)
+ 46578 (PLUTO)

—————————————————
4623971 (PLANETS)

A = 2, E = 9, L = 6, N = 3, O = 8, P = 4, R = 0, S = 1,
T = 7, U = 5

3. 862903 (MARTIN)
+ 1627342 (GARDNER)

——————————————————
2490245 (RETIRES)

A = 6, D = 7, E = 4, G = 1, I = 0, M = 8, N = 3, R = 2,
S = 5, T = 9

anagram

1. Wolfgang Amadeus Mozart.

2. Thomas Alva Edison.

3. William Shakespeare.

Carroll, Lewis

1. There is as much water in the milk/water mixture as
milk in the water/milk mixture.

2. There are 30 ways of painting the cube. If the restric-
tion that each face be painted a different color is
dropped, there are 2,226 ways of painting the cube.

3. FOUR → FOUL → FOOL → FOOT → FORT →
FORE → FIRE → FIVE

Alternatively:
FOUR → POUR → POUT → ROUT → ROUE →
ROVE → DOVE → DIVE → FIVE
(Thanks to my editor, Stephen Power, for this one.)

4. Carroll didn’t have an answer in mind when he
wrote the riddle, though he later came up with:
“Because it can produce a few notes, though they
are very flat; and it is nevar put wrong end in front!”
(Note the variant spelling of “never.”) Other authors
have come up with: “Because Poe wrote on both”
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(Sam Loyd); “Because it slopes with a flap” (Cyril
Pearson); and “Because both have quills dipped in
ink” (David Jodrey).

clock puzzles

1. Approximately 27 minutes and 42 seconds (exactly
360/13 minutes) after 6.

2. The stopped clock, because it will give the right time
twice a day, whereas the other is only correct approx-
imately every two years.

3. The positions of the hands shown in the illustration
could only indicate that the clock stopped at 44 min.
51 1,143/1,427 sec. after eleven o’clock. The second
hand would next be “exactly midway between the
other two hands” at 45 min. 52 496/1,427 sec. after
eleven o’clock. If we had been dealing with the
points on the circle to which the three hands are
directed, the answer would be 45 min. 22 106/1,427
sec. after eleven; but the question applied to the
hands, and the second hand would not be between
the others at that time, but outside them.

cone
The simple rule is that the cone must be cut at one-third
of its height.

de Morgan, Augustus
43 (the only number that, when squared, gives a number
between the years of de Morgan’s birth and death).

domino
No! Suppose it were possible to totally cover the modi-
fied chessboard with nonoverlapping dominos. In any
complete tiling, every domino must cover exactly one
white square and one black square. Thus the modified
board must have exactly the same number of black and
white squares. But the two removed squares, from diago-
nally opposite corners of a chessboard, must be same
color. Since there can’t be the same number of white
squares and black squares on the modified board it must
be impossible to tile the modified board with nonover-
lapping dominos.

hundred fowls problem
Using the two equations to eliminate C, gives the equa-
tion 7R + 4H = 100. R must be less than 15 (since 7 × 15 =

105). Trial-and-error shows that values of R that allow
whole number values of H are 4, 8, and 12, from which it
follows that the three possible solutions to the problem
are 4 roosters, 18 hens, and 78 chicks; 8 roosters, 11 hens,
and 81 chicks; and 12 roosters, 4 hens, and 84 chicks.

kinship puzzles

1. Your son.

2. Sons of two men who married each other’s mothers.

3. The party consisted of two girls and a boy, their father
and mother, and their father’s father and mother.

measuring and weighing puzzles
The innkeeper first filled the 5-pint and 3-pint measures,
then turned the tap on the barrel and allowed the rest of
its contents to run to waste. He closed the tap and emp-
tied the 3-pint into the barrel; filled the 3-pint from the 5-
pint; emptied the 3-pint into the barrel; transferred the 2
pints from the 5-pint to the 3-pint; filled the 5-pint from
the barrel, leaving 1 pint now in the barrel; filled the 3-
pint from the 5-pint; allowed the company to drink the
contents of the 3-pint; filled the 3-pint from the 5-pint,
leaving 1 pint now in the 5-pint; drank the contents of the
3-pint; and finally drew off 1 pint from the barrel into the
3-pint. He now had 1 pint of ale in each measure!

missing dollar problem
There is no missing dollar (of course!). Adding $27 and
$2 (to get $29) is a bogus operation. They paid $27, $2
went to the dishonest waiter, and $25 went to the restau-
rant. You have to subtract $27 minus $2 to get $25. There
never was a $29; it has nothing to do with anything.

Mrs. Perkins’s quilt
The following diagram shows how the quilt should be
made.

The solution of Mrs. Perkins’s quilt.
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In Amusements in Mathematics, Dudeney writes: “There is,
I believe, only one solution to this puzzle. The fewest
separate squares must be eleven. The portions must be of
the sizes given, the three largest pieces must be arranged
as shown, and the remaining group of eight squares may
be ‘reflected,’ but cannot be differently arranged.”

nine rooms paradox
One of the two customers who is initially placed in room
A, whom we refer to as the “first” customer, is later trans-
ferred to room I and treated as if he were also the tenth
customer!

postage stamp problems
Dudeney gives the solution to his “The Four Postage
Stamps” problem as follows: “[T]he four stamps may be
given in the shape 1, 2, 3, 4, in three ways; in the shape 1,
2, 5, 6, in six ways; in the shape 1, 2, 3, 5, or 1, 2, 3, 7, or
1, 5, 6, 7, or 3, 5, 6, 7, in twenty-eight ways; in shape 1, 2,
3, 6, or 2, 5, 6, 7, in fourteen ways; in shape 1, 2, 6, 7, or
2, 3, 5, 6, or 1, 5, 6, 10, or 2, 5, 6, 9, in fourteen ways.
Thus there are sixty-five ways in all.”

probability theory

1. There are four possibilities:

Oldest Child Youngest Child
1. Girl Girl
2. Girl Boy
3. Boy Girl
4. Boy Boy

If your friend says “My oldest child is a girl,” he has elim-
inated cases 3 and 4, and in the remaining cases both are
girls 1⁄2 of the time. If your friend says “At least one of my
children is a girl,” he has eliminated case 4 only, and in
the remaining cases both are girls 1⁄3 of the time.

2. There are six possible bullet configurations (B = bul-
let, E = empty):

B B B E E E → player 1 dies
E B B B E E → player 2 dies
E E B B B E → player 1 dies
E E E B B B → player 2 dies
B E E E B B → player 1 dies
B B E E E B → player 1 dies

One therefore has a 2⁄3 probability of winning (and a 1⁄3
probability of dying) by shooting second.

Pythagorean square puzzle

Pythagorean puzzle solution.

river-crossing problem
The missionaries (M) can avoid being eaten by the canni-
bals (C) if the crossings of the river and the returns are
arranged as follows. Crossing #1: 1M + 1C; return #1:
1M; crossing #2: 2C; return #2: 1C; crossing #3: 2M;
return #3: 1M + 1C; crossing #4: 2M; return #4: 1C;
crossing #5: 2C; return #5: 1C; crossing #6: 2C.

word puzzles

(1) T1W4E1L1V4E1.

(2) Dreamt.

(3) Tremendous, horrendous, stupendous, and haz-
ardous.

(4) I am.

(5) skiing

(6) “Are” by an adding an “a” becomes “area.”

(7) underground.
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Algebra
abstract algebra
algebra
algebraic fallacies
algebraic geometry
array
associative
Bieberbach conjecture
binary operation
coefficient
commutative
cubic equation
determinant
diagonal matrix
discriminant
distributive
field
fundamental theorem of algebra
gradient
Hankel matrix
hundred fowls problem
idempotent
invariant
invariant theory
Jordan matrix
Lie algebra
linear algebra
linear system
matrix
monomial
non-Abelian
quadratic
quadric
quartic
quintic
resultant
ring
scalar
solution
tensor
Toeplitz matrix
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transpose
trinomial
unimodular matrix
vector
vector space
weak inequality

x
zero divisors

Analytical geometry
abscissa
algebraic curve
analytical geometry
Cartesian geometry. See analytical

geometry
Cartesian coordinates
coordinate
coordinate geometry. See analytical

geometry
octant
ordinate
origin
polar coordinates
quadrant
rectangular coordinates. See Cartesian

coordinates
slope
x-axis
y-axis

See also: Geometry, general terms and 
theorems and Graphs and 
graph theory

Approximations and averages
Banker’s rounding
arithmetic mean
average
ceiling
difference equation
extrapolate. See interpolate
floor function
geometric mean
interpolate
iterate
iteration
mean
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mode
Newton’s method
rounding numerical analysis
round-off error
significant digits
universal approximation
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casting out nines
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division
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multiple
negative base
number system
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product
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subtraction
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See also: Number theory
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Kepler, Johannes (1571–1630)
Khayyam, Omar (1044–1123)
Kirkman, Thomas Penyngton

(1806–1895)
Klein, Christian Felix (1849–1925)
Kolmogorov, Andrei Nikolaievich

(1903–1987)
Kronecker, Leopold (1823–1891)
Lagrange, Joseph Louis (1736–1813)
Laplace, Pierre Simon (1749–1827)
Lebesgue, Henri Leon (1875–1941)
Leibniz, Gottfried Wilhelm 

(1646–1716)
Leurechon, Jean (c. 1591–1670)
Lie, Marius Sophus (1842–1899)
Lobachevsky, Nikolai Ivanovich

(1793–1856)
Lorenz, Edward Norton (1917–)
Lovelace, Lady. See Byron, Ada
Loyd, Sam (1841–1911)
Lucas, (François) Edouard (Anatole)

(1842–1891)
Maclaurin, Colin (1698–1746)
MacMahon, Percy Alexander

(1854–1929)
Madachy, Joseph S.
Mandelbrot, Benoit B. (1924–)
Menaechmus (c. 380–c. 320 B.C.)
Mersenne, Marin (1588–1648)
Michell, John (1724–1793)
Minkowski, Hermann (1864–1909)
Mittag-Leffler, (Magnus) Gösta

(1846–1927)
Moivre, Abraham de. See de Moivre,

Abraham
Monge, Gaspard (1746–1818)
Montucla, Jean Etienne (1725–1799)
Mydorge, Claude (1585–1647)
Napier, John (1550–1617)
Napoleon Bonaparte (1769–1821)
Nash, John Forbes, Jr. (1928–)
Newton, Isaac (1642–1727)
Noether, Emmy (Amalie) (1882–1935)
Oughtred, William (1574–1660)
Ozanam, Jacques (1640–1717)
Pacioli, Luca (1445–1517)
Pappus of Alexandria (lived c. A.D. 300)
Pascal, Blaise (1623–1662)
Peano, Guiseppe (1858–1932)
Penrose, Roger (1931–)
Perelman, Yakov Isidorovitch

(1882–1942)
Perigal, Henry (1801–1898)
Phillips, Hubert (1891–1964)
Plateau, Joseph Antoine Ferdinand

(1801–1883)
Poincaré, (Jules) Henri (1854–1912)
Poinsot, Louis (1777–1859)
Poisson, Siméon Denis (1781–1840)
Poncelot, Jean Victor (1788–1867)
Proclus Diadochus (A.D. c. 410–485)
Pythagoras of Samos (c. 580–500 B.C.)
Ramanujan, Srinivasa Aaiyangar

(1887–1920)



Category Index 375

Recorde, Robert (c. 1510–1558)
Reutersvärd, Oscar (1915–)
Riemann, (Georg Friedrich) Bernhard

(1826–1866)
Robinson, Abraham (1918–1974)
Rucker, Rudy (1946–)
Russell, Bertrand Arthur William

(1872–1970)
Saccheri, Giovanni Girolamo

(1667–1733)
Sallows, Lee C. F. (1944–)
Schläfli, Ludwig (1814–1895)
Schubert, Hermann (1848–1911)
Schuh, Frederick (1875–1966)
Shannon, Claude Elwood (1916–2001)
Sierpinski, Waclaw Franciszek

(1882–1969)
Singmaster, David
Slocum, Jerry
Smullyan, Raymond (1919–)
Stanhope, Earl
Steiner, Jakob (1796–1863)
Steinhaus, Hugo (1887–1972)
Stewart, Ian (1945–)
Sylvester, James Joseph (1814–1897)
Tait, Peter Guthrie (1831–1901)
Tarry, Gaston (1843–1913)
Tarski, Alfred (1902–1983)
Tartaglia, Niccoló Fontana (1499–1557)
Thompson, D’Arcy Wentworth

(1860–1948)
Turing, Alan Mathison (1912–1954)
Ulam, Stanislaw Marcin (1909–1984)
Ussher, James (1581–1656)
van der Pol, Balthazar (1889–1959)
von Neumann, John (1903–1957)
Wallis, John (1616–1703)
Weierstrass, Karl Wilhelm Theodor

(1815–1897)
Wessel, Caspar (1745–1818)
Weyl, Hermann Klaus Hugo (1885–1955)
Wiener, Norbert (1894–1964)
Wiles, Andrew (1953–)

Board games and chess problems
backgammon
bishops problem
chess
Fitchneal
four knights puzzle
Fox and Geese
Frogs and Toads
Go
Hex
Hi-Q. See peg solitaire
Hnefa-Tafl
kings problem
knights problem
knight’s tour
Mancala
nine holes. See three men’s morris

nine men’s morris
Ovid’s game
peg solitaire
Phutball
queens problem
rooks problem
Rithmomachia
Senet
solitaire. See peg solitaire
Tafl game
three men’s morris
tour
Wari. See Mancala

See also: Games and game theory

Calculus and analysis
analysis
boundary condition
boundary value problem
brachistochrone problem
calculus
calculus of variations
codimension
continuity
convergence
derivative
differential
differential equation
differentiation
discontinuity
diverge
Green’s theorem
harmonic analysis
Henstock integration. See integration
infinitesimal
inflection
integral
integral equation
integration
least upper bound
limit
localized solution
maximum
measure
measure theory
method of exhaustion
minimum
ordinary differential equation
partial differential equation
Riemann integral
Rolle’s theorem
smooth
stationary point

See also: Complex numbers and
Series and sequences

Calendars, dates, ages, and 
clocks

age puzzles and tricks
birthday surprise

calendar curiosities
chronogram
clock puzzle
Diophantus’s riddle
International Date Line
kinship puzzles
Zeller’s formula

See also: Time

Cards
blackjack
cards
Martingale system
shuffle

See also: Games and game theory

Chaos, complexity, and dynamical
systems
attractor
basin of attraction
bifurcation
butterfly effect
catastrophe theory
chaos
chaotic attractor
complex adaptive system
complex system
complexity
complexity theory
deterministic system
dissipative system
dynamical system
edge of chaos
emergence
equilibrium
ergodic
Feigenbaum’s constant
fixed-point attractor
instability
logical depth
nonlinear system
nucleation
periodic attractor
quasiperiodic
redundancy
self-organization
self-organized criticality
sensitivity
strange attractor. See chaotic attractor
time-reversible

See also: Fractals

Codes and ciphers
Beal cipher
Caesar cipher
cipher
code. See cipher
coding theory
cryptography
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Codes and ciphers (Continued)
substitution cipher
transposition cipher

Combinatorics
binomial
binomial coefficient
binomial theorem
Cayley’s mousetrap
change ringing
combination
combinatorics
dinner party problem. See Ramsey theory
mousetrap. See Cayley’s mousetrap
officer problem. See thirty-six officers

problem
Pascal’s triangle
permutation
Pick’s theorem
plane partition
Ramsey theory
schoolgirls problem
thirty-six officers problem

Complex numbers
Argand diagram
complex analysis
complex number
complex plane. See Argand diagram
de Moivre’s theorem
eigenvalue
Euler’s formula
i
imaginary number
primitive root of unity
root of unity

Computing, artificial intelligence,
and cybernetics
abacus
algorithm
algorithmic complexity
artificial intelligence
artificial life
bit
byte
cellular automaton
Chinese room
Church-Turing thesis
communication theory. See information

theory
compressible
computability theory
computable number
connectionism
cybernetics
feedback
finite-state automaton
genetic algorithm
halting problem
incomputable number

information theory
lambda calculus
Langton’s ant 
Life, Conway’s game of
model of computation
neural network
NP-hard problem
recursion
simulation
slide rule
soroban. See abacus
supercomputer
time complexity
Turing machine
Turing test
universal computer
von Neumann machine
zombie

Differential geometry
curvature
differential geometry
elliptical geometry
geodesic
hairy ball theorem
hyperbolic geometry
metric
Minkowski space
non-Euclidean geometry
Poincaré disk
Riemannian geometry. See elliptical

geometry
spherical geometry. See elliptical geome-

try

See also: Topology

Dimensions, higher and lower
Flatland: A Romance of Many Dimensions
fourth dimension
higher dimensions
hypercube
hypersphere
polychoron
polytope
realm
Reuleaux polytope
simplex
tesseract
two-dimensional worlds

See also: Solids and surfaces

Dissection
Archimedes’s square. See loculus of

Archimedes
Blanche’s dissection
cake-cutting
dissection
loculus of Archimedes
fair division. See cake-cutting

Haberdasher’s puzzle
Hadwiger problem
Mrs. Perkins’s quilt
Pythagorean square puzzle
stomachion. See loculus of Archimedes
T-puzzle

Fractals and pathological curves
Barnsley’s fern
Cantor dust
dragon curve
fractal
fractal dimension
Hausdorff dimension
Mandelbrot set
Monster curve. See Peano curve
Peano curve
Julia set
Koch snowflake
Lorenz system
L-system
Lyapunov fractal
Menger sponge
pathological curve
self-similarity
Sierpinski carpet
Sierpinski gasket
snowflake curve. See Koch snowflake
space-filling curve
Volvox fractal
Weierstrass’s nondifferentiable function

Functions
absolute value
Ackermann function
beta function
codomain
cosine. See trigonometric function
domain
elementary function
elliptic function
even function
function
gamma function
hypergeometric function
exponent
exponential
factorial
homomorphism
hyperfactorial
injection
jump discontinuity
linear programming
logarithm
mantissa
natural logarithm
one-to-one
operator
parameter
periodic
polynomial
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range
recursive function
special function
trigonometric function
zero of a function. See root
zeta function

Games
game
game theory
Grundy’s game. See Nim
minimax theorem
mixed strategy
Nash equilibrium
Nim
noughts and crosses. See tic-tac-toe
payoff
prisoner’s dilemma
Sprague-Grundy theory
Sprouts
strategy
TacTix
Tangloids
Tetris
thirty colored cubes puzzle
tic-tac-toe
truel
utility function
Wythoff ’s game
zero-sum game

See also: Board games and chess prob-
lems and Cards

Geometry, general terms and 
theorems
acute
adjacent
affine geometry
alternate
altitude
angle
apex
apothem
arc
asymptote
Aubel’s theorem
Bang’s theorem
bisect
Brianchon’s theorem
butterfly theorem
cathetus
Cavalieri’s principle
center of perspective
central angle
centroid
chord
circumcenter
circumference
commensurable
congruent

constructible
curve
de Malves’s theorem
Descarte’s circle theorem. See Soddy for-

mula
diagonal
diameter
equichordal point
equilateral
Euclidean geometry
Euler line
Fagnano’s problem
focal chord
focal radius
focus
geometry
Gergonne point
great circle
half-line
half-plane
harmonic division
Heron’s formula
hypotenuse
inscribed angle
isogonal conjugate
isoperimetric inequality
isosceles
isotomic conjugate
isometry
latus rectum
line
locus
main diagonal
major axis
Mascheroni construction
midpoint
minor axis
Morley’s miracle
Nagel point
Neusis construction
nine-point circle
normal
oblique
obtuse
orthocenter
orthogonal
osculating
parallel
Pascal’s mystic hexagon
perimeter
periphary
perpendicular
plane
point
Poncelot’s theorem
projective geometry
prolate
Ptolemy’s theorem
Pythagoras’s theorem
quadrature
radical axis

ray
radius
reentrant angle
reflection
reflex angle
right
rotation
ruler-and-compass construction. See

Mascheroni construction
salient
secant
sector
segment
self-intersecting
similar
six circles theorem
skew lines
Soddy’s formula
Sperner’s lemma
Steiner-Lehmus theorem
straight
supplementary angles
symmedian
tangent
transformation
translation
transversal
triangulation
trigonometry
trisector theorem. See Morley’s miracle
vertex
Viviani’s theorem
volume

See also: Coordinate geometry; Geom-
etry, problems; Plane 
curves; Solids and sur-
faces; and Space curves

Geometry, problems
angle bisection. See bisecting an angle
angle trisection. See trisecting an angle
Apollonius problem
bisecting an angle
duplicating the cube
four coins problem
geometry puzzles
hole-in-a-postcard problem
hole-through-a-sphere problem
isovolume problem
Johnson’s theorem
Kakeya needle problem
Langley’s adventitious angles
Prince Rupert’s problem
rope around the Earth puzzle
spider-and-fly problem
squaring the circle
squaring the square
Sylvester’s problem of collinear 

points
tautochrone problem
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Geometry, problems (Continued)
trisecting an angle
unilluminable room problem

Graphs and graph theory
Around the World game. See Icosian

game
axis
bridges of Königsberg
complete graph
connected graph
digraph
directed graph
Euler circuit
Euler path
four-color map problem
graceful graph
graph
graph theory
Hamilton circuit
Hamilton path
Icosian game
Königsberg bridge problem. See bridges

of Königsberg
Tait’s conjecture
tangled graph
traveling salesman problem
tree
twelve-color map problem

Groups
Abelian group
automorphism
character theory
enormous theorem
fundamental group
Galois theory
group
linear group
Monster group
Monstrous Moonshine conjecture
representation theory
semigroup
simple group
subgroup
symmetric group
symmetry group
topological group
wallpaper group

History of mathematics
Ahmes papyrus. See Rhind papyrus
apotome
Bakhshali manuscript
disme
Egyptian fraction
Ishango bone
Lebombo bone
Ludolph’s number
Moscow papyrus. See Rhind papyrus
quipu

Rhind papyrus
Roman numerals
tally
tetraktys
Tinner’s rabbits

See also: Biographies

Illusions and impossible figures
ambiguous connectivity. See impossible

figures
ambiguous figure
Ames room
anamorphosis
antigravity houses and hills
Benham’s disk
distortion illusion
Fraser spiral
Freemish crate. See impossible figure
Get off the Earth
Hermann grid illusion
Herring illusion
impossible figure
impossible tribar. See Penrose triangle
impossible trident
irradiation illusion
lateral inhibition illusion. See Hermann

grid illusion
Moiré pattern
Müller-Lyer illusion
Necker cube
optical illusion
Orbison’s illusion
Penrose stairway
Penrose triangle
Poggendorff illusion
Schröder’s reversible staircase
scintillating grid illusion. See Hermann

grid illusion
Thiery figure
Titchener illusion
tribar illusion. See Penrose triangle
upside-down picture
vertical-horizontal illusion
Wundt illusion
Zöllner illusion

Infinity
aleph
continuum hypothesis
infinite dimensions
infinity
transfinite number

Large numbers
chained arrow notation. See Conway’s

chained arrow notation
Conway’s chained-arrow notation
Knuth’s up-arrow notation
large numbers
power tower

scientific notation
up-arrow notation. See Knuth’s up-arrow

notation

See also: Numbers, special

Logic
bilateral diagram
Boolean
Boolean algebra
Caliban puzzle
excluded middle law
existence
fuzzy logic
Gettier problem
logic
QED
quantifier
quine
strange loop
syllogism
tangle
Venn diagram
wff

See also: Mathematics, foundations

Magic squares
alphamagic square
antimagic square
bimagic square
magic cube
magic square
magic tour
Euler square
gnomon magic square
Latin square
pandiagonal magic square
semi-magic square

Mathematics, foundations
applied mathematics
axiom
axiom of choice
barber paradox. See Russell paradox
category theory
classification
complete
conjecture
consistency
Euclid’s postulates
formalism
formal system
Gödel’s incompleteness theorem
heuristic argument
hypothesis. See conjecture
induction
isomorphism
lemma
mathematics
nonstandard analysis
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parallel postulate
Platonism
proof
pure mathematics
reductio ad absurdum
Russell’s paradox
set of all sets. See Russell’s paradox
theorem
universe of discourse

See also: Logic

Mathematics, miscellaneous
animals’ mathematical ability
area codes
beauty and mathematics
bistromathics
Fields Medal
films and plays involving mathematics
Great Monad
Hofstadter’s law
I-Ching
impossibilities in mathematics
Journal of Recreational Mathematics
mathematical lifespan
origami
pizza
ying-yang symbol. See Great Monad

Mazes
labyrinth. See maze
maze
Rosamund’s bower

Measuring and units
acre
area
bottle sizes
counterfeit coin problem
cubit
league
measuring and weighing puzzles
meter
mile
minute
nano-
peta-
pico
radian
second
steradian
tera-
weighing puzzles. See measuring and

weighing puzzles
yard

Mechanical puzzles
Altekruse puzzle
burr puzzle
Cardan’s rings. See Chinese rings
Chinese cross. See burr puzzle

Chinese rings
Fifteen Puzzle
matchstick puzzles
mechanical puzzles
Pony Puzzle
puzzle jug
puzzle rings
puzzle vessels
Rubik’s cube
sliding-piece puzzles
Soma cube
tangrams
Tower of Brahma
Tower of Hanoi
vanishment puzzles

Mirrors and symmetry
bilateral
chiral
enantiomorph
left-right reversal. See mirror reversal

problem
mirror reversal problem
reflexible

Number theory
ABC conjecture
algebraic number theory
aliquot part
analytical number theory
Archimedes’s cattle problem
Beal’s conjecture
Brocard problem
Catalan’s conjecture
Chinese remainder theorem
Collatz problem
congruum problem
digit
digital root
Diophantine approximation
Diophantine equation
elliptic curve
Euler’s conjecture
Fermat number
Fermat’s last theorem
Gelfond’s theorem
modulo
multigrade
number line
number theory
parity
Pell equation
proper divisor. See aliquot part
Riemann hypothesis
Riemann zeta function
Ulam’s conjecture. See Collatz problem
Waring’s conjecture

Numbers, special
Apéry’s constant
apocalypse number. See beast number

Avagadro constant
baker’s dozen. See twelve
beast number (666)
billion. See large numbers
Catalan’s constant
centillion. See large numbers
century
Chaitin’s constant (Ω)
Champernowne’s number
dozen. See twelve
e
Eddington number
eight
eleven
Euler-Mascheroni constant
Euler’s constant. See Euler-Mascheroni

constant
five
four
gamma. See Euler-Mascheroni constant
golden ratio (phi, φ)
googol
Graham’s number
gross
hexa-
hundred
Kaprekar constant
Khintchine’s constant
Leibniz harmonic triangle
million
myriad
nine
octa-
Omega. See Chaitin’s constant
one
153
penta-
phi. See golden ratio
pi (π)
plastic number
score
seven
seventeen
sexagesimal
six
sixty. See sexagesimal
Skewes’ number
square root of 2
ten
thirteen
thousand
three
Thue-Morse constant
trillion
triskaidekaphobia. See thirteen
twelve
twenty
two
vigesimal
Wallis formula. See pi
zero



380 Category Index

Numbers, types
abundant number
algebraic number
almost perfect number
amicable numbers
Arabic numeral
automorphic number
Bell number
Bernouilli number
Betti number
cardinal number
Carmichael number
Catalan number
Cayley number. See octonion
chromatic number
common fraction
composite number
continued fraction
Cullen number
cute number
cyclic number
decimal
decimal fraction
deficient number. See abundant number
economical number
EPORN
equivalent numbers
extravagant number. See economical

number
factorion
Fibonacci sequence
figurate number
fraction
friendly number. See amicable number
frugal number. See economical number
happy number
Harshad number
hyperreal number
integer
interesting numbers
irrational number
Kaprekar number
Liouville number
lucky number
Mersenne number
narcissistic number
natural number
negative numbers
normal number
number
numeral
numerator
oblong number
octonion
ordered pair
ordinal number
palindromic number
pandigital number
partition number
Pell numbers

perfect cube
perfect number
perfect power
perfect square
polygonal number
powerful number
practical number
pronic number
pyramidal number
quaternion
rational number
real number
repdigit
rep-unit
schizophrenic number
Sierpinski number
Smith number
solitary number
square free
squarefull number. See powerful

number
sublime number
supertetrahedral number
surd
surreal number
terminating decimal
tetrahedral number
transcendental number
triangular number
trimorphic number. See automorphic

number
undulating number
unique number
unit fraction
untouchable number
vampire number
vulgar fraction. See common fraction
weird number. See abundant number
winding number

See also: Complex numbers and
Infinity

Packing
cannonball problem
Kepler’s conjecture
moving sofa problem
packing
Slothouber-Graatsma puzzle
square pyramid problem. See cannonball

problem
sphere packing. See packing, Kepler’s 

conjecture, and cannonball 
problem

Paradoxes
Achilles and the Tortoise paradox. See

Zeno’s paradoxes
Allais paradox
Aristotle’s wheel

Arrow paradox
Banach-Tarski paradox
Berry’s paradox
Bertrand’s box paradox
Burali-Forti paradox
Buridan’s ass
catch-22
coin paradox
Epimenides paradox. See liar paradox
Grelling’s paradox
liar paradox
Newcomb’s paradox
nine rooms paradox
paradox
Parrondo’s paradox
potato paradox
raven paradox
Richard’s paradox. See Berry’s paradox
St. Petersburg paradox
Siegel’s paradox
unexpected hanging
wheel paradoxes
Zeno’s paradoxes

See also: Illusions and impossible fig-
ures and Mathematics,
foundations

Places and buildings
Alhambra
Atomium, the
Giant’s Causeway
Triangular Lodge

Plane curves
anallagmatic curve
annulus
arbelos
Archimedean spiral
astroid
bicorn
bicuspid curve
Barbier’s theorem. See curve of constant

width
caduceus
cardioid
Cartesian oval
Cassinian ovals
catenary
caustic
Cayley’s sextic
circle
circle involute
circumcircle
cissoid
cochleoid
conchoid
conic section
crunode
cubic curve
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curve of constant width
cusp
cycloid
de l’Hopital’s cubic. See Tschirnhaus’s

cubic
delta curve
deltoid
devil’s curve
directrix
Dürer’s shell curve
eccentricity. See conic section
egg
eight curve
ellipse
epicycloid
epitrochoid
escribed circle
evolute
Flower of Life
folium
Freeth’s nephroid. See nephroid
glissette
hippopede
hyperbola
hyperbolic spiral
hyperellipse. See superellipse
hypocycloid
hypoellipse. See superellipse
hypotrochoid
incircle
inscribed circle
involute
isochrone
Jordan curve
Kampyle of Eudoxus
kappa curve
Lamé curve
lemniscate
limaçon of Pascal
Lissajous figure
lituus
logarithmic spiral
Maclaurin trisectrix
Malfatti circles
Neile’s parabola
nephroid
node. See crunode
oval
parabola
pearls of Sluze
pedal curve
Plateau curves
pursuit curve
quadratrix of Hippias
quadrifolium. See rose curve
ranunculoid
rectangular hyperbola. See hyberola
Reuleaux triangle
rose curve
rotor

roulette
salinon
serpentine
shell curve. See Dürer’s shell curve
Soddy circle
spirograph curve. See roulette
strophoid
superellipse
tractrix
trefoil curve
tricuspoid. See deltoid
trident of Newton
trifolium. See rose curve
trisectrix
trochoid
Tschirnhaus’s cubic
twisted cubic
unduloid
unit circle
Vesica Piscis
witch of Agnesi curve. See Agnesia, Maria

Gaetana

See also: Tiling

Polygons
cross
cyclic polygon
decagon
dodecagon
golygon
heptagon
kite
limping triangle
lozenge
medial triangle
monochromatic triangle
n-gon
nonagon
oblong
octagon
orthic triangle
parallelepiped
parallelogram
pedal triangle
polygon
Pythagoras’s lute
Pythagorean triangle
Pythagorean triplet
quadrangle
quadrilateral
rectangle
rhombus
scalene triangle
square
Star of David
Star of Lakshmi
swastika
trapezium
trapezoid

triangle
vertex figure

See also: Polyominos

Polyominos
broken chessboard. See polyomino
domino
pentomino. See polyomino
polyiamond
polyomino
flexagon
tetromino. See polyomino
triomino
X-pentomino

Prime numbers
Bertrand’s postulate
Brun’s constant. See twin primes
circular prime
coprime
Cunningham chain
deletable prime. See truncatable prime
Dirichlet’s theorem
emirp
Eratosthenes’s sieve. See sieve of Eratos-

thenes
factor
Fermat’s little theorem
Fortune’s conjecture
Gilbreath’s conjecture
Goldbach conjecture
Mersenne prime
minimal prime
permutable prime
Pólya’s conjecture
prime number
primitive root
primorial
pseudoprime
sieve of Eratosthenes
snowball prime
Sophie Germain prime
strobogrammatic prime
truncatable prime
twin primes
Ulam spiral
Wilson’s theorem

Probability and statistics
Bayesian inference
Bayes’s theorem
bell curve
Benford’s law
birthday paradox
Buffon’s needle
chance. See probability
coincidence
covariance
de Méré’s problem
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Probability and statistics (Continued)
dice
Gaussian
hat problem
Markov chain
monkeys and typewriters
Monte Carlo method
Monty Hall problem
null hypothesis
power law
probability
probability theory
random
random number
random walk
secretary problem. See sultan’s dowry
standard deviation
statistics
stochastic
sultan’s dowry
three hat problem. See hat problem
Vickrey auction

Puzzles, miscellaneous
dollar
missing dollar problem
postage stamp problems
railroad problems. See shunting puzzles
river-crossing problems
shunting puzzles
string puzzles
what color was the bear?

Science and philosophy
absolute
absolute zero
book-stacking problem
Brownian motion
bubbles
buckyball
celt
dynamics
entropy
gauge field
general relativity. See relativity theory
God
hole-through-the-Earth problem
holism
Kaluza-Klein theory
many worlds hypothesis
monad
nothing
perturbation
phase transition
pitch drop experiment
quantum field theory
quantum mechanics
reductionism
relativity theory
renormalization
soap film. See bubbles

soliton
special relativity. See relativity theory
spectrum
spinor
statistical mechanics
stochastic process
string theory
supersymmetry
theory of everything
three-body problem
Tippee top
walking in the rain problem
wine

See also: Chaos, complexity, and dy-
namical systems and Time

Series and sequences
arithmetic sequence
Beatty sequences
Farey sequence
Fourier series
geometric sequence
hailstone sequence
harmonic sequence
infinite series
Lucas sequences
Padovan sequence. See plastic number
Perrin sequence
power series
quartile
sequence
series
unimodal sequence

Sets and set theory
cap
continuum
countable set
cup
empty set
finite
homeomorphism
model theory
null set. See empty set
recursively enumerable set
set
set theory
subset
uncountable set
union

Solids and surfaces
antiprism
arch
Archimedean dual. See Catalan solid
Archimedean solid
ball
Catalan solid
catenoid
circular cone

compound polyhedron
cone
Császár polyhedron
cube
cuboctahedron
cuboid
cylinder
Dandelin spheres
deltahedron
dihedral angle
dodecahedron
dual
Dupin cyclide
edge
edge coloring theorem. See Tait’s conjec-

ture
ellipsoid
envelope
Euler’s formula for polyhedra
face
frustum
Gabriel’s horn
geoboard
hyperboloid
icosahedron
Johnson solid
Kepler-Poinsot solids
minimal surface
nonconvex uniform polyhedron
octahedron
paraboloid
Plateau problem
Platonic solid
lattice
lattice path
lattice point
lune
nappe
net
oblate spheroid
polycube
polyhedron
prism
pseudosphere
pyramid
quasi–regular polyhedron
regular polygon
regular polyhedron
ruled surface
saddle
Schläfli symbol
semi-regular polyhedron
solid
solid angle
sollid geometry
sphere
sphericon
spheroid
stellation
Stewart toroid
superegg
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surface
surface of revolution
Szilassi polyhedron
tetrahedron
torus
truncate
uniform polyhedron
unit cube
zone
zonohedron

See also: Dimensions and Space
curves

Space curves
circular helix. See helix
clelia
helix
conical helix. See helix
helicoid
loxodrome
Viviani’s curve

Terminology, general
amplitude
argument
base
basis
canonical form
cell
closed
complement
concave
conjugate
connectivity
convex
degree
degree of freedom
discrete
frequency
identity
inequality
intersection
inverse
linear
loop
map
monotonic
obelus
odd
open
orbit
order
path. See trajectory
phase space
pole
power

radical
radix. See base
root
search space
solidus
space
state space. See phase space
string
symmetry
system
ternary
trajectory
triple
vinculum

Tiling
aperiodic tiling
Archimedean tessellation
arrowhead. See dart
chaos tiles. See Penrose tiles
dart
domino problem
Einstein problem
Eternity puzzle
Heesch number
irreptile. See rep-tile
MacMahon squares
Penrose tiling
periodic tiling
quasicrystal
rep-tile
tessellation. See tiling
tiling
Voronoi diagram

Time
causality
grandfather paradox
Planck time
space-time
tachyon
time
time dilation. See relativity theory
time travel
twins paradox. See relativity theory
worldline

Topology
Alexander’s horned sphere
algebraic topology
Borromean rings
Borsuk-Ulam theorem
braid
Brouwer fixed-point theorem
bundle
Calabi-Yau space
cohomology

conformal mapping
connected
differential topology
dimension
Dirac string trick
disk
Earthshapes
embedding
Euclidean space
Euler characteristic
foliation
general topology. See point-set topology
genus
Gordian knot
ham sandwich theorem
Hilbert space
hole
homeomorphic
homology
homotopy
Klein bottle
knot
lamination
manifold
metric space
metrizable
Möbius band
pleated surface
Poincaré conjecture
point-set topology
projective plane
Riemann sphere
Riemann surface
round
simply-connected
tie knots
topological dimension
topological space
topology
Whitney’s umbrella

Words and word puzzles
abracadabra
alphametic
anagram
autogram. See self-enumerating sentence
limerick
palindrome
pangram
self-enumerating sentence
self-referential sentence
snow
Sphinx riddle
tautology
Universal Library
word puzzles
word trivia


